1
|
Jaume J, Délia ML, Basséguy R. The Influence of Roughness on the Protective Layer Formation Induced by Marine Microorganisms on 5083 Aluminum Alloy. MATERIALS (BASEL, SWITZERLAND) 2025; 18:708. [PMID: 39942374 PMCID: PMC11820449 DOI: 10.3390/ma18030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. As two opposing effects are suspected, where high surface roughness enhances bacterial adhesion but reduces the resistance to abiotic corrosion, various degrees of roughness were tested. Using electrochemical experiments (OCP measurement, 1/Rp determination, and pitting sensitivity), SEM/TEM observation and EDX characterization, a compromise was found on the initial roughness to obtain a thick protective layer through good bacterial adhesion while minimizing abiotic corrosion. The optimal roughness, achieved through 240-grit grinding, facilitates a uniform distribution of microorganisms and the development of a dense, evenly thick protective layer that significantly enhances the alloy's resistance to pitting corrosion. The passivity domain doubled when comparing the electrochemical behavior of electrodes immersed in the presence of microbial activity to those immersed without it.
Collapse
Affiliation(s)
| | | | - Régine Basséguy
- Chemical Engineering Laboratory (LGC), Université de Toulouse, CNRS, INPT, UPS, 4 Allée E. Monso, 31432 Toulouse, France; (J.J.); (M.-L.D.)
| |
Collapse
|
2
|
Guo Z, Liu H, Wang W, Hu Z, Li X, Chen H, Wang K, Li Z, Yuan C, Ge X. Recent Advances in Antibacterial Strategies Based on TiO 2 Biomimetic Micro/Nano-Structured Surfaces Fabricated Using the Hydrothermal Method. Biomimetics (Basel) 2024; 9:656. [PMID: 39590228 PMCID: PMC11591971 DOI: 10.3390/biomimetics9110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Ti and its alloys, widely utilized in orthopedic and dental implants, inherently lack antibacterial properties, posing significant infection risks, especially in the context of growing antibiotic resistance. This review critically evaluates non-antibiotic antibacterial strategies, with a particular focus on surface modifications and micro/nano-structured surfaces. Micro/nano-structured surfaces, inspired by natural topographies, utilize physical mechanisms to eradicate bacteria. Despite their potential, the antibacterial efficacy of these surfaces remains insufficient for clinical application. Titanium dioxide (TiO2), known for its excellent photocatalytic antibacterial activity and biocompatibility, is emerging as an ideal candidate for enhancing micro/nano-structured surfaces. By combining the photocatalytic antibacterial effects of TiO2 with the mechanical bactericidal properties of micro/nano-structured surfaces, superior antibacterial performance can be achieved. The hydrothermal method is frequently employed to fabricate TiO2 micro/nano-structured surfaces, and this area of research continues to thrive, particularly in the development of antibacterial strategies. With demonstrated efficacy, combined antibacterial strategies based on TiO2 micro/nano-structured surfaces have become a prominent focus in current research. Consequently, the integration of physical stimulation and chemical release mechanisms may represent the future direction for TiO2 micro/nano-structured surfaces. This review aims to advance the study of TiO2 micro/nano-structured surfaces in antibacterial applications and to inspire more effective non-antibiotic antibacterial solutions.
Collapse
Affiliation(s)
- Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofang Li
- College of Foreign Languages, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
3
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Siddiquie RY, Sharma K, Banerjee A, Agrawal A, Joshi SS. Time-dependent plastic behavior of bacteria leading to rupture. J Mech Behav Biomed Mater 2023; 145:106048. [PMID: 37523842 DOI: 10.1016/j.jmbbm.2023.106048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
A study of the mechanical response of bacteria is essential in designing an antibacterial surface for implants and food packaging applications. This research evaluated the mechanical response of Escherichia coli under different loading conditions. Indentation and prolonged creep tests were performed to understand their viscoelastic-plastic response. The results indicate that varying loading rates from 1 μm/s to 5 μm/s show an increase in modulus of 182% and 90%, calculated in the loading and unloading cycles, respectively, and a decrease in adhesion force by 42%. However, on varying loads from 5 nN to 25 nN, nominal change is observed in both modulus and adhesion force. The rupture curve at 100 nN load shows elastic and a small plastic deformation accompanied by a sharp peak indicating the cell wall rupture. The rupture force at the peak was found to be 34.38 ± 5.15 nN, irrespective of the loading rate, making it a failure criterion for bacteria rupture. The creep response of bacteria increases (for 6 s) and then remains constant (for 15 s) with time, indicating that a standard linear solid (SLS) model applies to this behavior. This work attempts to evaluate the mechanical properties of E. coli bacteria focusing on its rupture by contact killing mechanism.
Collapse
Affiliation(s)
- Reshma Y Siddiquie
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India
| | - Kuldeep Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India
| | - Suhas S Joshi
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India; Department of Mechanical Engineering, Indian Institute of Technology, Indore, India.
| |
Collapse
|
5
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
6
|
van Rensburg W, Laubscher WE, Rautenbach M. High throughput method to determine the surface activity of antimicrobial polymeric materials. MethodsX 2022; 8:101593. [PMID: 35004225 PMCID: PMC8720914 DOI: 10.1016/j.mex.2021.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Surface colonization by microorganisms, combined with the rise in antibiotic resistance, is the main cause of production failures in various industries. Self-sterilising materials are deemed the best prevention of surface colonization. However, current screening methods for these sterilising materials are laborious and time-consuming. The disk diffusion antimicrobial assay and the Japanese industrial standard method for antimicrobial activity on solid surfaces, JIS Z 2801, were compared to our modified solid surface antimicrobial assay in terms of detecting the activity of antibiotic-containing cellulose disks against four bacterial pathogens. Our novel assay circumvents the long incubation times by utilising the metabolic active dye, resazurin, to shorten the time in which antibacterial results are obtained to less than 4 h. This assay allows for increased screening to identify novel sterilising materials for combatting surface colonisation.Disk diffusion assay could only detect the activity of small compounds that leached from the material over 20–24 h. JIS Z 2801 was also able to detect the surface activity of non-polar compounds, thought to be inactive based on the disk diffusion results. The resazurin solid surface antimicrobial assay could obtain the same results as the JIS Z 2801, within a shorter time and in a high-throughput 96-well plate setup.
Collapse
|
7
|
Tian L, Wang H, Bing W, Jin H, Shang Y, Dong S, Yan S, Du W. Exploring the antifouling performance of non-bactericidal and bactericidal film for combating marine biofouling. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Di Cerbo A, Rosace G, Rea S, Stocchi R, Morales-Medina JC, Canton R, Mescola A, Condò C, Loschi AR, Sabia C. Time-Course Study of the Antibacterial Activity of an Amorphous SiO xC yH z Coating Certified for Food Contact. Antibiotics (Basel) 2021; 10:antibiotics10080901. [PMID: 34438952 PMCID: PMC8388733 DOI: 10.3390/antibiotics10080901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
One of the most-used food contact materials is stainless steel (AISI 304L or AISI 316L), owing to its high mechanical strength, cleanability, and corrosion resistance. However, due to the presence of minimal crevices, stainless-steel is subject to microbial contamination with consequent significant reverb on health and industry costs due to the lack of effective reliability of sanitizing agents and procedures. In this study, we evaluated the noncytotoxic effect of an amorphous SiOxCyHz coating deposited on stainless-steel disks and performed a time-course evaluation for four Gram-negative bacteria and four Gram-positive bacteria. A low cytotoxicity of the SiOxCyHz coating was observed; moreover, except for some samples, a five-logarithm decrease was visible after 1 h on coated surfaces without any sanitizing treatment and inoculated with Gram-negative and Gram-positive bacteria. Conversely, a complete bacterial removal was observed after 30 s−1 min application of alcohol and already after 15 s under UVC irradiation against both bacterial groups. Moreover, coating deposition changed the wetting behaviors of treated samples, with contact angles increasing from 90.25° to 113.73°, realizing a transformation from hydrophilicity to hydrophobicity, with tremendous repercussions in various technological applications, including the food industry.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
- Correspondence: ; Tel.: +39-073-740-3466
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy;
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Roberta Stocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, Tlaxcala 90000, Mexico;
| | | | | | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (C.S.)
| | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (C.S.)
| |
Collapse
|
9
|
Soylu HM, Chevallier P, Copes F, Ponti F, Candiani G, Yurt F, Mantovani D. A Novel Strategy to Coat Dopamine-Functionalized Titanium Surfaces With Agarose-Based Hydrogels for the Controlled Release of Gentamicin. Front Cell Infect Microbiol 2021; 11:678081. [PMID: 34178721 PMCID: PMC8224171 DOI: 10.3389/fcimb.2021.678081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction The use of spinal implants for the treatment of back disorders is largely affected by the insurgence of infections at the implantation site. Antibacterial coatings have been proposed as a viable solution to limit such infections. However, despite being effective at short-term, conventional coatings lack the ability to prevent infections at medium and long-term. Hydrogel-based drug delivery systems may represent a solution controlling the release of the loaded antibacterial agents while improving cell integration. Agarose, in particular, is a biocompatible natural polysaccharide known to improve cell growth and already used in drug delivery system formulations. In this study, an agarose hydrogel-based coating has been developed for the controlled release of gentamicin (GS). Methods Sand blasted Ti6Al4V discs were grafted with dopamine (DOPA) solution. After, GS loaded agarose hydrogels have been produced and additioned with tannic acid (TA) and calcium chloride (CaCl2) as crosslinkers. The different GS-loaded hydrogel formulations were deposited on Ti6Al4V-DOPA surfaces, and allowed to react under UV irradiation. Surface topography, wettability and composition have been analyzed with profilometry, static contact angle measurement, XPS and FTIR spectroscopy analyses. GS release was performed under pseudo-physiological conditions up to 28 days and the released GS was quantified using a specific ELISA test. The cytotoxicity of the produced coatings against human cells have been tested, along with their antibacterial activity against S. aureus bacteria. Results A homogeneous coating was obtained with all the hydrogel formulations. Moreover, the coatings presented a hydrophilic behavior and micro-scale surface roughness. The addition of TA in the hydrogel formulations showed an increase in the release time compared to the normal GS-agarose hydrogels. Moreover, the GS released from these gels was able to significantly inhibit S. aureus growth compared to the GS-agarose hydrogels. The addition of CaCl2 to the gel formulation was able to significantly decrease cytotoxicity of the TA-modified hydrogels. Conclusions Due to their surface properties, low cytotoxicity and high antibacterial effects, the hereby proposed gentamicin-loaded agarose-hydrogels provide new insight, and represent a promising approach for the surface modification of spinal implants, greatly impacting their application in the orthopedic surgical scenario.
Collapse
Affiliation(s)
- H Melis Soylu
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Federica Ponti
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada.,GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Fatma Yurt
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey.,Department Nuclear Applications, Institute Nuclear Science, Ege University, Bornova, Turkey
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| |
Collapse
|
10
|
Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20921-20937. [PMID: 33914499 PMCID: PMC8130912 DOI: 10.1021/acsami.1c01389] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, periprosthetic bacterial infection remains a major challenge for orthopedic and dental implants. Bacterial colonization/biofilm formation around implants and their invasion into the dense skeletal tissue matrices are difficult to treat and could lead to implant failure and osteomyelitis. These complications require major revision surgeries and extended antibiotic therapies that are associated with high treatment cost, morbidity, and even mortality. Effective preventative measures mitigating risks for implant-related infections are thus in dire need. This review focuses on recent developments of anti-periprosthetic infection strategies aimed at either reducing bacterial adhesion, colonization, and biofilm formation or killing bacteria directly in contact with and/or in the vicinity of implants. These goals are accomplished through antifouling, quorum-sensing interfering, or bactericidal implant surface topographical engineering or surface coatings through chemical modifications. Surface topographical engineering of lotus leaf mimicking super-hydrophobic antifouling features and cicada wing-mimicking, bacterium-piercing nanopillars are both presented. Conventional physical coating/passive release of bactericidal agents is contrasted with their covalent tethering to implant surfaces through either stable linkages or linkages labile to bacterial enzyme cleavage or environmental perturbations. Pros and cons of these emerging anti-periprosthetic infection approaches are discussed in terms of their safety, efficacy, and translational potentials.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Lee SY, Chan EL, Chan HH, Li CCK, Ooi ZH, Koh RY, Liew YK. ANTIMICROBIAL AGENTS AND ANTI-ADHESION MATERIALS FOR MEDICAL AND SURGICAL GLOVES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Healthcare-associated infections (HAIs) can be common in healthcare settings, such as the intensive care unit and surgical sites, if proper precautions are not followed. Although traditional techniques are encouraged, such as educating the public and healthcare workers to practice proper handwashing or to double glove, they have not been fully effective in combating HAIs. The use of surface-modified antimicrobial gloves may be an alternative approach to prevent the transmission of pathogens between healthcare workers and patients. This paper gives a comprehensive review of strategies to produce antimicrobial gloves. The chemistry of some potential chemically synthesized antimicrobial agents and nature-inspired superhydrophobic surfaces are discussed. The principles of killing microbes must be understood to effectively select these materials and to design and fabricate surfaces for the reduction of bacterial adhesion. Also, current company trends and technologies are presented for gloves proven to effectively kill bacteria. Such glove use, when coupled with in-depth research on diverse surgical procedures and medical examinations, could ease the burden of HAIs.
Collapse
Affiliation(s)
- Siang Yin Lee
- Latex Science and Technology Unit (USTL), Technology and Engineering Division (BTK), RRIM Sungai Buloh Research Station, Malaysian Rubber Board (MRB), 47000 Sungai Buloh, Selangor, Malaysia
| | - E-Lyn Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Claire Chong Khai Li
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Zhe Hooi Ooi
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Khalid A, Bai D, Abraham AN, Jadhav A, Linklater D, Matusica A, Nguyen D, Murdoch BJ, Zakhartchouk N, Dekiwadia C, Reineck P, Simpson D, Vidanapathirana AK, Houshyar S, Bursill CA, Ivanova EP, Gibson BC. Electrospun Nanodiamond-Silk Fibroin Membranes: A Multifunctional Platform for Biosensing and Wound-Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48408-48419. [PMID: 33047948 DOI: 10.1021/acsami.0c15612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Next generation wound care technology capable of diagnosing wound parameters, promoting healthy cell growth, and reducing pathogenic infections noninvasively would provide patients with an improved standard of care and accelerated wound repair. Temperature is one of the indicating biomarkers specific to chronic wounds. This work reports a hybrid, multifunctional optical material platform-nanodiamond (ND)-silk membranes as biopolymer dressings capable of temperature sensing and promoting wound healing. The hybrid structure was fabricated through electrospinning, and 3D submicron fibrous membranes with high porosity were formed. Silk fibers are capable of compensating for the lack of an extracellular matrix at the wound site, supporting the wound-healing process. Negatively charged nitrogen vacancy (NV-) color centers in NDs exhibit optically detected magnetic resonance (ODMR) and act as nanoscale thermometers. This can be exploited to sense temperature variations associated with the presence of infection or inflammation in a wound, without physically removing the dressing. Our results show that the presence of NDs in the hybrid ND-silk membranes improves the thermal stability of silk fibers. NV- color centers in NDs embedded in silk fibers exhibit well-retained fluorescence and ODMR. Using the NV- centers as fluorescent nanoscale thermometers, we achieved temperature sensing in 25-50 °C, including the biologically relevant temperature window, for cell-grown ND-silk membranes. An enhancement (∼1.5× on average) in the temperature sensitivity of the NV- centers was observed for the hybrid materials. The hybrid membranes were further tested in vivo in a murine wound-healing model and demonstrated biocompatibility and equivalent wound closure rates as the control wounds. Additionally, the hybrid ND-silk membranes exhibited selective antifouling and biocidal propensity toward Gram-negative Pseudomonas aeruginosa and Escherichia coli, while no effect was observed on Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Asma Khalid
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dongbi Bai
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amanda N Abraham
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amit Jadhav
- School of Fashion and Textiles, RMIT University, Brunswick, Victoria 3056, Australia
| | - Denver Linklater
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alex Matusica
- School of Computer Science, Engineering and Mathematics, Flinders University, Clovelly Park, South Australia 5042, Australia
| | - Duy Nguyen
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | | | | | - Philipp Reineck
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - David Simpson
- School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5001, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
13
|
Shimada T, Yasui T, Yonese A, Yanagida T, Kaji N, Kanai M, Nagashima K, Kawai T, Baba Y. Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO 2 Nanowire Structures Formed by Bottom-Up Approaches. MICROMACHINES 2020; 11:E610. [PMID: 32599748 PMCID: PMC7345559 DOI: 10.3390/mi11060610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
There are growing interests in mechanical rupture-based antibacterial surfaces with nanostructures that have little toxicity to cells around the surfaces; however, current surfaces are fabricated via top-down nanotechnologies, which presents difficulties to apply for bio-surfaces with hierarchal three-dimensional structures. Herein, we developed ZnO/SiO2 nanowire structures by using bottom-up approaches and demonstrated to show mechanical rupture-based antibacterial activity and compatibility with human cells. When Escherichia coli were cultured on the surface for 24 h, over 99% of the bacteria were inactivated, while more than 80% of HeLa cells that were cultured on the surface for 24 h were still alive. This is the first demonstration of mechanical rupture-based bacterial rupture via the hydrothermally synthesized nanowire structures with antibacterial activity and cell compatibility.
Collapse
Affiliation(s)
- Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Akihiro Yonese
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takeshi Yanagida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Noritada Kaji
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
14
|
Aguirre Ocampo R, Echeverry-Rendón M, DeAlba-Montero I, Robledo S, Ruiz F, Echeverría Echeverría F. Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose. J Biomed Mater Res A 2020; 109:104-121. [PMID: 32441468 DOI: 10.1002/jbm.a.37010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Nanotubular structures were produced on a commercially pure titanium surface by anodization in an aqueous electrolyte that contained carboxymethyl cellulose and sodium fluoride. The internal diameters obtained were about 100, 48, and 9.5 nm, respectively. Several heat treatments at 200, 350, and 600°C were made to produce nanotubes with different titanium dioxide polymorphs (anatase, rutile). All tested surfaces were superhydrophilic, this behavior was maintained after at least 30 days, regardless of the heat treatment. Although in previous works the nanotube features effect on the bacteria behavior had been studied; this item still unclear. For the best of our knowledge, the effect of small internal diameters (about 10 nm) with and without heat treatment and with and without ultraviolet (UV) irradiation on the bacteria strains comportment has not been reported. From our results, both the internal diameter and the postanodized treatments have an effect on the bacteria strains comportment. All nanotubular coatings UV treated and heat treated at 350 and 600°C; despite they have different inner diameters, inhibit the bacteria growth of both Staphylococcus aureus and Pseudomonas aeruginosa strains. The nanotubular coatings obtained at 20 V and heat treated at 350°C produced the lower bacteria adhesion against both strains evaluated.
Collapse
Affiliation(s)
- Robinson Aguirre Ocampo
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mónica Echeverry-Rendón
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia.,Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Idania DeAlba-Montero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Félix Echeverría Echeverría
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
15
|
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc Natl Acad Sci U S A 2020; 117:12598-12605. [PMID: 32457154 DOI: 10.1073/pnas.1916680117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.
Collapse
|
16
|
pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110493. [DOI: 10.1016/j.msec.2019.110493] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 01/29/2023]
|
17
|
Tamayo L, Melo F, Caballero L, Hamm E, Díaz M, Leal MS, Guiliani N, Urzúa MD. Does Bacterial Elasticity Affect Adhesion to Polymer Fibers? ACS APPLIED MATERIALS & INTERFACES 2020; 12:14507-14517. [PMID: 32118396 DOI: 10.1021/acsami.9b21060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The factors governing bacterial adhesion to substrates with different topographies are still not fully identified. The present work seeks to elucidate for the first time and with quantitative data the roles of bacterial elasticity and shape and substrate topography in bacterial adhesion. With this aim, populations of three bacterial species, P. aeruginosa DSM 22644, B. subtilis DSM 10, and S. aureus DSM 20231 adhered on flat substrates covered with electrospun polycaprolactone fibers of different diameters ranging from 0.4 to 5.5 μm are counted. Populations of bacterial cells are classified according to the preferred binding sites of the bacteria to the substrate. The colloidal probe technique was used to assess the stiffness of the bacteria and bacteria-polymer surface adhesion energy. A theoretical model is developed to interpret the observed populations in terms of a balance between stiffness and adhesion energy of the bacteria. The model, which also incorporates the radius of the fiber and the size and shape of the bacteria, predicts increased adhesion for a low level of stiffness and for a larger number of available bacteria-fiber contact points. Te adhesive propensity of bacteria depends in a nontrivial way on the radius of the fibers due to the random arrangement of fibers.
Collapse
Affiliation(s)
- Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - Francisco Melo
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Leonardo Caballero
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Eugenio Hamm
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
| | - M Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M S Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - N Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| |
Collapse
|
18
|
Olewnik-Kruszkowska E, Gierszewska M, Jakubowska E, Tarach I, Sedlarik V, Pummerova M. Antibacterial Films Based on PVA and PVA-Chitosan Modified with Poly(Hexamethylene Guanidine). Polymers (Basel) 2019; 11:E2093. [PMID: 31847274 PMCID: PMC6960635 DOI: 10.3390/polym11122093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, thin, polymeric films consisting of poly(vinyl alcohol) (PVA) and chitosan (Ch) with the addition of poly(hexamethylene guanidine) (PHMG) were successfully prepared. The obtained materials were analyzed to determine their physicochemical and biocidal properties. In order to confirm the structure of PHMG, nuclear magnetic resonance spectroscopy (1H NMR) was applied, while in the case of the obtained films, attenuated total reflectance infrared spectroscopy with Fourier transform (FTIR-ATR) was used. The surface morphology of the polymer films was evaluated based on atomic force microscopy. Furthermore, the mechanical properties, color changes, and thermal stability of the obtained materials were determined. Microbiological tests were performed to evaluate the biocidal properties of the new materials with and without the addition of PHMG. These analyses confirmed the biocidal potential of films modified by PHMG and allowed for comparisons of their physicochemical properties with the properties of native films. In summary, films consisting of PVA and PHMG displayed higher antimicrobial potentials against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in comparison to PVA:Ch-based films with the addition of PHMG.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Magdalena Gierszewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Ewelina Jakubowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Iwona Tarach
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (V.S.); (M.P.)
| | - Martina Pummerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (V.S.); (M.P.)
| |
Collapse
|
19
|
Spengler C, Nolle F, Mischo J, Faidt T, Grandthyll S, Thewes N, Koch M, Müller F, Bischoff M, Klatt MA, Jacobs K. Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. NANOSCALE 2019; 11:19713-19722. [PMID: 31599281 DOI: 10.1039/c9nr04375f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Friederike Nolle
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Johannes Mischo
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Thomas Faidt
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Samuel Grandthyll
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Nicolas Thewes
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Frank Müller
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael Andreas Klatt
- Institute of Stochastics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| |
Collapse
|
20
|
Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019; 184:110550. [PMID: 31606698 DOI: 10.1016/j.colsurfb.2019.110550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Development of a biomaterial that is resistant to the adhesion and consequential proliferation of bacteria, represents a significant challenge in terms of application of such materials in various aspects of health care. Over recent years a large number of synthetic methods have appeared with the overall goal of the prevention of bacterial adhesion to surfaces. In contrast to these artificial techniques, living organisms over millions of years have developed different systems to prevent the colonization of microorganisms. Recently, these natural approaches, which are based on surface nanotopography, have been mimicked to fabricate a modern antibacterial surface. In this vein, use of nanoparticle (NP) technology has been explored in order to create a suitable antibacterial surface. However, few studies have focused on the toxicity of these techniques and the ecotoxicity of NP materials on mammalian and bacterial cells simultaneously. Researchers have observed that the majority of previous studies have demonstrated some of the extents of the harmful impacts on mammalian cells. Here, we provide a critical review of the NP approach to antibacterial surface treatment, and also summarize the studies of toxic effects caused by metal NPs on bacteria and mammalian cells.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| | - Michael Thompson
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
21
|
Nguyen DHK, Loebbe C, Linklater DP, Xu X, Vrancken N, Katkus T, Juodkazis S, Maclaughlin S, Baulin V, Crawford RJ, Ivanova EP. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures. NANOSCALE 2019; 11:16455-16462. [PMID: 31451827 DOI: 10.1039/c9nr05923g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia. and Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - XiuMei Xu
- IMEC, Kapeldreef 75, Leuven 3001, Belgium
| | - Nandi Vrancken
- IMEC, Kapeldreef 75, Leuven 3001, Belgium and Research Group Electrochemical and Surface Engineering (SURF), Dept. of Materials & Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Tomas Katkus
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Vladimir Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Tarragona, Spain
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
22
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
23
|
Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE, Bhargava SK, Ivanova EP, Crawford RJ. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. NANOSCALE ADVANCES 2019; 1:203-212. [PMID: 36132449 PMCID: PMC9473181 DOI: 10.1039/c8na00124c] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Victoria E Coyle
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology Haw-thorn VIC 3122 Australia
- ARC Research Hub for Australian Steel Manufacturing Wollongong New South Wales Australia
| | - Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| |
Collapse
|
24
|
Chen Y, Yang F, Yang J, Hou Y, He L, Hu H, Lv F. Aluminum (oxy) Hydroxide Nanorods Activate an Early Immune Response in Pseudomonas aeruginosa Vaccine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43533-43542. [PMID: 30480997 DOI: 10.1021/acsami.8b18164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial vaccines have been widely used to prevent infectious diseases, especially in veterinary medicine. Although there are many reports on bacterin adjuvants, only a few contain innovations in bacterin adjuvants. Taking this into consideration, in this study we designed and synthesized a new aluminum (oxy) hydroxide (AlOOH) nanorod (Al-NR) with a diameter of 200 ± 80 nm and a length of 1.1 ± 0.6 μm. Using whole- Pseudomonas aeruginosa PAO1 as antigens, we showed that the bacterial antigens of P. aeruginosa PAO1 adsorbed on the Al-NRs induced a quick and stronger antigen-specific antibody response than those of the other control groups, especially in the early stage of immunization. Furthermore, the level of antigen-specific IgG was approximately 4-fold higher than that of the no adjuvant group and 2.5-fold higher than those of other adjuvant groups in the first week after the initial immunization. The potent adjuvant activity of the Al-NRs was attributed to the rapid presentation of antigen adsorbed on them by APCs. Additionally, Al-NRs induced a milder local inflammation than the other adjuvants. In short, we confirmed that Al-NRs, enhancing both humoral and cellular immune responses, are a potentially promising vaccine adjuvant delivery system for inhibiting the whole- Pseudomonas aeruginosa infection.
Collapse
Affiliation(s)
- Yingli Chen
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| | - Feng Yang
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| | - Jun Yang
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| | - Yali Hou
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| | - Leilei He
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| | - Houxiang Hu
- Department of Cardiology , Affiliated Hospital of North Sichuan Medical College , Nanchong 637000 , Sichuan , P.R. China
| | - Fenglin Lv
- College of Bioengineering, "111 Project" Laboratory of Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology , Chongqing University , Chongqing 400030 , P.R. China
| |
Collapse
|
25
|
Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018; 13:060801. [DOI: 10.1116/1.5054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Newe A, Becker L. Three-Dimensional Portable Document Format (3D PDF) in Clinical Communication and Biomedical Sciences: Systematic Review of Applications, Tools, and Protocols. JMIR Med Inform 2018; 6:e10295. [PMID: 30087092 PMCID: PMC6103636 DOI: 10.2196/10295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background The Portable Document Format (PDF) is the standard file format for the communication of biomedical information via the internet and for electronic scholarly publishing. Although PDF allows for the embedding of three-dimensional (3D) objects and although this technology has great potential for the communication of such data, it is not broadly used by the scientific community or by clinicians. Objective The objective of this review was to provide an overview of existing publications that apply 3D PDF technology and the protocols and tools for the creation of model files and 3D PDFs for scholarly purposes to demonstrate the possibilities and the ways to use this technology. Methods A systematic literature review was performed using PubMed and Google Scholar. Articles searched for were in English, peer-reviewed with biomedical reference, published since 2005 in a journal or presented at a conference or scientific meeting. Ineligible articles were removed after screening. The found literature was categorized into articles that (1) applied 3D PDF for visualization, (2) showed ways to use 3D PDF, and (3) provided tools or protocols for the creation of 3D PDFs or necessary models. Finally, the latter category was analyzed in detail to provide an overview of the state of the art. Results The search retrieved a total of 902 items. Screening identified 200 in-scope publications, 13 covering the use of 3D PDF for medical purposes. Only one article described a clinical routine use case; all others were pure research articles. The disciplines that were covered beside medicine were many. In most cases, either animal or human anatomies were visualized. A method, protocol, software, library, or other tool for the creation of 3D PDFs or model files was described in 19 articles. Most of these tools required advanced programming skills and/or the installation of further software packages. Only one software application presented an all-in-one solution with a graphical user interface. Conclusions The use of 3D PDF for visualization purposes in clinical communication and in biomedical publications is still not in common use, although both the necessary technique and suitable tools are available, and there are many arguments in favor of this technique. The potential of 3D PDF usage should be disseminated in the clinical and biomedical community. Furthermore, easy-to-use, standalone, and free-of-charge software tools for the creation of 3D PDFs should be developed.
Collapse
Affiliation(s)
- Axel Newe
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,NewTec GmbH, Pfaffenhofen an der Roth, Germany
| | - Linda Becker
- Chair of Health Psychology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Berne C, Ellison CK, Ducret A, Brun YV. Bacterial adhesion at the single-cell level. Nat Rev Microbiol 2018; 16:616-627. [DOI: 10.1038/s41579-018-0057-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Abstract
Escherichia coli and Staphylococcus aureus bacterial retention on mirror-polished and ultrashort pulse laser-textured surfaces is quantified with a new approach based on ISO standards for measurement of antibacterial performance. It is shown that both wettability and surface morphology influence antibacterial behavior, with neither superhydrophobicity nor low surface roughness alone sufficient for reducing initial retention of either tested cell type. Surface structures comprising spikes, laser-induced periodic surface structures (LIPSS) and nano-pillars are produced with 1030 nm wavelength 350 fs laser pulses of energy 19.1 μJ, 1.01 μJ and 1.46 μJ, respectively. SEM analysis, optical profilometry, shear force microscopy and wettability analysis reveal surface structures with peak separations of 20–40 μm, 0.5–0.9 μm and 0.8–1.3 μm, average areal surface roughness of 8.6 μm, 90 nm and 60 nm and static water contact angles of 160°, 119° and 140°, respectively. E. coli retention is highest for mirror-polished specimens and spikes whose characteristic dimensions are much larger than the cell size. S. aureus retention is instead found to be inhibited under the same conditions due to low surface roughness for mirror-polished samples (Sa: 30 nm) and low wettability for spikes. LIPSS and nano-pillars are found to reduce E. coli retention by 99.8% and 99.2%, respectively, and S. aureus retention by 84.7% and 79.9% in terms of viable colony forming units after two hours of immersion in bacterial broth due to both low wettability and fine surface features that limit the number of available attachment points. The ability to tailor both wettability and surface morphology via ultrashort pulsed laser processing confirms this approach as an important tool for producing the next generation of antibacterial surfaces.
Collapse
|
30
|
Lai CQ. Bacterial Attachment, Aggregation, and Alignment on Subcellular Nanogratings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4059-4070. [PMID: 29509427 DOI: 10.1021/acs.langmuir.8b00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent investigations on the interactions of bacteria with micro/nanostructures have revealed a wide range of prokaryotic responses that were previously unknown. Despite these advances, however, it remains unclear how collective bacterial behavior on a surface would be influenced by the presence of anisotropic nanostructures with subcellular dimensions. To clarify this, the attachment, aggregation, and alignment of Pseudomonas aeruginosa on orderly subcellular nanogratings with systematically varied geometries were investigated. Compared with a flat surface, attachment and aggregation of bacteria on the nanogratings were reduced by up to 83 and 84% respectively, whereas alignment increased by a maximum of 850%. Using a semiempirical quantitative model, these results were shown to be caused by a lowering of physicochemical attraction between the substrate and bacteria, possible disruption to cell communication, and physical isolation of bacteria that were entrenched in the nanogratings by capillary action. Furthermore, the bacterial attachment level was generally found to be exponentially related to the contact area between the substrate and bacterial cells, except when there were significant deficits in the available contact area, which prompted the bacterial cells to employ their appendages to maintain a minimum attachment rate. Because the contact area for adhesion is strongly dependent on the geometry of the surface features and orientation of the bacterial cells, these results indicate that the conventional practice of using roughness parameters to draw quantitative relationships between surface topographies and bacterial attachment could suffer from inaccuracies due to the lack of shape and orientation information provided by these parameters. On the basis of these insights, design principles for generating maximal and minimal bacterial attachment on a surface were also proposed and verified with results reported in the literature.
Collapse
Affiliation(s)
- Chang Quan Lai
- Biosystems and Micromechanics , Singapore MIT Alliance for Research and Technology , 1 CREATE Way , Singapore 138602
- Temasek Laboratories , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
| |
Collapse
|
31
|
Hasan J, Jain S, Padmarajan R, Purighalla S, Sambandamurthy VK, Chatterjee K. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. MATERIALS & DESIGN 2018; 140:332-344. [PMID: 29391661 PMCID: PMC5788004 DOI: 10.1016/j.matdes.2017.11.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 05/14/2023]
Abstract
Toward minimizing bacterial colonization of surfaces, we present a one-step etching technique that renders aluminum alloys with micro- and nano-scale roughness. Such a multi-scale surface topography exhibited enhanced antibacterial effect against a wide range of pathogens. Multi-scale topography of commercially grade pure aluminum killed 97% of Escherichia coli and 28% of Staphylococcus aureus cells in comparison to 7% and 3%, respectively, on the smooth surfaces. Multi-scale topography on Al 5052 surface was shown to kill 94% of adhered E. coli cells. The microscale features on the etched Al 1200 alloy were not found to be significantly bactericidal, but shown to decrease the adherence of S. aureus cells by one-third. The fabrication method is easily scalable for industrial applications. Analysis of roughness parameters determined by atomic force microscopy revealed a set of significant parameters that can yield a highly bactericidal surface; thereby providing the design to make any surface bactericidal irrespective of the method of fabrication. The multi-scale roughness of Al 5052 alloy was also highly bactericidal to nosocomial isolates of E. coli, K. pneumoniae and P. aeruginosa. We envisage the potential application of engineered surfaces with multi-scale topography to minimize the spread of nosocomial infections.
Collapse
Affiliation(s)
- Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Shubham Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rinsha Padmarajan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Swathi Purighalla
- Mazumdar Shaw Centre for Translational Research, NH Health City, Bangalore 560099, India
| | | | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
- Corresponding author.
| |
Collapse
|
32
|
López-Cebral R, Peng G, Reys LL, Silva SS, Oliveira JM, Chen J, Silva TH, Reis RL. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:21. [PMID: 29396700 DOI: 10.1007/s10856-018-6025-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the β-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.
Collapse
Affiliation(s)
- Rita López-Cebral
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal.
| | - Guangjia Peng
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Lara L Reys
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Jie Chen
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Tiago H Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
33
|
Boden A, Bhave M, Wang PY, Jadhav S, Kingshott P. Binary Colloidal Crystal Layers as Platforms for Surface Patterning of Puroindoline-Based Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2264-2274. [PMID: 29281884 DOI: 10.1021/acsami.7b10392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of bacteria to form biofilms and the emergence of antibiotic-resistant strains have prompted the need to develop the next generation of antibacterial coatings. Antimicrobial peptides (AMPs) are showing promise as molecules that can address these issues, especially if used when immobilized as a surface coating. We present a method that explores how surface patterns together with the selective immobilization of an AMP called PuroA (FPVTWRWWKWWKG-NH2) can be used to both kill bacteria and also as a tool to study bacterial attachment mechanisms. Surface patterning is achieved using stabilized self-assembled binary colloidal crystal (BCC) layers, allowing selective PuroA immobilization to carboxylated particles using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) hydrochloride/N-hydroxysuccinimide (NHS) coupling chemistry. Covalent immobilization of PuroA was compared with physical adsorption (i.e., without the addition of EDC/NHS). The AMP-functionalized colloids and BCC layers were characterized by X-ray photoelectron spectroscopy, ζ potentials, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surface antimicrobial activity was assessed by viability assays using Escherichia coli. MALDI-TOF MS analysis revealed that although not all of PuroA was successfully covalently immobilized, a relatively low density of PuroA (1.93 × 1013 molecules/cm2 and 7.14 × 1012 molecules/cm2 for covalent and physical immobilization, respectively) was found to be sufficient at significantly decreasing the viability of E. coli by 70% when compared to that of control samples. The findings provide a proof of concept that BCC layers are a suitable platform for the patterned immobilization of AMPs and the importance of ascertaining the success of small-molecule grafting reactions using surface-MALDI, something that is often assumed to be successful in the field.
Collapse
Affiliation(s)
- Andrew Boden
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Snehal Jadhav
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| |
Collapse
|
34
|
Dewald C, Lüdecke C, Firkowska-Boden I, Roth M, Bossert J, Jandt KD. Gold nanoparticle contact point density controls microbial adhesion on gold surfaces. Colloids Surf B Biointerfaces 2017; 163:201-208. [PMID: 29304434 DOI: 10.1016/j.colsurfb.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022]
Abstract
Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.
Collapse
Affiliation(s)
- Carolin Dewald
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Claudia Lüdecke
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
| |
Collapse
|
35
|
Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci 2017; 508:603-616. [DOI: 10.1016/j.jcis.2017.07.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
36
|
Pham VTH, Murugaraj P, Mathes F, Tan BK, Truong VK, Murphy DV, Mainwaring DE. Copolymers enhance selective bacterial community colonization for potential root zone applications. Sci Rep 2017; 7:15902. [PMID: 29162884 PMCID: PMC5698314 DOI: 10.1038/s41598-017-16253-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.
Collapse
Affiliation(s)
- Vy T H Pham
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Pandiyan Murugaraj
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Falko Mathes
- SoilsWest, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA6009, Australia
| | - Boon K Tan
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Daniel V Murphy
- SoilsWest, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA6009, Australia
| | - David E Mainwaring
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
37
|
Al-Jumaili A, Bazaka K, Jacob MV. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. NANOMATERIALS 2017; 7:nano7090270. [PMID: 28902134 PMCID: PMC5618381 DOI: 10.3390/nano7090270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023]
Abstract
Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses.
Collapse
Affiliation(s)
- Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
38
|
James SA, Hilal N, Wright CJ. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol J 2017; 12. [PMID: 28488793 DOI: 10.1002/biot.201600698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface.
Collapse
Affiliation(s)
- Sean A James
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Nidal Hilal
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Chris J Wright
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| |
Collapse
|
39
|
Dhom J, Bloes DA, Peschel A, Hofmann UK. Bacterial adhesion to suture material in a contaminated wound model: Comparison of monofilament, braided, and barbed sutures. J Orthop Res 2017; 35:925-933. [PMID: 27208547 DOI: 10.1002/jor.23305] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 02/04/2023]
Abstract
Contaminated suture material plays an important role in the physiopathology of surgical site infections. Recently, suture material has been developed characterized by barbs projecting from a monofilament base. Claimed advantages for barbed sutures are a shortened wound closure time and reduced maximum wound tension. It has also been suggested that these sutures would be advantageous microbiologically. The aim of this study was to test the microbiological characteristics of the barbed Quill in comparison to the monofilament Ethilon II and the braided sutures Vicryl and triclosan-coated Vicryl Plus. In our study, sutures were cultivated on color-change agar with Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa and the halo size was measured. In a second study arm with longer cultivation bacterial growth was followed by antibiotic treatment. Ethilon II and Quill showed good comparable results, whereas large halos were found around Vicryl. Vicryl Plus results depended on triclosan sensitivity. After longer bacterial cultivation and antibiotic treatment, halos were up to 3.6 times smaller on Quill than on Vicryl (p < 0.001), but 1.4 times larger than on Ethilon II (p < 0.001) regarding S. aureus. Confocal microscopy analysis showed bacterial colonization between the braided filaments on Vicryl and beneath the barbs on Quill. From a microbiological perspective, barbed sutures can be recommended in aseptic surgery, but should only be used carefully in septic surgery. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:925-933, 2017.
Collapse
Affiliation(s)
- Jonas Dhom
- Medical Faculty of the University of Tübingen, D-72076 Tübingen, Germany
| | - Dominik A Bloes
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, D-72076 Tübingen, Germany
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, D-72076 Tübingen, Germany
| | - Ulf K Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
40
|
Özkal CB, Mantzavinos D, Meriç S. Photocatalytic activity based-optimization of TTIP thin films for E. coli inactivation: Effect of Mn and Cu dopants. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:123-142. [DOI: 10.1016/j.nano.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
|
42
|
Lüdecke C, Roth M, Yu W, Horn U, Bossert J, Jandt KD. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf B Biointerfaces 2016; 145:617-625. [DOI: 10.1016/j.colsurfb.2016.05.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/06/2023]
|
43
|
Sharma S, Jaimes-Lizcano YA, McLay RB, Cirino PC, Conrad JC. Subnanometric Roughness Affects the Deposition and Mobile Adhesion of Escherichia coli on Silanized Glass Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5422-5433. [PMID: 27158837 DOI: 10.1021/acs.langmuir.6b00883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the deposition and transient adhesion of Escherichia coli on alkyl and fluoroalkyl silanized glass surfaces of different carbon chain lengths. The rate at which bacteria deposit onto these surfaces decreases as the shear stress is increased from 3 to 67 mPa, but trends in the deposition rate across all surfaces cannot be predicted from extended DLVO calculations of the interaction potential. As the surface root-mean-square (rms) roughness increases, the deposition rate increases and the percentage of motile tethered cells decreases. Furthermore, on surfaces of root-mean-square roughness of less than 0.2 nm, bacteria exhibit mobile adhesion, for which surface-associated cells linearly translate distances greater than approximately 1.5 times their average body length along the flow direction. E. coli bacteria with and without flagella exhibit mobile adhesion, indicating that this behavior is not driven by these appendages. Cells that express fimbriae do not exhibit mobile adhesion. These results suggest that even subnanoscale roughness can influence the deposition and transient adhesion of bacteria and imply that strategies to reduce frictional interactions by making cells or surfaces smoother may help to control the initial fouling of surfaces by E. coli bacteria.
Collapse
Affiliation(s)
- Sumedha Sharma
- Department of Chemical and Biomolecular Engineering and ‡Department of Petroleum Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Yuly Andrea Jaimes-Lizcano
- Department of Chemical and Biomolecular Engineering and ‡Department of Petroleum Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Ryan B McLay
- Department of Chemical and Biomolecular Engineering and ‡Department of Petroleum Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering and ‡Department of Petroleum Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering and ‡Department of Petroleum Engineering, University of Houston , Houston, Texas 77204-4004, United States
| |
Collapse
|
44
|
Frenzel N, Maenz S, Sanz Beltrán V, Völpel A, Heyder M, Sigusch BW, Lüdecke C, Jandt KD. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties. Dent Mater 2016; 32:476-87. [PMID: 26775012 DOI: 10.1016/j.dental.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. METHODS Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). RESULTS All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. SIGNIFICANCE Modifying the composite surface structure may be a clinically suitable approach to control the microbial adhesion and thus, to reduce the risk of secondary caries at dental composite restorations. Smaller composite surface structures may be useful for accomplishing this.
Collapse
Affiliation(s)
- Nadja Frenzel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Stefan Maenz
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Vanesa Sanz Beltrán
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Andrea Völpel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Markus Heyder
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Bernd W Sigusch
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Claudia Lüdecke
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany.
| |
Collapse
|
45
|
Pham VTH, Truong VK, Quinn MDJ, Notley SM, Guo Y, Baulin VA, Al Kobaisi M, Crawford RJ, Ivanova EP. Graphene Induces Formation of Pores That Kill Spherical and Rod-Shaped Bacteria. ACS NANO 2015; 9:8458-67. [PMID: 26166486 DOI: 10.1021/acsnano.5b03368] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pristine graphene, its derivatives, and composites have been widely reported to possess antibacterial properties. Most of the studies simulating the interaction between bacterial cell membranes and the surface of graphene have proposed that the graphene-induced bacterial cell death is caused either by (1) the insertion of blade-like graphene-based nanosheets or (2) the destructive extraction of lipid molecules by the presence of the lipophilic graphene. These simulation studies have, however, only take into account graphene-cell membrane interactions where the graphene is in a dispersed form. In this paper, we report the antimicrobial behavior of graphene sheet surfaces in an attempt to further advance the current knowledge pertaining to graphene cytotoxicity using both experimental and computer simulation approaches. Graphene nanofilms were fabricated to exhibit different edge lengths and different angles of orientation in the graphene sheets. These substrates were placed in contact with Pseudomonas aeruginosa and Staphylococcus aureus bacteria, where it was seen that these substrates exhibited variable bactericidal efficiency toward these two pathogenic bacteria. It was demonstrated that the density of the edges of the graphene was one of the principal parameters that contributed to the antibacterial behavior of the graphene nanosheet films. The study provides both experimental and theoretical evidence that the antibacterial behavior of graphene nanosheets arises from the formation of pores in the bacterial cell wall, causing a subsequent osmotic imbalance and cell death.
Collapse
Affiliation(s)
- Vy T H Pham
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Matthew D J Quinn
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Shannon M Notley
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Yachong Guo
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Russell J Crawford
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| | - Elena P Ivanova
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne 3122, VIC, Australia
| |
Collapse
|
46
|
Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Appl Microbiol Biotechnol 2015; 99:6831-40. [DOI: 10.1007/s00253-015-6572-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
47
|
Jin L, Guo W, Xue P, Gao H, Zhao M, Zheng C, Zhang Y, Han D. Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures. NANOTECHNOLOGY 2015; 26:055702. [PMID: 25581320 DOI: 10.1088/0957-4484/26/5/055702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The colonization ability of bacteria on biomaterial surfaces is influenced by the morphology of the bacteria and the nanotopography of the biomaterial. However, interactions between the bacterial morphology and nanotopography of biomaterials have not yet been completely elucidated. In this article, we quantitatively characterized the bacterial morphology to illuminate the integrated effects of polyethylene terephthalate (PET) nanopillar arrays on the colonization of bacteria cells with different shapes. Our results demonstrated that the interaction between interpillar spacing and the diameter of the bacterial cells impacted the number of bacterial cells that adhered to different PET substrates. The interpillar spacing of nanopillar arrays promotes bacterial adhesion in a definite range (<50 nm). However, further increasing the interpillar spacing inhibited the adhesion of bacteria to the nanopillar arrays. Moreover, the interpillar spacing also influenced the morphologies of adherent bacterial cells on the PET nanopillar arrays, which consequently facilitated bacterial adhesion to the nanopillar arrays. Our findings enhance the understanding of interactions between controlled nanotopography and bacterial colonization and provide an appropriate parameter for the design of antibacterial materials with nanotopography.
Collapse
Affiliation(s)
- Lin Jin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China. National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hol FJH, Dekker C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 2014; 346:1251821. [PMID: 25342809 DOI: 10.1126/science.1251821] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spatial structure of natural habitats strongly affects bacterial life, ranging from nanoscale structural features that individual cells exploit for surface attachment, to micro- and millimeter-scale chemical gradients that drive population-level processes. Nanofabrication and microfluidics are ideally suited to manipulate the environment at those scales and have emerged as powerful tools with which to study bacteria. Here, we review the new scientific insights gained by using a diverse set of nanofabrication and microfluidic techniques to study individual bacteria and multispecies communities. This toolbox is beginning to elucidate disparate bacterial phenomena-including aging, electron transport, and quorum sensing-and enables the dissection of environmental communities through single-cell genomics. A more intimate integration of microfluidics, nanofabrication, and microbiology will enable further exploration of bacterial life at the smallest scales.
Collapse
Affiliation(s)
- Felix J H Hol
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
49
|
Meng J, Zhang P, Wang S. Recent Progress in Biointerfaces with Controlled Bacterial Adhesion by Using Chemical and Physical Methods. Chem Asian J 2014; 9:2004-16. [DOI: 10.1002/asia.201402200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/12/2022]
|
50
|
Three-dimensional visualization of nanostructured surfaces and bacterial attachment using Autodesk® Maya®. Sci Rep 2014; 4:4228. [PMID: 24577105 PMCID: PMC3937790 DOI: 10.1038/srep04228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/27/2013] [Indexed: 11/23/2022] Open
Abstract
There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a ‘creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The ‘Dynamics' and ‘nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices.
Collapse
|