1
|
McFadden CS, Erickson KL, Lane A, Nassongole B, Aguilar S, Dunakey SK, Durkin KM, Lalas JAA, Kushida Y, Macrina L, Minor NP, Morales-Paredes M, Nelson J, Peddada A, Poole S, Porto R, Purow-Ruderman R, Snyder KE, Wismar T, Samimi-Namin K, Baria-Rodriguez MV, Benzoni F, Huang D, Reimer JD, Paulay G, Quattrini AM, Ekins M, Benayahu Y. Biodiversity and biogeography of zooxanthellate soft corals across the Indo-Pacific. Sci Rep 2025; 15:15461. [PMID: 40316679 PMCID: PMC12048517 DOI: 10.1038/s41598-025-98790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Documentation of biodiversity and its geographical distribution is necessary to understand the processes and drivers of evolutionary diversification as well as to guide conservation and management initiatives. Among the most emblematic patterns of biodiversity in the world's oceans is the Coral Triangle (Indo-Australian Archipelago), widely recognized to be the center of species richness for a variety of marine life forms. The distribution of biodiversity remains incompletely documented, however, for a majority of reef-associated invertebrate taxa, including the zooxanthellate soft corals (Octocorallia) that dominate hard substrate on many Indo-Pacific reefs. We used a genetic approach to document the diversity of Indo-Pacific soft corals, sequencing two single-locus barcoding markers for > 4400 soft coral specimens and assigning individuals to molecular operational taxonomic units as proxies of species. We document two centers of species richness for zooxanthellate soft corals, one in the Indo-Australian Archipelago and a second, equally diverse center in the Western Indian Ocean. Centers of endemicity for soft corals are coincident with these centers of species richness, although the peripheral Red Sea and Hawaii also support high proportions of endemic taxa. The patterns documented here suggest that biogeographic distributions of soft coral families may be driven in part by larval dispersal potential: taxa with benthic larvae are absent from most oceanic islands of the central Pacific and are represented by higher proportions of endemic taxa in other geographic regions. Our findings demonstrate the distinct biogeographic patterns among reef taxa and underscore the need to document and analyze species distributions of more reef-associated invertebrate groups to derive a complete picture of reef biogeography.
Collapse
Affiliation(s)
| | - Katie L Erickson
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Audra Lane
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Bibiana Nassongole
- CESAM and Biology Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Marine Ecology Department, Faculty of Natural Science, Lúrio University, 3200, Pemba, Cabo Delgado, Mozambique
| | - Steven Aguilar
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Sabra K Dunakey
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Kathleen M Durkin
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Jue A A Lalas
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Yuka Kushida
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Laura Macrina
- Marine Science Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Natalie P Minor
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Josephine Nelson
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Asha Peddada
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Sophie Poole
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Rafael Porto
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Theo Wismar
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Kaveh Samimi-Namin
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, Oxfordshire, United Kingdom
| | - Maria Vanessa Baria-Rodriguez
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Francesca Benzoni
- Marine Science Program, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, 117377, Singapore
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Gustav Paulay
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Merrick Ekins
- Queensland Museum, South Brisbane BC, QLD, 4101, Australia
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University, 69978, Ramat Aviv, Israel
| |
Collapse
|
2
|
Chew AAN, Yap YZ, Poquita-Du RC, Huang D, Todd PA. Potential drivers of pocilloporid coral extirpations in Singapore. MARINE POLLUTION BULLETIN 2025; 214:117791. [PMID: 40088638 DOI: 10.1016/j.marpolbul.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The reason why four out of five historically recorded pocilloporid species in Singapore went extinct remains unclear. However, potential causes include urbanization-related stressors such as sedimentation and low light. In this study, we conducted two ex-situ experiments to examine the effects of light limitation and sediment load on the survival and health of two extirpated (Stylophora pistillata, and Seriatopora hystrix), one extant (Pocillopora acuta), and one regional (Pocillopora meandrina) pocilloporid species. All were able to photoacclimate to high sedimentation and low light conditions. However, P. acuta and Se. hystrix exhibited reduced growth under low light, and mortality was significantly higher under increased sedimentation, especially for St. pistillata. While our results indicate that sedimentation and low light characteristic in Singapore's urban reefs are unlikely to be the sole drivers of pocilloporid extirpations, these variables probably contributed to the overall stress burden, pushing already uncommon species into functional, and then actual, extinction.
Collapse
Affiliation(s)
- Annie Ann Nee Chew
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yan Zhi Yap
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Rosa Celia Poquita-Du
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Peter Alan Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
3
|
Capel KCC, Ayalon I, Simon-Blecher N, Zweifler Zvifler A, Benichou ICJ, Eyal G, Avisar D, Roth J, Bongaerts P, Levy O. Depth-structured lineages in the coral Stylophora pistillata of the Northern Red Sea. NPJ BIODIVERSITY 2025; 4:13. [PMID: 40188306 PMCID: PMC11972390 DOI: 10.1038/s44185-025-00083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Coral reefs are biodiversity hotspots, where new species continue to be discovered. Stylophora pistillata, a depth-generalist coral, is widely distributed throughout the Indo-Pacific and has long been considered the poster child for phenotypic plasticity. It occupies a wide range of reef habitats and exhibits a myriad of gross morphologies. Here, we used reduced representation genome sequencing (nextRAD) to assess the genetic structure of adults and recruits of S. pistillata across shallow and mesophotic populations in the northern Red Sea (Gulf of Aqaba). Across analytical approaches, we observed a complex genetic structure with at least four genetically divergent lineages occurring sympatrically with little to no admixture and structured by depth. Morphological and physiological differences previously documented suggest that the long-considered ecological opportunism of S. pistillata in the Red Sea may, in fact, have a genetic basis. Assessment of both adult colonies and recruits within each of the lineages also revealed the prevalence of local recruitment and genetic structuring across the eight-kilometer section of the Israeli Red Sea coastline. Overall, the observed patterns confirm the presence of undescribed diversity within this model organism for coral physiology and corroborate a broader pattern of extensive undescribed diversity within scleractinian corals.
Collapse
Affiliation(s)
- K C C Capel
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
- Center for Marine Biology, University of São Paulo, São Sebastiaão, São Paulo, Brazil.
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - I Ayalon
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - N Simon-Blecher
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - A Zweifler Zvifler
- School of Earth Sciences, The University of Western Australia, Perth, WA, 6000, Australia
| | - I C J Benichou
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - G Eyal
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- School of the Environment, The university of Queensland, St Lucia QLD 4072, Queensland, Australia
| | - D Avisar
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - J Roth
- DNA and Forensic Biology Laboratory, Division of Identification and Forensic Science, Israel Police National HQ, Jerusalem, Israel
| | - P Bongaerts
- California Academy of Sciences, San Francisco, CA, USA
| | - O Levy
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel.
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel.
| |
Collapse
|
4
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Combosch DJ, Burdick D, Primov K, Rios D, Rios K, Fernandez J. Barcoding and mitochondrial phylogenetics of Porites corals. PLoS One 2024; 19:e0290505. [PMID: 38359055 PMCID: PMC10868756 DOI: 10.1371/journal.pone.0290505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 02/17/2024] Open
Abstract
Coral reefs are the most diverse ecosystem on the planet based on the abundance and diversity of phyla and higher taxa. However, it is still difficult to assess the diversity of lower taxa, especially at the species level. One tool for improving the identification of lower taxa are genetic markers that can distinguish cryptic species and assess species boundaries. Here, we present one such approach for an important and challenging group of reef-building corals. Porites corals are the main reef-builders of many coral reefs in the Indo-Pacific, owing to the massive growth forms of some species. The current number of valid Porites species is controversial, inflated with many synonymies, and often based on gross colony morphology although several morphospecies believed to be widespread and common can only be distinguished based on detailed microstructure analyses by taxonomic experts. Here, we test the suitability of multiple regions of mtDNA as genetic barcodes to identify suitable markers for species differentiation and unambiguous identification. Resulting sequencing data was further used for the first phylogenetic analysis of Guam's Porites species. We tested eight different mitochondrial markers and analyzed four in detail for 135 Porites specimens: mtDNA markers were amplified for 67 Porites specimens from Guam, representing 12 nominal Porites species, and combined with 69 mitochondrial genomes, mostly from Hawaii. The combination of all 4 markers distinguished 10 common and 7 uncommon Central-West Pacific Porites species. Most clades separate species along taxonomic boundaries, which is uncommon for Porites corals and testifies to the suitability of our multi-marker approach, and a combination of the two most promising barcodes distinguished 8/10 common species. These barcodes are thus suitable to distinguish virtually cryptic species in one of the most important and challenging coral genera. They offer a cheap, fast and reliable way to identify Porites species for species-level research, monitoring and conservation.
Collapse
Affiliation(s)
| | - David Burdick
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Karim Primov
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Dareon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Kireon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | | |
Collapse
|
6
|
Meziere Z, Popovic I, Prata K, Ryan I, Pandolfi J, Riginos C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol Appl 2024; 17:e13644. [PMID: 38283599 PMCID: PMC10818133 DOI: 10.1111/eva.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Understanding how biodiversity originates and is maintained are fundamental challenge in evolutionary biology. Speciation is a continuous process and progression along this continuum depends on the interplay between evolutionary forces driving divergence and forces promoting genetic homogenisation. Coral reefs are broadly connected yet highly heterogeneous ecosystems, and divergence with gene flow at small spatial scales might therefore be common. Genomic studies are increasingly revealing the existence of closely related and sympatric taxa within taxonomic coral species, but the extent to which these taxa might still be exchanging genes and sharing environmental niches is unclear. In this study, we sampled extensively across diverse habitats at multiple reefs of the Great Barrier Reef (GBR) and comprehensively examined genome-wide diversity and divergence histories within and among taxa of the Stylophora pistillata species complex. S. pistillata is one of the most abundant and well-studied coral species, yet we discovered five distinct taxa, with wide geographic ranges and extensive sympatry. Demographic modelling showed that speciation events have occurred with gene flow and that taxa are at different stages along a divergence continuum. We found significant correlations between genetic divergence and specific environmental variables, suggesting that niche partitioning may have played a role in speciation and that S. pistillata taxa might be differentially adapted to different environments. Conservation actions rely on estimates of species richness, population sizes and species ranges, which are biased if divergent taxa are lumped together. As coral reefs are rapidly degrading due to climate change, our study highlights the importance of recognising evolutionarily distinct and differentially adapted coral taxa to improve conservation and restoration efforts aiming at protecting coral genetic diversity.
Collapse
Affiliation(s)
- Zoe Meziere
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Katharine Prata
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Isobel Ryan
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - John Pandolfi
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
7
|
Brown KT, Genin A, Mello‐Athayde MA, Bergstrom E, Campili A, Chai A, Dove SG, Ho M, Rowell D, Sampayo EM, Radice VZ. Marine heatwaves modulate the genotypic and physiological responses of reef-building corals to subsequent heat stress. Ecol Evol 2023; 13:e10798. [PMID: 38099138 PMCID: PMC10719612 DOI: 10.1002/ece3.10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.
Collapse
Affiliation(s)
- Kristen T. Brown
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amatzia Genin
- The Interuniversity Institute for Marine Sciences of EilatThe Hebrew University of JerusalemEilatIsrael
| | | | | | - Adriana Campili
- Australian Institute of Marine ScienceTownsville Mail CentreTownsvilleQueenslandAustralia
| | - Aaron Chai
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNew South WalesAustralia
| | - Sophie G. Dove
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Devin Rowell
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Eugenia M. Sampayo
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Veronica Z. Radice
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
8
|
Chukaew T, Isomura N, Mezaki T, Matsumoto H, Kitano YF, Nozawa Y, Tachikawa H, Fukami H. Molecular Phylogeny and Taxonomy of the Coral Genus Cyphastrea (Cnidaria, Scleractinia, Merulinidae) in Japan, With the First Records of Two Species. Zoolog Sci 2023; 40:326-340. [PMID: 37522604 DOI: 10.2108/zs230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023]
Abstract
The scleractinian coral genus Cyphastrea is widely distributed in the Indo-Pacific region and is common from the subtropical to the warm-temperate regions in Japan. Three new species in this genus have recently been reported from south-eastern Australia or the Red Sea. However, taxonomic and species diversity have been little studied so far in Japan. In this study, we analyzed 112 specimens of Cyphastrea collected from the subtropical to the warm-temperate regions in Japan to clarify the species diversity in the country. This analysis was based on skeletal morphological and molecular analyses using three genetic markers of the nuclear 28S rDNA, histone H3 gene, and the mitochondrial noncoding intergenic region between COI and tRNAmet. The molecular phylogenetic trees showed that our specimens are separated mainly into four clades. Considering the morphological data with the molecular phylogenetic relationships, we confirmed a total of nine species, including two species, C. magna and C. salae, recorded for the first time in Japan. Although eight out of nine species were genetically included within Cyphastrea, one species, C. agassizi, was genetically distant from all other species and was closely related to the genus Leptastrea, suggesting the return of this species to the genus to which it was originally ascribed. Two newly recorded species were reciprocally monophyletic, while the other six species (excluding C. agassizi) clustered in two clades without forming species-specific lineages, including three polyphyletic species. Thus, the species boundary between species in Cyphastrea remains unclear in most species using these three sequenced loci.
Collapse
Affiliation(s)
- Thanapat Chukaew
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2155, Japan
| | - Naoko Isomura
- Bioresources Engineering, Institute of Technology, Okinawa College, Nago-city, Okinawa 905-2192, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Kochi 788-0333, Japan
| | | | - Yuko F Kitano
- Japan Wildlife Research Center, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hiroyuki Tachikawa
- Coastal Branch of Natural History Museum and Institute, Katsuura, Chiba 299-5242, Japan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2155, Japan,
| |
Collapse
|
9
|
Oury N, Noël C, Mona S, Aurelle D, Magalon H. From genomics to integrative species delimitation? The case study of the Indo-Pacific Pocillopora corals. Mol Phylogenet Evol 2023; 184:107803. [PMID: 37120114 DOI: 10.1016/j.ympev.2023.107803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
With the advent of genomics, sequencing thousands of loci from hundreds of individuals now appears feasible at reasonable costs, allowing complex phylogenies to be resolved. This is particularly relevant for cnidarians, for which insufficient data is available due to the small number of currently available markers and obscures species boundaries. Difficulties in inferring gene trees and morphological incongruences further blur the study and conservation of these organisms. Yet, can genomics alone be used to delimit species? Here, focusing on the coral genus Pocillopora, whose colonies play key roles in Indo-Pacific reef ecosystems but have challenged taxonomists for decades, we explored and discussed the usefulness of multiple criteria (genetics, morphology, biogeography and symbiosis ecology) to delimit species of this genus. Phylogenetic inferences, clustering approaches and species delimitation methods based on genome-wide single-nucleotide polymorphisms (SNP) were first used to resolve Pocillopora phylogeny and propose genomic species hypotheses from 356 colonies sampled across the Indo-Pacific (western Indian Ocean, tropical southwestern Pacific and south-east Polynesia). These species hypotheses were then compared to other lines of evidence based on genetic, morphology, biogeography and symbiont associations. Out of 21 species hypotheses delimited by genomics, 13 were strongly supported by all approaches, while six could represent either undescribed species or nominal species that have been synonymised incorrectly. Altogether, our results support (1) the obsolescence of macromorphology (i.e., overall colony and branches shape) but the relevance of micromorphology (i.e., corallite structures) to refine Pocillopora species boundaries, (2) the relevance of the mtORF (coupled with other markers in some cases) as a diagnostic marker of most species, (3) the requirement of molecular identification when species identity of colonies is absolutely necessary to interpret results, as morphology can blur species identification in the field, and (4) the need for a taxonomic revision of the genus Pocillopora. These results give new insights into the usefulness of multiple criteria for resolving Pocillopora, and more widely, scleractinian species boundaries, and will ultimately contribute to the taxonomic revision of this genus and the conservation of its species.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France.
| | - Cyril Noël
- IFREMER - IRSI - Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; EPHE, PSL Research University, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Didier Aurelle
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
10
|
Meziere Z, Rich WA, Carvalho S, Benzoni F, Morán XAG, Berumen ML. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151639. [PMID: 34780827 DOI: 10.1016/j.scitotenv.2021.151639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Sometimes called the "lab rat" of coral research, Stylophora pistillata (Esper, 1797) has been extensively used in coral biology in studies ranging from reef ecology to coral metabolic processes, and has been used as a model for investigations into molecular and cellular biology. Previously thought to be a common species spanning a wide distribution through the Indo-Pacific region, "S. pistillata" is in fact four genetically distinct lineages (clades) with different evolutionary histories and geographical distributions. Here, we review the studies of stress responses of S. pistillatasensulato (clades 1-4) and highlight research trends and knowledge gaps. We identify 126 studies on stress responses including effects of temperature, acidification, eutrophication, pollutants and other local impacts. We find that most studies have focused on the effect of single stressors, especially increased temperature, and have neglected the combined effects of multiple stressors. Roughly 61% of studies on S. pistillata come from the northern Red Sea (clade 4), at the extreme limit of its current distribution; clades 2 and 3 are virtually unstudied. The overwhelming majority of studies were conducted in laboratory or mesocosm conditions, with field experiments constituting only 2% of studies. We also note that a variety of experimental designs and treatment conditions makes it difficult to draw general conclusions about the effects of particular stressors on S. pistillata. Given those knowledge gaps and limitations in the published research, we suggest a more standardized approach to compare responses across geographically disparate populations and more accurately anticipate responses to predicted future climate conditions.
Collapse
Affiliation(s)
- Zoe Meziere
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Walter A Rich
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Spain
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Cryer SE, Schlosser C, Allison N. The combined effects of ocean acidification and copper on the physiological responses of the tropical coral Stylophora pistillata. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105610. [PMID: 35358910 DOI: 10.1016/j.marenvres.2022.105610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
A decrease in ocean pH of 0.3 units will likely double the proportion of dissolved copper (Cu) present as the free metal ion, Cu2+, the most bioavailable form of Cu, and one of the most common marine pollutants. We assess the impact of ocean acidification and Cu, separately and in combination, on calcification, photosynthesis and respiration of sub-colonies of a single tropical Stylophora pistillata colony. After 15 days of treatment, total calcification rates were significantly decreased in corals exposed to high seawater pCO2 (∼1000-μatm, 2100 scenario) and at both ambient (1.6-1.9 nmols) and high (2.5-3.6 nmols) dissolved Cu concentrations compared to controls. The effect was increased when both stressors were combined. Coral respiration rates were significantly reduced by the combined stressors after 2 weeks of exposure, indicating the importance of experiment duration. It is therefore likely rising atmospheric CO2 will exacerbate the negative effects of Cu pollution to S. pistillata.
Collapse
Affiliation(s)
- S E Cryer
- School of Earth and Environmental Science, University of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
| | - C Schlosser
- Department of Chemical Oceanography, GEOMAR-Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - N Allison
- School of Earth and Environmental Science, University of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, UK
| |
Collapse
|
12
|
Kaniewska P, Sampayo EM. Macro- and micro-scale adaptations allow distinct Stylophora pistillata-symbiodiniaceae holobionts to optimize performance across a broad light habitat. JOURNAL OF PHYCOLOGY 2022; 58:55-70. [PMID: 34612522 DOI: 10.1111/jpy.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In sessile organisms, phenotypic plasticity represents an important strategy for dealing with environmental variability. Here we test if phenotypic plasticity enables the common coral Stylophora pistillata to occupy a broad niche. We find clear differences in the photo-physiology of four putative species of photosynthetic dinoflagellate symbionts associated with the coral S. pistillata, namely, Cladocopium 'C35a', 'C79', 'C78a' and 'C8a'. Coral phenotypic responses were also tightly linked to symbiont identity. Corals with Cladocopium 'C8a' have more "open" macro-morphology compared to colonies associating with depth-restricted Cladocopium 'C35a' or 'C78a' in the same shallow water habitat. Corals with Cladocopium 'C8a' had 40 to 60% lower symbiont cell densities compared to other holobionts but were more efficient at acclimating over a range of light levels, with clear mechanisms to dissipate excess light energy. This holobiont contains host-based green fluorescent pigments, increased concentrations of symbiont-based mycosporine amino acids, and xanthophyll cycling in high light habitats. Photosynthetic efficiency was also adjusted over the light habitat. In contrast, limited micro-scale responses were observed between three depth-restricted symbionts: Cladocopium 'C79', 'C35a', and 'C78a'. To optimize light levels reaching the photosynthetic unit, these colonies rely on a more closed macro-morphology under high light levels, which reduces incident light levels by up to 43%, and higher symbiont densities . Our results show that distinct macro- and micro-scale adaptations lead to functional differences between four distinct S. pistillata holobionts, allowing them to co-exist by filling specific niches on a small, but environmentally diverse, spatial scale. Key index words: Light, Symbiodiniaceae, coral, pigments, Stylophora pistillata, ITS2, phenotypic plasticity, niche diversification.
Collapse
Affiliation(s)
- Paulina Kaniewska
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
13
|
Hayes JM, Abdul-Rahman NH, Gerdes MJ, Musah RA. Coral Genus Differentiation Based on Direct Analysis in Real Time-High Resolution Mass Spectrometry-Derived Chemical Fingerprints. Anal Chem 2021; 93:15306-15314. [PMID: 34761917 DOI: 10.1021/acs.analchem.1c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coral reefs are one of the most biologically diverse ecosystems, and the accurate identification of the species is essential for diversity assessment and conservation. Current genus determination approaches are time-consuming and resource-intensive and can be highly subjective. To explore the hypothesis that the small-molecule profiles of coral are genus-specific and can be used as a rapid tool to catalogue and distinguish between coral genera, the small-molecule chemical fingerprints of the species Acanthastrea echinata, Catalaphyllia jardinei, Duncanopsammia axifuga, Echinopora lamellosa, Euphyllia divisa, Euphyllia paraancora, Euphyllia paradivisa, Galaxea fascicularis, Herpolitha limax, Montipora confusa, Monitpora digitata, Montipora setosa, Pachyseris rugosa, Pavona cactus, Plerogyra sinuosa, Pocillopora acuta, Seriatopora hystrix, Sinularia dura, Turbinaria peltata, Turbinaria reniformis, Xenia elongata, and Xenia umbellata were generated using direct analysis in real time-high resolution mass spectrometry (DART-HRMS). It is demonstrated here that the mass spectrum-derived small-molecule profiles for coral of different genera are distinct. Multivariate statistical analysis processing of the DART-HRMS data enabled rapid genus-level differentiation based on the chemical composition of the coral. Coral samples were analyzed with no sample preparation required, making the approach rapid and efficient. The resulting spectra were subjected to kernel discriminant analysis (KDA), which furnished accurate genus differentiation of the coral. Leave-one-out cross-validation (LOOCV) was carried out to determine the classification accuracy of each model and confirm that this approach can be used for coral genus attribution with prediction accuracies ranging from 86.67 to 97.33%. The advantages and application of the statistical analysis to DART-HRMS-derived coral chemical signatures for genus-level differentiation are discussed.
Collapse
Affiliation(s)
- Jessica M Hayes
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Nana-Hawwa Abdul-Rahman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Michael J Gerdes
- CapitalCorals Inc., 20 Colvin Avenue, Albany, New York 12206, United States
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
14
|
Voolstra CR, Valenzuela JJ, Turkarslan S, Cárdenas A, Hume BCC, Perna G, Buitrago-López C, Rowe K, Orellana MV, Baliga NS, Paranjape S, Banc-Prandi G, Bellworthy J, Fine M, Frias-Torres S, Barshis DJ. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol Ecol 2021; 30:4466-4480. [PMID: 34342082 DOI: 10.1111/mec.16064] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching >5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming.
Collapse
Affiliation(s)
| | | | | | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Katherine Rowe
- School of Science, The University of Waikato, Hamilton, New Zealand
| | - Monica V Orellana
- Institute for Systems Biology, Seattle, USA.,Polar Science Center, University of Washington, Seattle, USA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, USA.,Departments of Biology and Microbiology, University of Washington, Seattle, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, USA.,Lawrence Berkeley National Laboratory, Berkeley, USA
| | | | - Guilhem Banc-Prandi
- The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel.,The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Jessica Bellworthy
- The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel.,The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel.,The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, USA
| |
Collapse
|
15
|
Herrera M, Liew YJ, Venn A, Tambutté E, Zoccola D, Tambutté S, Cui G, Aranda M. New Insights From Transcriptomic Data Reveal Differential Effects of CO 2 Acidification Stress on Photosynthesis of an Endosymbiotic Dinoflagellate in hospite. Front Microbiol 2021; 12:666510. [PMID: 34349734 PMCID: PMC8326563 DOI: 10.3389/fmicb.2021.666510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Ocean acidification (OA) has both detrimental as well as beneficial effects on marine life; it negatively affects calcifiers while enhancing the productivity of photosynthetic organisms. To date, many studies have focused on the impacts of OA on calcification in reef-building corals, a process particularly susceptible to acidification. However, little is known about the effects of OA on their photosynthetic algal partners, with some studies suggesting potential benefits for symbiont productivity. Here, we investigated the transcriptomic response of the endosymbiont Symbiodinium microadriaticum (CCMP2467) in the Red Sea coral Stylophora pistillata subjected to different long-term (2 years) OA treatments (pH 8.0, 7.8, 7.4, 7.2). Transcriptomic analyses revealed that symbionts from corals under lower pH treatments responded to acidification by increasing the expression of genes related to photosynthesis and carbon-concentrating mechanisms. These processes were mostly up-regulated and associated metabolic pathways were significantly enriched, suggesting an overall positive effect of OA on the expression of photosynthesis-related genes. To test this conclusion on a physiological level, we analyzed the symbiont’s photochemical performance across treatments. However, in contrast to the beneficial effects suggested by the observed gene expression changes, we found significant impairment of photosynthesis with increasing pCO2. Collectively, our data suggest that over-expression of photosynthesis-related genes is not a beneficial effect of OA but rather an acclimation response of the holobiont to different water chemistries. Our study highlights the complex effects of ocean acidification on these symbiotic organisms and the role of the host in determining symbiont productivity and performance.
Collapse
Affiliation(s)
- Marcela Herrera
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander Venn
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Didier Zoccola
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guoxin Cui
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Grinblat M, Cooke I, Shlesinger T, Ben-Zvi O, Loya Y, Miller DJ, Cowman PF. Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals). Mol Phylogenet Evol 2021; 164:107265. [PMID: 34274488 DOI: 10.1016/j.ympev.2021.107265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.
Collapse
Affiliation(s)
- Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Or Ben-Zvi
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel; The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, Australia.
| |
Collapse
|
17
|
Alidoost Salimi P, Ghavam Mostafavi P, Chen CA, Pichon M, Alidoost Salimi M. Molecular phylogeny of some coral species from the Persian Gulf. Mol Biol Rep 2021; 48:2993-2999. [PMID: 33675466 DOI: 10.1007/s11033-021-06251-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
As evolutionary relationships among some coral species still remain unclear, studies on unstudied area such as the Persian Gulf (PG), as part of the western Indo-Pacific, may reveal a better understanding of phylogenetic positions and relationships of corals. In the present study, the phylogenetic relationships of eight common coral species (Favites pentagona, Platygyra daedalea, Cyphastrea microphthalma, Siderastrea savignyana, Pavona decussata, Pavona cactus, Goniopora columna, and Goniopora djiboutiensis) collected from two Iranian Islands were compared with the congeneric sequences from the Indo-Pacific (IP) using rDNA region. The result shows that some coral species which were hitherto considered as representatives of widespread species from IP are related to distinct lineages. Further, it appears that morphological convergence between the taxa leads to an underestimation of the real coral species diversity in the PG. The current study is the first attempt to investigate the phylogenetic position of coral species from the PG in comparison to their counterparts from the IP. As conservation planning hinges on the identification of species, taxonomic revisions have to be undertaken in order to obtain a more reliable picture of coral species diversity in the PG.
Collapse
Affiliation(s)
- Parisa Alidoost Salimi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pargol Ghavam Mostafavi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - Michel Pichon
- Biodiversity and Geosciences, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Mahsa Alidoost Salimi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Inclusivity is key to progressing coral biodiversity research: Reply to comment by Bonito et al. (2021). Mol Phylogenet Evol 2021; 162:107135. [PMID: 33684528 DOI: 10.1016/j.ympev.2021.107135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022]
|
19
|
Bonito VE, Baird AH, Bridge T, Cowman PF, Fenner D. Types, topotypes and vouchers are the key to progress in coral taxonomy: Comment on Wepfer et al. (2020). Mol Phylogenet Evol 2021; 159:107104. [PMID: 33609706 DOI: 10.1016/j.ympev.2021.107104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Victor E Bonito
- Coral Coast Conservation Center, Votua Village, Baravi, Nadroga, Fiji.
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Tom Bridge
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Douglas Fenner
- NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, HI 96817, USA
| |
Collapse
|
20
|
Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater 2021; 120:263-276. [PMID: 31954936 DOI: 10.1016/j.actbio.2020.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022]
Abstract
Reef-building corals, the major producers of biogenic calcium carbonate, form skeletons in a plethora of morphological forms. Here we studied skeletal modifications of Stylophora pistillata (clade 4) colonies that adapt to increasing depths with decreasing ambient light. The coral show characteristic transitions from spherical morphologies (shallow depths, 5 m deep) to flat and branching geometries (mesophotic depths, 60 m deep). Such changes are typically ascribed to the algal photosymbiont physiological feedback with the coral that host them. We find specific fine-scale skeletal variability in accretion of structure at shallow- and mesophotic depth morphotypes that suggest underlying genomic regulation of biomineralization pathways of the coral host. To explain this, we conducted comparative morphology-based analyses, including optical and electron microscopy, tomography and X-ray diffraction analysis coupled with a comprehensive transcriptomic analysis of S. pistillata. The samples originated from Gulf of Eilat in the Red Sea collected along a depth gradient from shallow to mesophotic depths (5 to 60 m). Additional samples were experimentally transplanted from 5 m to 60 m and from 60 m to 5 m. Interestingly, both morphologically and functionally, transplanted corals partly adapt by exhibiting typical depth-specific properties. In mesophotic depths, we find that the organic matrix fraction is enriched in the coralla, well matching the overrepresentation of transcripts encoding biomineralization "tool-kit" structural extracellularproteins that was observed. These results provide insights into the molecular mechanisms of calcification and skeletal adaptation that repeatedly allowed this coral group to adapt to a range of environments presumably with a rich geological past. STATEMENT OF SIGNIFICANCE: Understanding the reef coral physiological plasticity under a rapidly changing climate is of crucial importance for the protection of coral reef ecosystems. Most of the reef corals operate near their upper limit of heat tolerance. A possible rescue for some coral species is migration to deeper, cooler mesophotic depths. However, gradually changing environmental parameters (especially light) along the depth gradient pose new adaptative stress on corals with largely unknown influences on the various biological molecular pathways. This work provides a first comprehensive analysis of changes in gene expression, including biomineralization "tool kit" genes, and reports the fine-scale microstructural and crystallographic skeletal details in S. pistillata collected in the Red Sea along a depth gradient spannign 5 to 60 m.
Collapse
|
21
|
Mitsuki Y, Isomura N, Nozawa Y, Tachikawa H, Huang D, Fukami H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). INVERTEBR SYST 2021. [DOI: 10.1071/is21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.
Collapse
|
22
|
Wattier R, Mamos T, Copilaş-Ciocianu D, Jelić M, Ollivier A, Chaumot A, Danger M, Felten V, Piscart C, Žganec K, Rewicz T, Wysocka A, Rigaud T, Grabowski M. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci Rep 2020; 10:16536. [PMID: 33024224 PMCID: PMC7538970 DOI: 10.1038/s41598-020-73739-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Traditional morphological diagnoses of taxonomic status remain widely used while an increasing number of studies show that one morphospecies might hide cryptic diversity, i.e. lineages with unexpectedly high molecular divergence. This hidden diversity can reach even tens of lineages, i.e. hyper cryptic diversity. Even well-studied model-organisms may exhibit overlooked cryptic diversity. Such is the case of the freshwater crustacean amphipod model taxon Gammarus fossarum. It is extensively used in both applied and basic types of research, including biodiversity assessments, ecotoxicology and evolutionary ecology. Based on COI barcodes of 4926 individuals from 498 sampling sites in 19 European countries, the present paper shows (1) hyper cryptic diversity, ranging from 84 to 152 Molecular Operational Taxonomic Units, (2) ancient diversification starting already 26 Mya in the Oligocene, and (3) high level of lineage syntopy. Even if hyper cryptic diversity was already documented in G. fossarum, the present study increases its extent fourfold, providing a first continental-scale insight into its geographical distribution and establishes several diversification hotspots, notably south-eastern and central Europe. The challenges of recording hyper cryptic diversity in the future are also discussed.
Collapse
Affiliation(s)
- Remi Wattier
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche Comté, Dijon, France.
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Denis Copilaş-Ciocianu
- Institute of Ecology, Nature Research Centre, Vilnius Nature Research Centre, Institute of Ecology, Vilnius, Lithuania
| | - Mišel Jelić
- Department of Natural Sciences, Varaždin City Museum, Varaždin, Croatia
| | - Anthony Ollivier
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche Comté, Dijon, France
| | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, France
| | - Michael Danger
- UMR CNRS 73602 LIEC, Université de Lorraine, Metz, France
| | - Vincent Felten
- UMR CNRS 73602 LIEC, Université de Lorraine, Metz, France
| | | | - Krešimir Žganec
- Department of Teacher Education Studies in Gospić, University of Zadar, Gospić, Croatia
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland.,University of Guelph, Centre for Biodiversity Genomics, Guelph, ON, Canada
| | - Anna Wysocka
- Department of Genetics and Biosystematics, University of Gdansk, Gdansk, Poland
| | - Thierry Rigaud
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche Comté, Dijon, France
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland.
| |
Collapse
|
23
|
Wepfer PH, Nakajima Y, Sutthacheep M, Radice VZ, Richards Z, Ang P, Terraneo T, Sudek M, Fujimura A, Toonen RJ, Mikheyev AS, Economo EP, Mitarai S. Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific ocean. Mol Phylogenet Evol 2020; 151:106905. [DOI: 10.1016/j.ympev.2020.106905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
|
24
|
A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis. BMC Genomics 2020; 21:548. [PMID: 32770938 PMCID: PMC7430897 DOI: 10.1186/s12864-020-06952-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Coral reefs are among the most diverse, complex and densely populated marine ecosystems. To survive, morphologically simple and sessile cnidarians have developed mechanisms to catch prey, deter predators and compete with adjacent corals for space, yet the mechanisms underlying these functions are largely unknown. Here, we characterize the histology, toxic activity and gene expression patterns in two different types of tentacles from the scleractinian coral Galaxea fascilcularis – catch tentacles (CTs), used to catch prey and deter predators, and sweeper tentacles (STs), specialized tentacles used for territorial aggression. Results STs exhibit more mucocytes and higher expression of mucin genes than CTs, and lack the ectodermal cilia used to deliver food to the mouth and remove debris. STs and CTs also express different sensory rhodopsin-like g-protein coupled receptors, suggesting they may employ different sensory pathways. Each tentacle type has a different complement of stinging cells (nematocytes), and the expression in the two tentacles of genes encoding structural nematocyte proteins suggests the stinging cells develop within the tentacles. CTs have higher neurotoxicity to blowfly larvae and hemolytic activity compared to the STs, consistent with a role in prey capture. In contrast, STs have higher phospholipase A2 activity, which we speculate may have a role in inducing tissue damage during territorial aggression. The expression of genes encoding cytolytic toxins (actinoporins) and phospholipases also differs between the tentacle types. Conclusions These results show that the same organism utilizes two distinct tentacle types, each equipped with a different venom apparatus and toxin composition, for prey capture and defense and for territorial aggression.
Collapse
|
25
|
Sturaro N, Hsieh YE, Chen Q, Wang PL, Denis V. Toward a standardised protocol for the stable isotope analysis of scleractinian corals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8663. [PMID: 31802564 DOI: 10.1002/rcm.8663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The stable isotope analysis of carbon and nitrogen is a powerful tool in many ecological studies, but different sample treatments may affect stable isotope ratios and hamper comparisons among studies. The goal of this study was to determine whether treatments that are commonly used to prepare scleractinian coral samples for stable isotope analysis yield different δ15 N and δ13 C values, and to provide guidelines toward a standardised protocol. METHODS The animal tissues and Symbiodiniaceae of two symbiotic scleractinian coral species (Stylophora pistillata and Porites lutea) were divided into subsamples to test the effects of the drying method, lipid extraction, acidification treatment and water washing. All the subsamples were analysed for their δ15 N and δ13 C values, using continuous flow elemental analyser/isotope ratio mass spectrometry. RESULTS The drying method and lipid extraction treatment had no substantial effects on the δ15 N and δ13 C values of Symbiodiniaceae and animal tissues. Acid treatment did cause significant differences in δ13 C values (mean differences ≤0.5‰, with individual samples becoming up to 2.0‰ more negative), whereas no ecologically significant differences were observed in δ15 N values. Animal tissue δ13 C values may vary depending on whether samples are washed or not. CONCLUSIONS To move towards a standardised protocol in coral research, we recommend using an available drying method (as they are equally acceptable) for the stable isotope analysis of scleractinian corals, examining the need for lipid extraction on a case-by-case basis, performing a direct acidification of Symbiodiniaceae and animal tissues, and avoiding washing animal tissue with distilled water.
Collapse
Affiliation(s)
- Nicolas Sturaro
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yunli Eric Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Qi Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Shimpi GG, Patel NP, Haldar S. Molecular species delimitation of reef-building coral genera, Porites and Turbinaria (Anthozoa: Scleractinia), from the intertidal fringing reefs of Gulf of Kutch, India reveals unrecognized diversity. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1677798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaurav G. Shimpi
- Marine Environment Group, Analytical and Environmental Science Division and Central Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
- Bombay Natural History Society, Hornbill House, Dr. Salim Ali Chowk, Shahid Bhagat Singh Road, Mumbai, 400001, India
| | - Neha P. Patel
- Marine Environment Group, Analytical and Environmental Science Division and Central Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364 002, India
| | - Soumya Haldar
- Marine Environment Group, Analytical and Environmental Science Division and Central Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364 002, India
| |
Collapse
|
27
|
Terraneo TI, Benzoni F, Baird AH, Arrigoni R, Berumen ML. Morphology and molecules reveal two new species ofPorites(Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1643806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tullia I. Terraneo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Francesca Benzoni
- Department of Biotechnologies and Bioscience, University of Milano – Bicocca, Milan, 20126, Italy
| | - Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Roberto Arrigoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- European Commission, Joint Research Centre, Directorate A – Strategy, Work Programme and Resources, Exploratory Research, Ispra, 21027, Italy
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| |
Collapse
|
28
|
Quattrini AM, Wu T, Soong K, Jeng MS, Benayahu Y, McFadden CS. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol Biol 2019; 19:116. [PMID: 31170912 PMCID: PMC6555025 DOI: 10.1186/s12862-019-1427-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Our ability to investigate processes shaping the evolutionary diversification of corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries. Discerning species of corals has been challenging due to a multitude of factors, including homoplasious and plastic morphological characters and the use of molecular markers that are either not informative or have not completely sorted. Hybridization can also blur species boundaries by leading to incongruence between morphology and genetics. We used traditional DNA barcoding and restriction-site associated DNA sequencing combined with coalescence-based and allele-frequency methods to elucidate species boundaries and simultaneously examine the potential role of hybridization in a speciose genus of octocoral, Sinularia. RESULTS Species delimitations using two widely used DNA barcode markers, mtMutS and 28S rDNA, were incongruent with one another and with the morphospecies identifications. When mtMutS and 28S were concatenated, a 0.3% genetic distance threshold delimited the majority of morphospecies. In contrast, 12 of the 15 examined morphospecies formed well-supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species trees of > 6000 RADSeq loci. DAPC and Structure analyses also supported morphospecies assignments, but indicated the potential for two additional cryptic species. Three morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-BABA tests demonstrated significant admixture between some of those species, suggesting that hybridization may confound species delimitation in Sinularia. CONCLUSIONS A genomic approach can help to guide species delimitation while simultaneously elucidating the processes generating coral diversity. Results support the hypothesis that hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and future research should examine the contribution of this mechanism in generating diversity across the coral tree of life.
Collapse
Affiliation(s)
- Andrea M. Quattrini
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| | - Tiana Wu
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| | - Keryea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Catherine S. McFadden
- Biology Department, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711 USA
| |
Collapse
|
29
|
Banguera-Hinestroza E, Ferrada E, Sawall Y, Flot JF. Computational Characterization of the mtORF of Pocilloporid Corals: Insights into Protein Structure and Function in Stylophora Lineages from Contrasting Environments. Genes (Basel) 2019; 10:E324. [PMID: 31035578 PMCID: PMC6562464 DOI: 10.3390/genes10050324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Abstract
More than a decade ago, a new mitochondrial Open Reading Frame (mtORF) was discovered in corals of the family Pocilloporidae and has been used since then as an effective barcode for these corals. Recently, mtORF sequencing revealed the existence of two differentiated Stylophora lineages occurring in sympatry along the environmental gradient of the Red Sea (18.5°C to 33.9°C). In the endemic Red Sea lineage RS_LinB, the mtORF and the heat shock protein gene hsp70 uncovered similar phylogeographic patterns strongly correlated with environmental variations. This suggests that the mtORF too might be involved in thermal adaptation. Here, we used computational analyses to explore the features and putative function of this mtORF. In particular, we tested the likelihood that this gene encodes a functional protein and whether it may play a role in adaptation. Analyses of full mitogenomes showed that the mtORF originated in the common ancestor of Madracis and other pocilloporids, and that it encodes a transmembrane protein differing in length and domain architecture among genera. Homology-based annotation and the relative conservation of metal-binding sites revealed traces of an ancient hydrolase catalytic activity. Furthermore, signals of pervasive purifying selection, lack of stop codons in 1830 sequences analyzed, and a codon-usage bias similar to that of other mitochondrial genes indicate that the protein is functional, i.e., not a pseudogene. Other features, such as intrinsically disordered regions, tandem repeats, and signals of positive selection particularly in StylophoraRS_LinB populations, are consistent with a role of the mtORF in adaptive responses to environmental changes.
Collapse
Affiliation(s)
- Eulalia Banguera-Hinestroza
- Evolutionary Biology and Ecology, Université libre de Bruxelles, B-1050 Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels-(IB)2, 1050 Brussels, Belgium.
| | - Evandro Ferrada
- Center for Genomics and Bioinformatics, Universidad Mayor, Santiago, Chile.
| | - Yvonne Sawall
- Coral Reef Ecology, Bermuda Institute of Ocean Sciences (BIOS), St.George's GE 01, Bermuda.
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles, B-1050 Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels-(IB)2, 1050 Brussels, Belgium.
| |
Collapse
|
30
|
Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_42] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
|
32
|
De Palmas S, Soto D, Denis V, Ho MJ, Chen CA. Molecular assessment of Pocillopora verrucosa (Scleractinia; Pocilloporidae) distribution along a depth gradient in Ludao, Taiwan. PeerJ 2018; 6:e5797. [PMID: 30386700 PMCID: PMC6204238 DOI: 10.7717/peerj.5797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 01/17/2023] Open
Abstract
It can be challenging to identify scleractinian corals from the genus Pocillopora Lamarck 1816 in the field because of their large range of inter- and intra-specific morphological variation that co-occur with changes in the physical environment. This task is made more arduous in the context of a depth gradient, where light and water current could greatly affect the morphology of the corallum. Pocillopora verrucosa (Ellis & Solander 1786) in Taiwan was previously reported exclusively from shallow waters (<10 m in depth), but a recent observation of this species in the mesophotic zone (>40 m in depth) questions this bathymetric distribution. We used the mitochondrial open reading frame and the histone 3 molecular markers to investigate the vertical and horizontal spatial distribution of P. verrucosa around Ludao (Green Island), Taiwan. We genotyped 101 P. verrucosa-like colonies collected from four depth zones, ranging from 7 to 45 m, at three sites around the island. Of the 101 colonies sampled, 85 were genotyped as P. verrucosa, 15 as P. meandrina, and one specimen as an undescribed Pocillopora species. P. verrucosa was found at all depths, while P. meandrina and the undescribed Pocillopora specimen were limited to 15 m depth. P. verrucosa has a large bathymetric distribution around Ludao and could benefit from the refuge that the mesophotic zone offers. This study illustrates the difficulty of identifying Pocillopora corals in the field and emphasizes the relevance of molecular taxonomy as an important and complementary tool to traditional taxonomy for clarifying vertical and horizontal species distribution. Our results also illustrate the need in conservation biology to target species genetic diversity rather than just species diversity.
Collapse
Affiliation(s)
- Stéphane De Palmas
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Derek Soto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Ming-Jay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Green Island Marine Research Station, Academia Sinica, Ludao, Taitung County, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 2018; 8:251. [PMID: 29321526 PMCID: PMC5762905 DOI: 10.1038/s41598-017-18355-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Corals, like other cnidarians, are venomous animals that rely on stinging cells (nematocytes) and their toxins to catch prey and defend themselves against predators. However, little is known about the chemical arsenal employed by stony corals, despite their ecological importance. Here, we show large differences in the density of nematocysts and whole-body hemolytic activity between different species of reef-building corals. In the branched coral Stylophora pistillata, the tips of the branches exhibited a greater hemolytic activity than the bases. Hemolytic activity and nematocyst density were significantly lower in Stylophora that were maintained for close to a year in captivity compared to corals collected from the wild. A cysteine-containing actinoporin was identified in Stylophora following partial purification and tandem mass spectrometry. This toxin, named Δ-Pocilopotoxin-Spi1 (Δ-PCTX-Spi1) is the first hemolytic toxin to be partially isolated and characterized in true reef-building corals. Loss of hemolytic activity during chromatography suggests that this actinoporin is only one of potentially several hemolytic molecules. These results suggest that the capacity to employ offensive and defensive chemicals by corals is a dynamic trait within and between coral species, and provide a first step towards identifying the molecular components of the coral chemical armament.
Collapse
Affiliation(s)
- Hanit Ben-Ari
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Moran Paz
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
34
|
Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, Tambutté S, Allemand D, Aranda M. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep 2017; 7:17583. [PMID: 29242500 PMCID: PMC5730576 DOI: 10.1038/s41598-017-17484-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Stony corals form the foundation of coral reef ecosystems. Their phylogeny is characterized by a deep evolutionary divergence that separates corals into a robust and complex clade dating back to at least 245 mya. However, the genomic consequences and clade-specific evolution remain unexplored. In this study we have produced the genome of a robust coral, Stylophora pistillata, and compared it to the available genome of a complex coral, Acropora digitifera. We conducted a fine-scale gene-based analysis focusing on ortholog groups. Among the core set of conserved proteins, we found an emphasis on processes related to the cnidarian-dinoflagellate symbiosis. Genes associated with the algal symbiosis were also independently expanded in both species, but both corals diverged on the identity of ortholog groups expanded, and we found uneven expansions in genes associated with innate immunity and stress response. Our analyses demonstrate that coral genomes can be surprisingly disparate. Future analyses incorporating more genomic data should be able to determine whether the patterns elucidated here are not only characteristic of the differences between S. pistillata and A. digitifera but also representative of corals from the robust and complex clade at large.
Collapse
Affiliation(s)
- Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Yong Li
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Jean-François Flot
- Université libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
35
|
Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME JOURNAL 2017; 12:813-824. [PMID: 29222444 DOI: 10.1038/s41396-017-0008-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
Abstract
Diazotrophs, both Bacteria and Archaea, capable of fixing nitrogen (N2), are present in the tissues and mucous, of corals and can supplement the coral holobiont nitrogen budget with fixed nitrogen (N) in the form of ammonia (NH3). Stylophora pistillata from Heron Island on the Great Barrier Reef collected at 5 and 15 m, and experimentally manipulated in the laboratory, showed that the rates of net photosynthesis, steady state quantum yields of photosystem II (PSII) fluorescence (∆Fv/Fm') and calcification varied based on irradiance as expected. Rates of N2 fixation were, however, invariant across treatments while the amount of fixed N contributing to Symbiodinium spp. N demand is irradiance dependent. Additionally, both the Symbiodinium and diazotrophic communities are significantly different based on depth, and novel Cluster V nifH gene phylotypes, which are not known to fix nitrogen, were recovered. A functional analysis using PICRUSt also showed that shallow corals were enriched in genes involved in nitrogen metabolism, and N2 fixation specifically. Corals have evolved a number of strategies to derive nitrogen from organic (e.g., heterotrophic feeding) and inorganic sources (e.g., N2 fixation) to maintain critical pathways such as protein synthesis to succeed ecologically in nitrogen-limited habitats.
Collapse
|
36
|
Mallien C, Porro B, Zamoum T, Olivier C, Wiedenmann J, Furla P, Forcioli D. Conspicuous morphological differentiation without speciation in Anemonia viridis (Cnidaria, Actiniaria). SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1383948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cédric Mallien
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Barbara Porro
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Thamilla Zamoum
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Caroline Olivier
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Jörg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Paola Furla
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| | - Didier Forcioli
- Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine – Institut de Biologie Paris Seine (EPS - IBPS), 75005 Paris, France
| |
Collapse
|
37
|
Tilstra A, Wijgerde T, Dini-Andreote F, Eriksson BK, Salles JF, Pen I, Osinga R, Wild C. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ 2017; 5:e3802. [PMID: 29038747 PMCID: PMC5640979 DOI: 10.7717/peerj.3802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m-2 s-1) for 31 days, followed by artificially induced heat stress (∼33.4 °C). We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m-2 s-1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.
Collapse
Affiliation(s)
- Arjen Tilstra
- Department of Marine Benthic Ecology & Evolution, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Francisco Dini-Andreote
- Microbial Ecology cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Britas Klemens Eriksson
- Department of Marine Benthic Ecology & Evolution, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Ecology cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ronald Osinga
- Marine Animal Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian Wild
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
38
|
Dimond JL, Gamblewood SK, Roberts SB. Genetic and epigenetic insight into morphospecies in a reef coral. Mol Ecol 2017; 26:5031-5042. [DOI: 10.1111/mec.14252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- James L. Dimond
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
- Shannon Point Marine Center Western Washington University Anacortes WA USA
| | | | - Steven B. Roberts
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
39
|
Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. Compressa. Mol Phylogenet Evol 2017; 111:132-148. [DOI: 10.1016/j.ympev.2017.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 11/18/2022]
|
40
|
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Meibom A, Fine M. Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170038. [PMID: 28573008 PMCID: PMC5451809 DOI: 10.1098/rsos.170038] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
Collapse
Affiliation(s)
- Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Authors for correspondence: Thomas Krueger e-mail:
| | - Noa Horwitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria-Evangelia Giovani
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- Authors for correspondence: Anders Meibom e-mail:
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
- Authors for correspondence: Maoz Fine e-mail:
| |
Collapse
|
41
|
Gélin P, Postaire B, Fauvelot C, Magalon H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol Phylogenet Evol 2017; 109:430-446. [PMID: 28219759 DOI: 10.1016/j.ympev.2017.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 01/06/2023]
Abstract
Species delimitation methods based on genetic information, notably using single locus data, have been proposed as means of increasing the rate of biodiversity description, but can also be used to clarify complex taxonomies. In this study, we explore the species diversity within the cnidarian genus Pocillopora, widely distributed in the tropical belt of the Indo-Pacific Ocean. From 943 Pocillopora colonies sampled in the Western Indian Ocean, the Tropical Southwestern Pacific and Southeast Polynesia, representing a huge variety of morphotypes, we delineated Primary Species Hypotheses (PSH) applying the Automatic Barcode Gap Discovery method, the Poisson Tree Processes algorithm and the Generalized mixed Yule-coalescent model on two mitochondrial markers (Open Reading Frame and Dloop) and reconstructing a haploweb using one nuclear marker (Internal Transcribed Spacer 2). Then, we confronted identified PSHs to the results of clustering analyses using 13 microsatellites to determine Secondary Species Hypotheses (SSH). Based on the congruence of all methods used and adding sequences from the literature, we defined at least 18 Secondary Species Hypotheses among 14 morphotypes, confirming the high phenotypic plasticity in Pocillopora species and the presence of cryptic lineages. We also identified three new genetic lineages never found to date, which could represent three new putative species. Moreover, the biogeographical ranges of several SSHs were re-assessed in the light of genetic data, which may have direct implications in conservation policies. Indeed, the cryptic diversity within this genus should be taken into account seriously, as neglecting its importance is source of confusion in our understanding of ecosystem functioning. Next generation sequencing, combined with other parameters (i.e. microstructure, zooxanthellae identification, ecology even at a micro-scale, resistance and resilience ability to bleaching) will be the next step towards an integrative framework of Pocillopora taxonomy, which will have profound implications for ecological studies, such as studying biodiversity, response to global warming and symbiosis.
Collapse
Affiliation(s)
- P Gélin
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS), Laboratoire d'excellence-CORAIL, Faculté des Sciences et Technologies, 15 Bd René Cassin, CS 92003, 97744 St Denis Cedex 09, La Réunion, France
| | - B Postaire
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS), Laboratoire d'excellence-CORAIL, Faculté des Sciences et Technologies, 15 Bd René Cassin, CS 92003, 97744 St Denis Cedex 09, La Réunion, France
| | - C Fauvelot
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS), Laboratoire d'excellence-CORAIL, Centre IRD de Nouméa, 101 Promenade Roger Laroque, BP A5, 98848 Nouméa cedex, New Caledonia
| | - H Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS), Laboratoire d'excellence-CORAIL, Faculté des Sciences et Technologies, 15 Bd René Cassin, CS 92003, 97744 St Denis Cedex 09, La Réunion, France.
| |
Collapse
|
42
|
Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea. Sci Rep 2016; 6:34612. [PMID: 27713475 PMCID: PMC5054360 DOI: 10.1038/srep34612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022] Open
Abstract
Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.
Collapse
|
43
|
Arrigoni R, Berumen ML, Chen CA, Terraneo TI, Baird AH, Payri C, Benzoni F. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Mol Phylogenet Evol 2016; 105:146-159. [PMID: 27593164 DOI: 10.1016/j.ympev.2016.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Scleractinian corals are affected by environment-induced phenotypic plasticity and intraspecific morphological variation caused by genotype. In an effort to identify new strategies for resolving this taxonomic issue, we applied a molecular approach for species evaluation to two closely related genera, Echinophyllia and Oxypora, for which few molecular data are available. A robust multi-locus phylogeny using DNA sequence data across four loci of both mitochondrial (COI, ATP6-NAD4) and nuclear (histone H3, ITS region) origin from 109 coral colonies was coupled with three independent putative species delimitation methods based on barcoding threshold (ABGD) and coalescence theory (PTP, GMYC). Observed overall congruence across multiple genetic analyses distinguished two traditional species (E. echinoporoides and O. convoluta), a species complex composed of E. aspera, E. orpheensis, E. tarae, and O. glabra, whereas O. lacera and E. echinata were indistinguishable with the sequenced loci. The combination of molecular species delimitation approaches and skeletal character observations allowed the description of two new reef coral species, E. bulbosa sp. n. from the Red Sea and E. gallii sp. n. from the Maldives and Mayotte. This work demonstrated the efficiency of multi-locus phylogenetic analyses and recently developed molecular species delimitation approaches as valuable tools to disentangle taxonomic issues caused by morphological ambiguities and to re-assess the diversity of scleractinian corals.
Collapse
Affiliation(s)
- Roberto Arrigoni
- Red Sea Research Center, Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Tullia I Terraneo
- Red Sea Research Center, Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Claude Payri
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS), Laboratoire d'excellence-CORAIL, centre IRD de Nouméa, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia
| | - Francesca Benzoni
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS), Laboratoire d'excellence-CORAIL, centre IRD de Nouméa, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia; Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
44
|
Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME JOURNAL 2016; 11:186-200. [PMID: 27392086 PMCID: PMC5335547 DOI: 10.1038/ismej.2016.95] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/19/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
Abstract
Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.
Collapse
Affiliation(s)
- Matthew J Neave
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Rita Rachmawati
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Liping Xun
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Craig T Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David G Bourne
- Australian Institute of Marine Science and College of Science and Engineering, James Cook University Townsville, Townsville, Queensland, Australia
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
45
|
Capel KCC, Migotto AE, Zilberberg C, Lin MF, Forsman Z, Miller DJ, Kitahara MV. Complete mitochondrial genome sequences of Atlantic representatives of the invasive Pacific coral species Tubastraea coccinea and T. tagusensis (Scleractinia, Dendrophylliidae): Implications for species identification. Gene 2016; 590:270-7. [PMID: 27234370 DOI: 10.1016/j.gene.2016.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Members of the azooxanthellate coral genus Tubastraea are invasive species with particular concern because they have become established and are fierce competitors in the invaded areas in many parts of the world. Pacific Tubastraea species are spreading fast throughout the Atlantic Ocean, occupying over 95% of the available substrate in some areas and out-competing native endemic species. Approximately half of all known coral species are azooxanthellate but these are seriously under-represented compared to zooxanthellate corals in terms of the availability of mitochondrial (mt) genome data. In the present study, the complete mt DNA sequences of Atlantic individuals of the invasive scleractinian species Tubastraea coccinea and Tubastraea tagusensis were determined and compared to the GenBank reference sequence available for a Pacific "T. coccinea" individual. At 19,094bp (compared to 19,070bp for the GenBank specimen), the mt genomes assembled for the Atlantic T. coccinea and T. tagusensis were among the longest sequence determined to date for "Complex" scleractinians. Comparisons of genomes data showed that the "T. coccinea" sequence deposited on GenBank was more closely related to that from Dendrophyllia arbuscula than to the Atlantic Tubastraea spp., in terms of genome length and base pair similarities. This was confirmed by phylogenetic analysis, suggesting that the former was misidentified and might actually be a member from the genus Dendrophyllia. In addition, although in general the COX1 locus has a slow evolutionary rate in Scleractinia, it was the most variable region of the Tubastraea mt genome and can be used as markers for genus or species identification. Given the limited data available for azooxanthellate corals, the results presented here represent an important contribution to our understanding of phylogenetic relationships and the evolutionary history of the Scleractinia.
Collapse
Affiliation(s)
- K C C Capel
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Migotto
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - C Zilberberg
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F Lin
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Z Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, USA
| | - D J Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M V Kitahara
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
46
|
Lozano-Cortés DF, Berumen ML. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea. MARINE POLLUTION BULLETIN 2016; 105:546-552. [PMID: 26520210 DOI: 10.1016/j.marpolbul.2015.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.
Collapse
Affiliation(s)
- Diego F Lozano-Cortés
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; Coral Reef Ecology Research Group, Department of Biology, Universidad del Valle, A.A. 25360, Cali, Colombia.
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
47
|
Vaughan GO, Burt JA. The changing dynamics of coral reef science in Arabia. MARINE POLLUTION BULLETIN 2016; 105:441-458. [PMID: 26621575 DOI: 10.1016/j.marpolbul.2015.10.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Six percent of the world's coral reefs occur around the Arabian Peninsula, providing a valuable ecological, economic and scientific resource for the nations bordering its shores. We provide the first region-wide assessment of the current status and historical trends in coral reef research, focusing on research in the Red Sea, Arabian Sea, and Arabian Gulf. In total, 633 regional reef publications have been produced since the 1930s, covering a wide variety of themes and taxa. Our results show a great deal of commonality in regional reef research, but also highlight important differences in research among the various seas as well as knowledge gaps that represent opportunities for future research. A regionally-integrated approach to future research is essential. There is a growing need for large-scale research to guide management of reefs and their stressors, as these operate at much larger scales than the national borders within which most research currently occurs.
Collapse
Affiliation(s)
- Grace O Vaughan
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - John A Burt
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
48
|
da Silva JM, Willows-Munro S. A review of over a decade of DNA barcoding in South Africa: a faunal perspective. AFRICAN ZOOLOGY 2016. [DOI: 10.1080/15627020.2016.1151377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Characteristics of the infestation of Seriatopora corals by the coral gall crab Hapalocarcinus marsupialis Stimpson, 1859 on the great reef of toliara, Madagascar. Symbiosis 2016. [DOI: 10.1007/s13199-016-0391-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. CONSERV GENET 2016. [DOI: 10.1007/s10592-015-0807-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|