1
|
Takei Y, Yang Y, White J, Goronzy IN, Yun J, Prasad M, Ombelets LJ, Schindler S, Bhat P, Guttman M, Cai L. Spatial multi-omics reveals cell-type-specific nuclear compartments. Nature 2025; 641:1037-1047. [PMID: 40205045 DOI: 10.1038/s41586-025-08838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding their relationships rests on identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci and transcriptional levels in individual cells, all in complex tissues. Here, we introduce two-layer DNA seqFISH+, which enables simultaneous mapping of 100,049 genomic loci, together with the nascent transcriptome for 17,856 genes and subnuclear structures in single cells. These data enable imaging-based chromatin profiling of diverse subnuclear markers and can capture their changes at genomic scales ranging from 100-200 kilobases to approximately 1 megabase, depending on the marker and DNA locus. By using multi-omics datasets in the adult mouse cerebellum, we showed that repressive chromatin regions are more variable by cell type than are active regions across the genome. We also discovered that RNA polymerase II-enriched foci were locally associated with long, cell-type-specific genes (bigger than 200 kilobases) in a manner distinct from that of nuclear speckles. Furthermore, our analysis revealed that cell-type-specific regions of heterochromatin marked by histone H3 trimethylated at lysine 27 (H3K27me3) and histone H4 trimethylated at lysine 20 (H4K20me3) are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear structures, associated genomic loci and their effects on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Li J, Shi XH, Fu DD, Du L, Tang B, Ao J, Ma AX, Hou YN, Wang ZG, Liu SL, Pang DW. An Inhalable Nanoshield for Effective Prevention of Influenza Virus Infections. ACS NANO 2024; 18:27327-27339. [PMID: 39315858 DOI: 10.1021/acsnano.4c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Influenza virus (IV) infection currently poses a serious and continuing threat to the global public health. Developing effective prevention strategies is important to defend against infection and spread of IV. Here, we developed a triple-protective nanoshield against IV infection in the lungs, formed by self-assembling DSPE-PEG amphiphilic polymers encapsulating the flu-preventive antiviral drug Arbidol internally. The preventive effect of the nanoshield against virus infection includes increasing the viscosity in the surrounding environment to physically defend against viral entry, forming a hydrated layer to block the interaction between viruses and cells, and inhibiting virus replication. Our finding suggested that a single inhalation of the nanoshield provides effective protection against IV infection for at least 8 h. Thus, this nanoshield may be a potential pandemic protection agent against IV, especially in viral environments, where no prophylactic or therapeutic measures are available.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Takei Y, Yang Y, White J, Yun J, Prasad M, Ombelets LJ, Schindler S, Cai L. High-resolution spatial multi-omics reveals cell-type specific nuclear compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539762. [PMID: 37214923 PMCID: PMC10197539 DOI: 10.1101/2023.05.07.539762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding nuclear organization requires identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci in individual cells, within complex tissues. Here, we introduce two-layer DNA seqFISH+, which allows simultaneous mapping of 100,049 genomic loci, together with nascent transcriptome for 17,856 genes and a diverse set of immunofluorescently labeled subnuclear structures all in single cells in cell lines and adult mouse cerebellum. Using these multi-omics datasets, we showed that repressive chromatin compartments are more variable by cell type than active compartments. We also discovered a single exception to this rule: an RNA polymerase II (RNAPII)-enriched compartment was associated with long, cell-type specific genes (> 200kb), in a manner distinct from nuclear speckles. Further, our analysis revealed that cell-type specific facultative and constitutive heterochromatin compartments marked by H3K27me3 and H4K20me3 are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear compartments, associated genomic loci, and their impacts on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Single-virus tracking with quantum dots in live cells. Nat Protoc 2023; 18:458-489. [PMID: 36451053 DOI: 10.1038/s41596-022-00775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022]
Abstract
Single-virus tracking (SVT) offers the opportunity to monitor the journey of individual viruses in real time and to explore the interactions between viral and cellular structures in live cells, which can assist in characterizing the complex infection process and revealing the associated dynamic mechanisms. However, the low brightness and poor photostability of conventional fluorescent tags (e.g., organic dyes and fluorescent proteins) greatly limit the development of the SVT technique, and challenges remain in performing multicolor SVT over long periods of time. Owing to the outstanding photostability, high brightness and narrow emission with tunable color range of quantum dots (QDs), QD-based SVT (QSVT) enables us to follow the fate of individual viruses interacting with different cellular structures at the single-virus level for milliseconds to hours, providing more accurate and detailed information regarding viral infection in live cells. So far, the QSVT technique has yielded spectacular achievements in uncovering the mechanisms associated with virus entry, trafficking and egress. Here, we provide a detailed protocol for QSVT implementation using the viruses that we have previously studied systematically as an example. The specific procedures for performing QSVT experiments in live cells are described, including virus preparation, the QD labeling strategies, imaging approaches, image processing and data analysis. The protocol takes 1-2 weeks from the preparation of viruses and cellular specimens to image acquisition, and 1 d for image processing and data analysis.
Collapse
|
5
|
Zhang X, Li W, Cui Z. Single-Particle Tracking of Virus Entry in Live Cells. Subcell Biochem 2023; 106:153-168. [PMID: 38159226 DOI: 10.1007/978-3-031-40086-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Bahry E, Breimann L, Zouinkhi M, Epstein L, Kolyvanov K, Mamrak N, King B, Long X, Harrington KIS, Lionnet T, Preibisch S. RS-FISH: precise, interactive, fast, and scalable FISH spot detection. Nat Methods 2022; 19:1563-1567. [PMID: 36396787 PMCID: PMC9718671 DOI: 10.1038/s41592-022-01669-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Fluorescent in-situ hybridization (FISH)-based methods extract spatially resolved genetic and epigenetic information from biological samples by detecting fluorescent spots in microscopy images, an often challenging task. We present Radial Symmetry-FISH (RS-FISH), an accurate, fast, and user-friendly software for spot detection in two- and three-dimensional images. RS-FISH offers interactive parameter tuning and readily scales to large datasets and image volumes of cleared or expanded samples using distributed processing on workstations, clusters, or the cloud. RS-FISH maintains high detection accuracy and low localization error across a wide range of signal-to-noise ratios, a key feature for single-molecule FISH, spatial transcriptomics, or spatial genomics applications.
Collapse
Affiliation(s)
- Ella Bahry
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Laura Breimann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Marwan Zouinkhi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Leo Epstein
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Helmholtz Imaging Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Klim Kolyvanov
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Nicholas Mamrak
- Institute for Systems Genetics and Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Benjamin King
- Institute for Systems Genetics and Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kyle I S Harrington
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
- Helmholtz Imaging Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Timothée Lionnet
- Institute for Systems Genetics and Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
- Department of Bioengineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
7
|
Kashchuk AV, Perederiy O, Caldini C, Gardini L, Pavone FS, Negriyko AM, Capitanio M. Particle Localization Using Local Gradients and Its Application to Nanometer Stabilization of a Microscope. ACS NANO 2022; 17:1344-1354. [PMID: 36383436 PMCID: PMC9878972 DOI: 10.1021/acsnano.2c09787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Particle localization plays a fundamental role in advanced biological techniques such as single-molecule tracking, superresolution microscopy, and manipulation by optical and magnetic tweezers. Such techniques require fast and accurate particle localization algorithms as well as nanometer-scale stability of the microscope. Here, we present a universal method for three-dimensional localization of single labeled and unlabeled particles based on local gradient calculation of particle images. The method outperforms state-of-the-art localization techniques in high-noise conditions, and it is capable of 3D nanometer accuracy localization of nano- and microparticles with sub-millisecond calculation time. By localizing a fixed particle as fiducial mark and running a feedback loop, we demonstrate its applicability for active drift correction in sensitive nanomechanical measurements such as optical trapping and superresolution imaging. A multiplatform open software package comprising a set of tools for local gradient calculation in brightfield, darkfield, and fluorescence microscopy is shared for ready use by the scientific community.
Collapse
Affiliation(s)
- Anatolii V. Kashchuk
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | | | - Chiara Caldini
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Lucia Gardini
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- National
Institute of Optics, National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Francesco Saverio Pavone
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- National
Institute of Optics, National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | | | - Marco Capitanio
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
8
|
Yu C, Wang ZG, Ma AX, Liu SL, Pang DW. Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking. Anal Chem 2022; 94:5624-5633. [PMID: 35357801 DOI: 10.1021/acs.analchem.1c05387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear trafficking of viral genome is an essential cellular process in the life cycles of viruses. Despite substantial progress in uncovering a wide variety of complicated mechanisms of virus entry, intracellular transport of viral components, virus assembly, and egress, the temporal and spatial dynamics of viral genes trafficking within the nucleus remains poorly understood. Herein, using single-particle tracking, we explored the real-time dynamic nuclear trafficking of influenza A virus (IAV) genes packaged as the viral ribonucleoprotein complexes (vRNPs) by combining a four-plasmid DNA transfection system for the reconstruction of green fluorescent protein (GFP)-labeled vRNPs and a spinning disk super-resolution fluorescence microscope. We found that IAV infection significantly induced the formation of actin microfilaments (F-actin) in the nucleus. In combination with the fluorescent protein-tagged nuclear F-actin probe, we visualized the directed movement of GFP-labeled vRNPs foci along the nuclear F-actin with a speed of 0.18 μm/s, which is similar to the microfilaments-dependent slow directed motion of IAVs in the cytoplasm. The disruption of nuclear F-actin after treatment with microfilament inhibitors caused a considerable decrease in vRNPs motility and suppressed the nuclear export of newly produced vRNPs, indicating that the slow, directed movement plays a crucial role in facilitating the nuclear egress of vRNPs. Our findings identified a nuclear F-actin-dependent pathway for IAV vRNPs transporting from the nucleus into the cytoplasm, which may in turn uncover a novel target for antiviral treatment.
Collapse
Affiliation(s)
- Cong Yu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Takei Y, Zheng S, Yun J, Shah S, Pierson N, White J, Schindler S, Tischbirek CH, Yuan GC, Cai L. Single-cell nuclear architecture across cell types in the mouse brain. Science 2021; 374:586-594. [PMID: 34591592 DOI: 10.1126/science.abj1966] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diverse cell types in tissues have distinct gene expression programs, chromatin states, and nuclear architectures. To correlate such multimodal information across thousands of single cells in mouse brain tissue sections, we use integrated spatial genomics, imaging thousands of genomic loci along with RNAs and epigenetic markers simultaneously in individual cells. We reveal that cell type–specific association and scaffolding of DNA loci around nuclear bodies organize the nuclear architecture and correlate with differential expression levels in different cell types. At the submegabase level, active and inactive X chromosomes access similar domain structures in single cells despite distinct epigenetic and expression states. This work represents a major step forward in linking single-cell three-dimensional nuclear architecture, gene expression, and epigenetic modifications in a native tissue context.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sheel Shah
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nico Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Simone Schindler
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Carsten H Tischbirek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
10
|
Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, Shah S, Thomassie J, Suo S, Eng CHL, Guttman M, Yuan GC, Cai L. Integrated spatial genomics reveals global architecture of single nuclei. Nature 2021; 590:344-350. [PMID: 33505024 PMCID: PMC7878433 DOI: 10.1038/s41586-020-03126-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Identifying the relationships between chromosome structures, nuclear bodies, chromatin states, and gene expression is an overarching goal of nuclear organization studies1–4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here, we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem cells (mESCs) by DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence (IF) and the expression profile of 70 RNAs. We found many loci were invariantly associated with IF marks in single mESCs. These loci form “fixed points” in the nuclear organizations in single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mESCs subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3K27me3 and macroH2A1 (mH2A1), are heritable over at least 3–4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+ based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nico Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sheel Shah
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julian Thomassie
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shengbao Suo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chee-Huat Linus Eng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Epifluorescence-based three-dimensional traction force microscopy. Sci Rep 2020; 10:16599. [PMID: 33024138 PMCID: PMC7538907 DOI: 10.1038/s41598-020-72931-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023] Open
Abstract
We introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images. Using an open-source finite element (FE) based solver, we then compute the 3D full-field stress and strain and surface traction fields. We demonstrate this technique by measuring tractions generated by both single human neutrophils and multicellular monolayers of Madin–Darby canine kidney cells, highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, this represents a new, easily accessible method for calculating fully three-dimensional displacement and 3D surface tractions at high spatial frequency from epifluorescence images. We released and support the complete technique as a free and open-source code package.
Collapse
|
12
|
Louis B, Camacho R, Bresolí-Obach R, Abakumov S, Vandaele J, Kudo T, Masuhara H, Scheblykin IG, Hofkens J, Rocha S. Fast-tracking of single emitters in large volumes with nanometer precision. OPTICS EXPRESS 2020; 28:28656-28671. [PMID: 32988132 DOI: 10.1364/oe.401557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Multifocal plane microscopy allows for capturing images at different focal planes simultaneously. Using a proprietary prism which splits the emitted light into paths of different lengths, images at 8 different focal depths were obtained, covering a volume of 50x50x4 µm3. The position of single emitters was retrieved using a phasor-based approach across the different imaging planes, with better than 10 nm precision in the axial direction. We validated the accuracy of this approach by tracking fluorescent beads in 3D to calculate water viscosity. The fast acquisition rate (>100 fps) also enabled us to follow the capturing of 0.2 µm fluorescent beads into an optical trap.
Collapse
|
13
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
14
|
Lejeune E, Khang A, Sansom J, Sacks MS. FM-Track: A fiducial marker tracking software for studying cell mechanics in a three-dimensional environment. SOFTWAREX 2020; 11:100417. [PMID: 34291145 PMCID: PMC8291167 DOI: 10.1016/j.softx.2020.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tracking the deformation of fiducial markers in the vicinity of living cells embedded in compliant synthetic or biological gels is a powerful means to study cell mechanics and mechanobiology in three-dimensional environments. However, current approaches to track and quantify three-dimensional (3D) fiducial marker displacements remain ad-hoc, can be difficult to implement, and may not produce reliable results. Herein, we present a compact software package entitled "FM-Track," written in the popular Python language, to facilitate feature-based particle tracking tailored for 3D cell micromechanical environment studies. FM-Track contains functions for pre-processing images, running fiducial marker tracking, and post-processing and visualization. FM-Track can thus aid the study of cellular mechanics and mechanobiology by providing an extensible software platform to more reliably extract complex local 3D cell contractile information in transparent compliant gel systems.
Collapse
Affiliation(s)
- Emma Lejeune
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Mechanical Engineering, Boston University, Boston MA, United States
| | - Alex Khang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| | - Jacob Sansom
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin TX, United States
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| |
Collapse
|
15
|
Chen Y, Chen M, Zhu L, Wu JY, Du S, Li Y. Measure and model a 3-D space-variant PSF for fluorescence microscopy image deblurring. OPTICS EXPRESS 2018; 26:14375-14391. [PMID: 29877477 PMCID: PMC6005672 DOI: 10.1364/oe.26.014375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Conventional deconvolution methods assume that the microscopy system is spatially invariant, introducing considerable errors. We developed a method to more precisely estimate space-variant point-spread functions from sparse measurements. To this end, a space-variant version of deblurring algorithm was developed and combined with a total-variation regularization. Validation with both simulation and real data showed that our PSF model is more accurate than the piecewise-invariant model and the blending model. Comparing with the orthogonal basis decomposition based PSF model, our proposed model also performed with a considerable improvement. We also evaluated the proposed deblurring algorithm. Our new deblurring algorithm showed a significantly better signal-to-noise ratio and higher image quality than those of the conventional space-invariant algorithm.
Collapse
Affiliation(s)
- Yemeng Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| | - Mengmeng Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA
| | - Sidan Du
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| | - Yang Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| |
Collapse
|
16
|
Patel M, Leggett SE, Landauer AK, Wong IY, Franck C. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields. Sci Rep 2018; 8:5581. [PMID: 29615650 PMCID: PMC5882970 DOI: 10.1038/s41598-018-23488-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Collapse
Affiliation(s)
- Mohak Patel
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Susan E Leggett
- School of Engineering, Brown University, Providence, RI, 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, 02912, USA
| | | | - Ian Y Wong
- School of Engineering, Brown University, Providence, RI, 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Christian Franck
- School of Engineering, Brown University, Providence, RI, 02912, USA. .,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
17
|
Martens KJA, Bader AN, Baas S, Rieger B, Hohlbein J. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz localization rates using standard CPUs. J Chem Phys 2018; 148:123311. [DOI: 10.1063/1.5005899] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Koen J. A. Martens
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of Bionanotechnology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Arjen N. Bader
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sander Baas
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bernd Rieger
- Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
18
|
Yücel H, Okumuşoğlu NT. A new tracking algorithm for multiple colloidal particles close to contact. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465101. [PMID: 28972202 DOI: 10.1088/1361-648x/aa908e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we propose a new algorithm based on radial symmetry center method to track colloidal particles close to contact, where the optical images of the particles start to overlap in digital video microscopy. This overlapping effect is important to observe the pair interaction potential in colloidal studies and it appears as additional interaction in the measurement of the interaction with conventional tracking analysis. The proposed algorithm in this work is simple, fast and applicable for not only two particles but also three and more particles without any modification. The algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the actual particle position. In this study, simulations are performed to see the performance of the proposed algorithm for two and three particles, where the simulation images are generated by using fitted curve to experimental particle image for different sized particles. As a result, the algorithm yields the maximum error smaller than 2 nm for [Formula: see text] μm silica particles in contact condition.
Collapse
Affiliation(s)
- Harun Yücel
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | | |
Collapse
|
19
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
Sun EZ, Liu AA, Zhang ZL, Liu SL, Tian ZQ, Pang DW. Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS NANO 2017; 11:4395-4406. [PMID: 28355058 DOI: 10.1021/acsnano.6b07853] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Entry is the first critical step for the infection of influenza A virus and of great significance for the research and development of antiflu drugs. Influenza A virus depends on exploitation of cellular endocytosis to enter its host cells, and its entry behaviors in distinct routes still need further investigation. With the aid of a single-virus tracking technique and quantum dots, we have realized real-time and multicolor visualization of the endocytic process of individual viruses and comprehensive dissection of two distinct dynamin-dependent endocytic pathways of influenza A virus, either dependent on clathrin or not. Based on the sequential progression of protein recruitment and viral motility, we have revealed the asynchronization in the recruitments of clathrin and dynamin during clathrin-dependent entry of the virus, with a large population of events for short-lived recruitments of these two proteins being abortive. In addition, the differentiated durations of dynamin recruitment and responses to inhibitors in these two routes have evidenced somewhat different roles of dynamin. Besides promoting membrane fission in both entry routes, dynamin also participates in the maturation of a clathrin-coated pit in the clathrin-dependent route. Collectively, the current study displays a dynamic and precise image of the entry process of influenza A virus and elucidates the mechanisms of distinct entry routes. This quantum dot-based single-virus tracking technique is proven to be well-suited for investigating the choreographed interactions between virus and cellular proteins.
Collapse
Affiliation(s)
- En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - An-An Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhi-Quan Tian
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
21
|
Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 2016; 28:173-181. [PMID: 28035048 PMCID: PMC5221621 DOI: 10.1091/mbc.e16-06-0413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Quantum dots (QDs) are a powerful tool for quantitative biology, but two challenges are associated with using them to track intracellular molecules in live cells. A simple and convenient method is presented for labeling intracellular molecules by using HaloTag technology and electroporation and is used to successfully track myosins within live cells. Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8579, Japan .,Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihito Nakahata
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Hirokazu Yarimizu
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan.,Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
22
|
Lv C, Lin Y, Liu AA, Hong ZY, Wen L, Zhang Z, Zhang ZL, Wang H, Pang DW. Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane. Biomaterials 2016; 106:69-77. [DOI: 10.1016/j.biomaterials.2016.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
|
23
|
Yücel H, Okumuşoğlu NT. Optical tweezer calibration by using a part of the intensity distribution of a trapped particle. APPLIED OPTICS 2016; 55:7861-7865. [PMID: 27828018 DOI: 10.1364/ao.55.007861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we demonstrated that an optical tweezer setup can be calibrated by using a part of the symmetric intensity distribution of the trapped particle in digital video microscopy. First, we modified the radial symmetry center method, which was a recently proposed position detection algorithm. This algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the particle center. We applied the modified algorithm to different camera image configurations, which are obtained by cutting the same experimental video frames. We further calibrated the trap stiffness for each camera configuration. Then we compared the trap stiffness values and the position distributions. As a result, we can conclude that optical tweezer setups can be calibrated by using a part of the intensity distribution of the trapped particle.
Collapse
|
24
|
Zhang P, Kim K, Lee S, Chakkarapani SK, Fang N, Kang SH. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm. Sci Rep 2016; 6:32863. [PMID: 27619347 PMCID: PMC5020655 DOI: 10.1038/srep32863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Suresh Kumar Chakkarapani
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ning Fang
- Department of Chemistry, Georgia State University, 308 Petit Science Center, Atlanta, GA 30303, USA
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.,Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
25
|
Bergeron É, Patskovsky S, Rioux D, Meunier M. 3D multiplexed immunoplasmonics microscopy. NANOSCALE 2016; 8:13263-13272. [PMID: 27336475 DOI: 10.1039/c6nr01257d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.
Collapse
Affiliation(s)
- Éric Bergeron
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | | | | | | |
Collapse
|
26
|
Liu AA, Zhang Z, Sun EZ, Zheng Z, Zhang ZL, Hu Q, Wang H, Pang DW. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS NANO 2016; 10:1147-1155. [PMID: 26720596 DOI: 10.1021/acsnano.5b06438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus.
Collapse
Affiliation(s)
- An-An Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhenfeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
27
|
Liu SL, Wang ZG, Zhang ZL, Pang DW. Tracking single viruses infecting their host cells using quantum dots. Chem Soc Rev 2016; 45:1211-24. [DOI: 10.1039/c5cs00657k] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the implementation of quantum dot-based single-virus tracking and show how to use this technique to acquire meaningful information.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Zhi-Gang Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| |
Collapse
|
28
|
Constructing 3D microtubule networks using holographic optical trapping. Sci Rep 2015; 5:18085. [PMID: 26657337 PMCID: PMC4674800 DOI: 10.1038/srep18085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/11/2015] [Indexed: 11/11/2022] Open
Abstract
Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices.
Collapse
|
29
|
Lee W, Kinosita Y, Oh Y, Mikami N, Yang H, Miyata M, Nishizaka T, Kim D. Three-Dimensional Superlocalization Imaging of Gliding Mycoplasma mobile by Extraordinary Light Transmission through Arrayed Nanoholes. ACS NANO 2015; 9:10896-10908. [PMID: 26469129 DOI: 10.1021/acsnano.5b03934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we describe super-resolved sampling of live bacteria based on extraordinary optical transmission (EOT) of light. EOT is produced by surface plasmon confinement and coupling with nanostructures. Bacterial fluorescence is excited by the localized fields for subdiffraction-limited sampling. The concept was applied to elucidating bacterial dynamics of gliding Mycoplasma mobile (M. mobile). The results analyzed with multiple M. mobile bacteria show individual characters and reveal that M. mobile undergoes a significant axial variation at 94 nm. The sampling error of the method is estimated to be much smaller than 1/10 of the diffraction limit both in the lateral and depth axis. The method provides a powerful tool for investigation of biomolecular dynamics at subwavelength precision.
Collapse
Affiliation(s)
- Wonju Lee
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | | | - Youngjin Oh
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Nagisa Mikami
- Department of Physics, Gakushuin University , Tokyo 171-8588, Japan
| | - Heejin Yang
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University , Osaka 558-8585, Japan
| | | | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| |
Collapse
|
30
|
Liang J, Gao L, Hai P, Li C, Wang LV. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Sci Rep 2015; 5:15504. [PMID: 26503834 PMCID: PMC4621413 DOI: 10.1038/srep15504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022] Open
Abstract
Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium.
Collapse
Affiliation(s)
- Jinyang Liang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Liang Gao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Pengfei Hai
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Chiye Li
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
31
|
Wu M, Zhang ZL, Chen G, Wen CY, Wu LL, Hu J, Xiong CC, Chen JJ, Pang DW. Rapid and Quantitative Detection of Avian Influenza A(H7N9) Virions in Complex Matrices Based on Combined Magnetic Capture and Quantum Dot Labeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5280-8. [PMID: 26280101 DOI: 10.1002/smll.201403746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/27/2015] [Indexed: 05/20/2023]
Abstract
Avian influenza A(H7N9) virus, which emerged in China in the spring of 2013, has infected hundreds of people and resulted in many deaths. Herein, a rapid and quantitative assay is proposed for the one-step detection of H7N9 virions. Immunomagnetic nanospheres (IMNs) and antibody-conjugated quantum dots (Ab-QDs) are simultaneously employed to capture and identify the target virus, leading to a high efficiency, good specificity, and strong anti-interference ability. Moreover, this reliable detection assay, which combines the efficient magnetic enrichment and the unique photophysical properties of QDs, can achieve a high sensitivity for a low detection limit. At the same time, this detection strategy shows great flexibility for employment in a variety of fluorescence detectors, including fluorescence spectrometry, microscope assays, and handheld UV lamp tests. Furthermore, our one-step detection strategy induces very little change in the integrity of the vulnerable virions, which enables additional genotyping testing following the fluorescence detection. The present study, thus, reports a rapid and quantitative approach for the detection of H7N9 virions based on simultaneous magnetic capture and QD labeling, thereby providing a higher probability for detection and therefore faster diagnosis of H7N9-infected patients.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Gang Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao-Chao Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jian-Jun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
32
|
Hajj B, El Beheiry M, Izeddin I, Darzacq X, Dahan M. Accessing the third dimension in localization-based super-resolution microscopy. Phys Chem Chem Phys 2015; 16:16340-8. [PMID: 24901106 DOI: 10.1039/c4cp01380h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.
Collapse
Affiliation(s)
- Bassam Hajj
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie-Paris 6, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
33
|
Li H, Chen D, Xu G, Yu B, Niu H. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field. OPTICS EXPRESS 2015; 23:787-794. [PMID: 25835838 DOI: 10.1364/oe.23.000787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a non-z-scanning multi-molecule tracking system with nano-resolution in all three dimensions and extended depth of field (DOF), which based on distorted grating (DG) and double-helix point spread function (DH-PSF) combination microscopy (DDCM). The critical component in DDCM is a custom designed composite phase mask (PM) combining the functions of DG and DH-PSF. The localization precision and the effective DOF of the home-built DDCM system based on the designed PM were tested. Our experimental results show that the three-dimensional (3D) localization precision for the three diffraction orders of the grating are σ(-1st)(x, y, z) = (6.5 nm, 9.2nm, 23.4 nm), σ(0th)(x, y, z) = (3.7 nm, 2.8nm, 10.3 nm), and σ(+1s)(x, y, z) = (5.8 nm, 6.9 nm, 18.4 nm), respectively. Furthermore, the total effective DOF of the DDCM system is extended to 14 μm. Tracking experiment demonstrated that beads separated over 12 μm along the axial direction at some instants can be localized and tracked successfully.
Collapse
|
34
|
Liu SL, Wu QM, Zhang LJ, Wang ZG, Sun EZ, Zhang ZL, Pang DW. Three-dimensional tracking of Rab5- and Rab7-associated infection process of influenza virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4746-53. [PMID: 24976105 DOI: 10.1002/smll.201400944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/18/2014] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) single-particle tracking (SPT) techniques have been widely reported. However, the 3D SPT technique remains poorly used for solving actual biological problems. In this work, a quantum dots (QDs)-based single-particle tracking technique is utilized to explore the Rab5- and Rab7-associated infection behaviors of influenza virus in three dimensions with a set of easily-attained equipment by the fast and accurate centroid method for 3D SPT. The experimental results indicate that Rab5 protein takes part in the virus infection process from the cell periphery to the perinuclear region, while Rab7 protein is mainly involved in the intermittent and confined movements of the virus in the perinuclear region. Evidently, the transition process of the virus-containing vesicles from early to late endosomes might occur during the intermittent movement in the perinuclear region. These findings reveal distinct dynamic behaviors of Rab5- and Rab7-positive endosomes in the course of the intracellular transport of viruses. This work is helpful in understanding the intracellular transport of cargoes.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr Opin Chem Biol 2014; 20:78-85. [DOI: 10.1016/j.cbpa.2014.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023]
|
36
|
Shuang B, Chen J, Kisley L, Landes CF. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping. Phys Chem Chem Phys 2014; 16:624-34. [PMID: 24263676 PMCID: PMC4041580 DOI: 10.1039/c3cp53968g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single particle tracking (SPT) techniques provide a microscopic approach to probe in vivo and in vitro structure and reactions. Automatic analysis of SPT data with high efficiency and accuracy spurs the development of SPT algorithms. In this perspective, we review a range of available techniques used in SPT analysis programs. In addition, we present an example SPT program step-by-step to provide a guide so that researchers can use, modify, and/or write a SPT program for their own purposes.
Collapse
Affiliation(s)
- Bo Shuang
- Department of Chemistry, Rice University, Houston, Texas, United States. Tel: (1)713 348 4437
| | - Jixin Chen
- Department of Chemistry, Rice University, Houston, Texas, United States. Tel: (1)713 348 4437
| | - Lydia Kisley
- Department of Chemistry, Rice University, Houston, Texas, United States. Tel: (1)713 348 4437
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, Texas, United States. Tel: (1)713 348 4437
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States. Tel: (1)713 348 4232
| |
Collapse
|