1
|
Huang X, Wu W, Qi H, Yan X, Dong L, Yang Y, Zhang Q, Ma G, Zhang G, Lei H. Exploitation of enhanced prime editing for blocking aberrant angiogenesis. J Adv Res 2025; 72:121-133. [PMID: 38996967 DOI: 10.1016/j.jare.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Aberrant angiogenesis plays an important part in the development of a variety of human diseases including proliferative diabetic retinopathy, with which there are still numerous patients remaining a therapeutically challenging condition. Prime editing (PE) is a versatile gene editing approach, which offers a novel opportunity to genetically correct challenging disorders. OBJECTIVES The goal of this study was to create a dominant-negative (DN) vascular endothelial growth factor receptor (VEGFR) 2 by editing genomic DNA with an advanced PE system to block aberrant retinal angiogenesis in a mouse model of oxygen-induced retinopathy. METHODS An advanced PE system (referred to as PE6x) was established within two lentiviral vectors, with one carrying an enhanced PE guide RNA and a canonical Cas9 nickase fused with an optimized reversal transcriptase, and the other conveying a nicking guide RNA and a DN-MLH1 to improve PE efficiency. Dual non-integrating lentiviruses (NILVs) produced with the two lentiviral PE6x vectors were then employed to create a mutation of VEGFR2 T17967A by editing the Mus musculus VEGFR2 locus in vitro and in vivo, leading to generation of a premature stop codon (TAG, K796stop) to produce DN-VEGFR2, to interfere with the wild type VEGFR2 which is essential for angiogenesis. RESULTS NILVs targeting VEGFR2 delivered into cultured murine vascular endothelial cells led to 51.06 % VEGFR2 T17967A in the genome analyzed by next generation sequencing and the production of DN-VEGFR2, which was found to hamper VEGF-induced VEGFR2 phosphorylation, as demonstrated by Western blot analysis. Intravitreally injection of the dual NILVs into postnatal day 12 mice in a model of oxygen-induced retinopathy, led to production of retinal DN-VEGFR2 in postnatal day 17 mice which blocked retinal VEGFR2 expression and activation as well as abnormal retinal angiogenesis without interfering with retinal structure and function, as assessed by electroretinography, optical coherence tomography, fundus fluorescein angiography and histology. CONCLUSION DN-VEGFR2 resulted from editing genomic VEGFR2 using the PE6x system can be harnessed to treat intraocular pathological angiogenesis.
Collapse
Affiliation(s)
- Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qing Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Gaoen Ma
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, China; Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| | - Hetian Lei
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Tesfamariam M, Vij R, Trümper V, Hube B, Brunke S. Shining a light on Candida-induced epithelial damage with a luciferase reporter. mSphere 2024; 9:e0050924. [PMID: 39412273 PMCID: PMC11580449 DOI: 10.1128/msphere.00509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024] Open
Abstract
Host cell damage is a key parameter for research in infection biology, drug testing, and substance safety screening. In this study, we introduce a luciferase reporter system as a new and reliable assay to measure cell damage and validate it with the pathogenic yeast, Candida albicans, as a test case. We transduced human epithelial cell lines with a lentiviral vector to stably express an optimized luciferase enzyme, Nanoluc. Upon cell damage, the release of cytoplasmic luciferase into the extracellular space can be easily detected by a luminometer. We used the luciferase reporter system to investigate the damage caused by C. albicans to different newly generated epithelial reporter cell lines. We found that fungus-induced cell damage, as determined by established methods, correlated tightly with the release of the luciferase. The new luciferase reporter system is a simple, sensitive, robust, and inexpensive method for measuring host cell damage and has a sensitivity comparable to the standard assay, release of lactate dehydrogenase. It is suitable for high-throughput studies of pathogenesis mechanisms of any microbe, for antimicrobial drug screening, and many other applications.IMPORTANCEWe present a quick, easy, inexpensive, and reliable assay to measure damage to mammalian cells. To this end, we created reporter cell lines which artificially express luciferase, an enzyme that can be easily detected in the supernatant when these cells are damaged. We used infections with the well-investigated fungal pathogen of humans, Candida albicans, as a test case of our system. Using our reporter, we were able to recapitulate the known effects of strain variability, gene deletions, and antifungal treatments on host cell damage. This easily adaptable reporter system can be used to screen for damage in infection models with different microbial species, assay cell-damaging potential of substances, discover new non-toxic antibiotics, and many other damage-based applications.
Collapse
Affiliation(s)
- Millen Tesfamariam
- Department of Molecular Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Raghav Vij
- Department of Molecular Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Verena Trümper
- Department of Molecular Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Molecular Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Molecular Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|
3
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
4
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Leclerc D, Siroky MD, Miller SM. Next-generation biological vector platforms for in vivo delivery of genome editing agents. Curr Opin Biotechnol 2024; 85:103040. [PMID: 38103518 DOI: 10.1016/j.copbio.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
CRISPR-based genome editing holds promise for addressing genetic disease, infectious disease, and cancer and has rapidly advanced from primary research to clinical trials in recent years. However, the lack of safe and potent in vivo delivery methods for CRISPR components has limited most ongoing clinical trials to ex vivo gene therapy. Effective CRISPR in vivo genome editing necessitates an effective vehicle ensuring target cell transduction while minimizing off-target effects, toxicity, and immune reactions. In this review, we examine promising biological-derived platforms to deliver DNA editing agents in vivo and the engineering thereof, encompassing potent viral-based vehicles, flexible protein nanocages, and mammalian-derived particles.
Collapse
Affiliation(s)
- Delphine Leclerc
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael D Siroky
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shannon M Miller
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Köppke J, Keller LE, Stuck M, Arnow ND, Bannert N, Doellinger J, Cingöz O. Direct translation of incoming retroviral genomes. Nat Commun 2024; 15:299. [PMID: 38182622 PMCID: PMC10770327 DOI: 10.1038/s41467-023-44501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Viruses that carry a positive-sense, single-stranded (+ssRNA) RNA translate their genomes soon after entering the host cell to produce viral proteins, with the exception of retroviruses. A distinguishing feature of retroviruses is reverse transcription, where the +ssRNA genome serves as a template to synthesize a double-stranded DNA copy that subsequently integrates into the host genome. As retroviral RNAs are produced by the host cell transcriptional machinery and are largely indistinguishable from cellular mRNAs, we investigated the potential of incoming retroviral genomes to directly express proteins. Here we show through multiple, complementary methods that retroviral genomes are translated after entry. Our findings challenge the notion that retroviruses require reverse transcription to produce viral proteins. Synthesis of retroviral proteins in the absence of productive infection has significant implications for basic retrovirology, immune responses and gene therapy applications.
Collapse
Affiliation(s)
- Julia Köppke
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Luise-Elektra Keller
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Michelle Stuck
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Department of Chemistry, Heidelberg University, Heidelberg, Germany
| | - Nicolas D Arnow
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Oya Cingöz
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany.
| |
Collapse
|
8
|
Sun B, Wu W, Narasipura EA, Ma Y, Yu C, Fenton OS, Song H. Engineering nanoparticle toolkits for mRNA delivery. Adv Drug Deliv Rev 2023; 200:115042. [PMID: 37536506 DOI: 10.1016/j.addr.2023.115042] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The concept of using mRNA to produce its own medicine in situ in the body makes it an ideal drug candidate, holding great potential to revolutionize the way we approach medicine. The unique characteristics of mRNA, as well as its customizable biomedical functions, call for the rational design of delivery systems to protect and transport mRNA molecules. In this review, a nanoparticle toolkit is presented for the development of mRNA-based therapeutics from a drug delivery perspective. Nano-delivery systems derived from either natural systems or chemical synthesis, in the nature of organic or inorganic materials, are summarised. Delivery strategies in controlling the tissue targeting and mRNA release, as well as the role of nanoparticles in building and boosting the activity of mRNA drugs, have also been introduced. In the end, our insights into the clinical and translational development of mRNA nano-drugs are presented.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Horns F, Martinez JA, Fan C, Haque M, Linton JM, Tobin V, Santat L, Maggiolo AO, Bjorkman PJ, Lois C, Elowitz MB. Engineering RNA export for measurement and manipulation of living cells. Cell 2023; 186:3642-3658.e32. [PMID: 37437570 PMCID: PMC10528933 DOI: 10.1016/j.cell.2023.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.
Collapse
Affiliation(s)
- Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Joe A Martinez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mehernaz Haque
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria Tobin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leah Santat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Wichmann M, Maire CL, Nuppenau N, Habiballa M, Uhde A, Kolbe K, Schröder T, Lamszus K, Fehse B, Głów D. Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs. Int J Mol Sci 2023; 24:11399. [PMID: 37511168 PMCID: PMC10380221 DOI: 10.3390/ijms241411399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.
Collapse
Affiliation(s)
- Max Wichmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Niklas Nuppenau
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katharina Kolbe
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
11
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
12
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
13
|
Lyu P, Lu B. New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery. Int J Mol Sci 2022; 23:ijms23158750. [PMID: 35955895 PMCID: PMC9369418 DOI: 10.3390/ijms23158750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022] Open
Abstract
The designer nucleases, including Zinc Finger Nuclease (ZFN), Transcription Activator-Like Effector Nuclease (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas), have been widely used for mechanistic studies, animal model generation, and gene therapy development. Clinical trials using designer nucleases to treat genetic diseases or cancers are showing promising results. Despite rapid progress, potential off-targets and host immune responses are challenges to be addressed for in vivo uses, especially in clinical applications. Short-term expression of the designer nucleases is necessary to reduce both risks. Currently, delivery methods enabling transient expression of designer nucleases are being pursued. Among these, virus-like particles as delivery vehicles for short-term designer nuclease expression have received much attention. This review will summarize recent developments in using virus-like particles (VLPs) for safe delivery of gene editing effectors to complement our last review on the same topic. First, we introduce some background information on how VLPs can be used for safe and efficient CRISPR/Cas9 delivery. Then, we summarize recently developed virus-like particles as genome editing vehicles. Finally, we discuss applications and future directions.
Collapse
Affiliation(s)
- Pin Lyu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +1-336-713-7276; Fax: +1-336-713-7290
| |
Collapse
|
14
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
15
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
16
|
Mianné J, Nasri A, Van CN, Bourguignon C, Fieldès M, Ahmed E, Duthoit C, Martin N, Parrinello H, Louis A, Iché A, Gayon R, Samain F, Lamouroux L, Bouillé P, Bourdin A, Assou S, De Vos J. CRISPR/Cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells using non-integrative bacteriophage-chimeric retrovirus-like particles. BMC Biol 2022; 20:8. [PMID: 34996449 PMCID: PMC8742436 DOI: 10.1186/s12915-021-01214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.
Collapse
Affiliation(s)
- Joffrey Mianné
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Amel Nasri
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Nguyen Van
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Bourguignon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Hugues Parrinello
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Anaïs Louis
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | | | | | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France.
- Department of Cell and Tissue Engineering, Univ Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Xun J, Zhang X, Guo S, Lu H, Chen J. Editing out HIV: application of gene editing technology to achieve functional cure. Retrovirology 2021; 18:39. [PMID: 34922576 PMCID: PMC8684261 DOI: 10.1186/s12977-021-00581-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 11/05/2021] [Indexed: 03/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) successfully suppresses human immunodeficiency virus (HIV) replication and improves the quality of life of patients living with HIV. However, current HAART does not eradicate HIV infection because an HIV reservoir is established in latently infected cells and is not recognized by the immune system. The successful curative treatment of the Berlin and London patients following bone marrow transplantation inspired researchers to identify an approach for the functional cure of HIV. As a promising technology, gene editing-based strategies have attracted considerable attention and sparked much debate. Herein, we discuss the development of different gene editing strategies in the functional cure of HIV and highlight the potential for clinical applications prospects. ![]()
Collapse
Affiliation(s)
- Jingna Xun
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Shuyan Guo
- Shanghai Foreign Language School, Shanghai International Studies University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
18
|
How to package and SEND mRNA: a novel "humanized" vector system based on endogenous retroviruses. Signal Transduct Target Ther 2021; 6:384. [PMID: 34741008 PMCID: PMC8569846 DOI: 10.1038/s41392-021-00803-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
|
19
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Segel M, Lash B, Song J, Ladha A, Liu CC, Jin X, Mekhedov SL, Macrae RK, Koonin EV, Zhang F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021; 373:882-889. [PMID: 34413232 DOI: 10.1126/science.abg6155] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Eukaryotic genomes contain domesticated genes from integrating viruses and mobile genetic elements. Among these are homologs of the capsid protein (known as Gag) of long terminal repeat (LTR) retrotransposons and retroviruses. We identified several mammalian Gag homologs that form virus-like particles and one LTR retrotransposon homolog, PEG10, that preferentially binds and facilitates vesicular secretion of its own messenger RNA (mRNA). We showed that the mRNA cargo of PEG10 can be reprogrammed by flanking genes of interest with Peg10's untranslated regions. Taking advantage of this reprogrammability, we developed selective endogenous encapsidation for cellular delivery (SEND) by engineering both mouse and human PEG10 to package, secrete, and deliver specific RNAs. Together, these results demonstrate that SEND is a modular platform suited for development as an efficient therapeutic delivery modality.
Collapse
Affiliation(s)
- Michael Segel
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blake Lash
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingwei Song
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alim Ladha
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Catherine C Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Jin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Society of Fellows, Harvard University, Cambridge, MA 02138 USA
| | - Sergei L Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Counsell JR, De Brabandere G, Karda R, Moore M, Greco A, Bray A, Diaz JA, Perocheau DP, Mock U, Waddington SN. Re-structuring lentiviral vectors to express genomic RNA via cap-dependent translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:357-365. [PMID: 33553484 PMCID: PMC7838728 DOI: 10.1016/j.omtm.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/01/2020] [Indexed: 11/28/2022]
Abstract
Lentiviral (LV) vectors based on human immunodeficiency virus type I (HIV-1) package two copies of their single-stranded RNA into vector particles. Normally, this RNA genome is reverse transcribed into a double-stranded DNA provirus that integrates into the cell genome, providing permanent gene transfer and long-term expression. Integration-deficient LV vectors have been developed to reduce the frequency of genomic integration and thereby limit their persistence in dividing cells. Here, we describe optimization of a reverse-transcriptase-deficient LV vector, which enables direct translation of LV RNA genomes upon cell entry, for transient expression of vector payloads as mRNA without a DNA intermediate. We have engineered a novel LV genome arrangement in which HIV-1 sequences are removed from the 5' end, to enable ribosomal entry from the 5' 7-methylguanylate cap for efficient translation of the vector payload. We have shown that this LV-mediated mRNA delivery platform provides transient transgene expression in vitro and in vivo. This has a potential application in gene and cell therapy scenarios requiring temporary payload expression in cells and tissues that can be targeted with pseudotyped LV vectors.
Collapse
Affiliation(s)
- John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Guillaume De Brabandere
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, UK
| | - Marc Moore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Antonio Greco
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Alysha Bray
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, UK
| | - Ulrike Mock
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, UK.,MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Schwarze LI, Sonntag T, Wild S, Schmitz S, Uhde A, Fehse B. Automated production of CCR5-negative CD4 +-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Ther 2021; 28:572-587. [PMID: 33867524 PMCID: PMC8455337 DOI: 10.1038/s41434-021-00259-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Ex-vivo gene editing in T lymphocytes paves the way for novel concepts of immunotherapy. One of those strategies is directed at the protection of CD4+-T helper cells from HIV infection in HIV-positive individuals. To this end, we have developed and optimised a CCR5-targeting TALE nuclease, CCR5-Uco-hetTALEN, mediating high-efficiency knockout of C-C motif chemokine receptor 5 (CCR5), the HIV co-receptor essential during initial infection. Clinical translation of the knockout approach requires up-scaling of the manufacturing process to clinically relevant cell numbers in accordance with good manufacturing practice (GMP). Here we present a GMP-compatible mRNA electroporation protocol for the automated production of CCR5-edited CD4+-T cells in the closed CliniMACS Prodigy system. The automated process reliably produced high amounts of CCR5-edited CD4+-T cells (>1.5 × 109 cells with >60% CCR5 editing) within 12 days. Of note, about 40% of total large-scale produced cells showed a biallelic CCR5 editing, and between 25 and 42% of produced cells had a central memory T-cell phenotype. In conclusion, transfection of primary T cells with CCR5-Uco-hetTALEN mRNA is readily scalable for GMP-compatible production and hence suitable for application in HIV gene therapy.
Collapse
Affiliation(s)
- Lea Isabell Schwarze
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Tanja Sonntag
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wild
- grid.59409.310000 0004 0552 5033Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Sabrina Schmitz
- grid.59409.310000 0004 0552 5033Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Almut Uhde
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- grid.13648.380000 0001 2180 3484Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site, Hamburg, Germany
| |
Collapse
|
23
|
Schwarze LI, Głów D, Sonntag T, Uhde A, Fehse B. Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Ther 2021; 28:588-601. [PMID: 34112993 PMCID: PMC8455333 DOI: 10.1038/s41434-021-00271-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Disruption of the C-C-Chemokine-receptor-5 (CCR5) gene induces resistance towards CCR5-tropic HIV. Here we optimised our previously described CCR5-Uco-TALEN and its delivery by mRNA electroporation. The novel variant, CCR5-Uco-hetTALEN features an obligatory heterodimeric Fok1-cleavage domain, which resulted in complete abrogation of off-target activity at previously found homodimeric as well as 7/8 in silico predicted, potential heterodimeric off-target sites, the only exception being highly homologous CCR2. Prevailing 18- and 10-bp deletions at the on-target site revealed microhomology-mediated end-joining as a major repair pathway. Notably, the CCR5Δ55-60 protein resulting from the 18-bp deletion was almost completely retained in the cytosol. Simultaneous cutting at CCR5 and CCR2 induced rearrangements, mainly 15-kb deletions between the cut sites, in up to 2% of T cells underlining the necessity to restrict TALEN expression. We optimised in vitro mRNA production and showed that CCR5-on- and CCR2 off-target activities of CCR5-Uco-hetTALEN were limited to the first 72 and 24-48 h post-mRNA electroporation, respectively. Using single-cell HRMCA, we discovered high rates of TALEN-induced biallelic gene editing of CCR5, which translated in large numbers of CCR5-negative cells resistant to HIVenv-pseudotyped lentiviral vectors. We conclude that CCR5-Uco-hetTALEN transfected by mRNA electroporation facilitates specific, high-efficiency CCR5 gene-editing (30%-56%) and it is highly suited for clinical translation subject to further characterisation of off-target effects.
Collapse
Affiliation(s)
- Lea Isabell Schwarze
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Dawid Głów
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Sonntag
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Almut Uhde
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Lyu P, Wang L, Lu B. Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing. Life (Basel) 2020; 10:366. [PMID: 33371215 PMCID: PMC7766694 DOI: 10.3390/life10120366] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of designer nucleases has made genome editing much more efficient than before. The designer nucleases have been widely used for mechanistic studies, animal model generation and gene therapy development. However, potential off-targets and host immune responses are issues still need to be addressed for in vivo uses, especially clinical applications. Short term expression of the designer nucleases is necessary to reduce both risks. Currently, various delivery methods are being developed for transient expression of designer nucleases including Zinc Finger Nuclease (ZNF), Transcription Activator-Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas). Recently, virus-like particles are being used for gene editing. In this review, we will talk through commonly used genome editing nucleases, discuss gene editing delivery tools and review the latest literature using virus-like particles to deliver gene editing effectors.
Collapse
Affiliation(s)
- Pin Lyu
- School of Physical Education and Health, Hangzhou Normal University, Hangzhou 311121, China;
| | - Luxi Wang
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA;
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| |
Collapse
|
25
|
He K, Rad SMAH, Poudel A, McLellan AD. Compact Bidirectional Promoters for Dual-Gene Expression in a Sleeping Beauty Transposon. Int J Mol Sci 2020; 21:ijms21239256. [PMID: 33291599 PMCID: PMC7731152 DOI: 10.3390/ijms21239256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Promoter choice is an essential consideration for transgene expression in gene therapy. The expression of multiple genes requires ribosomal entry or skip sites, or the use of multiple promoters. Promoter systems comprised of two separate, divergent promoters may significantly increase the size of genetic cassettes intended for use in gene therapy. However, an alternative approach is to use a single, compact, bidirectional promoter. We identified strong and stable bidirectional activity of the RPBSA synthetic promoter comprised of a fragment of the human Rpl13a promoter, together with additional intron/exon structures. The Rpl13a-based promoter drove long-term bidirectional activity of fluorescent proteins. Similar results were obtained for the EF1-α and LMP2/TAP1 promoters. However, in a lentiviral vector, the divergent bidirectional systems failed to produce sufficient titres to translate into an expression system for dual chimeric antigen receptor (CAR) expression. Although bidirectional promoters show excellent applicability to drive short RNA in Sleeping Beauty transposon systems, their possible use in the lentiviral applications requiring longer and more complex RNA, such as dual-CAR cassettes, is limited.
Collapse
|
26
|
Schenkwein D, Afzal S, Nousiainen A, Schmidt M, Ylä-Herttuala S. Efficient Nuclease-Directed Integration of Lentivirus Vectors into the Human Ribosomal DNA Locus. Mol Ther 2020; 28:1858-1875. [PMID: 32504545 PMCID: PMC7403359 DOI: 10.1016/j.ymthe.2020.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Lentivirus vectors (LVs) are efficient tools for gene transfer, but the non-specific nature of transgene integration by the viral integration machinery carries an inherent risk for genotoxicity. We modified the integration machinery of LVs and harnessed the cellular DNA double-strand break repair machinery to integrate transgenes into ribosomal DNA, a promising genomic safe-harbor site for transgenes. LVs carrying modified I-PpoI-derived homing endonuclease proteins were characterized in detail, and we found that at least 21% of all integration sites localized to ribosomal DNA when LV transduction was coupled to target DNA cleavage. In addition to the primary sequence recognized by the endonuclease, integration was also enriched in chromatin domains topologically associated with nucleoli, which contain the targeted ribosome RNA genes. Targeting of this highly repetitive region for integration was not associated with detectable DNA deletions or negative impacts on cell health in transduced primary human T cells. The modified LVs characterized here have an overall lower risk for insertional mutagenesis than regular LVs and can thus improve the safety of gene and cellular therapy.
Collapse
Affiliation(s)
- Diana Schenkwein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Saira Afzal
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alisa Nousiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Heart Center and Gene Therapy Unit, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| |
Collapse
|
27
|
Pino-Barrio MJ, Giménez Y, Villanueva M, Hildenbeutel M, Sánchez-Dominguez R, Rodríguez-Perales S, Pujol R, Surrallés J, Río P, Cathomen T, Mussolino C, Bueren JA, Navarro S. TALEN mediated gene editing in a mouse model of Fanconi anemia. Sci Rep 2020; 10:6997. [PMID: 32332829 PMCID: PMC7181878 DOI: 10.1038/s41598-020-63971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
The promising ability to genetically modify hematopoietic stem and progenitor cells by precise gene editing remains challenging due to their sensitivity to in vitro manipulations and poor efficiencies of homologous recombination. This study represents the first evidence of implementing a gene editing strategy in a murine safe harbor locus site that phenotypically corrects primary cells from a mouse model of Fanconi anemia A. By means of the co-delivery of transcription activator-like effector nucleases and a donor therapeutic FANCA template to the Mbs85 locus, we achieved efficient gene targeting (23%) in mFA-A fibroblasts. This resulted in the phenotypic correction of these cells, as revealed by the reduced sensitivity of these cells to mitomycin C. Moreover, robust evidence of targeted integration was observed in murine wild type and FA-A hematopoietic progenitor cells, reaching mean targeted integration values of 21% and 16% respectively, that were associated with the phenotypic correction of these cells. Overall, our results demonstrate the feasibility of implementing a therapeutic targeted integration strategy into the mMbs85 locus, ortholog to the well-validated hAAVS1, constituting the first study of gene editing in mHSC with TALEN, that sets the basis for the use of a new safe harbor locus in mice.
Collapse
Affiliation(s)
- Maria José Pino-Barrio
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Yari Giménez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariela Villanueva
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcus Hildenbeutel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Rebeca Sánchez-Dominguez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Roser Pujol
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Jordi Surrallés
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Juan Antonio Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain.
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain.
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Lyu P, Javidi-Parsijani P, Atala A, Lu B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing. Nucleic Acids Res 2019; 47:e99. [PMID: 31299082 PMCID: PMC6753487 DOI: 10.1093/nar/gkz605] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023] Open
Abstract
Transient expression of the CRISPR/Cas9 machinery will not only reduce risks of mutagenesis from off-target activities, but also decrease possible immune response to Cas9 protein. Building on our recent developing of a system able to package up to 100 copies of Cas9 mRNA in each lentivirus-like particle (LVLP) via the specific interaction between aptamer and aptamer-binding proteins (ABP), here we develop a lentiviral capsid-based bionanoparticle system, which allows efficient packaging of Cas9/sgRNA ribonucleoprotein (RNP). We show that replacing the Tetraloop of sgRNA scaffold with a com aptamer preserves the functions of the guide RNA, and the com-modified sgRNA can package Cas9/sgRNA RNP into lentivirus-like particles via the specific interactions between ABP and aptamer, and sgRNA and Cas9 protein. These RNP bionanoparticles generated Indels on different targets in different cells with efficiencies similar to or better than our recently described Cas9 mRNA LVLPs. The new system showed fast action and reduced off-target rates, and makes it more convenient and efficient in delivering Cas9 RNPs for transient Cas9 expression and efficient genome editing.
Collapse
Affiliation(s)
- Pin Lyu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27101, USA
| | - Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27101, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27101, USA
| |
Collapse
|
29
|
Lu B, Javidi-Parsijani P, Makani V, Mehraein-Ghomi F, Sarhan WM, Sun D, Yoo KW, Atala ZP, Lyu P, Atala A. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res 2019; 47:e44. [PMID: 30759231 PMCID: PMC6486560 DOI: 10.1093/nar/gkz093] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system discovered using bacteria has been repurposed for genome editing in human cells. Transient expression of the editor proteins (e.g. Cas9 protein) is desirable to reduce the risk of mutagenesis from off-target activity. Using the specific interaction between bacteriophage RNA-binding proteins and their RNA aptamers, we developed a system able to package up to 100 copies of Staphylococcus aureus Cas9 (SaCas9) mRNA in each lentivirus-like bionanoparticle (LVLP). The SaCas9 LVLPs mediated transient SaCas9 expression and achieved highly efficient genome editing in the presence of guide RNA. Lower off-target rates occurred in cells transduced with LVLPs containing SaCas9 mRNA, compared with cells transduced with adeno-associated virus or lentivirus expressing SaCas9. Our LVLP system may be useful for efficiently delivering Cas9 mRNA to cell lines and primary cells for in vitro and in vivo gene editing applications.
Collapse
Affiliation(s)
- Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vishruti Makani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Farideh Mehraein-Ghomi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Walaa Mohamed Sarhan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Dongjun Sun
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Zachary P Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
30
|
Knopp Y, Geis FK, Heckl D, Horn S, Neumann T, Kuehle J, Meyer J, Fehse B, Baum C, Morgan M, Meyer J, Schambach A, Galla M. Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:256-274. [PMID: 30317165 PMCID: PMC6187057 DOI: 10.1016/j.omtn.2018.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.
Collapse
Affiliation(s)
- Yvonne Knopp
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Neumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Janine Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Presidential Office, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
31
|
Bachtarzi H. Ex vivo and in vivo genome editing: a regulatory scientific framework from early development to clinical implementation. Regen Med 2017; 12:1015-1030. [PMID: 29243558 DOI: 10.2217/rme-2017-0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in human genome science have paved the way to a new class of human gene therapies based on gene editing, with the potential to provide a long-lasting curative strategy for many debilitating and complex disorders, for which there is an unmet medical need. Therapeutic genome editing encompasses both ex vivo and in vivo gene correction modalities, for which similar and also application-specific considerations apply, which dictate the overall strategy to be followed from a scientific, clinical and regulatory perspective. Here, the major regulatory barriers to successful clinical implementation are discussed, together with the key issues to be considered for generating safe (minimizing risks of tumorigenesis and off-target effects) and effective gene editing-based medicines for application in regenerative medicine.
Collapse
|
32
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
33
|
Vink CA, Counsell JR, Perocheau DP, Karda R, Buckley SMK, Brugman MH, Galla M, Schambach A, McKay TR, Waddington SN, Howe SJ. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy. Mol Ther 2017; 25:1790-1804. [PMID: 28550974 PMCID: PMC5542766 DOI: 10.1016/j.ymthe.2017.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.
Collapse
Affiliation(s)
- Conrad A Vink
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - John R Counsell
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Tristan R McKay
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester M15 6BH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2000, South Africa
| | - Steven J Howe
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
34
|
Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:44775. [PMID: 28303972 PMCID: PMC5356018 DOI: 10.1038/srep44775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a ‘template-switching’ lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
|
35
|
Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:79. [PMID: 28250438 PMCID: PMC5427806 DOI: 10.1038/s41598-017-00152-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
Affiliation(s)
- John R Counsell
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK.
| | - Zeinab Asgarian
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Veronica Ferrer
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Conrad A Vink
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Steven J Howe
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Olivier Danos
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
- Biogen, 14 Cambridge Center, Cambridge, MA, 02142, USA
| |
Collapse
|
36
|
Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017; 74:2439-2450. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023]
Abstract
HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.
Collapse
|
37
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
39
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
40
|
Schott JW, Morgan M, Galla M, Schambach A. Viral and Synthetic RNA Vector Technologies and Applications. Mol Ther 2016; 24:1513-27. [PMID: 27377044 DOI: 10.1038/mt.2016.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Chapdelaine P, Gérard C, Sanchez N, Cherif K, Rousseau J, Ouellet DL, Jauvin D, Tremblay JP. Development of an AAV9 coding for a 3XFLAG-TALEfrat#8-VP64 able to increase in vivo the human frataxin in YG8R mice. Gene Ther 2016; 23:606-14. [PMID: 27082765 PMCID: PMC4940929 DOI: 10.1038/gt.2016.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Artificially designed transcription activator-like effector (TALE) proteins fused to a transcription activation domain (TAD), such as VP64, are able to activate specific eukaryotic promoters. They thus provide a good tool for targeted gene regulation as a therapy. However, the efficacy of such an agent in vivo remains to be demonstrated as the majority of studies have been carried out in cell culture. We produced an adeno-associated virus 9 (AAV9) coding for a TALEfrat#8 containing 13 repeat variable diresidues able to bind to the proximal promoter of human frataxin (FXN) gene. This TALEfrat#8 was fused with a 3XFLAG at its N terminal and a VP64 TAD at its C terminal, and driven by a CAG promoter. This AAV9_3XFLAG-TALEfrat#8-VP64 was injected intraperitoneally to 9-day-old and 4-month-old YG8R mice. After 1 month, the heart, muscle and liver were removed and their FXN mRNA and FXN protein were analyzed. The results show that the AAV9_3XFLAG-TALEfrat#8-VP64 increased the FXN mRNA and FXN protein in the three organs studied. These results corroborate our previous in vitro studies in the FRDA human fibroblasts. Our study indicates that an AAV coding for a TALE protein coupled with a TAD may be used to increase gene expression in vivo as a possible treatment not only for FRDA but also for other haploinsufficiency diseases.
Collapse
Affiliation(s)
- P Chapdelaine
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - C Gérard
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - N Sanchez
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - K Cherif
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - J Rousseau
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - D L Ouellet
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - D Jauvin
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - J P Tremblay
- Unité de Génétique Humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier de Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
42
|
Perdigão P, Gaj T, Santa-Marta M, Barbas CF, Goncalves J. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS One 2016; 11:e0150037. [PMID: 26933881 PMCID: PMC4774903 DOI: 10.1371/journal.pone.0150037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.
Collapse
Affiliation(s)
- Pedro Perdigão
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joao Goncalves
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
43
|
Llewellyn GN, Exline CM, Holt N, Cannon PM. Using Engineered Nucleases to Create HIV-Resistant Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Abstract
Advances in molecular technologies have led to the discovery of many disease-related genetic mutations as well as elucidation of aberrant gene and protein expression patterns in several human diseases, including cancer. This information has driven the development of novel therapeutic strategies, such as the utilization of small molecules to target specific cellular pathways and the use of retroviral vectors to retarget immune cells to recognize and eliminate tumor cells. Retroviral-mediated gene transfer has allowed efficient production of T cells engineered with chimeric antigen receptors (CARs), which have demonstrated marked success in the treatment of hematological malignancies. As a safety point, these modified cells can be outfitted with suicide genes. Customized gene editing tools, such as clustered regularly interspaced short palindromic repeats-CRISPR-associated nucleases (CRISPR-Cas9), zinc-finger nucleases (ZFNs), or TAL-effector nucleases (TALENs), may also be combined with retroviral delivery to specifically delete oncogenes, inactivate oncogenic signaling pathways, or deliver wild-type genes. Additionally, the feasibility of retroviral gene transfer strategies to protect the hematopoietic stem cells (HSC) from the dose-limiting toxic effects of chemotherapy and radiotherapy was demonstrated. While some of these approaches have yet to be translated into clinical application, the potential implications for improved cellular replacement therapies to enhance and/or support the current treatment modalities are enormous.
Collapse
|
45
|
Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 2015; 10:1842-59. [DOI: 10.1038/nprot.2015.117] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Prel A, Caval V, Gayon R, Ravassard P, Duthoit C, Payen E, Maouche-Chretien L, Creneguy A, Nguyen TH, Martin N, Piver E, Sevrain R, Lamouroux L, Leboulch P, Deschaseaux F, Bouillé P, Sensébé L, Pagès JC. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles. Mol Ther Methods Clin Dev 2015; 2:15039. [PMID: 26528487 PMCID: PMC4613645 DOI: 10.1038/mtm.2015.39] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
RNA delivery is an attractive strategy to achieve transient gene expression in research projects and in cell- or gene-based therapies. Despite significant efforts investigating vector-directed RNA transfer, there is still a requirement for better efficiency of delivery to primary cells and in vivo. Retroviral platforms drive RNA delivery, yet retrovirus RNA-packaging constraints limit gene transfer to two genome-molecules per viral particle. To improve retroviral transfer, we designed a dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras. The engineered chimeric particles promoted effective packaging of several types of RNAs and enabled efficient transfer of biologically active RNAs in various cell types, including human CD34(+) and iPS cells. Systemic injection of high-titer particles led to gene expression in mouse liver and transferring Cre-recombinase mRNA in muscle permitted widespread editing at the ROSA26 locus. We could further show that the VLPs were able to activate an osteoblast differentiation pathway by delivering RUNX2- or DLX5-mRNA into primary human bone-marrow mesenchymal-stem cells. Thus, the novel chimeric MS2-lentiviral particles are a versatile tool for a wide range of applications including cellular-programming or genome-editing.
Collapse
Affiliation(s)
- Anne Prel
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- UMR UPS/CNRS 5273, EFS-PM, INSERM U1031, Toulouse, France
| | - Vincent Caval
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
| | - Régis Gayon
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Philippe Ravassard
- Institut du Cerveau et de la Moelle (ICM), Université Pierre et Marie Curie, CNRS UMR7225; INSERM U1127, Biotechnologies and Biothérapies Team, Paris, France
| | - Christine Duthoit
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Emmanuel Payen
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | - Leila Maouche-Chretien
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | - Alison Creneguy
- INSERM UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Nicolas Martin
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Eric Piver
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- CHRU de Tours, Laboratoire de biochimie et biologie moléculaire, Tours, France
| | - Raphaël Sevrain
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Lucille Lamouroux
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Philippe Leboulch
- CEA/Université Paris Sud (UMR-E 007), Institut of Emerging Diseases and Innovative Therapies (iMETI), CEA de Fontenay aux Roses, Fontenay aux Roses, France
| | | | - Pascale Bouillé
- Vectalys, Bâtiment Canal Biotech 2, Parc Technologique du Canal 3, Toulouse, France
| | - Luc Sensébé
- UMR UPS/CNRS 5273, EFS-PM, INSERM U1031, Toulouse, France
| | - Jean-Christophe Pagès
- Université François Rabelais de Tours, INSERM UMR 966, Tours, France
- CHRU de Tours, Laboratoire de biochimie et biologie moléculaire, Tours, France
| |
Collapse
|
47
|
Mussolino C, Mlambo T, Cathomen T. Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol 2015; 24:105-12. [DOI: 10.1016/j.coph.2015.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
|
48
|
Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, Hauber J, Fehse B. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res 2015; 43:5560-71. [PMID: 25964300 PMCID: PMC4477672 DOI: 10.1093/nar/gkv469] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method.
Collapse
Affiliation(s)
- Ulrike Mock
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Rafał Machowicz
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, 02-097, Poland
| | - Ilona Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Stefan Horn
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Pierre Abramowski
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Belinda Berdien
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany German Center for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Boris Fehse
- Research Dept. Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| |
Collapse
|
49
|
Rajendran SRCK, Yau YY, Pandey D, Kumar A. CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:261-75. [PMID: 25871888 DOI: 10.1089/omi.2015.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently developed strategies and techniques that make use of the vast amount of genetic information to perform targeted perturbations in the genome of living organisms are collectively referred to as genome engineering. The wide array of applications made possible by the use of this technology range from agriculture to healthcare. This, along with the applications involving basic biological research, has made it a very dynamic and active field of research. This review focuses on the CRISPR system from its discovery and role in bacterial adaptive immunity to the most recent developments, and its possible applications in agriculture and modern medicine.
Collapse
Affiliation(s)
- Subin Raj Cheri Kunnumal Rajendran
- 1 Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology , Pantnagar, U.S. Nagar, Uttarakhand, India
| | | | | | | |
Collapse
|
50
|
Maggio I, Gonçalves MAFV. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015; 33:280-91. [PMID: 25819765 DOI: 10.1016/j.tibtech.2015.02.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022]
Abstract
Genome editing (GE) entails the modification of specific genomic sequences in living cells for the purpose of determining, changing, or expanding their function(s). Typically, GE occurs after delivering sequence-specific designer nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) and donor DNA constructs into target cells. These designer nucleases can generate gene knockouts or gene knock-ins when applied alone or in combination with donor DNA templates, respectively. We review progress in this field, with an emphasis on designer nuclease and donor template delivery into mammalian target cell populations. We also discuss the impact that incremental improvements to these tools are having on the specificity and fidelity attainable with state-of-the-art DNA-editing procedures. Finally, we identify areas that warrant further investigation.
Collapse
Affiliation(s)
- Ignazio Maggio
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|