1
|
Song Y, Li N, Jiang S, Wang K, Lv G, Fan Z, Du X, Gao W, Lei L, Wang Z, Liu G, Li X. Microbiota-derived H 2S induces c-kit + cDC1 autophagic cell death and liver inflammation in metabolic dysfunction-associated steatohepatitis. Nat Commun 2025; 16:2222. [PMID: 40044736 PMCID: PMC11882788 DOI: 10.1038/s41467-025-57574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Immune dysregulation-induced inflammation serves as a driving force in the progression of metabolic dysfunction-associated steatohepatitis (MASH), while the underlying cellular and molecular mechanisms remain largely uncharted. A Western diet (WD) is employed to construct mouse models of metabolic dysfunction associated steatotic liver disease (MASLD) or MASH. Mass cytometry identifies a c-kit+ cDC1 subset whose frequency is reduced in the livers of mice and patients with MASH compared with healthy controls. Adoptive cell transfer of c-kit+ cDC1 protects the progression of MASH. Moreover, analysis of gut microbe sequence shows that WD-fed mice and MASLD/MASH patients exhibit gut microbiota dysbiosis, with an elevated abundance of H2S-producing Desulfovibrio_sp. Transplanting of MASH-derived fecal flora, Desulfovibrio_sp., or injecting H2S intraperitoneally into MASLD mice decreases the c-kit+cDC1 population and exacerbates liver inflammation. Mechanistically, H2S induces autophagic cell death of cDC1 in a c-kit-dependent manner in cDC-specific c-kit-/- and Atg5-/- mice. We thus uncover that microbiota-derived H2S triggers the autophagic cell death of c-kit+ cDC1 and ignites the liver inflammatory cascade in MASH.
Collapse
Affiliation(s)
- Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kexin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Yaghmaei H, Nojoumi SA, Soltanipur M, Yarmohammadi H, Mirhosseini SM, Rezaei M, Jalali Nadoushan M, Siadat SD. The role of gut microbiota in non-alcoholic fatty liver disease pathogenesis. OBESITY MEDICINE 2024; 50:100551. [DOI: 10.1016/j.obmed.2024.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
|
3
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
4
|
Adhikary S, Esmeeta A, Dey A, Banerjee A, Saha B, Gopan P, Duttaroy AK, Pathak S. Impacts of gut microbiota alteration on age-related chronic liver diseases. Dig Liver Dis 2024; 56:112-122. [PMID: 37407321 DOI: 10.1016/j.dld.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Amit Dey
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Antara Banerjee
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Biki Saha
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Pournami Gopan
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India.
| |
Collapse
|
5
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Li SQ, Shen Y, Zhang J, Weng CZ, Wu SD, Jiang W. Immune modulation of gut microbiota and its metabolites in chronic hepatitis B. Front Microbiol 2023; 14:1285556. [PMID: 38094621 PMCID: PMC10716252 DOI: 10.3389/fmicb.2023.1285556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2025] Open
Abstract
The gut microbiota is a diverse ecosystem consisting of 100 trillion microbiomes. The interaction between the host's gut and distal organs profoundly impacts various functions such as metabolism, immunity, neurology, and nutrition within the human body. The liver, as the primary immune organ, plays a crucial role in maintaining immune homeostasis by receiving a significant influx of gut-derived components and toxins. Perturbations in gut microbiota homeostasis have been linked to a range of liver diseases. The advancements in sequencing technologies, such as 16S rRNA and metagenomics, have opened up new avenues for comprehending the intricate physiological interplay between the liver and the intestine. Metabolites produced by the gut microbiota function as signaling molecules and substrates, influencing both pathological and physiological processes. Establishing a comprehensive host-bacterium-metabolism axis holds tremendous potential for investigating the mechanisms underlying liver diseases. In this review, we have provided a summary of the detrimental effects of the gut-liver axis in chronic liver diseases, primarily focusing on hepatitis B virus-related chronic liver diseases. Moreover, we have explored the potential mechanisms through which the gut microbiota and its derivatives interact with liver immunity, with implications for future clinical therapies.
Collapse
Affiliation(s)
- Shi-Qin Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jun Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng-Zhao Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
7
|
Gut microbiota affects sensitivity to immune-mediated isoniazid-induced liver injury. Biomed Pharmacother 2023; 160:114400. [PMID: 36805186 DOI: 10.1016/j.biopha.2023.114400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Isoniazid (INH) is a highly effective single and/or combined first-line anti-tuberculosis (anti-TB) therapy drug, and the hepatotoxicity greatly limits its clinical application. INH-induced liver injury (INH-DILI) is a typical immune-mediated idiosyncratic drug-induced liver injury. Existing mechanisms including genetic variations in drug metabolism and immune responses cannot fully explain the differences in susceptibility and sensitivity to INH-DILI, suggesting that other factors may be involved. Accumulating evidence indicates that the development and severity of immune-mediated liver injury is related to gut microbiota. In this study, INH exposure caused liver damage, immune disregulation and microbiota profile alteration. Depletion of gut microbiota ameliorated INH-DILI, and improved INH-DILI-associated immune disorder and inflammatory response. Moreover, hepatotoxicity of INH was ameliorated by fecal microbiota transplantation (FMT) from INH-treated mice. Notably, Bifidobacterium abundance was significantly associated with transaminase levels. In conclusion, our results suggested that the effect of gut microbiota on INH-DILI was related to immunity, and the difference in INH-DILI sensitivity was related to the structure of gut microbiota. Changes in the structure of gut microbiota by continuous exposure of INH resulted in the tolerance to liver injury, and probiotics such as Bifidobacterium might play an important role in INH-DILI and its "adaptation" phenomenon. This work provides novel evidence for elucidating the underlying mechanism of difference in individual's response to INH-DILI and potential approach for intervening anti-TB drug liver injury by modulating gut microbiota.
Collapse
|
8
|
Liu Q, Yang H, Kang X, Tian H, Kang Y, Li L, Yang X, Liu H, Ren P, Kuang X, Tong M, Fan W. A Synbiotic Ameliorates Con A-Induced Autoimmune Hepatitis in Mice through Modulation of Gut Microbiota and Immune Imbalance. Mol Nutr Food Res 2023; 67:e2200428. [PMID: 36708241 DOI: 10.1002/mnfr.202200428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Changes in the intestinal flora are related to autoimmune hepatitis (AIH) development. The aim of this study is to investigate the synergistic effects of probiotics and prebiotics on liver injury induced by concanavalin A (Con A). METHODS AND RESULTS C57BL/6 mice are fed probiotics (Pro), prebiotics (Pre), synbiotic (Syn) for 7 days and then Con A is injected via tail veins to induce AIH. Additionally, methylprednisolone (MP) is gavaged 0.5 h after the Con A injection. It is found that both Pro, Pre, Syn, and MP decrease the levels of serum transaminase, liver F4/80+ macrophage cells, and hepatocellular apoptosis. Pro, Pre, and Syn decrease proinflammatory cytokines, elevate levels of anti-inflammatory as well as restored immune imbalance in AIH. Besides, Pro, Pre, and Syn not only reshape the perturbed gut microbiota, but also maintain intestinal barrier integrity, block the activation of lipopolysaccharide (LPS)/TLR4/NF-κB pathway in the liver. Interestingly, the effects of Syn are superior to Pro or Pre alone in Con A-induced acute liver injury. CONCLUSIONS Syn obviously facilitates AIH remission. The combined use of Pro and Pre is effective in improving Pro and Pre efficacy and can be an important tool for preventing and adjuvant treating patients for AIH.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- LinFen Central Hospital, LinFen, 041000, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Haixia Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Lin Li
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| |
Collapse
|
9
|
Koumine ameliorates concanavalin A-induced autoimmune hepatitis in mice: involvement of the Nrf2, NF-κB pathways, and gut microbiota. Int Immunopharmacol 2023; 114:109573. [PMID: 36527886 DOI: 10.1016/j.intimp.2022.109573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Gelsemiumelegans(Gardner. & Chapm.) Benth. has long been considered a traditional Chinese medicine effective against rheumatoid pain, cancer, cirrhosis, and skin diseases. Koumine (KM), the most abundant alkaloid in G.elegans Benth., demonstrates a variety of biological effects, including antitumor, analgesic, anxiolytic, anti-inflammatory, antidepressant, antioxidant, immunoregulatory, and hepatoprotective effects. Furthermore, the relatively low toxicity of KM makes it a promising drug candidate. This study aimed to investigate the protective effects of KM and its possible mechanisms using a concanavalin A (Con A)-induced autoimmune hepatitis (AIH) model in mice. Mice were orally administered different doses of KM for 14 d before Con A tail vein injections. The effects of KM on serum biochemical markers and liver histopathology were then evaluated 12 h after Con A exposure. The Nrf2 and NF-κB signaling pathways and alterations in gut microbiota were determined using western blotting, immunohistochemistry, and 16S rRNA sequencing to explore the underlying mechanisms of KM exposure. KM pretreatment dose-dependently decreased serum liver injury markers (Alanine aminotransferase, and aspartate aminotransferase) and cytokine levels (Tumor necrosis factor-α and interleukin-6), as well as the liver pathological damage triggered by Con A. Furthermore, the results of the multi-technique analysis indicated that KM activated the Nrf2 pathway, upregulated the expression of anti-oxidation factors HO-1 and Nrf2, and downregulated the expression of Keap1. Moreover, the NF-κB signaling pathway was inhibited. Interestingly, pre-treatment with KM also significantly improved the composition of the gut microbiota probably because it increases the richness of probiotics. Our findings suggest that KM pretreatment could attenuate Con A-induced AIH, the Nrf2 and NF-κB signaling pathways, and that gut microbiota are involved in the process of the hepatoprotective effect. This study provides a theoretical basis for the development of KM as an effective agent against AIH.
Collapse
|
10
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
11
|
Multi-Omics Analysis Reveals the Protection of Gasdermin D in Concanavalin A-Induced Autoimmune Hepatitis. Microbiol Spectr 2022; 10:e0171722. [PMID: 35972273 PMCID: PMC9602755 DOI: 10.1128/spectrum.01717-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive inflammation-associated liver injury. Pyroptosis is a novel inflammatory programmed cell death wherein gasdermin D (GSDMD) serves as the executioner. Our work challenged Gsdmd-/- mice with concanavalin A (ConA) to try to unveil the actual role of GSDMD in AIH. After ConA injection, Gsdmd-/- mice exhibited more severe liver damage characterized by a lower survival rate, more extensive hepatocyte necrosis and apoptosis, and higher serum transaminase levels, indicating the protection of GSDMD in ConA-induced AIH. Furthermore, the Gsdmd-/- mice exhibited higher hepatic expression and serum levels of inflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-17A [IL-17A]) and more infiltration of macrophages and neutrophils after ConA treatment than did wild-type (WT) mice. Gsdmd-/- mice with AIH showed increased hepatic l-glutamine levels but decreased glycerophospholipid metabolites levels. L-glutamine levels showed positive correlations while glycerophospholipid metabolites showed negative associations with liver injury indexes and inflammation markers. We further observed a destroyed intestinal barrier in Gsdmd-/- mice after ConA injection as indicated by decreased transcriptional expressions of Tjp1, Ocln, Reg3g, and Muc2. ConA-treated Gsdmd-/- mice also exhibited higher serum LPS binding protein (LBP) concentrations and hepatic Tlr4 and Cd14 mRNA levels. Further fecal 16S rRNA gene sequencing demonstrated decreased relative abundances of Lactobacillus and Roseburia but increased relative abundances of Allobaculum and Dubosiella in Gsdmd-/- mice with AIH. Lactobacillus was negatively correlated with liver injury and inflammation indexes and positively associated with Ocln, Muc2, and Reg3g levels. Allobaculum was positively related to liver injury and inflammatory cytokines and negatively correlated with gut barrier indexes. IMPORTANCE Our study provides the first direct clues to the protective role of gasdermin D (GSDMD) in autoimmune hepatitis (AIH). We demonstrated that Gsdmd knockout exacerbated concanavalin A (ConA)-induced AIH in mice. It may be due to the destroyed intestinal barrier and changes in certain intestinal microbes and hepatic metabolites resulting in increased liver injury and inflammation in ConA-treated Gsdmd-/- mice. This finding suggested a nonnegligible role of GSDMD in AIH and also confirmed its physiological nonpyroptosis effects on the host. The role of GSDMD in autoimmune liver diseases or other liver diseases is complex and intriguing, deserving deep investigation.
Collapse
|
12
|
Role of Intestinal Microbes in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms232012661. [PMID: 36293518 PMCID: PMC9603943 DOI: 10.3390/ijms232012661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
With the recent availability and upgrading of many emerging intestinal microbes sequencing technologies, our research on intestinal microbes is changing rapidly. A variety of investigations have found that intestinal microbes are essential for immune system regulation and energy metabolism homeostasis, which impacts many critical organs. The liver is the first organ to be traversed by the intestinal portal vein, and there is a strong bidirectional link between the liver and intestine. Many intestinal factors, such as intestinal microbes, bacterial composition, and intestinal bacterial metabolites, are deeply involved in liver homeostasis. Intestinal microbial dysbiosis and increased intestinal permeability are associated with the pathogenesis of many chronic liver diseases, such as alcoholic fatty liver disease (AFLD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), chronic hepatitis B (CHB), chronic hepatitis C (CHC), autoimmune liver disease (AIH) and the development of hepatocellular carcinoma (HCC). Intestinal permeability and dysbacteriosis often lead to Lipopolysaccharide (LPS) and metabolites entering in serum. Then, Toll-like receptors activation in the liver induces the exposure of the intestine and liver to many small molecules with pro-inflammatory properties. And all of these eventually result in various liver diseases. In this paper, we have discussed the current evidence on the role of various intestinal microbes in different chronic liver diseases. As well as potential new therapeutic approaches are proposed in this review, such as antibiotics, probiotics, and prebiotics, which may have an improvement in liver diseases.
Collapse
|
13
|
Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi K, Chen X, Li L, Diao H. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Gut Microbes 2022; 14:2096994. [PMID: 35898110 PMCID: PMC9336479 DOI: 10.1080/19490976.2022.2096994] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal dysfunction is a common symptom of acute mountain sickness (AMS). The gut microbiota and γδ T cells play critical roles in intestinal disease. However, the mechanistic link between the microbiota and γδ T cells in hypoxia-induced intestinal injury remains unclear. Here, we show that hypoxia-induced intestinal damage was significantly alleviated after microbiota depletion with antibiotics. Hypoxia modulated gut microbiota composition by promoting antimicrobial peptides angiogenin-4 secretions. The abundance of Clostridium in the gut of mice after hypoxia significantly decreased, while the abundance of Desulfovibrio significantly increased. Furthermore, Desulfovibrio-derived phosphatidylethanolamine and phosphatidylcholine promoted γδ T cell activation. In CD1d-deficient mice, the levels of intraepithelial IL-17A and γδ T cells and intestinal damage were significantly decreased compared with those in wild-type mice under hypoxia. Mechanistically, phospholipid metabolites from Desulfovibrio are presented by intestinal epithelial CD1d to induce the proliferation of IL-17A-producing γδ T cells, which aggravates intestinal injury. Gut microbiota-derived metabolites promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells, suggesting that phospholipid metabolites and γδ T cells can be targets for AMS therapy.
Collapse
Affiliation(s)
- Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Xuequn Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang province, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong province, China,CONTACT Hongyan Diao State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang province, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China,Lanjuan Li State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory, 250117 Jinan, China
| |
Collapse
|
14
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
15
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Cheng Z, Yang L, Chu H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front Cell Infect Microbiol 2022; 12:947382. [PMID: 35899041 PMCID: PMC9310656 DOI: 10.3389/fcimb.2022.947382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem located in the human intestine, which extensively affects the human physiological and pathological processes. With more and more in-depth understandings of intestinal microbiota, a substantial body of studies have verified that the intestinal microbiota plays a crucial role in a variety of digestive system diseases, including alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However, only a few studies have paid attention to evaluate the relationship between AIH and the intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have indicated that intestinal microbiota putatively made significant contributions to the occurrence and the development of AIH by triggering several specific signaling pathways, altering the metabolism of intestinal microbiota, as well as modulating the immune response in the intestine and liver. By collecting the latest related literatures, this review summarized the increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models. Moreover, the combination of specific bacteria species was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In addition, there were alterations of luminal metabolites and immune responses, including decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations participate in the onset and the progression of AIH via multiple mechanisms. Therefore, some therapeutic methods based on restoration of intestinal microbiota composition, including probiotics and fecal microbiota transplantation (FMT), as well as targeted intestinal microbiota-associated signaling pathways, confer novel insights into the treatment for AIH patients.
Collapse
Affiliation(s)
| | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
17
|
Chen J, Li X, Zeng P, Zhang X, Bi K, Lin C, Jiang J, Diao H. Lamina propria interleukin 17 A aggravates natural killer T-cell activation in autoimmune hepatitis. FASEB J 2022; 36:e22346. [PMID: 35583908 DOI: 10.1096/fj.202101734rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Autoimmune hepatitis is an interface hepatitis characterized by the progressive destruction of the liver parenchyma, the cause of which is still obscure. Interleukin (IL)-17A is a major driver of autoimmunity, which can be produced by innate immune cells against several intracellular pathogens. Here, we investigated the involvement of IL-17A in a mice model of immune-mediated hepatitis with the intestine exposed to Salmonella typhimurium. Our results showed more severe Concanavalin (Con) A-induced liver injury and gut microbiome dysbiosis when the mice were treated with a gavage of S. typhimurium. Then, the natural killer (NK) T cells were overactivated by the accumulated IL-17A in the liver in the Con A and S. typhimurium administration group. IL-17A could activate NKT cells by inducing CD178 expression via IL-4/STAT6 signaling. Furthermore, via the portal tract, the laminae propria mucosal-associated invariant T (MAIT)-cell-derived IL-17A could be the original driver of NKT cell overactivation in intragastric administration of S. typhimurium and Con A injection. In IL-17A-deficient mice, Con A-induced liver injury and NKT cell activation were alleviated. However, when AAV-sh-mIL-17a was used to specifically knock down IL-17A in liver, it seemed that hepatic IL-17a knock down did not significantly influence the liver injury. Our results suggested that, under Con A-induction, laminae propria MAIT-derived IL-17A activated hepatic NKT, and this axis could be a therapeutic target in autoimmune liver disease.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J Biol Sci 2022; 29:1628-1643. [PMID: 35280528 PMCID: PMC8913379 DOI: 10.1016/j.sjbs.2021.10.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Human gut is colonized by numerous microorganisms, in which bacteria present the highest proportion of this colonization that live in a symbiotic relationship with the host. This microbial collection is commonly known as the microbiota. The gut microbiota can mediate gut epithelial and immune cells interaction through vitamins synthesis or metabolic products. The microbiota plays a vital role in growth and development of the main components of human’s adaptive and innate immune system, while the immune system regulates host-microbe symbiosis. On the other hand, negative alteration in gut microbiota composition or gut dysbiosis, can disturb immune responses. This review highlights the gut microbiota-immune system cross-talk in both eubiosis and dysbiosis.
Collapse
|
19
|
Blake SJ, James J, Ryan FJ, Caparros-Martin J, Eden GL, Tee YC, Salamon JR, Benson SC, Tumes DJ, Sribnaia A, Stevens NE, Finnie JW, Kobayashi H, White DL, Wesselingh SL, O’Gara F, Lynn MA, Lynn DJ. The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep Med 2021; 2:100464. [PMID: 35028606 PMCID: PMC8714857 DOI: 10.1016/j.xcrm.2021.100464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Immune agonist antibodies (IAAs) are promising immunotherapies that target co-stimulatory receptors to induce potent anti-tumor immune responses, particularly when combined with checkpoint inhibitors. Unfortunately, their clinical translation is hampered by serious dose-limiting, immune-mediated toxicities, including high-grade and sometimes fatal liver damage, cytokine release syndrome (CRS), and colitis. We show that the immunotoxicity, induced by the IAAs anti-CD40 and anti-CD137, is dependent on the gut microbiota. Germ-free or antibiotic-treated mice have significantly reduced colitis, CRS, and liver damage following IAA treatment compared with conventional mice or germ-free mice recolonized via fecal microbiota transplant. MyD88 signaling is required for IAA-induced CRS and for anti-CD137-induced, but not anti-CD40-induced, liver damage. Importantly, antibiotic treatment does not impair IAA anti-tumor efficacy, alone or in combination with anti-PD1. Our results suggest that microbiota-targeted therapies could overcome the toxicity induced by IAAs without impairing their anti-tumor activity.
Collapse
Affiliation(s)
- Stephen J. Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Feargal J. Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jose Caparros-Martin
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Georgina L. Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Yee C. Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - John R. Salamon
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Saoirse C. Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Damon J. Tumes
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Natalie E. Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - John W. Finnie
- Adelaide Medical School, University of Adelaide and SA Pathology, Adelaide, SA 5000, Australia
| | - Hiroki Kobayashi
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Deborah L. White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Steve L. Wesselingh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Fergal O’Gara
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | - Miriam A. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| |
Collapse
|
20
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021; 22:ijms22147485. [PMID: 34299105 PMCID: PMC8303153 DOI: 10.3390/ijms22147485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
- Universidad Nebrija, Campus Madrid-Princesa, 28015 Madrid, Spain
| | - Kora-Mareen Bühler
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Pedro Durán-González
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Jose Ángel Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lucía Segovia-Rodríguez
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Jose Antonio López-Moreno
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Correspondence:
| |
Collapse
|
21
|
Kassa Y, Million Y, Gedefie A, Moges F. Alteration of Gut Microbiota and Its Impact on Immune Response in Patients with Chronic HBV Infection: A Review. Infect Drug Resist 2021; 14:2571-2578. [PMID: 34262302 PMCID: PMC8274626 DOI: 10.2147/idr.s305901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus infection is a source of substantial global health problems, particularly in economically underdeveloped and/or developing countries. It is the primary cause of severe liver disorders such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is connected by the bile duct to the small intestine that carries bile produced in the liver to the intestine. The liver is the initial organ exposed to materials originating from the gut including dietary compounds, bacteria, and their products. Human intestines harbor a wide diversity of the community of microbes which are collectively termed as gut microbiota. In chronic infection with the hepatitis B virus, microbial alteration of the gut is a source of systemic immune activation. Besides, gut permeability is altered in hepatitis B virus-infected patients with an increased bacterial translocation and endotoxin load in the portal vein that caused toll-like receptor activation in the liver, which facilitates immune-mediated liver injury. Toll-like receptors further triggered the host-wide inflammatory response by inducing signaling cascades such as nuclear factor-kappa B-linked pathways and by accelerating cytokine secretion like tumor necrosis factor-alpha, which evokes chronic inflammation and leads to liver lesion formation, fibrosis progression, and cirrhosis and hepatocellular carcinoma development. In conclusion, changes in intestinal flora play an important role in encouraging the production of chronic infection with the hepatitis B virus. Therefore, careful attention should be given to the maintenance of intestinal microecology of patients which can provide a sound foundation for the treatment of chronic infection with the hepatitis B virus.
Collapse
Affiliation(s)
- Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yihenew Million
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
22
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Xu Y, Ma J, Luo H, Shi Y, Liu H, Sun A, Xu C, Ji H, Liu X. Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. Eur J Immunol 2021; 51:1698-1714. [PMID: 33949677 DOI: 10.1002/eji.202049074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαβ+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαβ+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Junwei Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haorui Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
24
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
25
|
Natural Killer T Cells in Various Mouse Models of Hepatitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1782765. [PMID: 33506011 PMCID: PMC7810568 DOI: 10.1155/2021/1782765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells are a key component of innate immunity. Importantly, a growing body of evidence indicates that NKT cells play an integral role in various acute and chronic liver injuries. NKT cells participate in the progression of an injury through the secretion of cytokines, which promote neutrophil infiltration and enhance Fas ligand (FasL) and granzyme-mediated NKT cytotoxic activity. Therefore, examining the role of NKT cells in hepatic disease is critical for a comprehensive understanding of disease pathogenesis and may provide insight into novel approaches for treatment. For more than a century, mouse models that imitate the physiopathological conditions of human disease have served as a critical tool in biological and medical basic research, including studies of liver disease. Here, we review the role of NKT cells in various mouse models of hepatitis.
Collapse
|
26
|
Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18:4-17. [PMID: 33318628 PMCID: PMC7852541 DOI: 10.1038/s41423-020-00592-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is a complex and plastic consortium of microorganisms that are intricately connected with human physiology. The liver is a central immunological organ that is particularly enriched in innate immune cells and constantly exposed to circulating nutrients and endotoxins derived from the gut microbiota. The delicate interaction between the gut and liver prevents accidental immune activation against otherwise harmless antigens. Work on the interplay between the gut microbiota and liver has assisted in understanding the pathophysiology of various liver diseases. Of immense importance is the step from high-throughput sequencing (correlation) to mechanistic studies (causality) and therapeutic intervention. Here, we review the gut microbiota, liver immunology, and the interaction between the gut and liver. In addition, the impairment in the gut-liver axis found in various liver diseases is reviewed here, with an emphasis on alcohol-associated liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver disease (AILD). On the basis of growing evidence from these preclinical studies, we propose that the gut-liver axis paves the way for targeted therapeutic modalities for liver diseases.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Sun J, Zhao F, Lin B, Feng J, Wu X, Liu Y, Zhao L, Zhu B, Wei Y. Gut Microbiota Participates in Antithyroid Drug Induced Liver Injury Through the Lipopolysaccharide Related Signaling Pathway. Front Pharmacol 2020; 11:598170. [PMID: 33390986 PMCID: PMC7774100 DOI: 10.3389/fphar.2020.598170] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Drugs can alter the gut microbiota structure, and gut microbiota dysbiosis in turn is correlated with drug side effects through the intestinal endotoxemia hypothesis. Whether antithyroid drugs (including methimazole and propylthiouracil) cause gut microbiota dysbiosis and whether the gut microbiota is correlated with antithyroid drugs induced liver injury is unknown. Methods: Initial Graves’ disease patients were randomly divided into the methimazole group (n = 20) and the propylthiouracil group (n = 20) and were followed up every 2 weeks; 50 healthy controls were also included. The structure and function of gut microbiota were compared from the cross sectional and longitudinal levels. The correlation between the gut microbiota and clinical parameters was also determined. In addition, Sprague-Dawley rats were randomly allotted into six groups, including four drug groups, which received daily doses of methimazole (1.5 mg/kg/day; 2.5 mg/kg/day) or propylthiouracil (7.5 mg/kg/day; 12.5 mg/kg/day) by oral gavage, and two control groups received the vehicle. In addition to the indexes mentioned above, intestinal barrier-related indexes were also performed. Results: Cross sectional and longitudinal comparison results from both clinical trials and animal studies indicate that antithyroid drugs altered gut microbiota structure; and the liver function related indexes all increased which correlated with gut microbiota. In addition, lipopolysaccharide-related pathways and the lipopolysaccharide concentration in feces and serum all increased after antithyroid drugs administration. These results consistent with the destroyed intestinal barrier in animal study after antithyroid drugs administration. Conclusion: We verified that antithyroid drugs altered gut microbiota structure and that the gut microbiota may in turn be correlated with antithyroid drugs-induced liver injury through the intestinal endotoxemia hypothesis.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Biqiang Zhu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
29
|
Shen H, Gu C, Liang T, Liu H, Guo F, Liu X. Unveiling the heterogeneity of NKT cells in the liver through single cell RNA sequencing. Sci Rep 2020; 10:19453. [PMID: 33173202 PMCID: PMC7655820 DOI: 10.1038/s41598-020-76659-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d-deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. More importantly, we found that CD1d-independent Sca-1−CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chan Gu
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Guo
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Ministry of Education Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
30
|
Castillo-Dela Cruz P, Wanek AG, Kumar P, An X, Elsegeiny W, Horne W, Fitch A, Burr AHP, Gopalakrishna KP, Chen K, Methé BA, Canna SW, Hand TW, Kolls JK. Intestinal IL-17R Signaling Constrains IL-18-Driven Liver Inflammation by the Regulation of Microbiome-Derived Products. Cell Rep 2020; 29:2270-2283.e7. [PMID: 31747600 PMCID: PMC6886715 DOI: 10.1016/j.celrep.2019.10.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin (IL)-17 signaling to the intestinal epithelium regulates the intestinal microbiome. Given the reported links between intestinal dysbiosis, bacterial translocation, and liver disease, we hypothesize that intestinal IL-17R signaling plays a critical role in mitigating hepatic inflammation. To test this, we study intestinal epithelium-specific IL-17RA-deficient mice in an immune-driven hepatitis model. At the naive state, these mice exhibit microbiome dysbiosis and increased translocation of bacterial products (CpG DNA), which drives liver IL-18 production. Upon disease induction, absence of enteric IL-17RA signaling exacerbates hepatitis and hepatocyte cell death. IL-18 is necessary for disease exacerbation and is associated with increased activated hepatic lymphocytes based on Ifng and Fasl expression. Thus, intestinal IL-17R regulates translocation of TLR9 ligands and constrains susceptibility to hepatitis. These data connect enteric Th17 signaling and the microbiome in hepatitis, with broader implications on the effects of impaired intestinal immunity and subsequent release of microbial products observed in other extra-intestinal pathologies. Castillo-dela Cruz et al. describe a unique protective role of intestinal IL-17RA in hepatitis. Disruption of intestinal IL-17RA signaling results in microbiome dysbiosis and translocation of bacterial products, specifically unmethylated CpG DNA, to the liver. This promotes IL-18 production and subsequent lymphocyte activation and cell death to exacerbate liver inflammation.
Collapse
Affiliation(s)
- Patricia Castillo-Dela Cruz
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alanna G Wanek
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Xiaojing An
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Adam Fitch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ansen H P Burr
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kathyayini P Gopalakrishna
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA
| | - Kong Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara A Methé
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Scott W Canna
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy W Hand
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
31
|
Chen F, Yin YT, Zhao HM, Wang HY, Zhong YB, Long J, Liu DY. Sishen Pill Treatment of DSS-Induced Colitis via Regulating Interaction With Inflammatory Dendritic Cells and Gut Microbiota. Front Physiol 2020; 11:801. [PMID: 32754049 PMCID: PMC7381313 DOI: 10.3389/fphys.2020.00801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Sishen Pill (SSP) is a typical prescription in the pharmacopeia of traditional Chinese medicine (TCM), and is usually used to treat inflammatory bowel disease (IBD). It is known that inflammatory dendritic cells (DCs) and imbalance of gut microbiota play significant roles in the pathogenesis of IBD. However, it is not clear whether SSP can treat IBD by regulating interaction of DCs and gut microbiota. In the present study, the levels of inflammatory DCs and gut microbiota were analyzed by flow cytometry and 16S rDNA analysis. SSP relieved the pathological damage to the colon of mice with colitis induced by dextran sodium sulfate (DSS). As typical indicators of inflammatory DCs, the levels of CD11c+CD103+E-cadherin+ cells and pro-inflammatory cytokines [interleukin (IL)-1β, -4, -9, and -17A] were decreased in mice with colitis treated by SSP for 10 days. Simultaneously, the gut microbiota composition was regulated, and beneficial bacteria were increased and pathogenic bacteria were reduced. The results indicated that SSP regulated the interaction between inflammatory DCs and gut microbiota to treat DSS-induced colitis.
Collapse
Affiliation(s)
- Fang Chen
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yu-Ting Yin
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Formula-Pattern Research Center of Jiangxi, Nanchang, China
| |
Collapse
|
32
|
License to Kill: When iNKT Cells Are Granted the Use of Lethal Cytotoxicity. Int J Mol Sci 2020; 21:ijms21113909. [PMID: 32486268 PMCID: PMC7312231 DOI: 10.3390/ijms21113909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a non-conventional, innate-like, T cell population that recognize lipid antigens presented by the cluster of differentiation (CD)1d molecule. Although iNKT cells are mostly known for mediating several immune responses due to their massive and diverse cytokine release, these cells also work as effectors in various contexts thanks to their cytotoxic potential. In this Review, we focused on iNKT cell cytotoxicity; we provide an overview of iNKT cell subsets, their activation cues, the mechanisms of iNKT cell cytotoxicity, the specific roles and outcomes of this activity in various contexts, and how iNKT killing functions are currently activated in cancer immunotherapies. Finally, we discuss the future perspectives for the better understanding and potential uses of iNKT cell killing functions in tumor immunosurveillance.
Collapse
|
33
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
34
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 2106] [Impact Index Per Article: 421.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol Toxicol 2020; 36:509-515. [PMID: 32172331 DOI: 10.1007/s10565-020-09518-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) liver metastasis (CLM) is the leading death cause of CRC patients, but there is no satisfied approach to treat CLM. Gut microbiota plays a pivotal role in CRC initiation and development. Targeting dysbiosis of the gut microbiota might open up new opportunities for CLM treatment. Here, we investigated the efficacy of sodium butyrate (NaB), a major product of gut microbial fermentation, in modulating gut microbiota in CLM mice. NaB supplement decreased mouse colon cancer CT26 cell liver metastasis in intrasplenic tumor injection model of BALB/c mice. Using 16S rRNA gene sequencing, we found altered microbiota composition in CLM mice, characterized by increases of Firmicutes and Proteobacteria. NaB beneficially changed dysbiosis in CLM mice. Functional analysis of the KEGG pathways showed that NaB changed pathways related to immune system diseases and primary immunodeficiency in CLM mice. In addition, NaB decreased T regulatory cells and increased natural killer T cells and T helper 17 cells, accordingly decreased IL-10 and increased IL-17 secretion in CLM mice liver. In conclusion, NaB beneficially modulated gut microbiota and improved host immune response in CLM mice. These findings demonstrate the therapeutic potential of NaB in CLM treatment.
Collapse
|
36
|
Dong F, Chen J, Li C, Ma X, Jiang J, Lin Q, Lin C, Diao H. Evidence-based analysis on the toxicity of disinfection byproducts in vivo and in vitro for disinfection selection. WATER RESEARCH 2019; 165:114976. [PMID: 31445306 DOI: 10.1016/j.watres.2019.114976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Disinfection is a key step in drinking water treatment process to prevent water-borne infections. However, reactions between chlorine, one of the most common disinfectants, and natural organic matter (NOM) often lead to the formation of hazardous disinfection byproducts (DBPs). However, the cytotoxicity of some DBPs is still poorly understood. Such knowledge is critical for proper selection of disinfection processes. We investigated the effects of DBPs on mouse acute liver injury. The exacerbation of liver damage increased with the DBPs concentrations, likely due to the increased hepatic macrophages. Haloacetonitriles (HANs) and haloketones (HKs) are more toxic to Human Hepatocellular (Hep3B) cells than trihalomethanes (THMs). Cytotoxicity of DBPs were governed by the halogen type (brominated DBPs > chlorinated DBPs) and the numbers of halogen atoms per molecule. Then, we used the pilot-scale WDS to study the best conditions for reducing the formation of DBPs. The result showed that the formation of DBPs followed the order: stainless-steel (SS) > ductile iron (DI) > polyethylene (PE) pipe. Higher flowrate promoted the formation of DBPs in all three pipes. The results suggest that the formation of DBPs in chlorine disinfection can be reduced by using PE pipes and low flow rate in water distribution systems (WDS).
Collapse
Affiliation(s)
- Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Xingmao Ma
- Zachery Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX, 77843, USA
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Li YT, Ye JZ, Lv LX, Xu H, Yang LY, Jiang XW, Wu WR, Shi D, Fang DQ, Bian XY, Wang KC, Wang QQ, Xie JJ, Lu YM, Li LJ. Pretreatment With Bacillus cereus Preserves Against D-Galactosamine-Induced Liver Injury in a Rat Model. Front Microbiol 2019; 10:1751. [PMID: 31417535 PMCID: PMC6685349 DOI: 10.3389/fmicb.2019.01751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bacillus cereus (B. cereus) functions as a probiotic in animals, but the underlying mechanisms remain unclear. We aim to evaluate the protective effects and definite mechanism by which orally administered B. cereus prevents D-galactosamine (D-GalN)-induced liver injury in rats. Twenty-one Sprague–Dawley rats were equally assigned into three groups (N = 7 animals per group). B. cereus ATCC11778 (2 × 109 colony-forming units/ml) was administered to the B. cereus group via gavage, and phosphate-buffered saline was administered to the positive control (PC) and negative control (NC) groups for 2 weeks. The PC and B. cereus groups received 1.1 g/kg D-GalN via an intraperitoneal injection to induce liver injury. The blood, terminal ileum, liver, kidney and mesenteric lymph nodes (MLNs) were collected for histological examinations and to evaluate bacterial translocation. Liver function was also determined. Fecal samples were collected for deep sequencing of the 16S rRNA on an Illumina MiSeq platform. B. cereus significantly attenuated D-GalN-induced liver injury and improved serum alanine aminotransferase (ALT) and serum cholinesterase levels (P < 0.05 and P < 0.01, respectively). B. cereus modulated cytokine secretion, as indicated by the elevated levels of the anti-inflammatory cytokine interleukin-10 (IL-10) in both the liver and plasma (P < 0.05 and P < 0.01, respectively) and the substantially decreased levels of the cytokine IL-13 in the liver (P < 0.05). Pretreatment with B. cereus attenuated anoxygenic bacterial translocation in the veins (P < 0.05) and liver (P < 0.05) and upregulated the expression of the tight junction protein 1. The gut microbiota from the B. cereus group clustered separately from that of the PC group, with an increase in species of the Ruminococcaceae and Peptococcaceae families and a decrease in those of the Parabacteroides, Paraprevotella, and Desulfovibrio families. The potential probiotic B. cereus attenuated liver injury by restoring the gut flora balance and enhancing the intestinal barrier function.
Collapse
Affiliation(s)
- Ya-Ting Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jian-Zhong Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Long-Xian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Li-Ya Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xian-Wan Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen-Rui Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Dai-Qiong Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Yuan Bian
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kai-Cen Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qiang-Qiang Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiao-Jiao Xie
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yan-Meng Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
38
|
Schwenger KJ, Clermont-Dejean N, Allard JP. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 2019; 1:214-226. [PMID: 32039372 PMCID: PMC7001555 DOI: 10.1016/j.jhepr.2019.04.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested a role for the intestinal microbiota in the pathogenesis and potential treatment of a wide range of liver diseases. The intestinal microbiota and bacterial products may contribute to the development of liver diseases through multiple mechanisms including increased intestinal permeability, chronic systemic inflammation, production of short-chain fatty acids and changes in metabolism. This suggests a potential role for pre-, pro- and synbiotic products in the prevention or treatment of some liver diseases. In addition, there is emerging evidence on the effects of faecal microbial transplant. Herein, we discuss the relationship between the intestinal microbiota and liver diseases, as well as reviewing intestinal microbiota-based treatment options that are currently being investigated.
Collapse
Affiliation(s)
- Katherine Jp Schwenger
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Chen X, Yu J, Xue C, Wang Y, Tang Q, Mao X. Mechanism of neoagarotetraose protects against intense exercise-induced liver injury based on molecular ecological network analysis. Biosci Biotechnol Biochem 2019; 83:1227-1238. [DOI: 10.1080/09168451.2019.1607246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT
Here we have explored the effect of neoagarotetraose (NAT) on liver injury caused by intense exercise. Our results showed that NAT treatment obviously decreased liver weight (p < 0.01), improved the liver morphological structure, decreased ALT level (p < 0.05) and endotoxin (LPS) (p < 0.01). In addition, NAT could regulate bile acid profiles in feces and serum of mice, which indicated the potential of liver function, suggesting that NAT was effective to relieve intense exercise-induced liver injury. NAT could regulate the expression of colon genes. NAT tended to alter the microbial composition of mice under intense exercise. We uncovered the network interactions between liver traits and microbial communities in NAT treatment mice. Interestingly, our data indicated that intense exercise-induced liver injury may be related to Clostridiales. In summary, these results demonstrated that NAT relieved liver injury induced by intense exercise may be related to gut microbiota.
Collapse
Affiliation(s)
- Xin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiahong Yu
- Department of Food Engineering, Weihai Ocean Vocational College, Weihai, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
40
|
Umeda N, Endo-Umeda K, Nakashima H, Kato S, Seki S, Makishima M. Frontline Science: Concanavalin A-induced acute hepatitis is attenuated in vitamin D receptor knockout mice with decreased immune cell function. J Leukoc Biol 2019; 106:791-801. [PMID: 31034649 DOI: 10.1002/jlb.3hi0219-048r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D, 1α,25-dihydroxyvitamin D3 , and regulates various physiologic processes, such as bone and calcium metabolism, cellular proliferation and differentiation, and immunity. VDR is highly expressed in the intestine, kidney, bone, and macrophages, but is expressed at a low level in the liver. The liver is a major metabolic organ and also acts as an immune gateway for dietary nutrients and xenobiotics. In this study, we investigated the function of VDR in hepatic immune cells, such as Kupffer cells/macrophages, utilizing VDR knockout (KO) mice. We showed that VDR is functionally expressed in hepatic mononuclear cells, specifically resident Kupffer cells. We examined the role of VDR in acute hepatitis induced by concanavalin A (Con-A) and found that Con-A-induced hepatitis is attenuated in VDR-KO mice compared to wild-type (WT) mice. Con-A-induced hepatitis is known to be mediated by NKT cell activation, cytokine production, and reactive oxygen species (ROS) production in Kupffer cells/macrophages. However, the proportions of Kupffer cells/macrophages and the NKT cell activation were similar in the liver of WT and VDR-KO mice and inflammatory cytokine gene expression was increased in VDR-KO mice. On the other hand, plasma and hepatic ROS levels were decreased in the liver of VDR-KO mice compared to WT mice. The phagocytic activity of resident Kupffer cells and hepatic neutrophils were also decreased in VDR-KO mice. Therefore, VDR is necessary for Con-A-induced acute hepatitis and plays an important role in hepatic immune cell functions.
Collapse
Affiliation(s)
- Naoki Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shigeaki Kato
- Iwaki Meisei University, Iwaki, Fukushima, Japan.,Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
41
|
Jia Z, Liu H, Song M, Yang C, Zhao Y, Wu X, Wu Z, Zhao L. Effect of Intestinal Flora Clearance on Liver Proteomics in Mice. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181115102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Intestinal flora dynamically affects the host's systemic immune system. Liver
is one of the organs that may be affected by intestinal microbiota.
</P><P>
Materials and Methods: In this study, we aimed to identify proteome level differences between liver
tissue from mice cleared intestinal flora and control using tandem mass spectrometry (LC-MS/MS) and
label free quantification. Additionally, protein-protein interactions were mapped by STRING, and also,
the enrichment of inflammation-related signaling pathways and biological processes was identified using
GO and IPA network system. RT-PCR and Western blot were used for validation of the proteomics
findings.
Results:
Our study demonstrated that mice with cleared intestinal flora exhibited decreased sensitivity
to Concanavalin A induced acute hepatitis. 324 Proteins in liver were differently expressed after intestinal
flora clearance for one week while 210 proteins were differently expressed after intestinal flora
clearance for two weeks. Furthermore, five of the identified proteins were validated by western blotting
and further investigated by semi-quantitative RT-PCR.
Conclusion:
Our results showed that intestinal flora clearance in mice could reduce sensitivity to Concanavalin
A induced liver injury and influence the expression of proteins in liver, which provides a
clue for studying the relationship between gut bacteria and Concanavalin A induced hepatitis.
Collapse
Affiliation(s)
- Zhenghu Jia
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Liu
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mei Song
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chengmao Yang
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapu Zhao
- People's Liberation Army No. 254 Hospital, Tianjin, 300142, China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, Yang Y, Wu W, Ding Y, Li L, Uede T, Chen Z, Diao H. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget 2018; 8:70-82. [PMID: 27926535 PMCID: PMC5352190 DOI: 10.18632/oncotarget.13783] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
This study focuses on characterizing the effect of a high salt diet (HSD) on intestinal immunity and the risk of inflammatory bowel diseases (IBD). We found that mice on a HSD had an increased frequency of IL-17A producing cells in the intestinal lamina propria (LP) compared to mice on a normal diet (ND). Furthermore, most intestinal IL-17A producing cells were CD4+TCRβ+ cells. A HSD increased the LP T helper 17 (Th17) responses in both the small and large intestines but did not increase the Th17 response of other gut-associated lymphoid organ. Although, HSD did not change the percentage of regulatory T (Treg) cells, HSD significantly inhibit secretion of IL-10 and the suppressive function of Treg cells. Moreover, we found that HSD exacerbates trinitrobenzenesulfonic acid (TNBS) induced colitis, and Th17 response was significantly increased in the colonic LP of HSD TNBS-treated mice compared with the ND TNBS-treated mice. This study demonstrates that HSD stimulates the intestinal Th17 response but inhibits the function of Treg cells. Moreover, HSD exacerbates TNBS induced mice colitis, suggesting that HSD disrupts the intestinal immunity and increases the risk of IBD.
Collapse
Affiliation(s)
- Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianming Yu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Yang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulong Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Toshimitsu Uede
- Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Liu J, Chen C, Ling C, Hu H, Cao J, Gao Y. The effects of hemocyanin on T cells cultured in vitro. Oncol Lett 2018; 15:2655-2660. [PMID: 29434988 DOI: 10.3892/ol.2017.7587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
As a broad-spectrum antibiotic, gentamicin is used extensively in T cell culturing in vitro, but preliminary studies have identified that T cell activity is significantly affected by gentamicin. In the present study, the hemocyanin from Litopenaeus vannamei (L. vannamei) was selected as an additive for T cell cultures in vitro. Compared with those in the control group, the cell quantity exhibited no significant difference, and the formation rate of cell colony increased gradually with increases in the hemocyanin concentration. Additionally, flow cytometry assays identified that cluster of differentiation (CD)3+CD4+ and CD4+CD25+ T cells in the 0.2 µg/ml hemocyanin (Hem 3) group were all significantly increased. Furthermore, cell cycle analysis demonstrated that T cells in the G0/G1 phase were significantly decreased in the Hem 3 group compared with in the control, 0.05 µg/ml (Hem 1) and 0.1 µg/ml (Hem 2) groups, and cells in the S phase were significantly elevated in the Hem 3 group compared with in the control and Hem 1 groups. In addition, MTT analysis indicated that the cytotoxicity of T cells towards HepG2 cells was significantly increased in the Hem 3 group compared with in the control, Hem 1 and Hem 2 groups. Taken together, the present study identified that hemocyanin may improve the proliferation and cytotoxicity of T cells, and the results supported the use of hemocyanin in T cell adoptive immunotherapy.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cong Chen
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chen Ling
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haoyun Hu
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jingsong Cao
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yongqiang Gao
- Department of Immunology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
44
|
Cao J, Liu L, Zhang Y, Xiao J, Wang Y. The influence of HK2 blood group antigen on human B cell activation for ABOi-KT conditions. BMC Immunol 2017; 18:49. [PMID: 29246114 PMCID: PMC5732526 DOI: 10.1186/s12865-017-0233-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background It is well known that ABO blood group system incompatible kidney transplantation (ABOi-KT) is an effective strategy for end-stage renal disease. The main barrier for ABOi-KT is how to keep host B cell activation and blood group antibody titer in low levels. Moreover, the mechanism of B cell activation induced by blood group antigen was unclear in ABOi-KT. Results In this study, HK2 cells were identified to express blood group B antigen when cocultured with lymphocytes of blood group A. Optical microscope observation demonstrated that HK2 cells in coculture group gradually decreased. Furthermore, flow cytometer assay identified that T cell phenotypes (CD3+, CD3+CD4+ and CD3+CD8+) had no significant change and B cell phenotypes (CD19+ and CD138+) were all significantly enhanced (3.07 and 3.02 folds) at day 4. In addition, immunoturbidimetry analysis demonstrated that blood group B antibody was significantly increased to 2.35 fold at day 4, IgG was significantly increased to 3.60 and 2.81 folds at days 4 and 8 respectively, while IgM had no significant change at the measured time points. Conclusions Taken together, B cells were activated and secreted blood group B antibody after treatment with HK2 expressing blood group B antigen. The results of this study maybe useful for further determination of the mechanism of B cell activation after ABO incompatible kidney endothelial cells stimulation. Electronic supplementary material The online version of this article (10.1186/s12865-017-0233-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingsong Cao
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China.,Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Luogen Liu
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yunsheng Zhang
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhua Xiao
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China. .,Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Yi Wang
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China. .,Urinary surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
45
|
Chen J, Hou X, Jia H, Cui G, Wu Z, Wang L, Lu C, Wu W, Wei Y, Uede T, Li L, Lian Z, Diao H. Regulatory T cells with a defect in inhibition on co-stimulation deteriorated primary biliary cholangitis. Oncotarget 2017; 8:108406-108417. [PMID: 29312539 PMCID: PMC5752452 DOI: 10.18632/oncotarget.22658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) play an indispensable role in the progression of primary biliary cholangitis (PBC). Although Tregs could normalize costimulation in in vivo and in vitro models, it is obscure whether and how Tregs mediate these effects in PBC. Herein we focused on the quantitative and functional characteristics of Tregs in PBC. The number and proportion of Tregs, and the production of interleukin (IL)-10 were all significantly less in the PBC patients than in the healthy controls (HCs). In addition, compared to the HCs, the costimulatory CD86 of the circulation and liver were significantly higher in the patients with PBC. CD86 expression on CD1c+ cells negatively correlated with the proportion of Tregs. There was also a positive correlation between mayo risk score and the ratio of CD86/Treg. In vitro experiments showed that inhibition of CD86 expression on CD1c+ cells by Tregs was significantly weakened in the PBC patients. Furthermore, the autoantibodies from the PBC patients could promote CD86 expression on CD1c+ cells and transforming growth factor-β production by human hepatic stellate cells. Overall, Tregs declined in inhibition on co-stimulation expression in the presence of autoantibodies, which could be associated to PBC-related bile duct injury and fibrosis. This indicated that maintenance of balance of co-stimulation and Tregs could be beneficial for PBC.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Toshimitsu Uede
- Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhexiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Cai W, Ran Y, Li Y, Wang B, Zhou L. Intestinal microbiome and permeability in patients with autoimmune hepatitis. Best Pract Res Clin Gastroenterol 2017; 31:669-673. [PMID: 29566910 DOI: 10.1016/j.bpg.2017.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/16/2017] [Indexed: 01/31/2023]
Abstract
Autoimmune hepatitis (AIH) is a severe inflammatory liver disease. The underlying mechanisms remain unclear, but recent studies provided new perspectives on altered intestinal microbiome and permeability in AIH animal models and patients, highlighting gut-liver crosstalk in the pathogenesis of AIH. Transgenic AIH mice carrying HLA-DR3 showed reduced diversity and total load of gut microbiota. Germ-free mice are resistant to concanavalin A-induced liver injury, whereas enterogenouss antigens induce the activation of natural killer T cells participating in concanavalin A-induced liver injury, supporting the close relationship between microbiota and AIH. Moreover, 'molecular mimicry' provides a plausible interpretation of the immune reactions between microorganic antigens and liver autoantigens, for instance, cytochrome P4502D6, the target of cross-reactivity between virus and self. Nevertheless, direct evidence for the intestinal microbiome and permeability in AIH is still limited. The relationship between AIH susceptibilities and an intestinal microbiome shaped by drugs, diets or genes needs further study.
Collapse
Affiliation(s)
- Wangfeng Cai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, PR China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, PR China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, PR China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, PR China.
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, PR China.
| |
Collapse
|
47
|
Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li Y, He X, Li L. Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model. Front Microbiol 2017; 8:1804. [PMID: 29033903 PMCID: PMC5626943 DOI: 10.3389/fmicb.2017.01804] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence indicates that gut microbiota participates in the pathogenesis and progression of liver diseases. The severity of immune-mediated liver injury is associated with different microbial communities. Akkermansia muciniphila can regulate immunologic and metabolic functions. However, little is known about its effects on gut microbiota structure and function. This study investigated the effect of A. muciniphila on immune-mediated liver injury and potential underlying mechanisms. Twenty-two C57BL/6 mice were assigned to three groups (N = 7-8 per group) and continuously administrated A. muciniphila MucT or PBS by oral gavage for 14 days. Mouse feces were collected for gut microbiota analysis on the 15th day, and acute liver injury was induced by Concanavalin A (Con A, 15 mg/kg) injection through the tail vein. Samples (blood, liver, ileum, colon) were assessed for liver injury, systemic inflammation, and intestinal barrier function. We found that oral administration of A. muciniphila decreased serum ALT and AST and alleviated liver histopathological damage induced by Con A. Serum levels of pro-inflammatory cytokines and chemokines (IL-2, IFN-γ, IL-12p40, MCP-1, MIP-1a, MIP-1b) were substantially attenuated. A. muciniphila significantly decreased hepatocellular apoptosis; Bcl-2 expression increased, but Fas and DR5 decreased. Further investigation showed that A. muciniphila enhanced expression of Occludin and Tjp-1 and inhibited CB1 receptor, which strengthened intestinal barriers and reduced systemic LPS level. Fecal 16S rRNA sequence analysis indicated that A. muciniphila increased microbial richness and diversity. The community structure of the Akk group clustered distinctly from that of mice pretreated with PBS. Relative abundance of Firmicutes increased, and Bacteroidetes abundance decreased. Correlation analysis showed that injury-related factors (IL-12p40, IFN-γ, DR5) were negatively associated with specific genera (Ruminococcaceae_UCG_009, Lachnospiraceae_UCG_001, Akkermansia), which were enriched in mice pretreated with A. muciniphila. Our results suggested that A. muciniphila MucT had beneficial effects on immune-mediated liver injury by alleviating inflammation and hepatocellular death. These effects may be driven by the protective profile of the intestinal community induced by the bacteria. The results provide a new perspective on the immune function of gut microbiota in host diseases.
Collapse
Affiliation(s)
- Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Feifei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
48
|
Wu X, Tian Z. Gut-liver axis: gut microbiota in shaping hepatic innate immunity. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1191-1196. [PMID: 28840534 DOI: 10.1007/s11427-017-9128-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
Abstract
Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.
Collapse
Affiliation(s)
- Xunyao Wu
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
49
|
Chen S, Hoffman RA, Scott M, Manson J, Loughran P, Ramadan M, Demetris AJ, Billiar TR. NK1.1 + cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock. J Leukoc Biol 2017; 102:127-134. [PMID: 28515228 DOI: 10.1189/jlb.3a0716-333r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/23/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1+ cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1+ cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1+ cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1+ cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut.
Collapse
Affiliation(s)
- Shuhua Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China; and
| | - Rosemary A Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna Manson
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mostafa Ramadan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Demetris
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Clinical Translational Medical Center of Vascular Disease of the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
50
|
Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular Innate Immunity: An Old Game with New Players. J Innate Immun 2016; 9:111-125. [PMID: 28006777 DOI: 10.1159/000453397] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|