1
|
Komedchikova EN, Kolesnikova OA, Obozina AS, Antonova AO, Dukat AM, Fedotova PA, Khardikova DS, Sokol DV, Shimanskaia IO, Svetlakova AV, Shipunova VO. It takes Two: Advancing cancer treatment with two-step nanoparticle delivery. Biochem Biophys Res Commun 2025; 767:151921. [PMID: 40318380 DOI: 10.1016/j.bbrc.2025.151921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The rapid advancement of nanobiotechnology has resulted in the development of numerous targeted nanoformulations and sophisticated nanobiorobots for biomedical applications. Despite the potential of nanostructures to improve drug delivery and therapeutic efficacy, their clinical application is still constrained by insufficient accumulation in tumor tissues. Current methodologies result in only an average of 0.6 % of administered nanoparticles reaching tumors, prompting the development of innovative strategies to improve targeting and influence the pharmacokinetics and pharmacodynamics of drugs. One such approach is two-step targeting, which includes either the concept of tumor pre-targeting with specific recognizing elements or the stimuli-sensitive activation of nanostructures. This review critically evaluates advancements in two-step drug delivery systems utilizing nanobiotechnology for targeted cancer therapy. For instance, two-step delivery based on the pre-targeting concept involves an initial injection of targeting molecules that bind to tumor-specific antigens, followed by the administration of drug-loaded nanocarriers modified with complementary adaptors. This approach enhances nanoparticle accumulation in tumors and improves therapeutic outcomes by increasing interaction avidity and overcoming steric hindrances. We critically assess existing adaptor systems for two-step drug delivery and synthesize findings from various studies demonstrating their efficacy in both in vitro and in vivo settings, while addressing challenges in clinical translation. We also explore future directions for developing novel adaptor systems to enhance two-step delivery mechanisms. This review aims to contribute to optimizing nanobiotechnology in oncology for more effective cancer therapies.
Collapse
Affiliation(s)
| | - Olga A Kolesnikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | | - Arina O Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Alexei M Dukat
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Polina A Fedotova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daria S Khardikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daniil V Sokol
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Iana O Shimanskaia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Anna V Svetlakova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | |
Collapse
|
2
|
Srisantitham S, Walker AL, Markel U, Tezcan FA. De Novo Design of Proteins for Autocatalytic Isopeptide Bond Formation. J Am Chem Soc 2025; 147:12338-12346. [PMID: 40138671 PMCID: PMC12065602 DOI: 10.1021/jacs.5c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Isopeptide bonds (IPBs)─formed between the amine group of a Lys residue and the carboxamide/carboxy group of Asn/Gln or Asp/Glu─play essential roles in many biological processes, ranging from cellular signaling and regulation to blood clotting and bacterial pathogenesis. The formation of IPBs is not a spontaneous process and requires enzymatic machinery that provides a specialized active site environment to enable this challenging catalytic reaction. Here we report the de novo design and characterization of two proteins (dnIPB-1 and dnIPB-2) capable of autocatalytic IPB formation. While these designed proteins preserve the key active-site residues of their structural template (the bacterial pilin protein RrgA), they possess less than 31% sequence identity to RrgA. Extensive structural and Ala-scanning analyses indicate that IPB formation requires a solvent-protected core motif composed of several critical residues, yet there is also a large tolerance to different protein topologies and overall protein sizes in terms of accommodating an IPB-forming motif. Notably, the structural insights gained from the study of dnIPB-1 and dnIPB-2 also guided the redesign of an initially failed construct (dnIPB-3) and enabled it to form an IPB, highlighting the value of de novo design in examining sequence-structure-function relationships not explored in natural evolution. Our study highlights the versatility of IPBs as designable elements which can be used to construct functional proteins or protein-based materials with enhanced chemical, thermal, and mechanical stabilities.
Collapse
Affiliation(s)
- Suppachai Srisantitham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Alyssa L. Walker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ulrich Markel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
3
|
Fayn S, Roy S, Cabalteja CC, Lee W, Makala H, Baidoo K, Nambiar D, Sheehan‐Klenk J, Chung J, Buffington J, Ho M, Escorcia FE, Cheloha RW. Generation of Site-Specifically Labeled Affinity Reagents via Use of a Self-Labeling Single Domain Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417160. [PMID: 39965119 PMCID: PMC11984916 DOI: 10.1002/advs.202417160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Several chemical and enzymatic methods have been used to link antibodies to moieties that facilitate visualization of cognate targets. Emerging evidence suggests that the extent of labeling, dictated by the type of chemistry used, has a substantial impact on performance, especially in the context of antibodies used for the visualization of tumors in vivo. These effects are particularly pronounced in studies using small antibody fragments, such as single-domain antibodies, or nanobodies. Here, we leverage a new variety of conjugation chemistry, based on a nanobody that forms a crosslink with a specialized high-affinity epitope analogue, to label target-specific nanobody constructs with functionalities of choice, including fluorophores, chelators, and click chemistry handles. Using heterodimeric nanobody conjugates, comprised of an antigen recognition module and a self-labeling module, enables us to attach the desired functional group at a location distal to the site of antigen recognition. Constructs generated using this approach bound to antigens expressed on xenograft murine models of liver cancer and allowed for non-invasive diagnostic imaging. The modularity of our approach using a self-labeling nanobody offers a novel method for site-specific functionalization of biomolecules and can be extended to other applications for which covalent labeling is required.
Collapse
Affiliation(s)
- Stanley Fayn
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
- Oxford Institute for Radiation OncologyDepartment of OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Swarnali Roy
- Chemical Biology in Signaling SectionNational Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Chino C. Cabalteja
- Chemical Biology in Signaling SectionNational Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Woonghee Lee
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Hima Makala
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Kwamena Baidoo
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Divya Nambiar
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Julia Sheehan‐Klenk
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Joon‐Yong Chung
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Jesse Buffington
- Antibody Engineering ProgramCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Mitchell Ho
- Antibody Engineering ProgramCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
- Laboratory of Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Freddy E. Escorcia
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
- Radiation Oncology BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Ross W. Cheloha
- Chemical Biology in Signaling SectionNational Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
4
|
Dey C, Sommerfeld IK, Bojarová P, Kodra N, Vrbata D, Zimolová Vlachová M, Křen V, Pich A, Elling L. Color-coded galectin fusion proteins as novel tools in biomaterial science. Biomater Sci 2025; 13:1482-1500. [PMID: 39907577 DOI: 10.1039/d4bm01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
Collapse
Affiliation(s)
- Carina Dey
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Isabel K Sommerfeld
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 27201 Kladno, Czech Republic
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Miluše Zimolová Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Cardle II, Scherer DR, Jensen MC, Pun SH, Sellers DL. In Situ Bioconjugation of Synthetic Peptides onto Universal Chimeric Antigen Receptor T Cells for Targeted Cancer Immunotherapies. ACS NANO 2025; 19:5750-5768. [PMID: 39869930 DOI: 10.1021/acsnano.4c16824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials in vivo by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting. SpyCatcher003-modified CARs, nicknamed DB5 CARs, displayed fast, low-nanomolar reaction kinetics with a synthetic αvβ6-binding peptide that incorporates a SpyTag003 peptide via branched peptide synthesis to comprise a bifunctional intermediate. Prearming DB5 CAR T cells or prelabeling target cells with the bifunctional peptide produced selective CD4+ and CD8+ CAR T-cell responses against αvβ6+ cancer cells in vitro. Furthermore, the synthetic targeting intermediate showed robust DB5 CAR T-cell arming in vivo and selectively reduced αvβ6+ tumor progression in a dual flank xenograft model. We demonstrate the versatility and therapeutic potential of "Cyborg" CAR T-cell therapies that utilize synthetic biomaterials to direct CAR T-cell activity via highly selective bioconjugation that occurs in vivo.
Collapse
Affiliation(s)
- Ian I Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
| | - Dylan R Scherer
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
6
|
Xiang Y, Xu J, McGovern BL, Ranzenigo A, Huang W, Sang Z, Shen J, Diaz-Tapia R, Pham ND, Teunissen AJP, Rodriguez ML, Benjamin J, Taylor DJ, van Leent MMT, White KM, García-Sastre A, Zhang P, Shi Y. Adaptive multi-epitope targeting and avidity-enhanced nanobody platform for ultrapotent, durable antiviral therapy. Cell 2024; 187:6966-6980.e23. [PMID: 39447570 PMCID: PMC11748749 DOI: 10.1016/j.cell.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Pathogens constantly evolve and can develop mutations that evade host immunity and treatment. Addressing these escape mechanisms requires targeting evolutionarily conserved vulnerabilities, as mutations in these regions often impose fitness costs. We introduce adaptive multi-epitope targeting with enhanced avidity (AMETA), a modular and multivalent nanobody platform that conjugates potent bispecific nanobodies to a human immunoglobulin M (IgM) scaffold. AMETA can display 20+ nanobodies, enabling superior avidity binding to multiple conserved and neutralizing epitopes. By leveraging multi-epitope SARS-CoV-2 nanobodies and structure-guided design, AMETA constructs exponentially enhance antiviral potency, surpassing monomeric nanobodies by over a million-fold. These constructs demonstrate ultrapotent, broad, and durable efficacy against pathogenic sarbecoviruses, including Omicron sublineages, with robust preclinical results. Structural analysis through cryoelectron microscopy and modeling has uncovered multiple antiviral mechanisms within a single construct. At picomolar to nanomolar concentrations, AMETA efficiently induces inter-spike and inter-virus cross-linking, promoting spike post-fusion and striking viral disarmament. AMETA's modularity enables rapid, cost-effective production and adaptation to evolving pathogens.
Collapse
Affiliation(s)
- Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialu Xu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ngoc Dung Pham
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jared Benjamin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Garmeh Motlagh F, Azimzadeh Irani M, Masoomi Nomandan SZ, Assadizadeh M. Computational design and investigation of the monomeric spike SARS-CoV-2-ferritin nanocage vaccine stability and interactions. Front Mol Biosci 2024; 11:1403635. [PMID: 38933369 PMCID: PMC11199398 DOI: 10.3389/fmolb.2024.1403635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak, several solutions have been proposed to manage the disease. The most viable option for controlling this virus is to produce effective vaccines. Most of the current SARS-CoV-2 vaccines have focused on the infusion spike protein. Spike exists as a trimer and plays a vital role in infecting host cells by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor through its Receptor Binding Domain (RBD). Ferritin protein, a naturally occurring iron-storage protein, has gained attention for vaccine production due to its self-assembling property, non-toxic nature, and biocompatibility. Ferritin nanocages have recently been employed in the development of a SARS-CoV-2 vaccination eliciting not only long-term protective memory cells but also a sustained antibody response. In this study, a combination of in silico investigations including molecular docking, molecular dynamics simulations, and immune simulations were carried out to computationally model the monomeric spike protein on the ferritin nanocage as well as to evaluate its stability and interactions for the first time. The structural dynamics of the modeled complex demonstrated noticeable stability. In particular, the Receptor Binding Domain (RBD) and ferritin within the monomeric spike-ferritin complex illustrated significant stability. The lack of alterations in the secondary structure further supported the overall steadiness of the complex. The decline in the distance between ferritin and spike suggests a strong interaction over time. The cross-correlation matrices revealed that the monomeric spike and ferritin move towards each other supporting the stable interaction between spike and ferritin. Further, the orientation of monomeric spike protein within the ferritin unit facilitated the exposure of critical epitopes, specifically upward active Receptor Binding Domain (RBD), enabling effective interactions with the ACE2 receptor. The immune simulations of the model indicated high-level stimulations of both cellular and humoral immunity in the human body. It was also found that the employed model is effective regardless of the mutated spikes in different variants. These findings shed light on the current status of the SARS-CoV-2-ferritin nanoparticle vaccines and could be used as a framework for other similar vaccine designs.
Collapse
|
8
|
Rho JH, Lee JH, Kwon I. AlbuCatcher for Long-Acting Therapeutics. ACS OMEGA 2024; 9:22990-23000. [PMID: 38826564 PMCID: PMC11137731 DOI: 10.1021/acsomega.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
Therapeutic proteins, pivotal for treating diverse human diseases due to their biocompatibility and high selectivity, often face challenges such as rapid serum clearance, enzymatic degradation, and immune responses. To address these issues and enable prolonged therapeutic efficacy, techniques to extend the serum half-life of therapeutic proteins are crucial. The AlbuCatcher, a conjugate of human serum albumin (HSA) and SpyCatcher, was proposed as a general technique to extend the serum half-life of diverse therapeutic proteins. HSA, the most abundant blood protein, exhibits a long intrinsic half-life through Fc receptor (FcRn)-mediated recycling. The SpyTag/SpyCatcher (ST/SC) system, known for forming irreversible isopeptide bonds, was employed to conjugate HSA and therapeutic proteins. Site-specific HSA conjugation to SC was achieved using an inverse electron-demand Diels-Alder (IEDDA) reaction, minimizing activity loss. Using urate oxidase (Uox) as a model protein with a short half-life, the small ST was fused to generate Uox-ST. Then, HSA-conjugated Uox (Uox-HSA) was successfully prepared via the Uox-ST/AlbuCatcher reaction. In vitro enzyme assays demonstrated that the impact of ST fusion and HSA conjugation on Uox enzymatic activity is negligible. Pharmacokinetics studies in mice revealed that Uox-HSA exhibits a significantly longer serum half-life (about 18 h) compared to Uox-WT (about 2 h). This extended half-life is attributed to FcRn-mediated recycling of HSA-conjugated Uox, demonstrating the effectiveness of the AlbuCatcher strategy in enhancing the pharmacokinetics of therapeutic proteins.
Collapse
Affiliation(s)
- Ji Hyun Rho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Zheng Y, Lao Z, Liu R, Xu J, Guo L, Lin Z, Yang X. Customizable Click Biochemistry Strategy for the Design and Preparation of Glucagon-like Peptide-1 Conjugates and Coagonists. Bioconjug Chem 2024; 35:693-702. [PMID: 38700695 DOI: 10.1021/acs.bioconjchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of oligomeric glucagon-like peptide-1 (GLP-1) and GLP-1-containing coagonists holds promise for enhancing the therapeutic potential of the GLP-1-based drugs for treating type 2 diabetes mellitus (T2DM). Here, we report a facile, efficient, and customizable strategy based on genetically encoded SpyCatcher-SpyTag chemistry and an inducible, cleavable self-aggregating tag (icSAT) scheme. icSAT-tagged SpyTag-fused GLP-1 and the dimeric or trimeric SpyCatcher scaffold were designed for dimeric or trimeric GLP-1, while icSAT-tagged SpyCatcher-fused GLP-1 and the icSAT-tagged SpyTag-fused GIP were designed for dual GLP-1/GIP (glucose-dependent insulinotropic polypeptide) receptor agonist. These SpyCatcher- and SpyTag-fused protein pairs were spontaneously ligated directly from the cell lysates. The subsequent icSAT scheme, coupled with a two-step standard column purification, resulted in target proteins with authentic N-termini, with yields ranging from 35 to 65 mg/L and purities exceeding 99%. In vitro assays revealed 3.0- to 4.1-fold increased activities for dimeric and trimeric GLP-1 compared to mono-GLP-1. The dual GLP-1/GIP receptor agonist exhibited balanced activity toward the GLP-1 receptor or the GIP receptor. All the proteins exhibited 1.8- to 3.0-fold prolonged half-lives in human serum compared to mono-GLP-1 or GIP. This study provides a generally applicable click biochemistry strategy for developing oligomeric or dual peptide/protein-based drug candidates.
Collapse
Affiliation(s)
- Yunchun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Xu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Li M, Sun X, Chen Y, Wang S, Li Q, Wang Y, Wang Y, Li R, Ding P, Zhang G. Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization. Vet Microbiol 2024; 290:110003. [PMID: 38262114 DOI: 10.1016/j.vetmic.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen with a high mortality rate, which poses a serious threat to newborn piglets. A rapid, safe and effective vaccine is necessary for protecting pigs from PED infection. Nanoparticles have become molecular scaffolds for displaying soluble antigens due to their unique physical and chemical properties. Here, a vaccine candidate was based on the display of PEDV S1 protein on a mi3 nanoparticle platform using SpyTag/SpyCatcher technology. The size, zeta potential and microstructure of the S1-mi3 NPs were investigated, and their effects on the uptake of antigen-presenting cells (APCs) and maturation of dendritic cells (DCs) were analyzed. Mice were immunized via muscular and intranasal administrations, and the levels of humoral, cellular and mucosal immune responses were analyzed. As a result, S1 proteins were surface-displayed on NPs successfully, which self-assembled into nanoparticles composed of 60 subunits and showed superior safety and stability. In addition, mi3 NPs promoted antigen internalization and dendritic cell (DCs) maturation. In the mouse model, S1-mi3 NPs significantly increased the PEDV-specific antibody including serum IgG, secretory IgA (SIgA) and neutralizing antibodies (NAb). Furthermore, S1-mi3 NPs elicited more CD3+CD4+ and CD3+CD8+ T cell and cellular immune-related cytokines (IFN-γ and IL-4) compared to monomeric S1. In particular, it can induce an effective germinal center-specific (GC) B cell response, which is closely related to the production of neutralizing antibodies. Overall, S1-mi3 NPs are a promising subunit vaccine candidate against PEDV, and this self-assembly NPs also provide an attractive platform for improving vaccine efficacy against emerging pathogens.
Collapse
Affiliation(s)
- Minghui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siqiao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China.
| |
Collapse
|
11
|
Fan R, Aranko AS. Catcher/Tag Toolbox: Biomolecular Click-Reactions For Protein Engineering Beyond Genetics. Chembiochem 2024; 25:e202300600. [PMID: 37851860 DOI: 10.1002/cbic.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Manipulating protein architectures beyond genetic control has attracted widespread attention. Catcher/Tag systems enable highly specific conjugation of proteins in vivo and in vitro via an isopeptide-bond. They provide efficient, robust, and irreversible strategies for protein conjugation and are simple yet powerful tools for a variety of applications in enzyme industry, vaccines, biomaterials, and cellular applications. Here we summarize recent development of the Catcher/Tag toolbox with a particular emphasis on the design of Catcher/Tag pairs targeted for specific applications. We cover the current limitations of the Catcher/Tag systems and discuss the pH sensitivity of the reactions. Finally, we conclude some of the future directions in the development of this versatile protein conjugation method and envision that improved control over inducing the ligation reaction will further broaden the range of applications.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
12
|
Zeng G, Zheng Y, Xiang Y, Liu R, Yang X, Lin Z. A novel protein purification scheme based on salt inducible self-assembling peptides. Microb Cell Fact 2023; 22:224. [PMID: 37899435 PMCID: PMC10614350 DOI: 10.1186/s12934-023-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Protein purification remains a critical need for biosciences and biotechnology. It frequently requires multiple rounds of chromatographic steps that are expensive and time-consuming. Our lab previously reported a cleavable self-aggregating tag (cSAT) scheme for streamlined protein expression and purification. The tag consists of a self-assembling peptide (SAP) and a controllable self-cleaving intein. The SAP drives the target protein into an active aggregate, then by intein-mediated cleavage, the target protein is released. Here we report a novel cSAT scheme in which the self-assembling peptide is replaced with a salt inducible self-assembling peptide. This allows a target protein to be expressed first in the soluble form, and the addition of salt then drives the target protein into the aggregated form, followed by cleavage and release. RESULTS In this study, we used MpA (MKQLEDKIEELLSKAAMKQLEDKIEELLSK) as a second class of self-assembling peptide in the cSAT scheme. This scheme utilizes low salt concentration to keep the fusion protein soluble, while eliminating insoluble cellular matters by centrifugation. Salt then triggers MpA-mediated self-aggregation of the fusion, removing soluble background host cell proteins. Finally, intein-mediated cleavage releases the target protein into solution. As a proof-of-concept, we successfully purified four proteins and peptides (human growth hormone, 22.1 kDa; LCB3, 7.7 kDa; SpyCatcherΔN-ELP-SpyCatcherΔN, 26.2 kDa; and xylanase, 45.3 kDa) with yields ranging from 12 to 87 mg/L. This was comparable to the classical His-tag method both in yield and purity (72-97%), but without the His-tag. By using a further two-step column purification process that included ion-exchange chromatography and size-exclusion chromatography, the purity was increased to over 99%. CONCLUSION Our results demonstrate that a salt-inducible self-assembling peptide can serve as a controllable aggregating tag, which might be advantageous in applications where soluble expression of the target protein is preferred. This work also demonstrates the potential and advantages of utilizing salt inducible self-assembling peptides for protein separation.
Collapse
Affiliation(s)
- Guang Zeng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Yinzhen Zheng
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
14
|
Chen Y, Ding P, Li M, Liu S, Chang Z, Ren D, Li R, Zhang N, Sun X, Zhang G. Spy&IAC enables specific capture of SpyTagged proteins for rapid assembly of plug-and-display nanoparticle vaccines. Int J Biol Macromol 2023; 226:240-253. [PMID: 36509200 DOI: 10.1016/j.ijbiomac.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
From modular vaccine production to protein assembly on nanoparticles, the SpyCatcher/SpyTag system provides a convenient plug-and-display procedure. Here, we established a general-purpose immunoaffinity chromatography (IAC) method for SpyTagged proteins (Spy&IAC). SpyTags are displayed on the surface of nanoparticles to induce high-affinity monoclonal antibodies, allowing the specific capture of the target protein. Taking the key core antigenic regions of two coronaviruses that are currently more threatened in the field of human and animal diseases, the nucleocapsid (N) protein of SARS-CoV-2 and the COE protein of porcine epidemic diarrhea virus (PEDV) as model proteins, a purification model with SpyTag at the N-terminal or C-terminal expressed in E. coli or mammalian cells was constructed. After the efficient elution of Spy&IAC, the final yield of several proteins is about 3.5-15 mg/L culture, and the protein purity is above 90 %. Purification also preserves the assembly function and immunogenicity of the protein to support subsequent modular assembly and immunization programs. This strategy provides a general tool for the efficient purification of SpyTagged proteins from different expression sources and different tag positions, enabling the production of modular vaccines at lower cost and in a shorter time, which will prepare the public health field for potential pandemic threats.
Collapse
Affiliation(s)
- Yilan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zejie Chang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongna Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ning Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
15
|
Xu J, Sekiguchi T, Boonyakida J, Kato T, Park EY. Display of multiple proteins on engineered canine parvovirus-like particles expressed in cultured silkworm cells and silkworm larvae. Front Bioeng Biotechnol 2023; 11:1096363. [PMID: 36873345 PMCID: PMC9977810 DOI: 10.3389/fbioe.2023.1096363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Recent progress has been made dramatically in decorating virus-like particles (VLPs) on the surface or inside with functional molecules, such as antigens or nucleic acids. However, it is still challenging to display multiple antigens on the surface of VLP to meet the requirement as a practical vaccine candidate. Herein this study, we focus on the expression and engineering of the capsid protein VP2 of canine parvovirus for VLP display in the silkworm-expression system. The chemistry of the SpyTag/SpyCatcher (SpT/SpC) and SnoopTag/SnoopCatcher (SnT/SnC) are efficient protein covalent ligation systems to modify VP2 genetically, where SpyTag/SnoopTag are inserted into the N-terminus or two distinct loop regions (Lx and L2) of VP2. The SpC-EGFP and SnC-mCherry are employed as model proteins to evaluate their binding and display on six SnT/SnC-modified VP2 variants. From a series of protein binding assays between indicated protein partners, we showed that the VP2 variant with SpT inserted at the L2 region significantly enhanced VLP display to 80% compared to 5.4% from N-terminal SpT-fused VP2-derived VLPs. In contrast, the VP2 variant with SpT at the Lx region failed to form VLPs. Moreover, the SpT (Lx)/SnT (L2) double-engineered chimeric VP2 variants showed covalent conjugation capacity to both SpC/SnC protein partners. The orthogonal ligations between those binding partners were confirmed by both mixing purified proteins and co-infecting cultured silkworm cells or larvae with desired recombinant viruses. Our results indicate that a convenient VLP display platform was successfully developed for multiple antigen displays on demand. Further verifications can be performed to assess its capacity for displaying desirable antigens and inducing a robust immune response to targeted pathogens.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tomofumi Sekiguchi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jirayu Boonyakida
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
16
|
Ximba P, Chapman R, Meyers A, Margolin E, van Diepen MT, Sander AF, Woodward J, Moore PL, Williamson AL, Rybicki EP. Development of a synthetic nanoparticle vaccine presenting the HIV-1 envelope glycoprotein. NANOTECHNOLOGY 2022; 33:485102. [PMID: 35882111 DOI: 10.1088/1361-6528/ac842c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy Woodward
- Structural Biology Research Unit, University of Cape Town, South Africa
| | - Penny L Moore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Masoomi Nomandan SZ, Azimzadeh Irani M, Hosseini SM. In silico design of refined ferritin-SARS-CoV-2 glyco-RBD nanoparticle vaccine. Front Mol Biosci 2022; 9:976490. [PMID: 36148012 PMCID: PMC9486171 DOI: 10.3389/fmolb.2022.976490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
With the onset of Coronavirus disease 2019 (COVID-19) pandemic, all attention was drawn to finding solutions to cure the coronavirus disease. Among all vaccination strategies, the nanoparticle vaccine has been shown to stimulate the immune system and provide optimal immunity to the virus in a single dose. Ferritin is a reliable self-assembled nanoparticle platform for vaccine production that has already been used in experimental studies. Furthermore, glycosylation plays a crucial role in the design of antibodies and vaccines and is an essential element in developing effective subunit vaccines. In this computational study, ferritin nanoparticles and glycosylation, which are two unique facets of vaccine design, were used to model improved nanoparticle vaccines for the first time. In this regard, molecular modeling and molecular dynamics simulation were carried out to construct three atomistic models of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD)-ferritin nanoparticle vaccine, including unglycosylated, glycosylated, and modified with additional O-glycans at the ferritin–RBD interface. It was shown that the ferritin–RBD complex becomes more stable when glycans are added to the ferritin–RBD interface and optimal performance of this nanoparticle can be achieved. If validated experimentally, these findings could improve the design of nanoparticles against all microbial infections.
Collapse
|
18
|
Fryer T, Rogers JD, Mellor C, Kohler TN, Minter R, Hollfelder F. Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS CENTRAL SCIENCE 2022; 8:1182-1195. [PMID: 36032770 PMCID: PMC9413441 DOI: 10.1021/acscentsci.2c00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
Collapse
Affiliation(s)
- Thomas Fryer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Joel David Rogers
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Christopher Mellor
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Timo N. Kohler
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ralph Minter
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
19
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
20
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
21
|
Ogrina A, Skrastina D, Balke I, Kalnciema I, Jansons J, Bachmann MF, Zeltins A. Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines (Basel) 2022; 10:vaccines10040485. [PMID: 35455234 PMCID: PMC9030781 DOI: 10.3390/vaccines10040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 01/15/2023] Open
Abstract
Plant-based virus-like particle (VLP) vaccines have been studied for years, demonstrating their potential as antigen-presenting platforms. In this paper, we describe the development of, and compare between, simple Escherichia coli-based antigen display platforms for the generation of potato virus Y (PVY) VLP-derived vaccines, thus allowing the production of vaccines from a single bacterial cell culture. We constructed four systems with the major cat allergen Fel d 1; namely, direct fusion with plant virus PVY coat protein (CP), mosaic PVY VLPs, and two coexpression variants of conjugates (SpyTag/SpyCatcher) allowing coexpression and conjugation directly in E. coli cells. For control experiments, we included PVY VLPs chemically coupled with Fel d 1. All constructed PVY-Fel d 1 variants were well expressed and soluble, formed PVY-like filamentous particles, and were recognized by monoclonal Fel d 1 antibodies. Our results indicate that all vaccine variants induced high titers of anti-Fel d 1 antibodies in murine models. Mice that were immunized with the chemically coupled Fel d 1 antigen exhibited the highest antibody titers and antibody-antigen interaction specificity, as detected by binding avidity and recognition of native Fel d 1. IgG1 subclass antibodies were found to be the dominant IgG class against PVY-Fel d 1. PVY CP-derived VLPs represent an efficient platform for the comparison of various antigen presentation systems to help evaluate different vaccine designs.
Collapse
Affiliation(s)
- Anete Ogrina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Dace Skrastina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ina Balke
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ieva Kalnciema
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Juris Jansons
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Andris Zeltins
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
- Correspondence:
| |
Collapse
|
22
|
Cheng P, Han H, Chen F, Cheng L, Ma C, Huang H, Chen C, Li H, Cai H, Huang H, Li G, Tao J. Amelioration of acute myocardial infarction injury through targeted ferritin nanocages loaded with an ALKBH5 inhibitor. Acta Biomater 2022; 140:481-491. [PMID: 34879293 DOI: 10.1016/j.actbio.2021.11.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023]
Abstract
The roles of m6A RNA methylation and mitochondrial metabolism in acute myocardial infarction (AMI) remain unclear. In this study, we demonstrated that m6A RNA methylation affected ischemia/reperfusion (I/R) injury in AMI through the "Erasers" protein ALKBH5-related metabolic reprogramming, characterized by the inhibition of enzyme activities of the tricarboxylic acid cycle; moreover, a surface-modified bioengineered ferritin nanocage was obtained from Archaeoglobus fulgidus, with a chimeric structure containing 8 lysine residues, SpyTag/SpyCatcher, and the C1q ligand Scarf1, which could disassemble and self-assemble in neutral solutions according to different Mg2+ concentrations. The surface-modified bioengineered ferritin nanocage targeted the dying cells in the infarct area under the guidance of Scarf1. These cells were then phagocytosed through recognition of their TfR1 receptor. Lysosomal escape was achieved through the 8 lysine residues on the nanocage, and the nanocage disassembled based on the differences in intracellular and extracellular Mg2+ concentrations. Finally, the ALKBH5 inhibitor IOX1 was loaded onto the ferritin nanocage and used in the AMI model, and it was found to effectively improve cardiac function. These results provide a potential strategy for the treatment of AMI in the future. STATEMENT OF SIGNIFICANCE: In acute myocardial infarction (AMI) induced by ischemia/reperfusion injury, m6A RNA methylation aggravates the injury through the "Erasers" protein ALKBH5-related metabolic reprogramming. To achieve precise treatment, genetic engineering-based recombinant expression technology was used to obtain a ferritin from Archaeoglobus fulgidus. The obtained ferritin was designated as HAfFtO, and it can disassemble and self-assemble in a neutral solution under different Mg2+ concentrations and achieve lysosomal escape. Three G4S linkers were used to connect SpyTag with HAfFtO to synthesize HAfFtO-ST and recombination Scarf1 containing SpyCatcher structure, namely SC-Sf. According to the SpyTag/SpyCatcher technique, HAfFtO-ST and SC-Sf can form a gentle and firm combination, namely HSSS. The ALKBH5 inhibitor IOX1 was loaded on HSSS to form HSSS-I. HSSS-I effectively improved the cardiac function and decreased the infarct size in AMI.
Collapse
Affiliation(s)
- Panke Cheng
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hukui Han
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fuli Chen
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Hui Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chi Chen
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hua Li
- Zunyi Honghuagang Orthopedic Hospital, Zunyi 563000, China
| | - Hao Cai
- Zunyi Maternal and Child Health Care Hospital, Zunyi 563000, China
| | - Hao Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Gang Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianhong Tao
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
23
|
Dong W, Sun H, Chen Q, Hou L, Chang Y, Luo H. SpyTag/Catcher chemistry induces the formation of active inclusion bodies in E. coli. Int J Biol Macromol 2022; 199:358-371. [PMID: 35031313 DOI: 10.1016/j.ijbiomac.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
SpyTag/Catcher chemistry is usually applied to engineer robust enzymes via head-to-tail cyclization using spontaneous intramolecular isopeptide bond formation. However, the SpyTag/Catcher induced intercellular protein assembly in vivo cannot be ignored. It was found that some active inclusion bodies had generated to different proportions in the expression of six SpyTag/Catcher labeled proteins (CatIBs-STCProtein). Some factors that may affect the formation of CatIBs-STCProtein were discussed, and the subunit quantities were found to be strongly positively related to the formation of protein aggregates. Approximately 85.44% of the activity of the octameric protein leucine dehydrogenase (LDH) was expressed in aggregates, while the activity of the monomeric protein green fluorescence protein (GFP) in aggregates was 12.51%. The results indicated that SpyTag/Catcher can be used to form protein aggregates in E. coli. To facilitate the advantages of CatIBs-STCProtein, we took the CatIBs-STCLDH as an example and further chemically cross-linked with glutaraldehyde to obtain novel cross-linked enzyme aggregates (CLEAs-CatIBs-STCLDH). CLEAs-CatIBs-STCLDH had good thermal stability and organic solvents stability, and its activity remained 51.03% after incubation at 60 °C for 100 mins. Moreover, the crosslinked CatIBs-STCLDH also showed superior stability over traditional CLEAs, and its activity remained 98.70% after 10 cycles of catalysis.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangyu Hou
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
24
|
Argentinian AntiCovid Consortium, Berguer PM, Blaustein M, Bredeston LM, Craig PO, D’Alessio C, Elias F, Farré PC, Fernández NB, Gentili HG, Gándola YB, Gasulla J, Gudesblat GE, Herrera MG, Ibañez LI, Idrovo-Hidalgo T, Nadra AD, Noseda DG, Paván CH, Pavan MF, Pignataro MF, Roman EA, Ruberto LAM, Rubinstein N, Sanchez MV, Santos J, Wetzler DE, Zelada AM. Covalent coupling of Spike's receptor binding domain to a multimeric carrier produces a high immune response against SARS-CoV-2. Sci Rep 2022; 12:692. [PMID: 35027583 PMCID: PMC8758758 DOI: 10.1038/s41598-021-03675-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor binding domain (RBD) of the Spike protein from SARS-CoV-2 is a promising candidate to develop effective COVID-19 vaccines since it can induce potent neutralizing antibodies. We have previously reported the highly efficient production of RBD in Pichia pastoris, which is structurally similar to the same protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer with the purpose of increasing its immunogenicity. We produced multimeric particles by a transpeptidation reaction between RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric 170 kDa protein. Such particles were used to vaccinate mice with two doses 30 days apart. When the particles ratio of RBD to BLS units was high (6-7 RBD molecules per BLS decamer in average), the humoral immune response was significantly higher than that elicited by RBD alone or by RBD-BLS particles with a lower RBD to BLS ratio (1-2 RBD molecules per BLS decamer). Remarkably, multimeric particles with a high number of RBD copies elicited a high titer of neutralizing IgGs. These results indicate that multimeric particles composed of RBD covalent coupled to BLS possess an advantageous architecture for antigen presentation to the immune system, and therefore enhancing RBD immunogenicity. Thus, multimeric RBD-BLS particles are promising candidates for a protein-based vaccine.
Collapse
|
25
|
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021; 9:1409. [PMID: 34960155 PMCID: PMC8708688 DOI: 10.3390/vaccines9121409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.
Collapse
Affiliation(s)
- Wasim A. Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Lorena C. S. Chaves
- Department of Microbiology and Immunology, School of Medicine, Emory University, Claudia Nance Rollins Building, Atlanta, GA 30329, USA;
| | - Karin P. Crema
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | | | - Mohammad Sadraeian
- São Carlos Institute of Physics, IFSC-USP, São Carlos 13566590, SP, Brazil; (F.E.G.G.); (M.S.)
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Fernando L. Barroso da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, SP, Brazil;
- Department of Chemical and Biomolecular Engeneering, North Carolina State University, Raleigh, NC 27695, USA
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, Tehran 1419733151, Iran
| | - José A. M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 0124690, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| |
Collapse
|
26
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
27
|
Stander J, Chabeda A, Rybicki EP, Meyers AE. A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:738619. [PMID: 34589108 PMCID: PMC8475786 DOI: 10.3389/fpls.2021.738619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/27/2023]
Abstract
West Nile virus (WNV) is a globally disseminated Flavivirus that is associated with encephalitis outbreaks in humans and horses. The continuous global outbreaks of West Nile disease in the bird, human, and horse populations, with no preventative measures for humans, pose a major public health threat. The development of a vaccine that contributes to the "One Health" Initiative could be the answer to prevent the spread of the virus and control human and animal disease. The current commercially available veterinary vaccines are generally costly and most require high levels of biosafety for their manufacture. Consequently, we explored making a particulate vaccine candidate made transiently in plants as a more cost-effective and safer means of production. A WNV virus-like particle-display-based vaccine candidate was generated by the use of the SpyTag/SpyCatcher (ST/SC) conjugation system. The WNV envelope protein domain III (EDIII), which contains WNV-specific epitopes, was fused to and displayed on AP205 phage virus-like particles (VLPs) following the production of both separately in Nicotiana benthamiana. Co-purification of AP205 and EDIII genetically fused to ST and SC, respectively, resulted in the conjugated VLPs displaying EDIII with an average coupling efficiency of 51%. Subcutaneous immunisation of mice with 5 μg of purified AP205: EDIII VLPs elicited a potent IgG response to WNV EDIII. This study presents the potential plants being used as biofactories for making significant pharmaceutical products for the "One Health" Initiative and could be used to address the need for their local production in low- and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Kozlowski MT, Silverman BR, Johnstone CP, Tirrell DA. Genetically Programmable Microbial Assembly. ACS Synth Biol 2021; 10:1351-1359. [PMID: 34009951 DOI: 10.1021/acssynbio.0c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered microbial communities show promise in a wide range of applications, including environmental remediation, microbiome engineering, and synthesis of fine chemicals. Here we present methods by which bacterial aggregates can be directed into several distinct architectures by inducible surface expression of heteroassociative protein domains (SpyTag/SpyCatcher and SynZip17/18). Programmed aggregation can be used to activate a quorum-sensing circuit, and aggregate size can be tuned via control of the amount of the associative protein displayed on the cell surface. We further demonstrate reversibility of SynZip-mediated assembly by addition of soluble competitor peptide. Genetically programmable bacterial assembly provides a starting point for the development of new applications of engineered microbial communities in environmental technology, agriculture, human health, and bioreactor design.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Bradley R. Silverman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
30
|
Wang W, Huang B, Zhu Y, Tan W, Zhu M. Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice. Cell Mol Immunol 2021; 18:749-751. [PMID: 33580169 PMCID: PMC7880661 DOI: 10.1038/s41423-021-00643-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoying Huang
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yanping Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China.
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Modular vaccine platform based on the norovirus-like particle. J Nanobiotechnology 2021; 19:25. [PMID: 33468139 PMCID: PMC7815183 DOI: 10.1186/s12951-021-00772-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice. RESULTS SpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface. CONCLUSIONS The modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.
Collapse
|
32
|
Nimotuzumab Site-Specifically Labeled with 89Zr and 225Ac Using SpyTag/SpyCatcher for PET Imaging and Alpha Particle Radioimmunotherapy of Epidermal Growth Factor Receptor Positive Cancers. Cancers (Basel) 2020; 12:cancers12113449. [PMID: 33233524 PMCID: PMC7699480 DOI: 10.3390/cancers12113449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Monoclonal antibodies (IgG) are excellent probes for targeting cell surface receptors for imaging and therapeutic applications. These theranostic agents are often developed by randomly conjugating radioisotopes/drugs/chelators to the primary amine of lysine or the sulfhydryl groups of cysteine on the antibody. Random conjugation often alters the properties of the antibody. We have site-specifically radiolabeled nimotuzumab an anti-epidermal growth factor receptor (EGFR) monoclonal antibody with 89Zr and 225Ac using SpyTag: ∆N-SpyCatcher for positron emission tomography (PET) imaging and alpha particle radiotherapy, and evaluated these agents in a model of EGFR-positive triple negative breast cancer (TNBC). Nimotuzumab-SpyTag-∆N-SpyCatcher constructs showed improved binding in vitro compared with randomly conjugated constructs. 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher specifically delineated EGFR-positive xenograft in vivo using microPET/CT imaging. Compared with control treatment groups, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher more than doubled the survival of mice bearing EGFR-positive MDA-MB-231 TNBC xenograft. This work highlights a facile method to site-specifically radiolabel antibodies using SpyTag: ∆N-SpyCatcher. Abstract To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH2) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH2 or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with 89Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 (225Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC50 of 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and 225Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to 225Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.
Collapse
|
33
|
Peyret H, Ponndorf D, Meshcheriakova Y, Richardson J, Lomonossoff GP. Covalent protein display on Hepatitis B core-like particles in plants through the in vivo use of the SpyTag/SpyCatcher system. Sci Rep 2020; 10:17095. [PMID: 33051543 PMCID: PMC7555512 DOI: 10.1038/s41598-020-74105-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/21/2020] [Indexed: 01/07/2023] Open
Abstract
Virus-like particles (VLPs) can be used as nano-carriers and antigen-display systems in vaccine development and therapeutic applications. Conjugation of peptides or whole proteins to VLPs can be achieved using different methods such as the SpyTag/SpyCatcher system. Here we investigate the conjugation of tandem Hepatitis B core (tHBcAg) VLPs and the model antigen GFP in vivo in Nicotiana benthamiana. We show that tHBcAg VLPs could be successfully conjugated with GFP in the cytosol and ER without altering VLP formation or GFP fluorescence. Conjugation in the cytosol was more efficient when SpyCatcher was displayed on tHBcAg VLPs instead of being fused to GFP. This effect was even more obvious in the ER, showing that it is optimal to display SpyCatcher on the tHBcAg VLPs and SpyTag on the binding partner. To test transferability of the GFP results to other antigens, we successfully conjugated tHBcAg VLPs to the HIV capsid protein P24 in the cytosol. This work presents an efficient strategy which can lead to time and cost saving post-translational, covalent conjugation of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK.
| | - Daniel Ponndorf
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - Jake Richardson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | | |
Collapse
|
34
|
Sutherland AR, Owens MN, Geyer CR. Modular Chimeric Antigen Receptor Systems for Universal CAR T Cell Retargeting. Int J Mol Sci 2020; 21:E7222. [PMID: 33007850 PMCID: PMC7582510 DOI: 10.3390/ijms21197222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
The engineering of T cells through expression of chimeric antigen receptors (CARs) against tumor-associated antigens (TAAs) has shown significant potential for use as an anti-cancer therapeutic. The development of strategies for flexible and modular CAR T systems is accelerating, allowing for multiple antigen targeting, precise programming, and adaptable solutions in the field of cellular immunotherapy. Moving beyond the fixed antigen specificity of traditional CAR T systems, the modular CAR T technology splits the T cell signaling domains and the targeting elements through use of a switch molecule. The activity of CAR T cells depends on the presence of the switch, offering dose-titratable response and precise control over CAR T cells. In this review, we summarize developments in universal or modular CAR T strategies that expand on current CAR T systems and open the door for more customizable T cell activity.
Collapse
Affiliation(s)
- Ashley R. Sutherland
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.R.S.); (M.N.O.)
| | - Madeline N. Owens
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.R.S.); (M.N.O.)
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
35
|
Lang M, Pröschel M, Brüggen N, Sonnewald U. Tagging and catching: rapid isolation and efficient labeling of organelles using the covalent Spy-System in planta. PLANT METHODS 2020; 16:122. [PMID: 32905125 PMCID: PMC7465787 DOI: 10.1186/s13007-020-00663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Up-to-now, several biochemical methods have been developed to allow specific organelle isolation from plant tissues. These procedures are often time consuming, require substantial amounts of plant material, have low yield or do not result in pure organelle fractions. Moreover, barely a protocol allows rapid and flexible isolation of different subcellular compartments. The recently published SpySystem enables the in vitro and in vivo covalent linkage between proteins and protein complexes. Here we describe the use of this system to tag and purify plant organelles. RESULTS We developed a simple and specific method to in vivo tag and visualize, as well as isolate organelles of interest from crude plant extracts. This was achieved by expressing the covalent split-isopeptide interaction system, consisting of SpyTag and SpyCatcher, in Nicotiana benthamiana leaves. The functionality of the SpySystem in planta, combined with downstream applications, was proven. Using organelle-specific membrane anchor sequences to program the sub-cellular localization of the SpyTag peptide, we could tag the outer envelope of chloroplasts and mitochondria. By co-expression of a cytosolic, soluble eGFP-SpyCatcher fusion protein, we could demonstrate intermolecular isopeptide formation in planta and proper organelle targeting of the SpyTag peptides to the respective organelles. For one-step organelle purification, recombinantly expressed SpyCatcher protein was immobilized on magnetic microbeads via covalent thiol-etherification. To isolate tagged organelles, crude plant filtrates were mixed with SpyCatcher-coated beads which allowed isolation of SpyTag-labelled chloroplasts and mitochondria. The isolated organelles were intact, showed high yield and hardly contaminants and can be subsequently used for further molecular or biochemical analysis. CONCLUSION The SpySystem can be used to in planta label subcellular structures, which enables the one-step purification of organelles from crude plant extracts. The beauty of the system is that it works as a covalent toolbox. Labeling of different organelles with individual tags under control of cell-specific and/or inducible promoter sequences will allow the rapid organelle and cell-type specific purification. Simultaneous labeling of different organelles with specific Tag/Catcher combinations will enable simultaneous isolation of different organelles from one plant extract in future experiments.
Collapse
Affiliation(s)
- Martina Lang
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlene Pröschel
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Nico Brüggen
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
36
|
Keeble AH, Howarth M. Power to the protein: enhancing and combining activities using the Spy toolbox. Chem Sci 2020; 11:7281-7291. [PMID: 33552459 PMCID: PMC7844731 DOI: 10.1039/d0sc01878c] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
Proteins span an extraordinary range of shapes, sizes and functionalities. Therefore generic approaches are needed to overcome this diversity and stream-line protein analysis or application. Here we review SpyTag technology, now used in hundreds of publications or patents, and its potential for detecting and controlling protein behaviour. SpyTag forms a spontaneous and irreversible isopeptide bond upon binding its protein partner SpyCatcher, where both parts are genetically-encoded. New variants of this pair allow reaction at a rate approaching the diffusion limit, while reversible versions allow purification of SpyTagged proteins or tuned dynamic interaction inside cells. Anchoring of SpyTag-linked proteins has been established to diverse nanoparticles or surfaces, including gold, graphene and the air/water interface. SpyTag/SpyCatcher is mechanically stable, so is widely used for investigating protein folding and force sensitivity. A toolbox of scaffolds allows SpyTag-fusions to be assembled into defined multimers, from dimers to 180-mers, or unlimited 1D, 2D or 3D networks. Icosahedral multimers are being evaluated for vaccination against malaria, HIV and cancer. For enzymes, Spy technology has increased resilience, promoted substrate channelling, and assembled hydrogels for continuous flow biocatalysis. Combinatorial increase in functionality has been achieved through modular derivatisation of antibodies, light-emitting diodes or viral vectors. In living cells, SpyTag allowed imaging of protein trafficking, retargeting of CAR-T cell killing, investigation of heart contraction, and control of nucleosome position. The simple genetic encoding and rapid irreversible reaction provide diverse opportunities to enhance protein function. We describe limitations as well as future directions.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford , OX1 3QU , UK . ; Tel: +44 (0)1865 613200
| | - Mark Howarth
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford , OX1 3QU , UK . ; Tel: +44 (0)1865 613200
| |
Collapse
|
37
|
Biotin Functionalized Self‐Assembled Peptide Nanofiber as an Adjuvant for Immunomodulatory Response. Biotechnol J 2020; 15:e2000100. [DOI: 10.1002/biot.202000100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Indexed: 12/20/2022]
|
38
|
Zhang F, Zhang W. Encrypting Chemical Reactivity in Protein Sequences toward
Information‐Coded
Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
39
|
Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X, Li W, Fu YX, Zhu M. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. NATURE NANOTECHNOLOGY 2020; 15:406-416. [PMID: 32123380 PMCID: PMC7223715 DOI: 10.1038/s41565-020-0648-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
Chronic hepatitis B is caused by prolonged infection with the hepatitis B virus (HBV), which can substantially increase the risk of developing liver disease. Despite the development of preventive vaccines against HBV, a therapeutic vaccine inducing an effective antibody response still remains elusive. The preS1 domain of the large HBV surface protein is the major viral attachment site on hepatocytes and thus offers a therapeutic target; however, its poor immunogenicity limits clinical translation. Here, we design a ferritin nanoparticle vaccine that can deliver preS1 to specific myeloid cells, including SIGNR1+ dendritic cells (which activate T follicular helper cells) and lymphatic sinus-associated SIGNR1+ macrophages (which can activate B cells). This nanoparticle vaccine induces a high-level and persistent anti-preS1 response that results in efficient viral clearance and partial serological conversion in a chronic HBV mouse model, offering a promising translatable vaccination strategy for the functional cure of chronic hepatitis B.
Collapse
Affiliation(s)
- Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yingjie Bian
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenqian Guo
- Department of Pediatric Surgical Oncology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenni Wang
- Department of Pediatric Surgical Oncology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Sharma J, Shepardson K, Johns LL, Wellham J, Avera J, Schwarz B, Rynda-Apple A, Douglas T. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18211-18224. [PMID: 32233444 DOI: 10.1021/acsami.9b21776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuous evolution of influenza A virus (IAV) requires the influenza vaccine formulations to be updated annually to provide adequate protection. Recombinant protein-based vaccines provide safer, faster, and a more scalable alternative to the conventional embryonated egg approach for developing vaccines. However, these vaccines are typically poorer in immunogenicity than the vaccines containing inactivated or attenuated influenza viruses and require administration of a large antigen dosage together with potent adjuvants. The presentation of protein antigens on the surface of virus-like particles (VLP) provides an attractive strategy to rapidly induce stronger antigen-specific immune responses. Here we have examined the immunogenic potential and protective efficacy of P22 VLPs conjugated with multiple copies of the globular head domain of the hemagglutinin (HA) protein from the PR8 strain of IAV in a murine model of influenza pathogenesis. Using a covalent attachment strategy (SpyTag/SpyCatcher), we conjugated the HA globular head, which was recombinantly expressed in a genetically modified E. coli strain and found to refold as a monomer, to preassembled P22 VLPs. Immunization of mice with this P22-HAhead conjugate provided full protection from morbidity and mortality following infection with a homologous IAV strain. Moreover, the P22-HAhead conjugate also elicited an accelerated and enhanced HA head specific IgG response, which was significantly higher than the soluble HA head, or the admixture of P22 and HA head without the need for adjuvants. Thus, our results show that the HA head can be easily prepared by in vitro refolding in a modified E. coli strain, maintaining its intact structure and enabling the induction of a strong immune response when conjugated to P22 VLPs, even when presented as a monomer. These results also demonstrate that the P22 VLPs can be rapidly modified in a modular fashion, resulting in an effective vaccine construct that can generate protective immunity without the need for additional adjuvants.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly Shepardson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Laura L Johns
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Julia Wellham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - John Avera
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Matrivax Research and Development Corporation, Boston, Massachusetts 02118, United Sates
| | - Benjamin Schwarz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Immunity to Pulmonary Pathogens section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, United States
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Minutolo NG, Sharma P, Poussin M, Shaw LC, Brown DP, Hollander EE, Smole A, Rodriguez-Garcia A, Hui JZ, Zappala F, Tsourkas A, Powell DJ. Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. J Am Chem Soc 2020; 142:6554-6568. [PMID: 32191035 DOI: 10.1021/jacs.9b11622] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Universal immune receptors represent a rapidly emerging form of adoptive T-cell therapy with the potential to overcome safety and antigen escape challenges faced by conventional chimeric antigen receptor (CAR) T-cell therapy. By decoupling antigen recognition and T-cell signaling domains via bifunctional antigen-specific targeting ligands, universal immune receptors can regulate T-cell effector function and target multiple antigens with a single receptor. Here, we describe the development of the SpyCatcher immune receptor, the first universal immune receptor that allows for the post-translational covalent attachment of targeting ligands at the T-cell surface through the application of SpyCatcher-SpyTag chemistry. The SpyCatcher immune receptor redirected primary human T cells against a variety of tumor antigens via the addition of SpyTag-labeled targeting ligands, both in vitro and in vivo. SpyCatcher T-cell activity relied upon the presence of both target antigen and SpyTag-labeled targeting ligand, allowing for dose-dependent control of function. The mutational disruption of covalent bond formation between the receptor and the targeting ligand still permitted redirected T-cell function but significantly compromised antitumor function. Thus, the SpyCatcher immune receptor allows for rapid antigen-specific receptor assembly, multiantigen targeting, and controllable T-cell activity.
Collapse
|
42
|
Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cell Mol Immunol 2019; 17:13-26. [PMID: 31844141 DOI: 10.1038/s41423-019-0341-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The innate immune sensing pathways play critical roles in the defense against pathogen infection, but their roles in cancer immunosurveillance and cancer therapies are less defined. We propose that defective innate immune sensing inside the tumor microenvironment might limit T-cell responses to immunotherapy. A recent mechanistic understanding of conventional therapies revealed that both innate immune sensing and T-cell responses are essential for optimal antitumor efficacy. T-cell-based immunotherapy, particularly immune checkpoint blockade, has achieved great success in reactivating antitumor immune responses to lead to tumor regression, but only in a small fraction of patients. Therefore, incorporating conventional therapy that can increase innate sensing and immunotherapy should lead to promising strategies for cancer patients. Here, we review the innate sensing pathways related to cancer initiation/progression and therapies, summarize the recent key findings in innate immune sensing related to conventional therapies, evaluate current combination strategies, and highlight the potential issues of combinational therapies in terms of antitumor efficacy and toxicities.
Collapse
|
43
|
Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expr Purif 2019; 167:105526. [PMID: 31689499 DOI: 10.1016/j.pep.2019.105526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
The E2 envelope protein is the main protective antigen of classical swine fever virus (CSFV). Importantly, gram-positive enhancer matrix (GEM) particles can work as an immunostimulant and/or carrier system to improve the immune effect of antigens. In this study, the artificially designed E2-Spy was expressed and glycosylated in Pichia pastoris, and subsequently conjugated with SpyCatcher-PA which was expressed in Escherichia coli. The conjugated E2-Spy-PA was displayed on the surface of GEM particles, generating the E2-Spy-PA-GEM complex. Blocking ELISA analysis and neutralization assays showed that both E2-Spy and E2-Spy-PA-GEM complexes induced high levels of anti-CSFV antibodies in mice. Furthermore, statistical analyses indicated that the E2-Spy-PA-GEM complex exhibited enhanced immunogenicity compared with E2-Spy alone.
Collapse
|
44
|
Wang W, Liu Z, Zhou X, Guo Z, Zhang J, Zhu P, Yao S, Zhu M. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:69-78. [DOI: 10.1016/j.nano.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 01/21/2023]
|
45
|
Sutherland AR, Alam MK, Geyer CR. Post‐translational Assembly of Protein Parts into Complex Devices by Using SpyTag/SpyCatcher Protein Ligase. Chembiochem 2018; 20:319-328. [DOI: 10.1002/cbic.201800538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ashley R. Sutherland
- Department of BiochemistryUniversity of Saskatchewan Saskatoon SK S7N 5E5 Canada
| | - Md. Kausar Alam
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto Toronto ON M5S3E1 Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory MedicineUniversity of Saskatchewan Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
46
|
Wu WH, Wei J, Zhang WB. Controlling SpyTag/SpyCatcher Reactivity via Redox-Gated Conformational Restriction. ACS Macro Lett 2018; 7:1388-1393. [PMID: 35651248 DOI: 10.1021/acsmacrolett.8b00668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report that the reactivity of genetically encoded SpyTag/SpyCatcher chemistry can be manipulated via redox-gated conformational restriction, which facilitates the preparation of all-protein-based hydrogel with latent reactive sites for subsequent covalent functionalization.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
47
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
48
|
Bruun TJ, Andersson AMC, Draper SJ, Howarth M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS NANO 2018; 12:8855-8866. [PMID: 30028591 PMCID: PMC6158681 DOI: 10.1021/acsnano.8b02805] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Nanoscale organization is crucial to stimulating an immune response. Using self-assembling proteins as multimerization platforms provides a safe and immunogenic system to vaccinate against otherwise weakly immunogenic antigens. Such multimerization platforms are generally based on icosahedral viruses and have led to vaccines given to millions of people. It is unclear whether synthetic protein nanoassemblies would show similar potency. Here we take the computationally designed porous dodecahedral i301 60-mer and rationally engineer this particle, giving a mutated i301 (mi3) with improved particle uniformity and stability. To simplify the conjugation of this nanoparticle, we employ a SpyCatcher fusion of mi3, such that an antigen of interest linked to the SpyTag peptide can spontaneously couple through isopeptide bond formation (Plug-and-Display). SpyCatcher-mi3 expressed solubly to high yields in Escherichia coli, giving more than 10-fold greater yield than a comparable phage-derived icosahedral nanoparticle, SpyCatcher-AP205. SpyCatcher-mi3 nanoparticles showed high stability to temperature, freeze-thaw, lyophilization, and storage over time. We demonstrate approximately 95% efficiency coupling to different transmission-blocking and blood-stage malaria antigens. Plasmodium falciparum CyRPA was conjugated to SpyCatcher-mi3 nanoparticles and elicited a high avidity antibody response, comparable to phage-derived virus-like particles despite their higher valency and RNA cargo. The simple production, precise derivatization, and exceptional ruggedness of this nanoscaffold should facilitate broad application for nanobiotechnology and vaccine development.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anne-Marie C. Andersson
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Simon J. Draper
- Jenner
Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
49
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
50
|
Brune KD, Howarth M. New Routes and Opportunities for Modular Construction of Particulate Vaccines: Stick, Click, and Glue. Front Immunol 2018; 9:1432. [PMID: 29997617 PMCID: PMC6028521 DOI: 10.3389/fimmu.2018.01432] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023] Open
Abstract
Vaccines based on virus-like particles (VLPs) can induce potent B cell responses. Some non-chimeric VLP-based vaccines are highly successful licensed products (e.g., hepatitis B surface antigen VLPs as a hepatitis B virus vaccine). Chimeric VLPs are designed to take advantage of the VLP framework by decorating the VLP with a different antigen. Despite decades of effort, there have been few licensed chimeric VLP vaccines. Classic approaches to create chimeric VLPs are either genetic fusion or chemical conjugation, using cross-linkers from lysine on the VLP to cysteine on the antigen. We describe the principles that make these classic approaches challenging, in particular for complex, full-length antigens bearing multiple post-translational modifications. We then review recent advances in conjugation approaches for protein-based non-enveloped VLPs or nanoparticles, to overcome such challenges. This includes the use of strong non-covalent assembly methods (stick), unnatural amino acids for bio-orthogonal chemistry (click), and spontaneous isopeptide bond formation by SpyTag/SpyCatcher (glue). Existing applications of these methods are outlined and we critically consider the key practical issues, with particular insight on Tag/Catcher plug-and-display decoration. Finally, we highlight the potential for modular particle decoration to accelerate vaccine generation and prepare for pandemic threats in human and veterinary realms.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|