1
|
Guo Y, Li J, Liu X, Ding H, Zhang W. Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC. Front Pharmacol 2025; 16:1571276. [PMID: 40356977 PMCID: PMC12066669 DOI: 10.3389/fphar.2025.1571276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and disability worldwide, driven by genetic predispositions and environmental interactions, with epigenetics playing a pivotal role in mediating these processes. Specific modifying enzymes that regulate epigenetic changes have emerged as promising targets for IS treatment. DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, histone acetyltransferases (HATs), and histone deacetylases (HDACs) are central to epigenetic regulation. These enzymes maintain a dynamic balance between DNA methylation/demethylation and histone acetylation/deacetylation, which critically influences gene expression and neuronal survival in IS. This review is based on both in vivo and in vitro experimental studies, exploring the roles of DNMT/TET and HAT/HDAC in IS, evaluating their potential as therapeutic targets, and discussing the use of natural compounds as modulators of these enzymes to develop novel treatment strategies.
Collapse
Affiliation(s)
- Yurou Guo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaodan Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Huang Ding
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
2
|
Cai Y, Zeng X, Wu M, Chen H, Sun M, Yang H. TET1 mitigates prenatal fluoride-induced cognition impairment by modulating Bcl2 DNA hydroxymethylation level. Mol Med 2025; 31:117. [PMID: 40133886 PMCID: PMC11938627 DOI: 10.1186/s10020-025-01174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Fluoride exposure during pregnancy commonly compromises fetal neurodevelopment and largely results in a broad spectrum of cognitive deficiencies in the adult offspring. However, the precise mechanisms underlying these effects remain to be fully elucidated. Herein, we investigate the impacts of fluoride on neural excitability and apoptosis, synaptic plasticity, and cognitive function, as well as possible underlying mechanisms. Our results indicated that exposure to a high sodium fluoride (100 mg/L) during pregnancy in the mouse can cause the cognitive deficits of their offspring, accompanied by a decrease in the expression of Tet-eleven translocation protein 1 (TET1), an enzyme responsible for DNA hydroxymethylation. Additionally, there is a reduction in the dendritic spine density and the expression of postsynaptic density protein-95 (PSD95) in the hippocampal regions of male offspring. Furthermore, in vitro fluoride treatment significantly exacerbates neuronal apoptosis and reduces the frequency of spikes in spontaneous action potential. More significantly, we also found that TET1 could directly bind to the promotor region of Bcl2, altering its DNA hydroxymethylation and Bcl2 expression. Intriguingly, Tet1 knock-out mice exhibited cognitive deficits similar to those observed in male animals exposed to high levels of fluoride. Furthermore, the down-regulation of TET1 protein, along with the consequent alteration in Bcl2 hydroxymethylation and increased neuronal apoptosis, are likely mechanisms underlying the impact of prenatal fluoride exposure on the neurodevelopment of male offspring. These findings provide novel insights into the molecular mechanisms by which fluoride exposure induces neurodevelopmental impairment of the male offspring.
Collapse
Affiliation(s)
- Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
3
|
Song J, Li H, Fang X. The inflection point: α-Klotho levels and the risk of all-cause mortality. Front Endocrinol (Lausanne) 2025; 16:1405003. [PMID: 40134808 PMCID: PMC11932894 DOI: 10.3389/fendo.2025.1405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose The controversial nature of the association between α-Klotho and mortality risk in the general population warrants further investigation. This study aims to examine the correlation between circulating α-Klotho levels and the risk of all-cause mortality. Methods A sample size of 13,748 individuals from the NAHNES 2005-2016 cycles was included in this study. The effect of different α-Klotho levels (divided into quartiles) on survival was assessed using Kaplan-Meier (KM) curves. Cox proportional hazards models were used to analyze the linear relationship between log α-Klotho and the risk of all-cause mortality. Restricted cubic spline Cox proportional hazards regression model was used to analyze the non-linear relationship between log α-Klotho and risk of all-cause mortality. Threshold effect analysis was performed to determine the most favorable inflection point for log α-Klotho. Stratification and sensitivity analyses were performed to assess the robustness of the results. Results A total of 1,569 deaths were reported during the median follow-up period of 5.33 years (2.83-7.83 years). Among the log α-Klotho quartile groups, quartile 1 had the highest mortality rate compared to quartiles 2, 3, and 4. Multifactorial Cox regression analysis revealed a weak association between log α-Klotho and a 44% reduction in the risk of all-cause mortality (p=0.0473). We also found a U-shaped non-linear association between log α-Klotho and risk of all-cause mortality, with an optimal inflection point identified at 2.89 pg/mL. The stability of the U-shaped association between log α-Klotho and mortality risk was observed in various stratification and sensitivity analyses. Conclusion This study identified a U-shaped association between circulating α-Klotho levels and risk of all-cause mortality, with a notable inflection point at 2.89 pg/mL. Further investigation is warranted to fully elucidate the potential mechanisms underlying the association between α-Klotho and risk of all-cause mortality in the broader population.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Li
- Department of Medical Records, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Hosseini L, Babaie S, Shahabi P, Fekri K, Shafiee-Kandjani AR, Mafikandi V, Maghsoumi-Norouzabad L, Abolhasanpour N. Klotho: molecular mechanisms and emerging therapeutics in central nervous system diseases. Mol Biol Rep 2024; 51:913. [PMID: 39153108 DOI: 10.1007/s11033-024-09862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Klotho is recognized as an aging-suppressor protein that is implicated in a variety of processes and signaling pathways. The anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-tumor bioactivities of klotho have extended its application in neurosciences and made the protein popular for its lifespan-extending capacity. Furthermore, it has been demonstrated that klotho levels would reduce with aging and numerous pathologies, particularly those related to the central nervous system (CNS). Evidence supports the idea that klotho can be a key therapeutic target in CNS diseases such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and Alzheimer's disease. Reviewing the literature suggests that the upregulation of klotho expression regulates various signaling pathways related to autophagy, oxidative stress, inflammation, cognition, and ferroptosis in neurological disorders. Therefore, it has been of great interest to develop drugs or agents that boost or restore klotho levels. In this regard, the present review was designed and aimed to gather the delegated documents regarding the therapeutic potential of Klotho in CNS diseases focusing on the molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Faculty of Medicine, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kiarash Fekri
- Department of Paramedicine, Amol School of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
- Preclinical Department, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasrin Abolhasanpour
- Research Center for Evidence‑Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
6
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
8
|
Fan Y, Yuan Y, Xiong M, Jin M, Zhang D, Yang D, Liu C, Petersen RB, Huang K, Peng A, Zheng L. Tet1 deficiency exacerbates oxidative stress in acute kidney injury by regulating superoxide dismutase. Theranostics 2023; 13:5348-5364. [PMID: 37908721 PMCID: PMC10614682 DOI: 10.7150/thno.87416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Increased methylation of key genes has been observed in kidney diseases, suggesting that the ten-eleven translocation (Tet) methyl-cytosine dioxygenase family as well as 5mC oxidation may play important roles. As a member of the Tet family, the role of Tet1 in acute kidney injury (AKI) remains unclear. Methods: Tet1 knockout mice, with or without tempol treatment, a scavenger of reactive oxygen species (ROS), were challenged with ischemia and reperfusion (I/R) injury or unilateral ureteral obstruction (UUO) injury. RNA-sequencing, Western blotting, qRT-PCR, bisulfite sequencing, chromatin immunoprecipitation, immunohistochemical staining, and dot blot assays were performed. Results: Tet1 expression was rapidly upregulated following I/R or UUO injury. Moreover, Tet1 knockout mice showed increased renal injury and renal cell death, increased ROS accumulation, G2/M cell cycle arrest, inflammation, and fibrosis. Severe renal damage in injured Tet1 knockout mice was alleviated by tempol treatment. Mechanistically, Tet1 reduced the 5mC levels in an enzymatic activity-dependent manner on the promoters of Sod1 and Sod2 to promote their expression, thus lowering injury-induced excessive ROS and reducing I/R or UUO injury. Conclusions: Tet1 plays an important role in the development of AKI by promoting SOD expression through a DNA demethylase-dependent mechanism.
Collapse
Affiliation(s)
- Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Muchuan Jin
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Donge Zhang
- Department of Pharmacy, The Third Hospital of Wuhan and Tongren Hospital of Wuhan University, Wuhan, China, 430070
| | - Dong Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Robert B. Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA, 48858
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan and Tongren Hospital of Wuhan University, Wuhan, China, 430070
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| |
Collapse
|
9
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
10
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
11
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
12
|
Abo-Shady AM, Gheda SF, Ismail GA, Cotas J, Pereira L, Abdel-Karim OH. Antioxidant and Antidiabetic Activity of Algae. Life (Basel) 2023; 13:460. [PMID: 36836817 PMCID: PMC9964347 DOI: 10.3390/life13020460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Currently, algae arouse a growing interest in the pharmaceutical and cosmetic area due to the fact that they have a great diversity of bioactive compounds with the potential for pharmacological and nutraceutical applications. Due to lifestyle modifications brought on by rapid urbanization, diabetes mellitus, a metabolic illness, is the third largest cause of death globally. The hunt for an efficient natural-based antidiabetic therapy is crucial to battling diabetes and the associated consequences due to the unfavorable side effects of currently available antidiabetic medications. Finding the possible advantages of algae for the control of diabetes is crucial for the creation of natural drugs. Many of algae's metabolic processes produce bioactive secondary metabolites, which give algae their diverse chemical and biological features. Numerous studies have demonstrated the antioxidant and antidiabetic benefits of algae, mostly by blocking carbohydrate hydrolyzing enzyme activity, such as α-amylase and α-glucosidase. Additionally, bioactive components from algae can lessen diabetic symptoms in vivo. Therefore, the current review concentrates on the role of various secondary bioactive substances found naturally in algae and their potential as antioxidants and antidiabetic materials, as well as the urgent need to apply these substances in the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Saly Farouk Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan Ahmed Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - João Cotas
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Omnia Hamdy Abdel-Karim
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
13
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
14
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
15
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
16
|
Włodarczyk M, Nowicka G, Ciebiera M, Ali M, Yang Q, Al-Hendy A. Epigenetic Regulation in Uterine Fibroids-The Role of Ten-Eleven Translocation Enzymes and Their Potential Therapeutic Application. Int J Mol Sci 2022; 23:2720. [PMID: 35269864 PMCID: PMC8910916 DOI: 10.3390/ijms23052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- The Center of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| |
Collapse
|
17
|
Wu R, Li S, Hudlikar R, Wang L, Shannar A, Peter R, Chou PJ, Kuo HCD, Liu Z, Kong AN. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic Biol Med 2022; 179:328-336. [PMID: 33359432 PMCID: PMC8222414 DOI: 10.1016/j.freeradbiomed.2020.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023]
Abstract
Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
19
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Morris-Blanco KC, Chokkalla AK, Bertogliat MJ, Vemuganti R. TET3 regulates DNA hydroxymethylation of neuroprotective genes following focal ischemia. J Cereb Blood Flow Metab 2021; 41:590-603. [PMID: 32380888 PMCID: PMC7922754 DOI: 10.1177/0271678x20912965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 5-hydroxymethylcytosine (5hmC) epigenetic modification is highly enriched in the CNS and a critical modulator of neuronal function and development. We found that cortical 5hmC was enhanced from 5 min to three days of reperfusion following focal ischemia in adult mice. Blockade of the 5hmC-producing enzyme ten-eleven translocase 3 (TET3) increased edema, infarct volume, and motor function impairments. To determine the mechanism by which TET3 provides ischemic neuroprotection, we assessed the genomic regions where TET3 modulates 5hmC. Genome-wide sequencing analysis of differentially hydroxymethylated regions (DhMRs) revealed that focal ischemia robustly increased 5hmC at the promoters of thousands of genes in a TET3-dependent manner. TET3 inhibition reduced 5hmC at the promoters of neuroprotective genes involved in cell survival, angiogenesis, neurogenesis, antioxidant defense, DNA repair, and metabolism demonstrating a role for TET3 in endogenous protection against stroke. The mRNA expression of several genes with known involvement in ischemic neuroprotection were also reduced with TET3 knockdown in both male and female mice, establishing a correlation between decreased promoter 5hmC levels and decreased gene expression. Collectively, our results indicate that TET3 globally increases 5hmC at regulatory regions and overwhelmingly modulates 5hmC in several neuroprotective pathways that may improve outcome after ischemic injury.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Research, William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Research, William S. Middleton Veterans Administration Hospital, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Tu J, Yang H, Jiang L, Chen Y, Li Z, Li L, Zhang Y, Chen X, Chen H, Yu Z. The Central Roles of Noncoding RNA in Estrogen-Dependent Female Reproductive System Tumors. Int J Endocrinol 2021; 2021:5572063. [PMID: 34122542 PMCID: PMC8169271 DOI: 10.1155/2021/5572063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of ovarian and endometrial cancers is closely associated with estrogen-related pathways. These estrogen-dependent tumors seriously threaten the health and quality of life in women. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), both of which have been reported in estrogen-dependent female reproductive system tumors. This review systematically summarizes the role of ncRNAs in estrogen-dependent tumors and common patterns of regulatory mechanisms to explore their future research directions in tumor diagnosis, treatment, and prognosis. This may provide new ideas for the potential application of ncRNAs in estrogen-dependent female reproductive system tumors.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huan Yang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Jiang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Li
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - He Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
22
|
Chen HQ, Chen DJ, Li Y, Yuan WB, Fan J, Zhang Z, Han F, Jiang X, Chen JP, Wang DD, Cao J, Liu JY, Liu WB. Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115860. [PMID: 33120142 DOI: 10.1016/j.envpol.2020.115860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The methylcytosine dioxygenase Ten-eleven translocation 1 (TET1) is an important regulator for the balance of DNA methylation and hydroxymethylation through various pathways. Increasing evidence has suggested that TET1 probably involved in DNA methylation and demethylation dysregulation during chemical carcinogenesis. However, the role and mechanism of TET1 during lung cancer remains unclear. In this study, we found that TET1 expression was significantly down-regulated and the methylation level was significantly up-regulated in 3-methylcholanthrene (3-MCA) induced cell malignant transformation model, rat chemical carcinogenesis model, and human lung cancer tissues. Demethylation experiment further confirmed that DNA methylation negatively regulated TET1 gene expression. TET1 overexpression inhibited cell proliferation, migration and invasion in vitro and in vivo, while knockdown of TET1 resulted in an opposite phenotype. DNA hydroxymethylation level in the promoter region of base excision repair (BER) pathway key genes XRCC1, OGG1, APEX1 significantly decreased and the degree of methylation gradually increased in malignant transformed cells. After differential expression of TET1, the level of hydroxymethylation, methylation and expression of these genes also changed significantly. Furthermore, TET1 binds to XRCC1, OGG1, and APEX1 to maintain them hydroxymethylated. Blockade of BER pathway key gene alone or in combination significantly diminished the effect of TET1. Our study demonstrated for the first time that TET1 expression is regulated by DNA methylation and TET1-mediated hydroxymethylation regulates BER pathway to inhibit the proliferation, migration and invasion during 3-MCA-induced lung carcinogenesis. These results suggested that TET1 gene can be a potential biomarker and therapy target for lung cancer.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Emergency, Yun Qiao Hospital, Kunming, 650224, PR China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
23
|
Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HCD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2020; 14:151-164. [PMID: 33055265 DOI: 10.1158/1940-6207.capr-20-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.
Collapse
Affiliation(s)
- Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
24
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
25
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
26
|
Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho. PLoS One 2020; 15:e0226382. [PMID: 31929539 PMCID: PMC6957300 DOI: 10.1371/journal.pone.0226382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
Klotho is an age-extending, cognition-enhancing protein found to be down-regulated in aged mammals when age-related diseases start to appear. Low levels of Klotho occur in neurodegenerative diseases, kidney disease and many cancers. Many normal and pathologic processes involve the proteolytic shedding of membrane proteins. Transmembrane (TM) Klotho contains two homologous domains, KL1 and KL2 with homology to glycosidases. After shedding by ADAM 10 and 17, a shed Klotho isoform is released into serum and urine by the kidney, and into the CSF by the choroid plexus. We previously reported that human Klotho contains two major cleavage sites. However, the exact cleavage site responsible for the cleavage between the KL1 and KL2 domains remains unknown for the human Klotho, and both sites are unknown for mouse Klotho. In this study, we aimed to identify the cleavage sites leading to the shed forms of human and mouse Klotho. Mutations in the region close to the TM domain of mouse Klotho result in the reduced shedding of the 130 kD (KL1+KL2) and 70 kD (KL1) fragments, suggesting that the cleavage site lies within the mutated region. We further identified the cleavage sites responsible for the cleavage between KL1 and KL2 of human and mouse Klotho. Moreover, mutated Klotho proteins have similar subcellular localization patterns as wild type Klotho. Finally, in an FGF23 functional assay, all Klotho mutants with a nine amino acid deletion can also function as an FGFR1 co-receptor for FGF23 signaling, however, the signaling activity was greatly reduced. The study provides new and important information on Klotho shedding, and paves the way for studies aimed to distinguish between the distinct roles of the various isoforms of Klotho.
Collapse
|
27
|
Rao Z, Zheng L, Huang H, Feng Y, Shi R. α-Klotho Expression in Mouse Tissues Following Acute Exhaustive Exercise. Front Physiol 2019; 10:1498. [PMID: 31920703 PMCID: PMC6919267 DOI: 10.3389/fphys.2019.01498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
α-Klotho, a multifunctional protein, has been demonstrated to protect tissues from injury via anti-oxidation and anti-inflammatory effects. The expression of α-klotho is regulated by several physiological and pathological factors, including acute inflammatory stress, oxidative stress, hypertension, and chronic renal failure. Exhaustive exercise has been reported to result in tissue damage, which is induced by inflammation, oxidative stress, and energy metabolism disturbance. However, little is known about the effects of exhaustive exercise on the expression of α-klotho in various tissues. To determine the effects, the treadmill exhaustion test in mice was performed and the mice were sacrificed at different time points following exhaustive exercise. Our results confirmed that the full-length (130 kDa) and shorter-form (65 kDa) α-klotho were primarily expressed in the kidneys. Moreover, we found that, except for the kidneys and brain, other tissues primarily expressed the shorter-form α-klotho, including liver, which was in contrast to previous reports. Furthermore, the shorter-form α-klotho was decreased immediately following the acute exhaustive exercise and was then restored to the pre-exercise level or even higher levels in the next few days. Our results indicate that α-klotho may play a key role in the body exhaustion and recovery following exhaustive exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu Huang
- Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Yu Feng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
28
|
Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One 2019; 14:e0220530. [PMID: 31361780 PMCID: PMC6667164 DOI: 10.1371/journal.pone.0220530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Collapse
Affiliation(s)
- Megan L. Linscott
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Wilson C. J. Chung
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
29
|
Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1 G93A) Mouse Model of ALS. J Mol Neurosci 2019; 69:264-285. [PMID: 31250273 DOI: 10.1007/s12031-019-01356-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.
Collapse
|
30
|
Shu L, Qin L, Min S, Pan H, Zhong J, Guo J, Sun Q, Yan X, Chen C, Tang B, Xu Q. Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson's disease. Neurobiol Aging 2019; 84:242.e13-242.e16. [PMID: 30948140 DOI: 10.1016/j.neurobiolaging.2019.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
DNA methylation is an important regulatory mechanism of Parkinson's disease (PD). To investigate the relationship between DNA methylation and hydroxymethylation genes and PD, we performed gene-targeted sequencing using molecular inversion probes in a Chinese PD population. We sequenced 12 genes related to DNA methylation and hydroxymethylation in 1657 patients and 1394 control subjects. We conducted genewise association analyses of rare variants detected in the present study and identified the TET1 gene as important in PD (p = 0.0037738, 0.013, 0.019521 (b.collapse test, variable threshold test, and skat-o test, respectively; sex + age as covariates). However, no positive results were observed when conducting association analyses on common variants in these genes. We performed a comprehensive analysis of associations between variants of DNA methylation and hydroxymethylation genes and PD, resulting in determination that TET1 might play a role in PD.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shishi Min
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junfei Zhong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Chao Chen
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Noack F, Pataskar A, Schneider M, Buchholz F, Tiwari VK, Calegari F. Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Sci Alliance 2019; 2:2/2/e201900331. [PMID: 30814272 PMCID: PMC6394126 DOI: 10.26508/lsa.201900331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
This work describes the dynamics of DNA modifications in specific cell types of the developing mammalian cortex. By providing a new method to manipulate this process in vivo, it is shown how this process can influence brain formation. Dynamic changes in DNA (hydroxy-)methylation are fundamental for stem cell differentiation. However, the signature of these epigenetic marks in specific cell types during corticogenesis is unknown. Moreover, site-specific manipulation of cytosine modifications is needed to reveal the significance and function of these changes. Here, we report the first assessment of (hydroxy-)methylation in neural stem cells, neurogenic progenitors, and newborn neurons during mammalian corticogenesis. We found that gain in hydroxymethylation and loss in methylation occur sequentially at specific cellular transitions during neurogenic commitment. We also found that these changes predominantly occur within enhancers of neurogenic genes up-regulated during neurogenesis and target of pioneer transcription factors. We further optimized the use of dCas9-Tet1 manipulation of (hydroxy-)methylation, locus-specifically, in vivo, showing the biological relevance of our observations for Dchs1, a regulator of corticogenesis involved in developmental malformations and cognitive impairment. Together, our data reveal the dynamics of cytosine modifications in lineage-related cell types, whereby methylation is reduced and hydroxymethylation gained during the neurogenic lineage concurrently with up-regulation of pioneer transcription factors and activation of enhancers for neurogenic genes.
Collapse
Affiliation(s)
- Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Martin Schneider
- Medical Systems Biology, School of Medicine, Technische Universität Dresden and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, School of Medicine, Technische Universität Dresden and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
Effect of Oxidative Stress on the Estrogen-NOS-NO-K Ca Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9194269. [PMID: 30881600 PMCID: PMC6387699 DOI: 10.1155/2019/9194269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.
Collapse
|
33
|
Qiu J, Zhang YN, Zheng X, Zhang P, Ma G, Tan H. Notch promotes DNMT-mediated hypermethylation of Klotho leads to COPD-related inflammation. Exp Lung Res 2019; 44:368-377. [PMID: 30686068 DOI: 10.1080/01902148.2018.1556749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM Klotho expression significantly declines in alveolar macrophages and airway epithelial cells in chronic obstructive pulmonary disease (COPD) patients, and cigarette smoke extract dramatically inhibits the expression and secretion of α-Klotho. This suggests that the silencing of Klotho is the major factor promoting COPD related inflammatory responses. This study aims to investigate the mechanism of Klotho downregulation and its effect on the inflammatory cytokines secretion and cell apoptosis. METHODS Expression of DNA methyltransferases (DNMTs) and Notch signaling activation were quantified in MH-S and 16HBE cells stimulated with cigarette smoke extract (CSE) solution. Specific inhibitors of DNMTs or Notch pathway were added together with CSE into treated and control cells. Inflammatory cytokines, cell viability and cell death were determined to explore the effect of Klotho on COPD related inflammation. RESULTS CSE treatment statistically increased the level of DNMTs expression, Klotho promoter methylation, and activated the Notch signaling pathway. Notch signal activation played a critical role in the process of modification of Klotho promoter methylation. The inhibition of DNMTs and Notch pathway rescued Klotho levels and inhibited inflammation and cell apoptosis after CSE treatment. CONCLUSION Notch-mediated Klotho hypermethylation inhibited Klotho expression, which promoted inflammatory response and cell apoptosis that were associated with the development of COPD.
Collapse
Affiliation(s)
- Jie Qiu
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Ya-Nan Zhang
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Xiwei Zheng
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Peng Zhang
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Gang Ma
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Hai Tan
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| |
Collapse
|
34
|
Martínez Leo EE, Segura Campos MR. Systemic Oxidative Stress: A key Point in Neurodegeneration - A Review. J Nutr Health Aging 2019; 23:694-699. [PMID: 31560025 DOI: 10.1007/s12603-019-1240-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic oxidative stress (SOS) has an important role in the mechanisms activation of neuronal death, involved in the neurodegenerative disease (ND) etiology. Brain is susceptible to oxidative stress injuries due to its high energy and metabolic request, therefore minimal imbalances of the redox state, as occurs in mitochondrial dysfunction, favour tissue injury and neuroinflammatory mechanisms activation. ND affect around the world about a billion people, without distinction of sex, educational level and economic status. Public measures generation that prevent ND from the SOS are possible promising therapeutic targets that could reduce the ND incidence. We discuss here the effects and mechanisms of SOS derived neurodegeneration, as well as the neuroinflammation repercussions for some cerebral structures.
Collapse
Affiliation(s)
- E E Martínez Leo
- M.R. Segura Campos Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203 Mérida, Yucatán, México, +52 999 930 0550, E-mail:
| | | |
Collapse
|
35
|
Ji C, Nagaoka K, Zou J, Casulli S, Lu S, Cao KY, Zhang H, Iwagami Y, Carlson RI, Brooks K, Lawrence J, Mueller W, Wands JR, Huang CK. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB J 2018; 33:1824-1835. [PMID: 30188753 DOI: 10.1096/fj.201800736r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5-hydroxymethylcytosine (5hmc) is a newly identified epigenetic modification thought to be regulated by the TET family of proteins. Little information is available about how ethanol consumption may modulate 5hmC formation and alcoholic liver disease (ALD) progression. A rat ALD model was used to study 5hmC in relationship to hepatocyte apoptosis. Human ALD liver samples were also used to validate these findings. It was found that chronic ethanol feeding significantly reduced 5hmC formation in a rat ALD model. There were no significant changes in TET2 and TET3 between the control- and ethanol-fed animals. In contrast, methylcytosine dioxygenase TET1 (TET1) expression was substantially reduced in the ethanol-fed rats and was accompanied by increased hepatocyte apoptosis. Similarly, knockdown of TET1 in human hepatocyte-like cells also significantly promoted apoptosis. Down-regulation of TET1 resulted in elevated expression of the DNA damage marker, suggesting a role for 5hmc in hepatocyte DNA damage as well. Mechanistic studies revealed that inhibition of TET1 promoted apoptotic gene expression. Similarly, targeting TET1 activity by removing cosubstrate promoted apoptosis and DNA damage. Furthermore, treatment with 5-azacitidine significantly mimics these effects, suggesting that chronic ethanol consumption promotes hepatocyte apoptosis and DNA damage by diminishing TET1-mediated 5hmC formation and DNA methylation. In summary, the current study provides a novel molecular insight that TET1-mediated 5hmC is involved in hepatocyte apoptosis in ALD progression.-Ji, C., Nagaoka, K., Zou, J., Casulli, S., Lu, S., Cao, K. Y., Zhang, H., Iwagami, Y., Carlson, R. I., Brooks, K., Lawrence, J., Mueller, W., Wands, J. R., Huang, C.-K. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation.
Collapse
Affiliation(s)
- Chengcheng Ji
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Critical Care Center, Beijing 302 Hospital, Beijing, China
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Kevin Y Cao
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Keri Brooks
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jonathan Lawrence
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - William Mueller
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
36
|
Zou H, Lan Z, Zhou M, Lu W. Promoter methylation and Hoxd4 regulate UII mRNA tissue-specific expression in olive flounder (paralichthys olivaceus). Gen Comp Endocrinol 2018. [PMID: 29522756 DOI: 10.1016/j.ygcen.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The peptide urotensin II (UII) mediates multiple physiology effects in mammals and fishes, and UII expression shows a tissue-specific pattern. However the mechanism is still unknown. In the present study high level of UII mRNA was detected in the caudal neurosecretory system (CNSS) of the olive flounder when compared to other tissues. We examined whether epigenetic mechanisms of DNA methylation are involved in UII gene expression. Methylation DNA immune precipitation (MeDIP) assay showed low methylation of UII promoter in CNSS tissue compared with muscle and spinal cord. Methylation of UII promoter was further assessed through bisulphate sequencing analysis. Low level methylation (31%) in CpG island of UII promoter was detected in CNSS tissue, while methylation status in muscle and spinal cord was 89% and 91%, respectively. In addition, high conserved sites of Hoxd4 in UII promoter were found. Activation of Hoxd4 mRNA using transretinoic acid (RA) resulted in 18-fold increase of UII mRNA expression in CNSS and high locomotor activity in medaka, confirming that Hoxd4 is also involved in UII gene transcriptional regulation. Taken together, our data provide the first evidence of the epigenetic mechanism of promoter methylation in transcriptional regulation of UII expression in a tissue-specific manner, and Hoxd4 may also participate in UII gene transcription in flounder.
Collapse
Affiliation(s)
- Huafeng Zou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Mo Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
37
|
Vitale SG, Capriglione S, Peterlunger I, La Rosa VL, Vitagliano A, Noventa M, Valenti G, Sapia F, Angioli R, Lopez S, Sarpietro G, Rossetti D, Zito G. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7924021. [PMID: 29743986 PMCID: PMC5883985 DOI: 10.1155/2018/7924021] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/18/2018] [Indexed: 11/17/2022]
Abstract
Endometriosis is a condition characterized by the presence of endometrial tissue outside the uterine cavity, leading to a chronic inflammatory reaction. It is one of the most widespread gynecological diseases with a 10-15% prevalence in the general female population, rising up to 30-45% in patients with infertility. Although it was first described in 1860, its etiology and pathogenesis are still unclear. It is now accepted that inflammation plays a central role in the development and progression of endometriosis. In particular, it is marked by an inflammatory process associated with the overproduction of an array of inflammatory mediators such as prostaglandins, metalloproteinases, cytokines, and chemokines. In addition, the growth and adhesion of endometrial cells in the peritoneal cavity due to reactive oxygen species (ROS) and free radicals lead to disease onset, its ensuing symptoms-among which pain and infertility. The aim of our review is to evaluate the role of oxidative stress and ROS in the pathogenesis of endometriosis and the efficacy of antioxidant therapy in the treatment and mitigation of its symptoms.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Stella Capriglione
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Isabel Peterlunger
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Lucia La Rosa
- Unit of Psychodiagnostics and Clinical Psychology, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Amerigo Vitagliano
- Department of Woman and Child Health, University of Padua, Via Giustiniani 3, 35128 Padua, Italy
| | - Marco Noventa
- Department of Woman and Child Health, University of Padua, Via Giustiniani 3, 35128 Padua, Italy
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Salvatore Lopez
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Sarpietro
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Diego Rossetti
- Unit of Gynecology and Obstetrics, Desenzano del Garda Hospital, Section of Gavardo, Via A. Gosa 74, 25085 Gavardo, Italy
| | - Gabriella Zito
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Via dell'Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
38
|
The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018. [PMID: 29523769 DOI: 10.1042/bst20170121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of the advancing age of the global population and the progressive increase in lifespan, neurodegenerative disorders continue to increase in incidence throughout the world. New strategies for neurodegenerative disorders involve the novel pathways of the mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that can modulate pathways of apoptosis and autophagy. The pathways of mTOR and SIRT1 are closely integrated. mTOR forms the complexes mTOR Complex 1 and mTOR Complex 2 and can impact multiple neurodegenerative disorders that include Alzheimer's disease, Huntington's disease, and Parkinson's disease. SIRT1 can control stem cell proliferation, block neuronal injury through limiting programmed cell death, drive vascular cell survival, and control clinical disorders that include dementia and retinopathy. It is important to recognize that oversight of programmed cell death by mTOR and SIRT1 requires a fine degree of precision to prevent the progression of neurodegenerative disorders. Additional investigations and insights into these pathways should offer effective and safe treatments for neurodegenerative disorders.
Collapse
|
39
|
Morar B, Badcock JC, Phillips M, Almeida OP, Jablensky A. The longevity gene Klotho is differentially associated with cognition in subtypes of schizophrenia. Schizophr Res 2018; 193:348-353. [PMID: 28673754 DOI: 10.1016/j.schres.2017.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/10/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and impacts negatively the functioning of affected individuals. Cognitive decline correlates with aging, and is the primary cause of loss of independence and reduced quality of life. The klotho gene is a key modulator of aging, with expression deficiency resulting in premature aging, while overexpression extends lifespan and enhances cognition. A haplotype and functional human variant of the gene, KL-VS, increases expression and promotes longevity. KL-VS heterozygosity is associated with enhanced cognition and a larger volume of the right dorsolateral prefrontal cortex, a region involved in planning and decision-making, which is especially susceptible to shrinkage with age. We examined the effect of KL-VS heterozygosity on cognition in 497 schizophrenia patients and 316 healthy controls from the Western Australian Family Study of Schizophrenia (WAFSS) who had been comprehensively characterised by neurocognitive tests and classified into cognitively deficient (CD) and cognitively "spared" (CS) clusters. An older, cognitively normal population sample from the Health in Men Study (HIMS) was included to allow assessment of heterozygosity and memory in aged individuals. We show that heterozygosity is associated with better learning and memory in the younger WAFSS healthy controls but not in the aging HIMS sample. However, in schizophrenia patients, KL-VS has a selective effect on memory, with heterozygotes in CD and CS clusters performing worse than non-carriers. This effect was significant and more severe in the CD cluster, reinforcing the utility of subtyping patients into CD and CS clusters that may differ in their genetic underpinnings.
Collapse
Affiliation(s)
- Bharti Morar
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, 6 Verdun Street, Nedlands, WA 6009, Australia.
| | - Johanna C Badcock
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| | - Michael Phillips
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Osvaldo P Almeida
- WA Centre for Health and Ageing, Centre for Medical Research, Perth, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| |
Collapse
|
40
|
Wang MY, Lin ZR, Cao Y, Zheng LS, Peng LX, Sun R, Meng DF, Xie P, Yang JP, Cao L, Xu L, Huang BJ, Qian CN. PDZ binding kinase (PBK) is a theranostic target for nasopharyngeal carcinoma: driving tumor growth via ROS signaling and correlating with patient survival. Oncotarget 2018; 7:26604-16. [PMID: 27049917 PMCID: PMC5042002 DOI: 10.18632/oncotarget.8445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is well known as one of the most common malignancies in southern China and Southeast Asia. However, the mechanisms underlying NPC progression remain poorly understood. Herein, through overlapping the differentially expressed genes from 3 microarray data sets with the human kinome, we identified PBK, a serine-threonine kinase, is highly upregulated and has not been intensively investigated in NPC. PBK was required for malignant phenotypes of NPC, as PBK depletion by RNAi and inhibition by specific inhibitor HI-TOPK-032 obviously reduced cell proliferation and xenograft tumor growth in mice. Moreover, we determined that targeting PBK could accelerate apoptosis by inducing ROS that activates JNK/p38 signaling pathway. In NPC patients, elevated PBK expression in primary tumor positively correlated to clinical severity such as advanced T stage, high death risk and disease progression, and it could serve as an unfavorable independent indicator of overall survival and disease-free survival. Altogether, our results indicate that PBK is a novel significant regulator of NPC progression and a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Meng-Yao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yun Cao
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dong-Fang Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Li Cao
- Department of Pharmacy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liang Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
42
|
Wehling-Henricks M, Welc SS, Samengo G, Rinaldi C, Lindsey C, Wang Y, Lee J, Kuro-O M, Tidball JG. Macrophages escape Klotho gene silencing in the mdx mouse model of Duchenne muscular dystrophy and promote muscle growth and increase satellite cell numbers through a Klotho-mediated pathway. Hum Mol Genet 2018; 27:14-29. [PMID: 29040534 PMCID: PMC5886268 DOI: 10.1093/hmg/ddx380] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disease in which inflammation influences the severity of pathology. We found that the onset of muscle inflammation in the mdx mouse model of DMD coincides with large increases in expression of pro-inflammatory cytokines [tumor necrosis factor-α (TNFα); interferon gamma (IFNγ)] and dramatic reductions of the pro-myogenic protein Klotho in muscle cells and large increases of Klotho in pro-regenerative, CD206+ macrophages. Furthermore, TNFα and IFNγ treatments reduced Klotho in muscle cells and increased Klotho in macrophages. Because CD206+/Klotho+ macrophages were concentrated at sites of muscle regeneration, we tested whether macrophage-derived Klotho promotes myogenesis. Klotho transgenic macrophages had a pro-proliferative influence on muscle cells that was ablated by neutralizing antibodies to Klotho and conditioned media from Klotho mutant macrophages did not increase muscle cell proliferation in vitro. In addition, transplantation of bone marrow cells from Klotho transgenic mice into mdx recipients increased numbers of myogenic cells and increased the size of muscle fibers. Klotho also acted directly on macrophages, stimulating their secretion of TNFα. Because TNFα is a muscle mitogen, we tested whether the pro-proliferative effects of Klotho on muscle cells were mediated by TNFα and found that increased proliferation caused by Klotho was reduced by anti-TNFα. Collectively, these data show that pro-inflammatory cytokines contribute to silencing of Klotho in dystrophic muscle, but increase Klotho expression by macrophages. Our findings also show that macrophage-derived Klotho can promote muscle regeneration by expanding populations of muscle stem cells and increasing muscle fiber growth in dystrophic muscle.
Collapse
Affiliation(s)
- Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Guiseppina Samengo
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Chiara Rinaldi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Catherine Lindsey
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Ying Wang
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095, USA
| | - Jeongyoon Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Modulations of DNMT1 and HDAC1 are involved in the OTA-induced cytotoxicity and apoptosis in vitro. Chem Biol Interact 2017; 278:170-178. [PMID: 29080797 DOI: 10.1016/j.cbi.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/29/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
Ochratoxin A (OTA) as a fungal metabolite is reported to induce cytotoxicity and apoptosis through the mechanism of oxidative stress. Oxidative stress could induce the epigenetic enzymes modifications. However, whether epigenetic enzymes modifications are involved in OTA-induced cytotoxicity and apoptosis has not been reported until now. Therefore, the objectives of this study were to verify OTA-induced cytotoxicity and apoptosis and to investigate the potential role of epigenetic enzymes in OTA-induced cytotoxicity and apoptosis in PK15 cells. The results demonstrated that OTA at 4 μg/ml treatment for 12 h and 24 h induced cytotoxicity and apoptosis as demonstrated by decreasing cell viability, increasing LDH release, Annexin V/PI staining, Bcl-2/Bax mRNA ratio and apoptotic nuclei in PK15 cells. OTA treatment up-regulated ROS production and down-regulated GSH levels. In addition, OTA treatment activated the epigenetics related enzymes DNA methyltransferase 1 (DNMT1) and Histone deacetylase 1 (HDAC1). Adding DNMT1 inhibitor (5-Aza-2dc) or HDAC1 inhibitor (LBH589) depressed the up-regulation of DNMT1 or HDAC1 expression, the decreases of GSH levels and increases of ROS production induced by OTA, respectively. Furthermore, inhibition of DNMT1 or HDAC1 by their inhibitor reversed the decreases of cell viability and increases of LDH activity and apoptosis induced by OTA, respectively. In conclusion, the observed effects indicate that the critical modulation of DNMT1 and HDAC1 is related to OTA-induced cytotoxicity and apoptosis.
Collapse
|
44
|
Gou P, Qi X, Yuan R, Li H, Gao X, Wang J, Zhang B. Tet1-mediated DNA demethylation involves in neuron damage induced by bilirubin in vitro. Toxicol Mech Methods 2017; 28:55-61. [DOI: 10.1080/15376516.2017.1357775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Panhong Gou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoling Qi
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Rui Yuan
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haojie Li
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoling Gao
- Clinical Research and Translational Medicine Institute, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Junling Wang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Meinke MC, Nowbary CK, Schanzer S, Vollert H, Lademann J, Darvin ME. Influences of Orally Taken Carotenoid-Rich Curly Kale Extract on Collagen I/Elastin Index of the Skin. Nutrients 2017; 9:nu9070775. [PMID: 28753935 PMCID: PMC5537889 DOI: 10.3390/nu9070775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Two differently designed, spatially resolved reflectance spectroscopy-based scanners and two-photon tomography were used for noninvasive in vivo determination of cutaneous carotenoids, and collagen I/elastin aging index of dermis, respectively, in the skin of 29 healthy female volunteers between 40 and 56 years of age. The volunteers received a supplement in the form of a carotenoid-rich natural curly kale extract containing 1650 µg of carotenoids in total (three capsules of 550 µg), once a day. Measurements were taken before, after 5 months and after 10 months of daily supplementation. The results showed significantly increased values for the cutaneous carotenoids and the collagen I/elastin aging index of dermis 5 and 10 months after the beginning of the study. The obtained results show that a natural carotenoid-rich extract could prevent the aging-related collagen I degradation in the dermis and improve the extracellular matrix.
Collapse
Affiliation(s)
- Martina C Meinke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Ceylan K Nowbary
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sabine Schanzer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Henning Vollert
- Bioactive Food GmbH, Am Ihlsee 36a, 23795 Bad Segeberg, Germany.
| | - Jürgen Lademann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
46
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
The relevance of α-KLOTHO to the central nervous system: Some key questions. Ageing Res Rev 2017; 36:137-148. [PMID: 28323064 DOI: 10.1016/j.arr.2017.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
α-Klotho is well described as an anti-aging protein, with critical roles in kidney function as a transmembrane co-receptor for FGF23, and as a soluble factor in serum. α-Klotho is also expressed in the choroid plexus, where it is released into the cerebrospinal fluid. Nonetheless, α-Klotho is also expressed in the brain parenchyma. Accumulating evidence indicates that this pool of α-Klotho, which we define as brain α-Klotho, may play important roles as a neuroprotective factor and in promoting myelination, thereby supporting healthy brain aging. Here we summarize what is known about brain α-Klotho before focusing on the outstanding scientific questions related to its function. We believe there is a need for in vitro studies designed to distinguish between brain α-Klotho and other pools of α-Klotho, and for a greater understanding of the basic function of soluble α-Klotho. The mechanism by which the human KL-VS variant affects cognition also requires further elucidation. To help address these questions we suggest some experimental approaches that other laboratories might consider. In short, we hope to stimulate fresh ideas and encourage new research approaches that will allow the importance of α-Klotho for the aging brain to become clear.
Collapse
|
48
|
Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection. Mol Cell Neurosci 2017; 82:176-194. [DOI: 10.1016/j.mcn.2017.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
|
49
|
Ponomarev I, Stelly CE, Morikawa H, Blednov YA, Mayfield RD, Harris RA. Mechanistic insights into epigenetic modulation of ethanol consumption. Alcohol 2017; 60:95-101. [PMID: 28433417 DOI: 10.1016/j.alcohol.2017.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that small-molecule inhibitors of epigenetic modulators, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), can reduce voluntary ethanol consumption in animal models, but molecular and cellular processes underlying this behavioral effect are poorly understood. We used C57BL/6J male mice to investigate the effects of two FDA-approved drugs, decitabine (a DNMT inhibitor) and SAHA (an HDAC inhibitor), on ethanol consumption using two tests: binge-like drinking in the dark (DID) and chronic intermittent every other day (EOD) drinking. Decitabine but not SAHA reduced ethanol consumption in both tests. We further investigated decitabine's effects on the brain's reward pathway by gene expression profiling in the ventral tegmental area (VTA), using RNA sequencing and electrophysiological recordings from VTA dopaminergic neurons. Decitabine-induced decreases in EOD drinking were associated with global changes in gene expression, implicating regulation of cerebral blood flow, extracellular matrix organization, and neuroimmune functions in decitabine actions. In addition, an in vivo administration of decitabine shortened ethanol-induced excitation of VTA dopaminergic neurons in vitro, suggesting that decitabine reduces ethanol drinking via changes in the reward pathway. Taken together, our data suggest a contribution of both neuronal and non-neuronal mechanisms in the VTA in the regulation of ethanol consumption. Decitabine and other epigenetic compounds have been approved for cancer treatment, and understanding their mechanisms of actions in the brain may assist in repurposing these drugs and developing novel therapies for central disorders, including drug addiction.
Collapse
Affiliation(s)
- Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA.
| | | | | | | | | | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA
| |
Collapse
|
50
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|