1
|
Lin CW, Hung SY, Chen IW. Analysis of the Endocrine Responses to Anti-Diabetes Drugs: An Issue of Elevated Plasma Renin Concentration in Sodium-Glucose Co-Transporter 2 Inhibitor. Int J Gen Med 2025; 18:135-144. [PMID: 39816640 PMCID: PMC11734502 DOI: 10.2147/ijgm.s497664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Purpose Glucose metabolism is associated with several endocrine disorders. Anti-diabetes drugs are crucial in controlling diabetes and its complications; nevertheless, few studies have been carried out involving endocrine function. This study aimed to investigate the association between anti-diabetes drugs and endocrine parameters. Patients and Methods We performed a study of 180 consecutive patients with type 2 diabetes who attended a medical center. Laboratory measurements of metabolic values and endocrine parameters were assessed after a stable treatment regimen of more than 12 weeks. The differences in various endocrine parameters were compared between subjects with or without certain anti-diabetes drugs, with the administrated anti-diabetes drugs being analyzed to find independent risks associated with elevated endocrine parameters. Results After maintaining stable treatment, acceptable glycemic control was noted with an average HbA1c of 7.55% in females and 7.43% in males. Participants taking sulfonylurea (55.8 vs 26.34 ng/L, P=0.043), dipeptidyl peptidase-4 inhibitor (DPP4i) (47.14 vs 32.26 ng/L, P=0.096), or sodium-glucose co-transporter 2 inhibitor (SGLT2i) (64.58 vs 28.11 ng/L, P=0.117) had higher plasma renin concentrations compared to those without this drug but the aldosterone levels did not differ, as well as for other adrenal tests and thyroid function. Under linear regression modeling, SGLT2i was found to be independently associated with a risk of high renin level (beta coefficient: 30.186, 95% confidence interval: 1.71─58.662, P=0.038), whereas sulfonylurea only had borderline associations (B: 21.143, 95% CI: -2.729─45.014, P=0.082). Additionally, renin-angiotensin-aldosterone system (RAAS) blockade (B: 36.728, 95% CI: 12.16─61.295, P=0.004) or diuretics (B: 47.847, 95% CI: 2.039─93.655, P=0.041) was also independently associated with increased renin levels. Conclusion SGLT2i was the only class of anti-diabetes drugs independently associated with elevated renin levels, with results similar to RAAS blockade and diuretics. Although SGLT2i appears to protect reno- and cardio-function, the clinical impact of increased renin warrants further precise study for verification.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu City, Taiwan
| | - Shih-Yuan Hung
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu City, Taiwan
| | - I-Wen Chen
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Atsarina DM, Widyastiti NS, Muniroh M, Susilaningsih N, Maharani N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J Obes Metab Syndr 2024; 33:261-269. [PMID: 39098053 PMCID: PMC11443325 DOI: 10.7570/jomes23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11β-HSD1 levels. Results Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11β-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.30 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11β-HSD1 and blood glucose levels.
Collapse
Affiliation(s)
- Diana Mazaya Atsarina
- Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nyoman Suci Widyastiti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Neni Susilaningsih
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| |
Collapse
|
3
|
Gonzalez-Muñiz OE, Rodriguez-Carlos A, Santos-Mena A, Jacobo-Delgado YM, Gonzalez-Curiel I, Rivas-Santiago C, Navarro-Tovar G, Rivas-Santiago B. Metformin modulates corticosteroids hormones in adrenals cells promoting Mycobacterium tuberculosis elimination in human macrophages. Tuberculosis (Edinb) 2024; 148:102548. [PMID: 39068772 DOI: 10.1016/j.tube.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Research suggests that both tuberculosis (TB) and type 2 diabetes mellitus (T2DM) have an immuno-endocrine imbalance characterized by dysregulated proinflammatory molecules and hormone levels (high cortisol/DHEA ratio), impeding an effective immune response against Mycobacterium tuberculosis (Mtb) driven by cytokines, antimicrobial peptides (AMPs), and androgens like DHEA. Insulin, sulfonylurea derivatives, and metformin are commonly used glucose-lowering drugs in patients suffering from TB and T2DM. For this comorbidity, metformin is an attractive target to restore the immunoendocrine mechanisms dysregulated against Mtb. This study aimed to assess whether metformin influences cortisol and DHEA synthesis in adrenal cells and if these hormones influence the expression of proinflammatory cytokines and AMPs in Mtb-infected macrophages. Our results suggest that metformin may enhance DHEA synthesis while maintaining cortisol homeostasis. In addition, supernatants from metformin-treated adrenal cells decreased mycobacterial loads in macrophages, which related to rising proinflammatory cytokines and AMP expression (HBD-2 and 3). Intriguingly, we find that HBD-3 and LL-37 can modulate steroid synthesis in adrenal cells with diminished levels of cortisol and DHEA, highlighting the importance of crosstalk communication between adrenal hormones and these effectors of innate immunity. We suggest that metformin's effects can promote innate immunity against Mtb straight or through modulation of corticosteroid hormones.
Collapse
Affiliation(s)
- Oscar E Gonzalez-Muñiz
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P, Mexico
| | - Adrián Rodriguez-Carlos
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Alan Santos-Mena
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P, Mexico
| | - Yolanda M Jacobo-Delgado
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas, 98085, Mexico
| | - Cesar Rivas-Santiago
- CONAHCYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, 98085, Mexico
| | | | - Bruno Rivas-Santiago
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
4
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
6
|
Bennici G, Almahasheer H, Alghrably M, Valensin D, Kola A, Kokotidou C, Lachowicz J, Jaremko M. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Adv 2024; 14:17448-17460. [PMID: 38813124 PMCID: PMC11135279 DOI: 10.1039/d4ra02349h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, presents a growing global health challenge. In 2021, there were 529 million diabetics worldwide. At the super-regional level, Oceania, the Middle East, and North Africa had the highest age-standardized rates. The majority of cases of diabetes in 2021 (>90.0%) were type 2 diabetes, which is largely indicative of the prevalence of diabetes in general, particularly in older adults (K. L. Ong, et al., Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 2023, 402(10397), 203-234). Nowadays, slowing the progression of diabetic complications is the only effective way to manage diabetes with the available therapeutic options. However, novel biomarkers and treatments are urgently needed to control cytokine secretion, advanced glycation end products (AGEs) production, vascular inflammatory effects, and cellular death. Emerging research has highlighted the intricate interplay between reactive oxygen species (ROS) and protein aggregation in the pathogenesis of diabetes. In this scenario, the main aim of this paper is to provide a comprehensive review of the current understanding of the molecular mechanisms underlying ROS-induced cellular damage and protein aggregation, specifically focusing on their contribution to diabetes development. The role of ROS as key mediators of oxidative stress in diabetes is discussed, emphasizing their impact on cellular components and signaling. Additionally, the involvement of protein aggregation in impairing cellular function and insulin signaling is explored. The synergistic effects of ROS and protein aggregation in promoting β-cell dysfunction and insulin resistance are examined, shedding light on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU) Dammam 31441-1982 Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete 70013 Heraklion Crete Greece
- Institute of Electronic Structure and Laser (IESL) FORTH 70013 Heraklion Crete Greece
| | - Joanna Lachowicz
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University Mikulicza-Radeckiego 7 Wroclaw PL 50-368 Poland
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
7
|
Paliwal S, Jain S, Mudgal P, Verma K, Paliwal S, Sharma S. Mitochondrial transfer restores impaired liver functions by AMPK/ mTOR/PI3K-AKT pathways in metabolic syndrome. Life Sci 2023; 332:122116. [PMID: 37739165 DOI: 10.1016/j.lfs.2023.122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid β-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pallavi Mudgal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
8
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
9
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
10
|
Taher H, Sabra MS, Salah El-Din AED, Sayed AEDH. Hemato-biochemical indices alteration, oxidative stress, and immune suppression in the African catfish (Clarias gariepinus) exposed to metformin. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:361-369. [DOI: 10.1007/s13530-022-00150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 12/09/2024]
|
11
|
Janssen JAMJL. New Insights into the Role of Insulin and Hypothalamic-Pituitary-Adrenal (HPA) Axis in the Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23158178. [PMID: 35897752 PMCID: PMC9331414 DOI: 10.3390/ijms23158178] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recent data suggests that (pre)diabetes onset is preceded by a period of hyperinsulinemia. Consumption of the "modern" Western diet, over-nutrition, genetic background, decreased hepatic insulin clearance, and fetal/metabolic programming may increase insulin secretion, thereby causing chronic hyperinsulinemia. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, polycystic ovarian syndrome, and Alzheimer's disease. Recent data suggests that the onset of prediabetes and diabetes are preceded by a variable period of hyperinsulinemia. Emerging data suggest that chromic hyperinsulinemia is also a driving force for increased activation of the hypothalamic-adrenal-pituitary (HPA) axis in subjects with the metabolic syndrome, leading to a state of "functional hypercortisolism". This "functional hypercortisolism" by antagonizing insulin actions may prevent hypoglycemia. It also disturbs energy balance by shifting energy fluxes away from muscles toward abdominal fat stores. Synergistic effects of hyperinsulinemia and "functional hypercortisolism" promote abdominal visceral obesity and insulin resistance which are core pathophysiological components of the metabolic syndrome. It is hypothesized that hyperinsulinemia-induced increased activation of the HPA axis plays an important etiological role in the development of the metabolic syndrome and its consequences. Numerous studies have demonstrated reversibility of hyperinsulinemia with lifestyle, surgical, and pharmaceutical-based therapies. Longitudinal studies should be performed to investigate whether strategies that reduce hyperinsulinemia at an early stage are successfully in preventing increased activation of the HPA axis and the metabolic syndrome.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Erasmus Medical Center, Room Rg527, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
13
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Soldat-Stanković V, Popović-Pejičić S, Stanković S, Prtina A, Malešević G, Bjekić-Macut J, Livadas S, Ognjanović S, Mastorakos G, Micić D, Macut D. The effect of metformin and myoinositol on metabolic outcomes in women with polycystic ovary syndrome: role of body mass and adiponectin in a randomized controlled trial. J Endocrinol Invest 2022; 45:583-595. [PMID: 34665453 DOI: 10.1007/s40618-021-01691-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare the effects of insulin sensitizers metformin (MET) and myo-inositol (MI) on adiponectin levels and metabolic characteristics in women with polycystic ovary syndrome (PCOS) with respect to their body mass index (BMI). METHODS In this open label, parallel randomized clinical trial, 66 women with PCOS (33 normal-weight and 33 overweight/obese) were randomized to either MI (4 g/day) or MET (1500 mg/day) for a period of 6 months. Serum concentration of adiponectin, hormonal and metabolic laboratory outcomes and clinical assessment of BMI, body composition and Ferriman-Gallwey score (FG score) were evaluated before and after treatment. RESULTS After the 6-month intervention, comparison between MET and MI in time to treatment analysis showed no significant differences between the two treatments for all analyzed parameters. Only borderline significantly lower AUC glucose was found in the MET group in comparison to the MI group (p = 0.071). The main effect of treatment was shown for glucose concentration at 120 min OGTT (p = 0.032) and testosterone (p = 0.002). The main effect of time was shown for body mass (p = 0.004), waist circumference (p < 0.001), BMI (p = 0.003), body fat mass (p = 0.001), adiponectin (p = 0.020), fasting glucose (p = 0.001), testosterone (p = 0.015), SHBG (p = 0.013), 17OH progesterone (p = 0.008), LH (p = 0.004) and estradiol (p = 0.014). CONCLUSION Our study showed similar effects of MET and MI on BMI, body composition, hormonal profile, metabolism of glucose and insulin, and adiponectin level. The two insulin sensitizers, MET and MI, were useful in reducing BMI and improving body composition without significant differences between the two treatments in PCOS women. TRIAL REGISTRATION ISRCTN13199265. Trial registration date: 14.04.2021. (ISRCTN Registry), retrospectively registered.
Collapse
Affiliation(s)
- V Soldat-Stanković
- University Clinical Center of the Republic of Srpska, Internal Medicine Clinic, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - S Popović-Pejičić
- University Clinical Center of the Republic of Srpska, Internal Medicine Clinic, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - S Stanković
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - A Prtina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - G Malešević
- University Clinical Center of the Republic of Srpska, Internal Medicine Clinic, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - J Bjekić-Macut
- Department of Endocrinology, CHC Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - S Livadas
- Endocrine Unit, Metropolitan Hospital, Athens, Greece
| | - S Ognjanović
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, dr Subotica 13, 11000, Belgrade, Serbia
| | - G Mastorakos
- Unit of Endocrine Diseases, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - D Micić
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - D Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, dr Subotica 13, 11000, Belgrade, Serbia.
| |
Collapse
|
15
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Biguanide Pharmaceutical Formulations and the Applications of Bile Acid-Based Nano Delivery in Chronic Medical Conditions. Int J Mol Sci 2022; 23:ijms23020836. [PMID: 35055022 PMCID: PMC8775521 DOI: 10.3390/ijms23020836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Biguanides, particularly the widely prescribed drug metformin, have been marketed for many decades and have well-established absorption profiles. They are commonly administered via the oral route and, despite variation in oral uptake, remain commonly prescribed for diabetes mellitus, typically type 2. Studies over the last decade have focused on the design and development of advanced oral delivery dosage forms using bio nano technologies and novel drug carrier systems. Such studies have demonstrated significantly enhanced delivery and safety of biguanides using nanocapsules. Enhanced delivery and safety have widened the potential applications of biguanides not only in diabetes but also in other disorders. Hence, this review aimed to explore biguanides’ pharmacokinetics, pharmacodynamics, and pharmaceutical applications in diabetes, as well as in other disorders.
Collapse
|
17
|
Singh SSB, Patil KN. Trans-ferulic acid attenuates hyperglycemia-induced oxidative stress and modulates glucose metabolism by activating AMPK signaling pathway in vitro. J Food Biochem 2022; 46:e14038. [PMID: 34981525 DOI: 10.1111/jfbc.14038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a potent metabolic regulator and an attractive target for antidiabetic activators. Here we report for the first that, trans-ferulic acid (TFA) is a potent dietary bioactive molecule of hydroxycinnamic acid derivative for the activation of AMPK with a maximum increase in phosphorylation (2.71/2.67 ± 0.10; p < .001 vs. high glucose [HG] control) in hyperglycemia-induced human liver cells (HepG2) and rat skeletal muscle cells (L6), where HG suppresses the AMPK pathway. It was also observed that TFA increased activation of AMPK in a dose- and time-dependent manner and also increased the phosphorylation of acetyl-CoA carboxylase (ACC), suggesting that it may promotes fatty acid oxidation; however, pretreatment with compound C reversed the effect. In addition, TFA reduced the level of intracellular reactive oxygen species (ROS) and nitric oxide (NO) induced by hyperglycemia and subsequently increased the level of glutathione. Interestingly, TFA also upregulated the glucose transporters, GLUT2 and GLUT4, and inhibited c-Jun N-terminal protein kinase (JNK1/2) by decreasing the phosphorylation level in tested cells under HG condition. Our studies provide critical insights into the mechanism of action of TFA as a potential natural activator of AMPK under hyperglycemia. PRACTICAL APPLICATIONS: Hydroxycinnamic acid derivatives possess various pharmacological properties and are found to be one of the most ubiquitous groups of plant metabolites in almost all dietary sources. However, the tissue-specific role and its mechanism under hyperglycemic condition remain largely unknown. The present study showed that TFA is a potent activator of AMPK under HG condition and it could be used as a therapeutic agent against hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- Sangeetha S B Singh
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Raj V, Natarajan S, C M, Chatterjee S, Ramasamy M, Ramanujam GM, Arasu MV, Al-Dhabi NA, Choi KC, Arockiaraj J, Karuppiah K. Cholecalciferol and metformin protect against lipopolysaccharide-induced endothelial dysfunction and senescence by modulating sirtuin-1 and protein arginine methyltransferase-1. Eur J Pharmacol 2021; 912:174531. [PMID: 34710370 DOI: 10.1016/j.ejphar.2021.174531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023]
Abstract
Endothelial cell activation through nuclear factor-kappa-B (NFkB) and mitogen-activated protein kinases leads to increased biosynthesis of pro-inflammatory mediators, cellular injury and vascular inflammation under lipopolysaccharide (LPS) exposure. Recent studies report that LPS up-regulated global methyltransferase activity. In this study, we observed that a combination treatment with metformin (MET) and cholecalciferol (VD) blocked the LPS-induced S-adenosylmethionine (SAM)-dependent methyltransferase (SDM) activity in Eahy926 cells. We found that LPS challenge (i) increased arginine methylation through up-regulated protein arginine methyltransferase-1 (PRMT1) mRNA, intracellular concentrations of asymmetric dimethylarginine (ADMA) and homocysteine (HCY); (ii) up-regulated cell senescence through mitigated sirtuin-1 (SIRT1) mRNA, nicotinamide adenine dinucleotide (NAD+) concentration, telomerase activity and total antioxidant capacity; and (iii) lead to endothelial dysfunction through compromised nitric oxide (NOx) production. However, these LPS-mediated cellular events in Eahy926 cells were restored by the synergistic effect of MET and VD. Taken together, this study identified that the dual compound effect inhibits LPS-induced protein arginine methylation, endothelial senescence and dysfunction through the components of epigenetic machinery, SIRT1 and PRMT1, which is a previously unidentified function of the test compounds. In silico results identified the presence of vitamin D response element (VDRE) sequence on PRMT1 suggesting that VDR could regulate PRMT1 gene expression. Further characterization of the cellular events associated with the dual compound challenge, using gene silencing approach or adenoviral constructs for SIRT1 and/or PRMT1 under inflammatory stress, could identify therapeutic strategies to address the endothelial consequences in vascular inflammation-mediated atherosclerosis.
Collapse
Affiliation(s)
- Vijay Raj
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Suganya Natarajan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Marimuthu C
- Gleneagles Global Health City, Chennai, 600100, India
| | - Suvro Chatterjee
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Ganesh Munuswamy Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330-801, Republic of Korea
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603202, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Humanities, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Kanchana Karuppiah
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India.
| |
Collapse
|
19
|
Soberanes-Gutiérrez CV, León-Ramírez C, Sánchez-Segura L, Cordero-Martínez E, Vega-Arreguín JC, Ruiz-Herrera J. Cell death in Ustilago maydis: comparison with other fungi and the effect of metformin and curcumin on its chronological lifespan. FEMS Yeast Res 2021; 20:5908381. [PMID: 32945857 DOI: 10.1093/femsyr/foaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ustilago maydis is a Basidiomycota fungus, in which very little is known about its mechanisms of cell survival and death. To date, only the role of metacaspase1, acetate and hydrogen peroxide as inducers of cell death has been investigated. In the present work, we analyzed the lifespan of U. maydis compared with other species like Sporisorium reilianum, Saccharomyces cerevisiae and Yarrowia lipolytica, and we observed that U. maydis has a minor lifespan. We probe the addition of low concentrations metformin and curcumin to the culture media, and we observed that both prolonged the lifespan of U. maydis, a result observed for the first time in a phytopathogen fungus. However, higher concentrations of curcumin were toxic for the cells, and interestingly induced the yeast-to-mycelium dimorphic transition. The positive effect of metformin and curcumin appears to be related to an inhibition of the mechanistic Target of Rapamycin (mTOR) pathway, increase expression of autophagy genes and reducing of reactive oxygen species. These data indicate that U. maydis may be a eukaryotic model organism to elucidate the molecular mechanism underlying apoptotic and necrosis pathways, and the lifespan increase caused by metformin and curcumin.
Collapse
Affiliation(s)
- Cinthia V Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México.,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Emmanuel Cordero-Martínez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| |
Collapse
|
20
|
Kim HW. Metabolomic Approaches to Investigate the Effect of Metformin: An Overview. Int J Mol Sci 2021; 22:10275. [PMID: 34638615 PMCID: PMC8508882 DOI: 10.3390/ijms221910275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin is the first-line antidiabetic drug that is widely used in the treatment of type 2 diabetes mellitus (T2DM). Even though the various therapeutic potential of metformin treatment has been reported, as well as the improvement of insulin sensitivity and glucose homeostasis, the mechanisms underlying those benefits are still not fully understood. In order to explain the beneficial effects on metformin treatment, various metabolomics analyses have been applied to investigate the metabolic alterations in response to metformin treatment, and significant systemic metabolome changes were observed in biofluid, tissues, and cells. In this review, we compare the latest metabolomic research including clinical trials, animal models, and in vitro studies comprehensively to understand the overall changes of metabolome on metformin treatment.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Docrat TF, Nagiah S, Chuturgoon AA. Metformin protects against neuroinflammation through integrated mechanisms of miR-141 and the NF-ĸB-mediated inflammasome pathway in a diabetic mouse model. Eur J Pharmacol 2021; 903:174146. [PMID: 33961875 DOI: 10.1016/j.ejphar.2021.174146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023]
Abstract
The brain responds to diabetic stress by inducing the inflammatory response. Under normal circumstances this process is tightly regulated. However, uncontrolled inflammatory responses lead to compromised function and eventual neurodegeneration. The microRNA (miR)-200 family, specifically miR-141, is differentially expressed in diseased states including cognitive decline, thereby triggering changes in downstream genes. We hypothesised that Metformin (MF) regulates the miR-141/protein phosphatase 2A (PP2A) axis, and associated NF-ĸB-mediated inflammasome expression in diabetic mice brain. Diabetes was induced by intraperitoneal injection of Streptozotocin (STZ), thereafter mice were treated with MF (20 mg/kg BW). Whole brain tissue was harvested for further analysis. In silico analysis showed that Sirt1 and PP2A are prediction targets of miR-141. Selected protein and gene expressions were established through western blotting and qPCR, respectively. Diabetic mice brain tissue demonstrated overexpression of miR-141 and related pro-inflammatory factors as well as decreased PP2A gene expression. MF was able to counteract this by regulating expression of miR-141, PP2A, and p-tau at Ser396 protein expressions. Further experimentation revealed MF's inhibitory action on the inflammasome system by regulating the expression of the upstream controller NLRP3, related cytokines and NF-κB signalling pathway. Collectively, we demonstrate that MF promotes neuroprotection in diabetic mice by dampening inflammatory responses through its inhibitory effects on various signalling pathways. CATEGORIES: Inflammation and Immunopharmacology, Metabolic Disorders and Endocrinology, Neuropharmacology.
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
22
|
Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep 2021; 11:10487. [PMID: 34006970 PMCID: PMC8131751 DOI: 10.1038/s41598-021-89861-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer cells exhibit altered metabolism, a phenomenon described a century ago by Otto Warburg. However, metabolic drug targeting is considered an underutilized and poorly understood area of cancer therapy. Metformin, a metabolic drug commonly used to treat type 2 diabetes, has been associated with lower cancer incidence, although studies are inconclusive concerning effectiveness of the drug in treatment or cancer prevention. The aim of this study was to determine how glucose concentration influences cancer cells' response to metformin, highlighting why metformin studies are inconsistent. We used two colorectal cancer cell lines with different growth rates and clinically achievable metformin concentrations. We found that fast growing SW948 are more glycolytic in terms of metabolism, while the slower growing SW1116 are reliant on mitochondrial respiration. Both cell lines show inhibitory growth after metformin treatment under physiological glucose conditions, but not in high glucose conditions. Furthermore, SW1116 converges with SW948 at a more glycolytic phenotype after metformin treatment. This metabolic shift is supported by changed GLUT1 expression. Thus, cells having different metabolic phenotypes, show a clear differential response to metformin treatment based on glucose concentration. This demonstrates the importance of growth conditions for experiments or clinical studies involving metabolic drugs such as metformin.
Collapse
|
23
|
Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 2021; 22:165-187. [PMID: 33502634 PMCID: PMC7838467 DOI: 10.1007/s10522-021-09910-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023]
Abstract
Aging is a physiological process mediated by numerous biological and genetic pathways, which are directly linked to lifespan and are a driving force for all age-related diseases. Human life expectancy has greatly increased in the past few decades, but this has not been accompanied by a similar increase in their healthspan. At present, research on aging biology has focused on elucidating the biochemical and genetic pathways that contribute to aging over time. Several aging mechanisms have been identified, primarily including genomic instability, telomere shortening, and cellular senescence. Aging is a driving factor of various age-related diseases, including neurodegenerative diseases, cardiovascular diseases, cancer, immune system disorders, and musculoskeletal disorders. Efforts to find drugs that improve the healthspan by targeting the pathogenesis of aging have now become a hot topic in this field. In the present review, the status of aging research and the development of potential drugs for aging-related diseases, such as metformin, rapamycin, resveratrol, senolytics, as well as caloric restriction, are summarized. The feasibility, side effects, and future potential of these treatments are also discussed, which will provide a basis to develop novel anti-aging therapeutics for improving the healthspan and preventing aging-related diseases.
Collapse
|
24
|
Deshpande D, Agarwal N, Fleming T, Gaveriaux-Ruff C, Klose CSN, Tappe-Theodor A, Kuner R, Nawroth P. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun 2021; 12:426. [PMID: 33462216 PMCID: PMC7814083 DOI: 10.1038/s41467-020-20677-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of μ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.
Collapse
Affiliation(s)
- Divija Deshpande
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany ,grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nitin Agarwal
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Thomas Fleming
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Claire Gaveriaux-Ruff
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France ,grid.418692.00000 0004 0610 0264Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Christoph S. N. Klose
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anke Tappe-Theodor
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Rohini Kuner
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Peter Nawroth
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany ,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Zentrum, 85764 Neuherberg, Germany
| |
Collapse
|
25
|
Panagiotou C, Lambadiari V, Maratou E, Geromeriati C, Artemiadis A, Dimitriadis G, Moutsatsou P. Insufficient glucocorticoid receptor signaling and flattened salivary cortisol profile are associated with metabolic and inflammatory indices in type 2 diabetes. J Endocrinol Invest 2021; 44:37-48. [PMID: 32394161 DOI: 10.1007/s40618-020-01260-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Impaired negative feedback and hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis characterizes type 2 diabetes mellitus (T2DM). The glucocorticoid receptor (GR) is a key mediator of HPA axis negative feedback; however, its role in linking hypercortisolemia and T2DM-associated hyperglycemia, hyperlipidemia and inflammation is not yet known. METHODS In peripheral mononuclear cells (PBMC) from 31 T2DM patients and 24 healthy controls, we measured various GR-signaling parameters such as phosphorylated GR (pGR-S211), GRα/GRβ gene expression and GC-sensitivity [using the basal and dexamethasone (DEX)-induced leucine zipper (GILZ) and FK506 binding-protein (FKBP5) mRNA levels as well as the basal interleukin (IL)-1β protein levels]. Diurnal salivary cortisol curve parameters such as the cortisol awaking response (CAR) and area under the curve (AUCtotal and AUCi) as well as inflammatory and metabolic indices were also determined. RESULTS T2DM patients exhibited diminished pGR-S211 protein content, increased GRβ, decreased basal GILZ and FKBP5 mRNA levels and increased IL-1β levels. Flattened DEX-induced GILZ and FKBP5 response curves and a flattened salivary cortisol profile characterized T2DM patients. Significant associations of GR measures and saliva cortisol curve parameters with biochemical and clinical characteristics were found. CONCLUSION Our novel data implicate an insufficient GR signaling in PBMCs in T2DM patients and HPA axis dysfunction. The significant associations of GR-signaling parameters with inflammatory and metabolic indices implicate that GR may be the critical link between HPA axis dysfunction, hypercortisolemia and diabetes-associated metabolic disturbances. Our findings provide significant insights into the contribution of GR-mediated mechanisms in T2DM aetiopathology and therapy.
Collapse
Affiliation(s)
- C Panagiotou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - V Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, Haidari, Greece
| | - E Maratou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - C Geromeriati
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - A Artemiadis
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - G Dimitriadis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, Haidari, Greece
| | - P Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece.
| |
Collapse
|
26
|
Hesperetin inhibits foam cell formation and promotes cholesterol efflux in THP-1-derived macrophages by activating LXRα signal in an AMPK-dependent manner. J Physiol Biochem 2021; 77:405-417. [PMID: 34212313 PMCID: PMC8367930 DOI: 10.1007/s13105-020-00783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Cholesterol efflux from macrophages is the first step of reverse cholesterol transport (RCT), whose increase inhibits cholesterol accumulation and foam cell formation to suppress atherogenesis. Hesperetin has been reported to exert several protective effects on cardiovascular diseases, while little is known about the role of hesperetin and its underlying mechanism in macrophage foam cell formation. In this study, we sought to investigate the potential effects of hesperetin on foam cell formation and cholesterol efflux by using human macrophages, focusing on liver X receptor alpha (LXRα) and AMPK. We found that hesperetin treatment reduced foam cell formation, intracellular cholesterol levels and the cholesterol esterification rate, and increased cholesterol efflux in THP-1 macrophages. Hesperetin increased the levels of LXRα protein and its targets, including ABCA1, ABCG1, SR-BI, and phosphorylated-AMPK. Meanwhile, the hesperetin-induced increase in LXRα expression was further increased by the AMPK agonist and inhibited by an AMPK inhibitor. Meanwhile, hesperetin increased the levels of LXRα mRNA and its target genes, all of which were decreased in cells transfected with the AMPKα1/α2 small interfering RNA (siRNA). Furthermore, the hesperetin-induced inhibition of foam cell formation and promotion of cholesterol efflux were decreased by transfection of AMPKα1/α2 siRNA. In conclusions, We are the first to report that hesperetin activate AMPK in THP-1-derived macrophages. This activation upregulats LXRα and its targets, including ABCA1, ABCG1 and SR-BI, which significantly inhibits foam cell formation and promotes cholesterol efflux. Our results highlight the therapeutic potential of hesperetin to possibly reduce foam cell formation. This new mechanism might contribute the anti-atherogenic effects of hesperetin.
Collapse
|
27
|
Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, Falcão‐Pires I, Bell R, Zuurbier CJ, Pagliaro P, Hausenloy DJ. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol 2020; 177:5312-5335. [PMID: 31985828 PMCID: PMC7680002 DOI: 10.1111/bph.14993] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic patients are at increased risk of developing coronary artery disease and experience worse clinical outcomes following acute myocardial infarction. Novel therapeutic strategies are required to protect the myocardium against the effects of acute ischaemia-reperfusion injury (IRI). These include one or more brief cycles of non-lethal ischaemia and reperfusion prior to the ischaemic event (ischaemic preconditioning [IPC]) or at the onset of reperfusion (ischaemic postconditioning [IPost]) either to the heart or to extracardiac organs (remote ischaemic conditioning [RIC]). Studies suggest that the diabetic heart is resistant to cardioprotective strategies, although clinical evidence is lacking. We overview the available animal models of diabetes, investigating acute myocardial IRI and cardioprotection, experiments investigating the effects of hyperglycaemia on susceptibility to acute myocardial IRI, the response of the diabetic heart to cardioprotective strategies e.g. IPC, IPost and RIC. Finally we highlight the effects of anti-hyperglycaemic agents on susceptibility to acute myocardial IRI and cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Manuela Aragno
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Luc Bertrand
- Division of CardiologyCliniques Universitaires Saint‐LucBrusselsBelgium
- Pole of Cardiovascular Research, Institut de Recherche Experimetnale et CliniqueUCLouvainBrusselsBelgium
| | - Antigone Lazou
- School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Ines Falcão‐Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Robert Bell
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMCUniversity of Amsterdam, Cardiovascular SciencesAmsterdamThe Netherlands
| | - Pasquale Pagliaro
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Derek J. Hausenloy
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular and Metabolic Disorders ProgramDuke–NUS Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cardiovascular Research Center, College of Medical and Health SciencesAsia UniversityTaiwan
| |
Collapse
|
28
|
Espinoza L, Boychuk CR. Diabetes, and its treatment, as an effector of autonomic nervous system circuits and its functions. Curr Opin Pharmacol 2020; 54:18-26. [PMID: 32721846 DOI: 10.1016/j.coph.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
Diabetes increases the risk of cardiovascular complications, including heart failure, hypertension, and stroke. There is a strong involvement of autonomic dysfunction in individuals with diabetes that exhibit clinical manifestations of cardiovascular diseases (CVD). Still, the mechanisms by which diabetes and its treatments alter autonomic function and subsequently affect cardiovascular complications remain elusive. For this reason, understanding the brainstem circuits involved in sensing metabolic state(s) and enacting autonomic control of the cardiovascular system are important to develop more comprehensive therapies for individuals with diabetes at increased risk for CVD. We review how autonomic nervous system circuits change during these disease states and discuss their potential role in current pharmacotherapies that target diabetic states. Overall, this review proposes that the brainstem circuits provide an integrative sensorimotor network capable of responding to metabolic cues to regulate cardiovascular function and this network is modified by, and in turn affects, diabetes-induced CVD and its treatment.
Collapse
Affiliation(s)
- Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, United States
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, United States.
| |
Collapse
|
29
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmdi-2020-0111/dmdi-2020-0111.xml. [PMID: 32609649 DOI: 10.1515/dmdi-2020-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
30
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 35:/j/dmdi.2020.35.issue-2/dmpt-2020-0111/dmpt-2020-0111.xml. [PMID: 32681778 DOI: 10.1515/dmpt-2020-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/15/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
31
|
Gnesin F, Thuesen ACB, Kähler LKA, Madsbad S, Hemmingsen B. Metformin monotherapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 6:CD012906. [PMID: 32501595 PMCID: PMC7386876 DOI: 10.1002/14651858.cd012906.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Worldwide, there is an increasing incidence of type 2 diabetes mellitus (T2DM). Metformin is still the recommended first-line glucose-lowering drug for people with T2DM. Despite this, the effects of metformin on patient-important outcomes are still not clarified. OBJECTIVES To assess the effects of metformin monotherapy in adults with T2DM. SEARCH METHODS We based our search on a systematic report from the Agency for Healthcare Research and Quality, and topped-up the search in CENTRAL, MEDLINE, Embase, WHO ICTRP, and ClinicalTrials.gov. Additionally, we searched the reference lists of included trials and systematic reviews, as well as health technology assessment reports and medical agencies. The date of the last search for all databases was 2 December 2019, except Embase (searched up 28 April 2017). SELECTION CRITERIA We included randomised controlled trials (RCTs) with at least one year's duration comparing metformin monotherapy with no intervention, behaviour changing interventions or other glucose-lowering drugs in adults with T2DM. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles/records, assessed risk of bias, and extracted outcome data independently. We resolved discrepancies by involvement of a third review author. For meta-analyses we used a random-effects model with investigation of risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the overall certainty of the evidence by using the GRADE instrument. MAIN RESULTS We included 18 RCTs with multiple study arms (N = 10,680). The percentage of participants finishing the trials was approximately 58% in all groups. Treatment duration ranged from one to 10.7 years. We judged no trials to be at low risk of bias on all 'Risk of bias' domains. The main outcomes of interest were all-cause mortality, serious adverse events (SAEs), health-related quality of life (HRQoL), cardiovascular mortality (CVM), non-fatal myocardial infarction (NFMI), non-fatal stroke (NFS), and end-stage renal disease (ESRD). Two trials compared metformin (N = 370) with insulin (N = 454). Neither trial reported on all-cause mortality, SAE, CVM, NFMI, NFS or ESRD. One trial provided information on HRQoL but did not show a substantial difference between the interventions. Seven trials compared metformin with sulphonylureas. Four trials reported on all-cause mortality: in three trials no participant died, and in the remaining trial 31/1454 participants (2.1%) in the metformin group died compared with 31/1441 participants (2.2%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on SAE: in two trials no SAE occurred (186 participants); in the other trial 331/1454 participants (22.8%) in the metformin group experienced a SAE compared with 308/1441 participants (21.4%) in the sulphonylurea group (very low-certainty evidence). Two trials reported on CVM: in one trial no CVM was observed and in the other trial 4/1441 participants (0.3%) in the metformin group died of cardiovascular reasons compared with 8/1447 participants (0.6%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on NFMI: in two trials no NFMI occurred, and in the other trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 15/1441 participants (1.0%) in the sulphonylurea group (very low-certainty evidence). One trial reported no NFS occurred (very low-certainty evidence). No trial reported on HRQoL or ESRD. Seven trials compared metformin with thiazolidinediones (very low-certainty evidence for all outcomes). Five trials reported on all-cause mortality: in two trials no participant died; the overall RR was 0.88, 95% CI 0.55 to 1.39; P = 0.57; 5 trials; 4402 participants). Four trials reported on SAE, the RR was 0,95, 95% CI 0.84 to 1.09; P = 0.49; 3208 participants. Four trials reported on CVM, the RR was 0.71, 95% CI 0.21 to 2.39; P = 0.58; 3211 participants. Three trial reported on NFMI: in two trials no NFMI occurred and in one trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 25/1456 participants (1.7%) in the thiazolidinedione group. One trial reported no NFS occurred. No trial reported on HRQoL or ESRD. Three trials compared metformin with dipeptidyl peptidase-4 inhibitors (one trial each with saxagliptin, sitagliptin, vildagliptin with altogether 1977 participants). There was no substantial difference between the interventions for all-cause mortality, SAE, CVM, NFMI and NFS (very low-certainty evidence for all outcomes). One trial compared metformin with a glucagon-like peptide-1 analogue (very low-certainty evidence for all reported outcomes). There was no substantial difference between the interventions for all-cause mortality, CVM, NFMI and NFS. One or more SAEs were reported in 16/268 (6.0%) of the participants allocated to metformin compared with 35/539 (6.5%) of the participants allocated to a glucagon-like peptide-1 analogue. HRQoL or ESRD were not reported. One trial compared metformin with meglitinide and two trials compared metformin with no intervention. No deaths or SAEs occurred (very low-certainty evidence) no other patient-important outcomes were reported. No trial compared metformin with placebo or a behaviour changing interventions. Four ongoing trials with 5824 participants are likely to report one or more of our outcomes of interest and are estimated to be completed between 2018 and 2024. Furthermore, 24 trials with 2369 participants are awaiting assessment. AUTHORS' CONCLUSIONS There is no clear evidence whether metformin monotherapy compared with no intervention, behaviour changing interventions or other glucose-lowering drugs influences patient-important outcomes.
Collapse
Affiliation(s)
- Filip Gnesin
- Department of Endocrinology, Diabetes and Metabolism, Department 7652, Rigshospitalet, Copenhagen, Denmark
| | - Anne Cathrine Baun Thuesen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Bianca Hemmingsen
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Parween S, Rihs S, Flück CE. Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo? J Steroid Biochem Mol Biol 2020; 200:105684. [PMID: 32360359 DOI: 10.1016/j.jsbmb.2020.105684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Metformin is recommended as one of the first-line drugs for the treatment of type 2 diabetes and the metabolic syndrome. In addition to its insulin sensitizing effects, it has been shown to attenuate androgen excess in women with polycystic ovary syndrome (PCOS) or congenital adrenal hyperplasia (CAH), as well as to ameliorate obesity. The mechanisms of metformin action seem manifold. Preclinical studies suggest that it inhibits the cellular stress response at the level of the mitochondrial OXPHOS system and through AMPK dependent and independent mechanisms. Recent studies have shown that metformin decreases ACTH secretion from pituitary and reduces ACTH-stimulated adrenal secretion. In this study we investigated its specific effect through the melanocortin receptor 2 (MC2R) on signaling targeting adrenal steroidogenesis. To assess this effect, we used mouse adrenal OS3 cells, which do not express the MC2R. Cells were transfected with the MC2R and stimulated by ACTH. Downstream cyclic AMP production was then assessed by a co-transfected cAMP-responsive vector producing luciferase that was measured by a dual luciferase assay. The amount of luciferase produced in this assay corresponds to the amount of receptor activation with varying amount of ACTH. The effect of metformin was then tested in this system. We found a significant inhibition of ACTH induced MC2R activation and signaling with 10 mM metformin. The ACTH concentration response curve (CRC) was half-log shifted and a ∼30 % reduction in maximum receptor response (Rmax) to ACTH in presence of metformin was observed. This effect was dose dependent with an IC50 of 4.2 mM. qRT-PCR analyses showed that metformin decreased ACTH induced MC2R expression. Metformin did not affect cell viability and basal cAMP levels. We also tested the effect of metformin on homologous melanocortin receptors (MCRs). No significant effect was found on MC1R and MC4R activity. However, a log shift of EC50 of ACTH stimulation on MC3R was observed with metformin treatment. Metformin also inhibited melanocortin stimulating hormone (αMSH) induced MC3R activity. In conclusion, we show that metformin acts on MC2R and MC3R signaling directly. The role of MC2R for steroidogenesis is well established. MC3R is involved in energy balance and seems to act as a rheostat when the metabolism is challenged. Our study may explain how metformin helps in weight loss and attenuates the excess response to ACTH in androgen excess disorders such as PCOS and CAH.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/pharmacology
- Androgen Antagonists/pharmacology
- Animals
- Cell Line
- Cell Survival/drug effects
- Hypoglycemic Agents/pharmacology
- Metformin/pharmacology
- Mice
- Receptor, Melanocortin, Type 2/antagonists & inhibitors
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/metabolism
- Weight Loss
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Silvia Rihs
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
33
|
Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, Chuturgoon AA. The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 2020; 875:173059. [PMID: 32131023 DOI: 10.1016/j.ejphar.2020.173059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
Diabetes is a metabolic disorder associated with mitochondrial (mt) dysfunction and oxidative stress. The molecular mechanisms involved in diabetes-associated neurological complications remain elusive. This study aims to investigate the protective effect of metformin (MF) on regulatory networks and integrated stress responses in brain tissue of Streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were treated with MF (20 mg/kg BW), and whole brain tissue was harvested for further analysis. Protein carbonylation was measured as a marker of neuronal oxidative stress. Protein expression of mt chaperones, maintenance proteins, and regulators of the unfolded protein response (UPR) were measured by Western blot. Transcript levels of antioxidant enzyme GSTA4; mt biogenesis markers, ER stress regulators, and miR-132 and miR-148a were analysed using qPCR. The results showed that MF efficiently reduced protein carbonylation and oxidation. Mt function was improved by MF-treatment through upregulation of chaperone proteins (HSP60, HSP70 and LonP1). MF elicits the UPR to attenuate ER stress through a miR-132 repression mechanism. Additionally, MF was found to elevate deacetylases- Sirt1, Sirt3; and mt biogenesis marker PGC-1α through miR-148a repression. This is the first study to demonstrate the epigenetic regulation of mt maintenance by MF in diabetic C57BL/6 mouse whole brain tissue. We thus conclude that MF, beyond its anti-hyperglycaemic role, mediates neuroprotection through epigenomic and integrated stress responses in diabetic mice.
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Nikita Naicker
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Sooraj Baijnath
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Sanil Singh
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
34
|
Metformin and cognition from the perspectives of sex, age, and disease. GeroScience 2020; 42:97-116. [PMID: 31897861 DOI: 10.1007/s11357-019-00146-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.
Collapse
|
35
|
Banihani SA, Makahleh SM, El-Akawi ZJ. Short-term Effect of Fresh Pomegranate Juice on Serum Cortisol and Thyroxine in Patients with type 2 Diabetes. Curr Mol Med 2020; 20:355-360. [PMID: 31782367 DOI: 10.2174/1566524019666191129104153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of pomegranate juice on type 2 diabetic conditions has been determined in various occasions. However, such an effect on cortisol and thyroxine hormones, which are major controllers of energy metabolism, is not yet revealed. OBJECTIVES In this study, we intended to measure the short-term effect of fresh pomegranate juice on serum cortisol and thyroxine in patients with type 2 diabetes. MATERIALS AND METHODS This study was a randomized clinical trial in which 89 fasted patients with type 2 diabetes were supplemented with fresh pomegranate juice at a dose of 1.5 mL kg-1. Blood specimens were then collected before and at 1 and 3 hours after juice administration. Serum cortisol and thyroxine were assessed using commercial chemiluminescent-immunoassay kits. RESULTS Serum cortisol, but not thyroxine, was significantly (P < 0.0001) lower in patients with type 2 diabetes after ingesting fresh pomegranate juice. In addition, no significant correlation (r2 = 0.00003, P = 0.9569) was observed between cortisol response to fresh pomegranate juice and the level of fasting serum glucose in the recruited patients. Moreover, no significant difference (P = 0.9118) in cortisol response to fresh pomegranate juice was found between recruited males and females. CONCLUSIONS In conclusion, fresh pomegranate juice decreased serum cortisol, 1 hour after juice ingestion, but not serum thyroxine 3 hours after juice ingestion, in patients with type 2 diabetes. In addition, cortisol response to fresh pomegranate juice was found not to be affected by patients' gender and the level of fasting serum glucose.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Seham M Makahleh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Zeyad J El-Akawi
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
36
|
Liu L, Tian D, Liu C, Yu K, Bai J. Metformin Enhances Functional Recovery of Peripheral Nerve in Rats with Sciatic Nerve Crush Injury. Med Sci Monit 2019; 25:10067-10076. [PMID: 31882570 PMCID: PMC6946044 DOI: 10.12659/msm.918277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to explore the effect of metformin by inducing autophagy for enhancing functional recovery of peripheral nerve in rats with sciatic nerve crush injury. Material/Method Autophagy was determined by electron microscopy, immunofluorescence, and Western blot analysis. Motor function recovery was studied by the footprint intensity method. Axonal growth and regeneration were detected through Western blot while axonal remyelination was analysed through immunocytochemistry. Sensory and functional recovery were assessed by reflexive motor function analysis. Results The present study deciphered the role of autophagy induction by metformin in motor functions and peripheral nerve regeneration following sciatic nerve crush injury in rats. The process was detected by measuring autophagosomes and the expression of microtubule-associated protein 1A/1B-light chain 3 upon metformin treatment of sciatic nerve crush-injured rats. Neurobehavioral recovery by metformin was tested by CatWalk gait analysis, and we quantified expression of myelin basic protein MBP and neurofilament NF200 at the damage sight by immunoblotting. In metformin-treated injured rats, autophagy was upregulated, by which the number of dead cells was decreased. Motor function was also recovered after metformin treatment, which was accompanied by upregulation of MBP and NF200 through autophagy induction. Surprisingly, the motor regenerative capability was reduced by treatment with 3-methyl adenine (an autophagy inhibitor) in nerve-injured rats. Conclusions Our study revealed that pharmacological induction of autophagy has an important and active role in the regeneration of nerve and motor function regain.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Dehu Tian
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chunjie Liu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Kunlun Yu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jiangbo Bai
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
37
|
Madsen KS, Chi Y, Metzendorf M, Richter B, Hemmingsen B, Cochrane Metabolic and Endocrine Disorders Group. Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2019; 12:CD008558. [PMID: 31794067 PMCID: PMC6889926 DOI: 10.1002/14651858.cd008558.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The projected rise in the incidence of type 2 diabetes mellitus (T2DM) could develop into a substantial health problem worldwide. Whether metformin can prevent or delay T2DM and its complications in people with increased risk of developing T2DM is unknown. OBJECTIVES To assess the effects of metformin for the prevention or delay of T2DM and its associated complications in persons at increased risk for the T2DM. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Scopus, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry Platform and the reference lists of systematic reviews, articles and health technology assessment reports. We asked investigators of the included trials for information about additional trials. The date of the last search of all databases was March 2019. SELECTION CRITERIA We included randomised controlled trials (RCTs) with a duration of one year or more comparing metformin with any pharmacological glucose-lowering intervention, behaviour-changing intervention, placebo or standard care in people with impaired glucose tolerance, impaired fasting glucose, moderately elevated glycosylated haemoglobin A1c (HbA1c) or combinations of these. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles and records, assessed risk of bias and extracted outcome data independently. We used a random-effects model to perform meta-analysis and calculated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 20 RCTs randomising 6774 participants. One trial contributed 48% of all participants. The duration of intervention in the trials varied from one to five years. We judged none of the trials to be at low risk of bias in all 'Risk of bias' domains. Our main outcome measures were all-cause mortality, incidence of T2DM, serious adverse events (SAEs), cardiovascular mortality, non-fatal myocardial infarction or stroke, health-related quality of life and socioeconomic effects.The following comparisons mostly reported only a fraction of our main outcome set. Fifteen RCTs compared metformin with diet and exercise with or without placebo: all-cause mortality was 7/1353 versus 7/1480 (RR 1.11, 95% CI 0.41 to 3.01; P = 0.83; 2833 participants, 5 trials; very low-quality evidence); incidence of T2DM was 324/1751 versus 529/1881 participants (RR 0.50, 95% CI 0.38 to 0.65; P < 0.001; 3632 participants, 12 trials; moderate-quality evidence); the reporting of SAEs was insufficient and diverse and meta-analysis could not be performed (reported numbers were 4/118 versus 2/191; 309 participants; 4 trials; very low-quality evidence); cardiovascular mortality was 1/1073 versus 4/1082 (2416 participants; 2 trials; very low-quality evidence). One trial reported no clear difference in health-related quality of life after 3.2 years of follow-up (very low-quality evidence). Two trials estimated the direct medical costs (DMC) per participant for metformin varying from $220 to $1177 versus $61 to $184 in the comparator group (2416 participants; 2 trials; low-quality evidence). Eight RCTs compared metformin with intensive diet and exercise: all-cause mortality was 7/1278 versus 4/1272 (RR 1.61, 95% CI 0.50 to 5.23; P = 0.43; 2550 participants, 4 trials; very low-quality evidence); incidence of T2DM was 304/1455 versus 251/1505 (RR 0.80, 95% CI 0.47 to 1.37; P = 0.42; 2960 participants, 7 trials; moderate-quality evidence); the reporting of SAEs was sparse and meta-analysis could not be performed (one trial reported 1/44 in the metformin group versus 0/36 in the intensive exercise and diet group with SAEs). One trial reported that 1/1073 participants in the metformin group compared with 2/1079 participants in the comparator group died from cardiovascular causes. One trial reported that no participant died due to cardiovascular causes (very low-quality evidence). Two trials estimated the DMC per participant for metformin varying from $220 to $1177 versus $225 to $3628 in the comparator group (2400 participants; 2 trials; very low-quality evidence). Three RCTs compared metformin with acarbose: all-cause mortality was 1/44 versus 0/45 (89 participants; 1 trial; very low-quality evidence); incidence of T2DM was 12/147 versus 7/148 (RR 1.72, 95% CI 0.72 to 4.14; P = 0.22; 295 participants; 3 trials; low-quality evidence); SAEs were 1/51 versus 2/50 (101 participants; 1 trial; very low-quality evidence). Three RCTs compared metformin with thiazolidinediones: incidence of T2DM was 9/161 versus 9/159 (RR 0.99, 95% CI 0.41 to 2.40; P = 0.98; 320 participants; 3 trials; low-quality evidence). SAEs were 3/45 versus 0/41 (86 participants; 1 trial; very low-quality evidence). Three RCTs compared metformin plus intensive diet and exercise with identical intensive diet and exercise: all-cause mortality was 1/121 versus 1/120 participants (450 participants; 2 trials; very low-quality evidence); incidence of T2DM was 48/166 versus 53/166 (RR 0.55, 95% CI 0.10 to 2.92; P = 0.49; 332 participants; 2 trials; very low-quality evidence). One trial estimated the DMC of metformin plus intensive diet and exercise to be $270 per participant compared with $225 in the comparator group (94 participants; 1 trial; very-low quality evidence). One trial in 45 participants compared metformin with a sulphonylurea. The trial reported no patient-important outcomes. For all comparisons there were no data on non-fatal myocardial infarction, non-fatal stroke or microvascular complications. We identified 11 ongoing trials which potentially could provide data of interest for this review. These trials will add a total of 17,853 participants in future updates of this review. AUTHORS' CONCLUSIONS Metformin compared with placebo or diet and exercise reduced or delayed the risk of T2DM in people at increased risk for the development of T2DM (moderate-quality evidence). However, metformin compared to intensive diet and exercise did not reduce or delay the risk of T2DM (moderate-quality evidence). Likewise, the combination of metformin and intensive diet and exercise compared to intensive diet and exercise only neither showed an advantage or disadvantage regarding the development of T2DM (very low-quality evidence). Data on patient-important outcomes such as mortality, macrovascular and microvascular diabetic complications and health-related quality of life were sparse or missing.
Collapse
Affiliation(s)
- Kasper S Madsen
- University of CopenhagenFaculty of Health and Medical SciencesBlegdamsvej 3BCopenhagen NDenmark2200
| | - Yuan Chi
- University Hospital Zurich and University of ZurichInstitute for Complementary and Integrative MedicineSonneggstrasse 6ZurichBeijingSwitzerland8006
| | - Maria‐Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bernd Richter
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bianca Hemmingsen
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | | |
Collapse
|
38
|
Madhavi Y, Gaikwad N, Yerra VG, Kalvala AK, Nanduri S, Kumar A. Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Curr Med Chem 2019; 26:5207-5229. [DOI: 10.2174/0929867325666180406120051] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Adenosine 5′-monophosphate activated protein kinase (AMPK) is a key enzymatic protein involved
in linking the energy sensing to the metabolic manipulation. It is a serine/threonine kinase activated
by several upstream kinases. AMPK is a heterotrimeric protein complex regulated by AMP, ADP, and
ATP allosterically. AMPK is ubiquitously expressed in various tissues of the living system such as heart,
kidney, liver, brain and skeletal muscles. Thus malfunctioning of AMPK is expected to harbor several
human pathologies especially diseases associated with metabolic and mitochondrial dysfunction. AMPK
activators including synthetic derivatives and several natural products that have been found to show therapeutic
relief in several animal models of disease. AMP, 5-Aminoimidazole-4-carboxamide riboside (AICA
riboside) and A769662 are important activators of AMPK which have potential therapeutic importance
in diabetes and diabetic complications. AMPK modulation has shown beneficial effects against
diabetes, cardiovascular complications and diabetic neuropathy. The major impact of AMPK modulation
ensures healthy functioning of mitochondria and energy homeostasis in addition to maintaining a strict
check on inflammatory processes, autophagy and apoptosis. Structural studies on AMP and AICAR suggest
that the free amino group is imperative for AMPK stimulation. A769662, a non-nucleoside
thienopyridone compound which resulted from the lead optimization studies on A-592107 and several
other related compound is reported to exhibit a promising effect on diabetes and its complications through
activation of AMPK. Subsequent to the discovery of A769662, several thienopyridones,
hydroxybiphenyls pyrrolopyridones have been reported as AMPK modulators. The review will explore
the structure-function relationships of these analogues and the prospect of targeting AMPK in diabetes
and diabetic complications.
Collapse
Affiliation(s)
- Y.V. Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
39
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
40
|
Vázquez-Borrego MC, Fuentes-Fayos AC, Herrera-Martínez AD, L-López F, Ibáñez-Costa A, Moreno-Moreno P, Alhambra-Expósito MR, Barrera-Martín A, Blanco-Acevedo C, Dios E, Venegas-Moreno E, Solivera J, Gahete MD, Soto-Moreno A, Gálvez-Moreno MA, Castaño JP, Luque RM. Biguanides Exert Antitumoral Actions in Pituitary Tumor Cells Through AMPK-Dependent and -Independent Mechanisms. J Clin Endocrinol Metab 2019; 104:3501-3513. [PMID: 30860580 DOI: 10.1210/jc.2019-00056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
CONTEXT Pituitary neuroendocrine tumors (PitNETs) are a commonly underestimated pathology in terms of incidence and associated morbimortality. Currently, an appreciable subset of patients are resistant or poorly responsive to the main current medical treatments [i.e., synthetic somatostatin analogs (SSAs) and dopamine agonists]. Thus, development and optimization of novel and available medical therapies is necessary. Biguanides (metformin, buformin, and phenformin) are antidiabetic drugs that exert antitumoral actions in several tumor types, but their pharmacological effects on PitNETs are poorly known. OBJECTIVE We aimed to explore the direct effects of biguanides on key functions (cell viability, hormone release, apoptosis, and signaling pathways) in primary cell cultures from human PitNETs and cell lines. Additionally, we evaluated the effect of combined metformin with SSAs on cell viability and hormone secretion. DESIGN A total of 13 corticotropinomas, 13 somatotropinomas, 13 nonfunctioning PitNETs, 3 prolactinomas, and 2 tumoral pituitary cell lines (AtT-20 and GH3) were used to evaluate the direct effects of biguanides on cell viability, hormone release, apoptosis, and signaling pathways. RESULTS Biguanides reduced cell viability in all PitNETs and cell lines (with phenformin being the most effective biguanide) and increased apoptosis in somatotropinomas. Moreover, buformin and phenformin, but not metformin, reduced hormone secretion in a cell type-specific manner. Combination metformin/SSA therapy did not increase SSA monotherapy effectiveness. Effects of biguanides on PitNETs could involve the modulation of AMP-activated protein kinase-dependent ([Ca2+]i, PI3K/Akt) and independent (MAPK) mechanisms. CONCLUSION Altogether, our data unveil clear antitumoral effects of biguanides on PitNET cells, opening avenues to explore their potential as drugs to treat these pathologies.
Collapse
Affiliation(s)
- Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Paloma Moreno-Moreno
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - María R Alhambra-Expósito
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana Barrera-Martín
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Neurosurgery, Reina Sofia University Hospital, Cordoba, Spain
| | - Elena Dios
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Juan Solivera
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Neurosurgery, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| |
Collapse
|
41
|
The Cutting Edge: The Role of mTOR Signaling in Laminopathies. Int J Mol Sci 2019; 20:ijms20040847. [PMID: 30781376 PMCID: PMC6412338 DOI: 10.3390/ijms20040847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that regulates anabolic and catabolic processes, in response to environmental inputs. The existence of mTOR in numerous cell compartments explains its specific ability to sense stress, execute growth signals, and regulate autophagy. mTOR signaling deregulation is closely related to aging and age-related disorders, among which progeroid laminopathies represent genetically characterized clinical entities with well-defined phenotypes. These diseases are caused by LMNA mutations and feature altered bone turnover, metabolic dysregulation, and mild to severe segmental progeria. Different LMNA mutations cause muscular, adipose tissue and nerve pathologies in the absence of major systemic involvement. This review explores recent advances on mTOR involvement in progeroid and tissue-specific laminopathies. Indeed, hyper-activation of protein kinase B (AKT)/mTOR signaling has been demonstrated in muscular laminopathies, and rescue of mTOR-regulated pathways increases lifespan in animal models of Emery-Dreifuss muscular dystrophy. Further, rapamycin, the best known mTOR inhibitor, has been used to elicit autophagy and degradation of mutated lamin A or progerin in progeroid cells. This review focuses on mTOR-dependent pathogenetic events identified in Emery-Dreifuss muscular dystrophy, LMNA-related cardiomyopathies, Hutchinson-Gilford Progeria, mandibuloacral dysplasia, and type 2 familial partial lipodystrophy. Pharmacological application of mTOR inhibitors in view of therapeutic strategies is also discussed.
Collapse
|
42
|
Jin K, Ruan L, Pu J, Zhong A, Wang F, Tan S, Huang H, Mu J, Yang G. Metformin suppresses growth and adrenocorticotrophic hormone secretion in mouse pituitary corticotroph tumor AtT20 cells. Mol Cell Endocrinol 2018; 478:53-61. [PMID: 30025915 DOI: 10.1016/j.mce.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/09/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
Pituitary corticotroph tumors lead to excess adrenocorticotrophic hormone (ACTH) secretion, resulting in Cushing's disease (CD), which is associated with significant mortality. Standard treatments include neurosurgery, radiotherapy and medical therapy. Both surgery and radiotherapy have undesirable complications and high recurrence rates. At present, there is only one medical option available that targets pituitary adenoma and ACTH secretion, the drug pasireotide. However, hyperglycemia is common during pasireotide treatment. In addition, some patients have discontinued pasireotide treatment because of hyperglycemia-related adverse events or uncontrolled diabetes. New medical treatments directly targeting the corticotroph cells and suppressing ACTH secretion are urgently required. Metformin is a commonly used antidiabetic drug that has been widely used to control the hyperglycemia that occurs in patients with CD, which is secondary to both cortisol excess and pasireotide treatment. Recent studies suggest that metformin has direct anticancer activities against many tumor cell lines. In the present study, we investigated whether metformin exerts an anti-tumor effect by directly targeting pituitary corticotroph tumors and exploring the underlying mechanisms. Using the mouse corticotroph tumor cells, AtT20 cells, we report that metformin inhibited cell proliferation, promoted cell apoptosis and decreased ACTH secretion but did not block the cell cycle in cells. The apoptosis induced by metformin was accompanied by increased caspase-3 activity. Meanwhile, metformin down-regulated the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) but up-regulated the pro-apoptotic protein Bcl2-associated X (BAX), which suggests the involvement of the mitochondrial-mediated apoptosis pathway. Furthermore, metformin promoted AMP-activated protein kinase (AMPK) phosphorylation but inhibited insulin-like growth factor-1 receptor (IGF-1R) expression, protein kinase B (PKB/AKT) phosphorylation and mammalian target of rapamycin (mTOR) phosphorylation. Finally, the IGF-1R inhibitor picropodophyllin (PPP) significantly inhibited the cell proliferation of AtT20 cells. We conclude that metformin inhibits cell proliferation and induces apoptosis in AtT20 cells by activating AMPK/mTOR and inhibiting IGF-1R/AKT/mTOR signaling pathways. Metformin may have direct antitumor activity against pituitary corticotroph tumors.
Collapse
Affiliation(s)
- Kai Jin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lunliang Ruan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiujun Pu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ailing Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fuchao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Song Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiamin Mu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience 2018; 40:419-436. [PMID: 30151729 PMCID: PMC6294728 DOI: 10.1007/s11357-018-0042-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Recent advances indicate that biological aging is a potentially modifiable driver of late-life function and chronic disease and have led to the development of geroscience-guided therapeutic trials such as TAME (Targeting Aging with MEtformin). TAME is a proposed randomized clinical trial using metformin to affect molecular aging pathways to slow the incidence of age-related multi-morbidity and functional decline. In trials focusing on clinical end-points (e.g., disease diagnosis or death), biomarkers help show that the intervention is affecting the underlying aging biology before sufficient clinical events have accumulated to test the study hypothesis. Since there is no standard set of biomarkers of aging for clinical trials, an expert panel was convened and comprehensive literature reviews conducted to identify 258 initial candidate biomarkers of aging and age-related disease. Next selection criteria were derived and applied to refine this set emphasizing: (1) measurement reliability and feasibility; (2) relevance to aging; (3) robust and consistent ability to predict all-cause mortality, clinical and functional outcomes; and (4) responsiveness to intervention. Application of these selection criteria to the current literature resulted in a short list of blood-based biomarkers proposed for TAME: IL-6, TNFα-receptor I or II, CRP, GDF15, insulin, IGF1, cystatin C, NT-proBNP, and hemoglobin A1c. The present report provides a conceptual framework for the selection of blood-based biomarkers for use in geroscience-guided clinical trials. This work also revealed the scarcity of well-vetted biomarkers for human studies that reflect underlying biologic aging hallmarks, and the need to leverage proposed trials for future biomarker discovery and validation.
Collapse
Affiliation(s)
- Jamie N Justice
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Vanita R Aroda
- Department of Medicine, Division of Diabetes, Endocrinology, and Hypertension Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Judy L Bahnson
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Santica Marcovina
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98109, USA
| | - Michael N Pollak
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H3T1E2, Canada
| | - Stephen B Kritchevsky
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
44
|
Cao S, Yu S, Cheng L, Yan J, Zhu Y, Deng Y, Qiu F, Kang N. 9-O-benzoyl-substituted berberine exerts a triglyceride-lowering effect through AMPK signaling pathway in human hepatoma HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:11-17. [PMID: 30268048 DOI: 10.1016/j.etap.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Berberine is an isoquinoline alkaloid extracted from Rhizoma coptidis and shows anti-hyperlipidemia effect in vivo and in vitro. We previously found that berberine could decrease the intracellular triglyceride content in human hepatoma HepG2 cells through activation of AMP-activated protein kinase (AMPK), a major regulator of lipid metabolism. Herein, to find a more effective agent, several berberine analogues (A1-A13) were isolated and synthesized, and the triglyceride-lowering effects and potential mechanisms were investigated in HepG2 cells. Among these berberine analogues, 9-O-benzoyl-substituted berberine (A13) showed strong affinity to AMPK and significantly up-regulated the levels of phospho-Thr172 AMPK α subunit. Meanwhile, A13 reduced the cellular triglyceride levels. Furthermore, A13 could mediate the mRNA levels of downstream proteins involved in triglyceride synthesis and fatty acid oxidation of AMPK signaling pathway. These results suggested that A13 exerts a triglyceride-lowering effect via stimulation of AMPK pathway, which may be beneficial to regulate hyperlipidemia.
Collapse
Affiliation(s)
- Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Shengyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Lina Cheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Jiankun Yan
- College of Science and Technology, Agricultural University of Hebei, Huanghua, 061100, PR China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China.
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China.
| |
Collapse
|
45
|
Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood 2018; 133:710-723. [PMID: 30482794 DOI: 10.1182/blood-2018-06-858415] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Carfilzomib (Cfz), an irreversible proteasome inhibitor licensed for relapsed/refractory myeloma, is associated with cardiotoxicity in humans. We sought to establish the optimal protocol of Cfz-induced cardiac dysfunction, to investigate the underlying molecular-signaling and, based on the findings, to evaluate the cardioprotective potency of metformin (Met). Mice were randomized into protocols 1 and 2 (control and Cfz for 1 and 2 consecutive days, respectively); protocols 3 and 4 (control and alternate doses of Cfz for 6 and 14 days, respectively); protocols 5A and 5B (control and Cfz, intermittent doses on days 0, 1 [5A] and 0, 1, 7, and 8 [5B] for 13 days); protocols 6A and 6B (pharmacological intervention; control, Cfz, Cfz+Met and Met for 2 and 6 days, respectively); and protocol 7 (bortezomib). Cfz was administered at 8 mg/kg (IP) and Met at 140 mg/kg (per os). Cfz resulted in significant reduction of proteasomal activity in heart and peripheral blood mononuclear cells in all protocols except protocols 5A and 5B. Echocardiography demonstrated that Cfz led to a significant fractional shortening (FS) depression in protocols 2 and 3, a borderline dysfunction in protocols 1 and 4, and had no detrimental effect on protocols 5A and 5B. Molecular analysis revealed that Cfz inhibited AMPKα/mTORC1 pathways derived from increased PP2A activity in protocol 2, whereas it additionally inhibited phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase pathway in protocol 3. Coadministration of Met prevented Cfz-induced FS reduction and restored AMPKα phosphorylation and autophagic signaling. Conclusively, Cfz decreased left ventricular function through increased PP2A activity and inhibition of AMPKα and its downstream autophagic targets, whereas Met represents a novel promising intervention against Cfz-induced cardiotoxicity.
Collapse
|
46
|
Diav-Citrin O, Steinmetz-Shoob S, Shechtman S, Ornoy A. In-utero exposure to metformin for type 2 diabetes or polycystic ovary syndrome: A prospective comparative observational study. Reprod Toxicol 2018; 80:85-91. [DOI: 10.1016/j.reprotox.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
|
47
|
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. Given the increasing incidence of diabetes, many experts hold the view that DN will eventually progress toward pandemic proportions. Whilst hyperglycaemia-induced vascular dysfunction is the primary initiating mechanism in DN, its progression is also driven by a heterogeneous set of pathological mechanisms, including oxidative stress, inflammation and fibrosis. Current treatment strategies for DN are targeted against the fundamental dysregulation of glycaemia and hypertension. Unfortunately, these standards of care can delay but do not prevent disease progression or the significant emotional, physical and financial costs associated with this disease. As such, there is a pressing need to develop novel therapeutics that are both effective and safe. Set against the genomic era, numerous potential target pathways in DN have been identified. However, the clinical translation of basic DN research has been met with a number of challenges. Moreover, the notion of DN as a purely vascular disease is outdated and it has become clear that DN is a multi-dimensional, multi-cellular condition. The review will highlight the current therapeutic approaches for DN and provide an insight into how the inherent complexity of DN is shaping the research pathways toward the development and clinical translation of novel therapeutic strategies.
Collapse
|
48
|
A Highly Sensitive FRET Biosensor for AMPK Exhibits Heterogeneous AMPK Responses among Cells and Organs. Cell Rep 2018; 21:2628-2638. [PMID: 29186696 DOI: 10.1016/j.celrep.2017.10.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/28/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a master regulator of cellular metabolism, is a potential target for type 2 diabetes. Although extensive in vitro studies have revealed the complex regulation of AMPK, much remains unknown about the regulation in vivo. We therefore developed transgenic mice expressing a highly sensitive fluorescence resonance energy transfer (FRET)-based biosensor for AMPK, called AMPKAR-EV. AMPKAR-EV allowed us to readily examine the role of LKB1, a canonical stimulator of AMPK, in drug-induced activation and inactivation of AMPK in vitro. In transgenic mice expressing AMPKAR-EV, the AMP analog AICAR activated AMPK in muscle. In contrast, the antidiabetic drug metformin activated AMPK in liver, highlighting the organ-specific action of AMPK stimulators. Moreover, we found that AMPK was activated primarily in fast-twitch muscle fibers after tetanic contraction and exercise. These observations suggest that the AMPKAR-EV mouse will pave a way to understanding the heterogeneous responses of AMPK among cell types in vivo.
Collapse
|
49
|
mTOR Inhibitor Therapy and Metabolic Consequences: Where Do We Stand? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2640342. [PMID: 30034573 PMCID: PMC6035806 DOI: 10.1155/2018/2640342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
Abstract
mTOR (mechanistic target of rapamycin) protein kinase acts as a central integrator of nutrient signaling pathways. Besides the immunosuppressive role after solid organ transplantations or in the treatment of some cancers, another promising role of mTOR inhibitor as an antiaging therapeutic has emerged in the recent years. Acute or intermittent rapamycin treatment has some resemblance to calorie restriction in metabolic effects such as an increased insulin sensitivity. However, the chronic inhibition of mTOR by macrolide rapamycin or other rapalogs has been associated with glucose intolerance and insulin resistance and may even provoke type II diabetes. These metabolic adverse effects limit the use of mTOR inhibitors. Metformin is a widely used drug for the treatment of type 2 diabetes which activates AMP-activated protein kinase (AMPK), acting as calorie restriction mimetic. In addition to the glucose-lowering effect resulting from the decreased hepatic glucose production and increased glucose utilization, metformin induces fatty acid oxidations. Here, we review the recent advances in our understanding of the metabolic consequences regarding glucose metabolism induced by mTOR inhibitors and compare them to the metabolic profile provoked by metformin use. We further suggest metformin use concurrent with rapalogs in order to pharmacologically address the impaired glucose metabolism and prevent the development of new-onset diabetes mellitus after solid organ transplantations induced by the chronic rapalog treatment.
Collapse
|
50
|
Sáenz J, Alba G, Reyes-Quiroz ME, Geniz I, Jiménez J, Sobrino F, Santa-María C. Curcumin enhances LXRα in an AMP-activated protein kinase-dependent manner in human macrophages. J Nutr Biochem 2018; 54:48-56. [DOI: 10.1016/j.jnutbio.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/11/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
|