1
|
Lin CW, Yang SC, Klochkov V, Chen TC, Huang WK, Chen WL. The effects of pigment epithelium-derived factor and associated peptides on the differentiation of retinal ganglion cells from human-induced pluripotent stem cells. Exp Eye Res 2025; 257:110440. [PMID: 40409357 DOI: 10.1016/j.exer.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/13/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Retinal ganglion cell degeneration is the main cause of irreversible vision loss in optic neuropathies. Pigment epithelium-derived factor (PEDF) and its smaller peptide components (44-mer and 17-mer) have shown neuroprotective effects. In this study, using a stepwise protocol we investigated their effects on human-induced pluripotent stem cell differentiation to retinal ganglion cells. Various concentrations of PEDF, 44-mer and 17-mer were added at day 18. Investigated compounds significantly upregulated the expression of retinal ganglion cells-specific (Brn3b, Sncg), retinal progenitor (Pax6) and neuroaxonal markers (Tau, NFH). They also highly increased Brn3b expression, as well as neurite length and density, supporting their neurotrophic properties. Our findings suggest that PEDF and its smaller peptide components, 44-mer and 17-mer, can be suggested as neuroprotective agents for the promotion of retinal ganglion cell differentiation from human-induced pluripotent stem cells. 44-mer and 17-mer have comparable or even higher effects to full-length PEDF and might also bypass PEDF usage limitations.
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Chih Yang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Vladlen Klochkov
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Kai Huang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Lin JB, El Helwe H, Falah H, Hammerschlag BL, Schultz SA, Baldwin G, Xue Y, Vasan RA, Song C, Lo K, Meeker A, Wang SL, Kivisäkk P, Solá-Del Valle D, Margeta MA. Evaluation of Serum and Aqueous Humor Neurofilament Light Chain as Markers of Neurodegeneration in Glaucoma. Transl Vis Sci Technol 2025; 14:24. [PMID: 39998458 PMCID: PMC11875033 DOI: 10.1167/tvst.14.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Purpose The purpose of this study was to evaluate the relationship between serum and aqueous humor (AH) neurofilament light chain (NfL) and to determine whether serum NfL is elevated in patients undergoing ocular surgery who have glaucoma compared with those who do not. Methods In this single-center, case-control study, we enrolled patients with various types and stages of glaucoma undergoing planned ophthalmic surgery as part of their routine care and compared them with patients without glaucoma undergoing phacoemulsification for age-related cataract. We recruited 110 patients with glaucoma and 113 patients without glaucoma and collected AH and blood from these participants. Levels of AH and serum NfL were quantified using the Single-Molecule Array (Simoa) NF-light assay (Quanterix). Clinical information was obtained by reviewing the medical records. Results In a model controlling for age and body mass index (BMI), AH NfL was significantly elevated in patients with glaucoma compared with controls (P < 0.001). In contrast, after controlling for age, BMI, and Mini Mental Status Examination (MMSE) scores, serum NfL was not elevated in patients with glaucoma compared with controls (P = 0.81). Conclusions Although our findings validate AH NfL as a marker of glaucomatous neurodegeneration, no such evidence was found for serum NfL. Translational Relevance NfL levels in AH may be a molecular marker of retinal ganglion cell health in glaucoma; in contrast, serum NfL has limited utility for monitoring glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Jonathan B. Lin
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Hani El Helwe
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Henisk Falah
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | | | | | - George Baldwin
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Yixi Xue
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Ryan A. Vasan
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Christian Song
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Kristine Lo
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Austin Meeker
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Silas L. Wang
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David Solá-Del Valle
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Milica A. Margeta
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
3
|
Hameed SS, Sharma TP. Generation of Retinal Ganglion Cells from Reprogrammed Keratocytes of Non-Glaucoma and Glaucoma Donors. Curr Protoc 2025; 5:e70091. [PMID: 39781605 PMCID: PMC11713219 DOI: 10.1002/cpz1.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures. Given that keratocytes originate from the neural crest and previous reports suggest that ocular fibroblasts from glaucomatous donors carry pathogenic signatures, it is highly plausible that these signatures imprinted within the keratocytes will also be present in the derived RGCs. Thus, we aimed to generate RGCs from both glaucomatous and non-glaucomatous donor keratocytes and validate disease-specific signatures in 3D retinal organoids and in isolated RGCs. Our protocol describes the generation of iPSCs from keratocytes of both glaucomatous and non-glaucomatous donors, followed by their differentiation into retinal organoids. Subsequent isolation and culturing of RGCs were performed. Disease signatures in the RGCs were validated in both 3D retinal organoids (ROs) and 2D RGC cultures, and glaucomatous RGCs in 3D and 2D cultures demonstrated increased cleaved CASP3 and significant RGC loss, indicating disease imprints in the hiPSC-derived RGCs. This model offers a venue and high throughput platform for studying glaucomatous disease pathology and holds significant potential for drug discovery using RGCs derived from human donors. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culturing of keratocytes from human cadaveric donors Basic Protocol 2: Reprogramming donor keratocytes into iPSCs Basic Protocol 3: Evaluation of chromosomal loss during reprogramming in iPSCs by karyotyping Basic Protocol 4: Generation of 3D ROs Basic Protocol 5: Dissociation and culturing of RGCs from 3D ROs Support Protocol 1: Immunostaining for phenotypic characterization of cells Support Protocol 2: Sectioning of 3D ROs and immunostaining Support Protocol 3: Western blotting for cleaved CASP3 and THY1.
Collapse
Affiliation(s)
- Shahna S. Hameed
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| | - Tasneem P. Sharma
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| |
Collapse
|
4
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
5
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
6
|
Yoshida T, Yokoi T, Tanaka T, Matsuzaka E, Saida Y, Nishina S, Takada S, Shimizu S, Azuma N. Modeling of Retina and Optic Nerve Ischemia-Reperfusion Injury through Hypoxia-Reoxygenation in Human Induced Pluripotent Stem Cell-Derived Retinal Ganglion Cells. Cells 2024; 13:130. [PMID: 38247823 PMCID: PMC10814087 DOI: 10.3390/cells13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Retinal ganglion cells (RGCs) are specialized projection neurons that constitute part of the retina, and the death of RGCs causes various eye diseases, but the mechanism of RGC death is still unclear. Here, we induced cell death in human induced pluripotent stem cell (hiPSC)-derived RGC-rich retinal tissues using hypoxia-reoxygenation in vitro. Flow cytometry, immunochemistry, and Western blotting showed the apoptosis and necrosis of RGCs under hypoxia-reoxygenation, and they were rescued by an apoptosis inhibitor but not by a necrosis inhibitor. This revealed that the cell death induced in our model was mainly due to apoptosis. To our knowledge, this is the first model to reproduce ischemia-reperfusion in hiPSC-derived RGCs. Thus, the efficacy of apoptosis inhibitors and neuroprotective agents can be evaluated using this model, bringing us closer to clinical applications.
Collapse
Affiliation(s)
- Tomoyo Yoshida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Tadashi Yokoi
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of ophthalmology, Kyorin University, 6-20-2, Arakawa, Mitaka, Tokyo 1818611, Japan
| | - Taku Tanaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Emiko Matsuzaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Yuki Saida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Sachiko Nishina
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shuji Takada
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Noriyuki Azuma
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| |
Collapse
|
7
|
Pastor JC, Pastor-Idoate S, López-Paniagua M, Para M, Blazquez F, Murgui E, García V, Coco-Martín RM. Intravitreal allogeneic mesenchymal stem cells: a non-randomized phase II clinical trial for acute non-arteritic optic neuropathy. Stem Cell Res Ther 2023; 14:261. [PMID: 37735668 PMCID: PMC10512539 DOI: 10.1186/s13287-023-03500-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND An effective treatment for acute non-arteritic ischemic optic neuropathy (NA-AION) has not been known or proven yet. Previous studies have suggested a neuroprotective effect of allogeneic bone marrow-derived mesenchymal stem cells. This study aims to report the results of a clinical trial on patients with acute non-arteritic optic neuropathy (NA-AION) treated with an intravitreal injection of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) (MSV®). METHODS We conducted a prospective, non-randomized, clinical phase-II study (Eudra CT number 2016-003029-40; ClinicalTrials.gov Registry NCT03173638) that included 5 patients with acute unilateral NA-AION diagnosed within 2 weeks after symptom onset and who received an intravitreal injection of allogeneic BM-MSCs (0.05 ml; cell concentration: 1.5 × 106cells/mL). The patients underwent regular ophthalmological examinations and were followed for one year. RESULTS In this trial, allogeneic BM-MSCs appeared to be safe as no patients developed signs of acute nor chronic intraocular inflammation or a significant change in intraocular pressure, although an epiretinal membrane was developed in one patient. A retrolental aggregate formed shortly after the injection spontaneously disappeared within a few weeks in another phakic patient, leaving a subcapsular cataract. Visual improvement was noted in 4 patients, and amplitudes of P100 on the visually evoked potentials recordings increased in three patients. The retinal nerve fiber layer and macular ganglion cell layer thicknesses significantly decreased during the follow-up. CONCLUSIONS Besides the development of an epiretinal membrane in one patient, the intravitreal application of allogeneic BM-MSCs appeared to be intraocularly well tolerated. Consequently, not only NA-AION but also BM-MSCs deserve more clinical investigational resources and a larger randomized multicenter trial that would provide stronger evidence both about safety and the potential therapeutic efficacy of intravitreally injected allogeneic BM-MSCs in acute NA-AION. TRIAL REGISTRATION Safety Assessment of Intravitreal Mesenchymal Stem Cells for Acute Non-Arteritic Anterior Ischemic Optic Neuropathy (NEUROSTEM). NCT03173638. Registered June 02, 2017 https://clinicaltrials.gov/ct2/show/NCT03173638 .
Collapse
Affiliation(s)
- Jose C Pastor
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Clínico Universitario, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Para
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Francisco Blazquez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Murgui
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Verónica García
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Citospin S.L., Valladolid, Spain
| | - Rosa M Coco-Martín
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
10
|
Tao Y, Zhang Q, Meng M, Huang J. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022. Front Cell Dev Biol 2023; 11:1081898. [PMID: 36743419 PMCID: PMC9889543 DOI: 10.3389/fcell.2023.1081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Glaucoma, a neurodegenerative disease of the retina, is the leading cause of irreversible blindness. Stem cells have therapeutic potential for glaucoma. However, few bibliometric studies have been published in this field. Concerning a visual map, this article aims to characterize the research context, cooperation relationship, hotspots, and trends concerning the application of stem cells in glaucoma research. Methods: Publications focusing on stem cell research and glaucoma were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Microsoft Excel, and Scimago Graphica were used to map the contributions of countries or regions, authors, organizations, and journals. Journal Impact Factor data were obtained from the Web of Science Core Collection. We analyzed the tendencies, hotspots, and knowledge networks using VOSviewer, and CiteSpace. Results: We analyzed 518 articles published from 1999 through 2022. In the first decade, the number of articles in this field increased slowly, and there was a marked acceleration in publication frequency after 2010. The United States, China, and England were the main contributors. Yiqin Du was the most prolific author, and among the top 10 prolific writers, Keith R. Martin's work was cited most frequently. Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Cornea published the most articles in this domain. The three most commonly co-cited journals were Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Proceedings of the National Academy of Sciences of the United States of America. The Central South University, the University of Pittsburgh, and the National Institutes of Health National Eye Institute were highly prolific institutions in this research area. Our keywords analysis with VOSviewer suggested directions of future research and yielded the following recent key themes, extracellular vesicles, exosomes, mitochondria, growth factors, oxidative stress, and ocular diseases. Four co-cited references had a citation burst duration until 2022. Conclusion: With improvements in overall quality of life and demographic transitions toward population aging, research and clinical focus on eye care has increased, with glaucoma as a key area of emphasis. This study added to our understanding of the global landscape and Frontier hotspots in this field.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Shen W, Shao A, Zhou W, Lou L, Grzybowski A, Jin K, Ye J. Retinogenesis in a Dish: Bibliometric Analysis and Visualization of Retinal Organoids From 2011 to 2022. Cell Transplant 2023; 32:9636897231214321. [PMID: 38044501 PMCID: PMC10695087 DOI: 10.1177/09636897231214321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Retinal organoid (RO) is the three-dimensional (3D) retinal culture derived from pluripotent or embryonic stem cells which recapitulates organ functions, which was a revolutionary milestone in stem cell technology. The purpose of this study is to explore the hotspots and future directions on ROs, as well as to better understand the fields of greatest research opportunities. Eligible publications related to RO from 2011 to 2022 were acquired from the Web of Science (WoS) Core Collection database. Bibliometric analysis was performed by using software including VOSviewer, CiteSpace, and ArcGIS. A total of 520 articles were included, and the number of annual publications showed a rapid increase with an average rate of 40.86%. The United States published the most articles (241/520, 46.35%) with highest total citation frequencies (5,344). University College London (UK) contributed the largest publication output (40/520, 7.69%) and received highest total citation frequencies. Investigative Ophthalmology & Visual Science was the most productive journal with 129 articles. Majlinda Lako contributed the most research with 32 articles, while Olivier Goureau has the strongest collaboration work. Research could be subdivided into four keyword clusters: "culture and differentiation," "morphogenesis and modeling," "gene therapy," and "transplantation and visual restoration," and evolution of keywords was identified. Last decade has witnessed the huge progress in the field of RO, which is a young and promising research area with extensive and in-depth studies. More attention should be paid to RO-related models and therapies based on specific retinal diseases, especially inherited retinopathies.
Collapse
Affiliation(s)
- Wenyue Shen
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - An Shao
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Wuyuan Zhou
- Zhejiang Academy of Science and Technology Information, Hangzhou, China
| | - Lixia Lou
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
12
|
Esmaeili M, Mead B. Differentiation of Human Embryonic/Induced-Pluripotent Stem Cells to Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:41-48. [PMID: 37558958 DOI: 10.1007/978-1-0716-3409-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The generation of retinal ganglion cells (RGCs) differentiated from human embryonic stem cell (hESC) or induced-pluripotent stem cells (iPSC) could aid with understanding of human RGC development, neuronal biology, drug discovery, potential cell-based therapies, and gene regulation. Here, we present a protocol for differentiation of hESC to RGCs using a 40-day protocol, significantly shorter than typical retinal organoids while still yielding cells with RGC-enriched markers and show physiological and morphological properties typical of RGCs.
Collapse
Affiliation(s)
- Maryam Esmaeili
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
14
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
15
|
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:33. [PMID: 34719743 PMCID: PMC8557999 DOI: 10.1186/s13619-021-00097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
The evolution of pluripotent stem cell-derived retinal organoids (ROs) has brought remarkable opportunities for developmental studies while also presenting new therapeutic avenues for retinal diseases. With a clear understanding of how well these models mimic native retinas, such preclinical models may be crucial tools that are widely used for the more efficient translation of studies into novel treatment strategies for retinal diseases. Genetic modifications or patient-derived ROs can allow these models to simulate the physical microenvironments of the actual disease process. However, we are currently at the beginning of the three-dimensional (3D) RO era, and a general quantitative technology for analyzing ROs derived from numerous differentiation protocols is still missing. Continued efforts to improve the efficiency and stability of differentiation, as well as understanding the disparity between the artificial retina and the native retina and advancing the current treatment strategies, will be essential in ensuring that these scientific advances can benefit patients with retinal disease. Herein, we briefly discuss RO differentiation protocols, the current applications of RO as a disease model and the treatments for retinal diseases by using RO modeling, to have a clear view of the role of current ROs in retinal development and diseases.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
16
|
Luo Z, Xian B, Li K, Li K, Yang R, Chen M, Xu C, Tang M, Rong H, Hu D, Ye M, Yang S, Lu S, Zhang H, Ge J. Biodegradable scaffolds facilitate epiretinal transplantation of hiPSC-Derived retinal neurons in nonhuman primates. Acta Biomater 2021; 134:289-301. [PMID: 34314890 DOI: 10.1016/j.actbio.2021.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Transplantation of stem cell-derived retinal neurons is a promising regenerative therapy for optic neuropathy. However, significant anatomic differences compromise its efficacy in large animal models. The present study describes the procedure and outcomes of human-induced pluripotent stem cell (hiPSC)-derived retinal sheet transplantation in primate models using biodegradable materials. Stem cell-derived retinal organoids were seeded on polylactic-coglycolic acid (PLGA) scaffolds and directed toward a retinal ganglion cell (RGC) fate. The seeded tissues showed active proliferation, typical neuronal morphology, and electrical excitability. The cellular scaffolds were then epiretinally transplanted onto the inner surface of rhesus monkey retinas. With sufficient graft-host contact provided by the scaffold, the transplanted tissues survived for up to 1 year without tumorigenesis. Histological examinations indicated survival, further maturation, and migration. Moreover, green fluorescent protein-labeled axonal projections toward the host optic nerve were observed. Cryopreserved organoids were also able to survive and migrate after transplantation. Our results suggest the potential efficacy of RGC replacement therapy in the repair of optic neuropathy for the restoration of visual function. STATEMENT OF SIGNIFICANCE: In the present study, we generated a human retinal sheet by seeding hiPSC-retinal organoid-derived RGCs on a biodegradable PLGA scaffold. We transplanted this retinal sheet onto the inner surface of the rhesus monkey retina. With scaffold support, donor cells survive, migrate and project their axons into the host optic nerve. Furthermore, an effective cryopreservation strategy for retinal organoids was developed, and the thawed organoids were also observed to survive and show cell migration after transplantation.
Collapse
|
17
|
Yang R, Yang S, Li K, Luo Z, Xian B, Tang J, Ye M, Lu S, Zhang H, Ge J. Carbon Nanotube Polymer Scaffolds as a Conductive Alternative for the Construction of Retinal Sheet Tissue. ACS Chem Neurosci 2021; 12:3167-3175. [PMID: 34375091 DOI: 10.1021/acschemneuro.1c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
With the great success of graphene in the biomedical field, carbon nanotubes have attracted increasing attention for different applications in ophthalmology. Here, we report a novel retinal sheet composed of carbon nanotubes (CNTs) and poly(lactic-co-glycolic acid) (PLGA) that can enhance retinal cell therapy. By tuning our CNTs to regulate the mechanical characteristics of retina sheets, we were able to improve the in vitro viability of retinal ganglion cells derived from human-induced pluripotent stem cells incorporated into CNTs. Engrafted retinal ganglion cells displayed signs of regenerating processes along the optic nerve. Compared with PLGA scaffolds, CNT-PLGA retinal sheet tissue has excellent electrical conductivity, biocompatibility, and biodegradation. This new biomaterial offers new insight into retinal injury, repair, and regeneration.
Collapse
Affiliation(s)
- Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Sijing Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Hangzhou, Zhejiang 310000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jiaqi Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Shoutao Lu
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
18
|
Risner ML, Pasini S, Chamling X, McGrady NR, Goldberg JL, Zack DJ, Calkins DJ. Intrinsic Morphologic and Physiologic Development of Human Derived Retinal Ganglion Cells In Vitro. Transl Vis Sci Technol 2021; 10:1. [PMID: 34383881 PMCID: PMC8362626 DOI: 10.1167/tvst.10.10.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Human retinal ganglion cells (hRGC) derived from human pluripotent stem cells are promising candidates to model, protect, and replace degenerating RGCs. Here, we examined intrinsic morphologic and physiologic development of hRGCs. Methods We used CRISPR-Cas9 to selectively express tdTomato under the RGC-specific promoter, BRN3B. Human pluripotent stem cells were chemically differentiated into hRGCs and cultured up to 7 weeks. We measured soma area, neurite complexity, synaptic protein, axon-related messenger RNA and protein, and voltage-dependent responses. Results Soma area, neurite complexity, and postsynaptic density protein 95 increased over time. Soma area and neurite complexity increased proportionally week to week, and this relationship was dynamic, strengthening between 2 and 3 weeks and diminishing by 4 weeks. Postsynaptic density 95 localization was dependent on culture duration. After 1 to 2 weeks, postsynaptic density 95 localized within somas but redistributed along neurites after 3 to 4 weeks. Axon initial segment scaffolding protein, Ankyrin G, expression also increased over time, and by 7 weeks, Ankyrin G often localized within putative axons. Voltage-gated inward currents progressively developed, but outward currents matured by 4 weeks. Current-induced spike generation increased over time but limited by depolarization block. Conclusions Human RGCs develop up to 7 weeks after culture. Thus, the state of hRGC maturation should be accounted for in designing models and treatments for optic neuropathies. Translational Relevance We characterized hRGC morphologic and physiologic development towards identifying key time points when hRGCs express mechanisms that may be harnessed to enhance the efficacy of neuroprotective and cell replacement therapies.
Collapse
Affiliation(s)
- Michael L Risner
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Silvia Pasini
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xitiz Chamling
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nolan R McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Donald J Zack
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Li X, Zhang L, Tang F, Wei X. Retinal Organoids: Cultivation, Differentiation, and Transplantation. Front Cell Neurosci 2021; 15:638439. [PMID: 34276307 PMCID: PMC8282056 DOI: 10.3389/fncel.2021.638439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Retinal organoids (ROs), which are derived from stem cells, can automatically form three-dimensional laminar structures that include all cell types and the ultrastructure of the retina. Therefore, they are highly similar to the retinal structure in the human body. The development of organoids has been a great technological breakthrough in the fields of transplantation therapy and disease modeling. However, the translation of RO applications into medical practice still has various deficiencies at the current stage, including the long culture process, insufficient yield, and great heterogeneity among ROs produced under different conditions. Nevertheless, many technological breakthroughs have been made in transplanting ROs for treatment of diseases such as retinal degeneration. This review discusses recent advances in the development of ROs, improvements of the culture protocol, and the latest developments in RO replacement therapy techniques.
Collapse
Affiliation(s)
- Xuying Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Tang
- Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
20
|
Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021; 13:pharmaceutics13060865. [PMID: 34208272 PMCID: PMC8230855 DOI: 10.3390/pharmaceutics13060865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs.
Collapse
Affiliation(s)
- Rosa M. Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-983423559
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Jose Carlos Pastor
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Fundacion del Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), 42002 Soria, Spain
| |
Collapse
|
21
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
22
|
The role of PGS/PCL scaffolds in promoting differentiation of human embryonic stem cells into retinal ganglion cells. Acta Biomater 2021; 126:238-248. [PMID: 33771718 DOI: 10.1016/j.actbio.2021.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
The stem cell-based retinal ganglion cells (RGCs) replacement therapy offers a potential to restore vision in progressive optic neuropathies including glaucoma by replacing degenerated RGCs and by simulating axonal regeneration. Injured optic nerve axons do not regenerate owing to the limited intrinsic capacity of the neurons and the inhibitory environment at the injury site. Polymeric tissue scaffolds are able to modulate the physical environment while providing structural support for transplanted cells, however, their application specific to the RGC generation has been far from conclusive. The successful generation of clinically safe and functional RGCs that can appropriately integrate into the hosts' retinas still remain largely unresolved. Our study reports on a process that enables generation of RGCs from human embryonic stem cells (hESCs) that is simple, straightforward and repeatable and, investigates the influence of the aligned poly(glycerol sebacate) (PGS)/poly(ε-caprolactone) (PCL) scaffold on this differentiation process. Our findings demonstrate that PGS/PCL scaffold promotes differentiation of hESCs into RGC-like cells possibly by the simulation of cell active environmental signalling and, facilitates the growth of RGCs neurites along their lengths. STATEMENT OF SIGNIFICANCE: Glaucoma can lead to the degeneration of retinal ganglion cells (RGCs), with consequential vision loss. RGCs are incapable of self-renewal, replacement of diseased RGCs with healthy cells has been a goal to restore vision in glaucoma patients. In this regard, stem cell RGC replacement therapy has been shown to improve vision in animal models of glaucoma, which could be facilitated by using tissue-engineered polymeric scaffolds. In this study, we generated homogenous stem cell-derived RGCs via a straightforward differentiation protocol and evaluated the effects of PGS/PCL scaffold on RGCs differentiation and growth of RGCs neurites. Our study contributes to the knowledge on how biomaterial scaffolds are able to support the regeneration of RGC neurites (i.e., axons or dendrites) as a part of a possible future clinical therapy for the treatment of glaucoma.
Collapse
|
23
|
Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. Int J Mol Sci 2021; 22:ijms22094616. [PMID: 33924833 PMCID: PMC8125313 DOI: 10.3390/ijms22094616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma, the second leading cause of blindness worldwide, is an incurable neurodegenerative disorder due to the dysfunction of retinal ganglion cells (RGCs). RGCs function as the only output neurons conveying the detected light information from the retina to the brain, which is a bottleneck of vision formation. RGCs in mammals cannot regenerate if injured, and RGC subtypes differ dramatically in their ability to survive and regenerate after injury. Recently, novel RGC subtypes and markers have been uncovered in succession. Meanwhile, apart from great advances in RGC axon regeneration, some degree of experimental RGC regeneration has been achieved by the in vitro differentiation of embryonic stem cells and induced pluripotent stem cells or in vivo somatic cell reprogramming, which provides insights into the future therapy of myriad neurodegenerative disorders. Further approaches to the combination of different factors will be necessary to develop efficacious future therapeutic strategies to promote ultimate axon and RGC regeneration and functional vision recovery following injury.
Collapse
|
24
|
Yamamoto N, Hiramatsu N, Ohkuma M, Hatsusaka N, Takeda S, Nagai N, Miyachi EI, Kondo M, Imaizumi K, Horiguchi M, Kubo E, Sasaki H. Novel Technique for Retinal Nerve Cell Regeneration with Electrophysiological Functions Using Human Iris-Derived iPS Cells. Cells 2021; 10:cells10040743. [PMID: 33800535 PMCID: PMC8067101 DOI: 10.3390/cells10040743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine in ophthalmology that uses induced pluripotent stem cells (iPS) cells has been described, but those studies used iPS cells derived from fibroblasts. Here, we generated iPS cells derived from iris cells that develop from the same inner layer of the optic cup as the retina, to regenerate retinal nerves. We first identified cells positive for p75NTR, a marker of retinal tissue stem and progenitor cells, in human iris tissue. We then reprogrammed the cultured p75NTR-positive iris tissue stem/progenitor (H-iris stem/progenitor) cells to create iris-derived iPS (H-iris iPS) cells for the first time. These cells were positive for iPS cell markers and showed pluripotency to differentiate into three germ layers. When H-iris iPS cells were pre-differentiated into neural stem/progenitor cells, not all cells became positive for neural stem/progenitor and nerve cell markers. When these cells were pre-differentiated into neural stem/progenitor cells, sorted with p75NTR, and used as a medium for differentiating into retinal nerve cells, the cells differentiated into Recoverin-positive cells with electrophysiological functions. In a different medium, H-iris iPS cells differentiated into retinal ganglion cell marker-positive cells with electrophysiological functions. This is the first demonstration of H-iris iPS cells differentiating into retinal neurons that function physiologically as neurons.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
- Graduate School of Health Sciences, Fujita Health University, Aichi 470-1192, Japan
- Correspondence: or ; Tel.: +81-762-286-2211
| | - Noriko Hiramatsu
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Mahito Ohkuma
- Department of Physiology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.O.); (E.-i.M.)
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Shun Takeda
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| | - Ei-ichi Miyachi
- Department of Physiology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.O.); (E.-i.M.)
- Department of Food Science and Nutrition, Nagoya Women’s University, Aichi 467-8610, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.K.); (K.I.)
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.K.); (K.I.)
| | - Masayuki Horiguchi
- Department of Ophthalmology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan;
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| |
Collapse
|
25
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
26
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
27
|
An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Sci Rep 2021; 11:1101. [PMID: 33441707 PMCID: PMC7806597 DOI: 10.1038/s41598-020-79651-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.
Collapse
|
28
|
Freude KK, Saruhanian S, McCauley A, Paterson C, Odette M, Oostenink A, Hyttel P, Gillies M, Haukedal H, Kolko M. Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells - possibilities and current limitations. World J Stem Cells 2020; 12:1171-1183. [PMID: 33178399 PMCID: PMC7596448 DOI: 10.4252/wjsc.v12.i10.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients. They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells (RGCs) and Müller glia.
AIM To refine human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.
METHODS In this study we described, evaluated, and refined methods with which to generate Müller glia and RGC progenitors, isolated them via magnetic-activated cell sorting, and assessed their lineage stability after prolonged 2D culture. Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry, and the ultrastructural composition of retinal organoid cells was investigated.
RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids. Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.
CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.
Collapse
Affiliation(s)
- Kristine Karla Freude
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alanna McCauley
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Colton Paterson
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Madeleine Odette
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Annika Oostenink
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Mark Gillies
- Save Sight Institute, South Block, Sydney Eye Hospital, Sydney 2000, Australia
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup 2600, Denmark
| |
Collapse
|
29
|
Kogo Y, Seto C, Totani Y, Mochizuki M, Nakahara T, Oka K, Yoshioka T, Ito E. Rapid differentiation of human dental pulp stem cells to neuron-like cells by high K + stimulation. Biophys Physicobiol 2020; 17:132-139. [PMID: 33240740 PMCID: PMC7671740 DOI: 10.2142/biophysico.bsj-2020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As human-origin cells, human dental pulp stem cells (hDPSCs) are thought to be potentially useful for biological and medical experiments. They are easily obtained from lost primary teeth or extracted wisdom teeth, and they are mesenchymal stem cells that are known to differentiate into osteoblasts, chondrocytes, and adipocytes. Although hDPSCs originate from neural crest cells, it is difficult to induce hDPSCs to differentiate into neuron-like cells. To facilitate their differentiation into neuron-like cells, we evaluated various differentiation conditions. Activation of K+ channels is thought to regulate the intracellular Ca2+ concentration, allowing for manipulation of the cell cycle to induce the differentiation of hDPSCs. Therefore, in addition to a conventional neural cell differentiation protocol, we activated K+ channels in hDPSCs. Immunocyto-chemistry and real-time PCR revealed that applying a combination of 3 stimuli (high K+ solution, epigenetic reprogramming solution, and neural differentiation solution) to hDPSCs increased their expression of neuronal markers, such as β3-tubulin, postsynaptic density protein 95, and nestin within 5 days, which led to their rapid differentiation into neuron-like cells. Our findings indicate that epigenetic reprogramming along with cell cycle regulation by stimulation with high K+ accelerated the differentiation of hDPSCs into neuron-like cells. Therefore, hDPSCs can be used in various ways as neuron-like cells by manipulating their cell cycle.
Collapse
Affiliation(s)
- Yuki Kogo
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Chiaki Seto
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Mai Mochizuki
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo 102-8159, Japan
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tohru Yoshioka
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
30
|
Zaninello M, Palikaras K, Naon D, Iwata K, Herkenne S, Quintana-Cabrera R, Semenzato M, Grespi F, Ross-Cisneros FN, Carelli V, Sadun AA, Tavernarakis N, Scorrano L. Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat Commun 2020; 11:4029. [PMID: 32788597 PMCID: PMC7423926 DOI: 10.1038/s41467-020-17821-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
In autosomal dominant optic atrophy (ADOA), caused by mutations in the mitochondrial cristae biogenesis and fusion protein optic atrophy 1 (Opa1), retinal ganglion cell (RGC) dysfunction and visual loss occur by unknown mechanisms. Here, we show a role for autophagy in ADOA pathogenesis. In RGCs expressing mutated Opa1, active 5’ AMP-activated protein kinase (AMPK) and its autophagy effector ULK1 accumulate at axonal hillocks. This AMPK activation triggers localized hillock autophagosome accumulation and mitophagy, ultimately resulting in reduced axonal mitochondrial content that is restored by genetic inhibition of AMPK and autophagy. In C. elegans, deletion of AMPK or of key autophagy and mitophagy genes normalizes the axonal mitochondrial content that is reduced upon mitochondrial dysfunction. In conditional, RGC specific Opa1-deficient mice, depletion of the essential autophagy gene Atg7 normalizes the excess autophagy and corrects the visual defects caused by Opa1 ablation. Thus, our data identify AMPK and autophagy as targetable components of ADOA pathogenesis. Autosomal dominant optic atrophy is caused by mutations in the mitochondrial fusion protein OPA1. Here, the authors show that AMPK-induced autophagy depletes mitochondria in axons of retinal ganglion cells and that autophagic inhibition reverses vision loss in a mouse model.
Collapse
Affiliation(s)
- Marta Zaninello
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy.,IRCCS Fondazione Santa Lucia, Via Ardeatina 306, Rome, Italy
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Deborah Naon
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy
| | - Keiko Iwata
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy
| | - Stephanie Herkenne
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,IRCCS Fondazione Santa Lucia, Via Ardeatina 306, Rome, Italy
| | - Ruben Quintana-Cabrera
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy
| | - Martina Semenzato
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy.,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy
| | - Francesca Grespi
- Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy
| | | | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Unit of Neurology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, Italy. .,Department of Biology, University of Padova, Via U. Bassi 58B, Padova, Italy.
| |
Collapse
|
31
|
Pereiro X, Miltner AM, La Torre A, Vecino E. Effects of Adult Müller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cells. Cells 2020; 9:E1759. [PMID: 32708020 PMCID: PMC7465792 DOI: 10.3390/cells9081759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Retinal neurons, particularly retinal ganglion cells (RGCs), are susceptible to the degenerative damage caused by different inherited conditions and environmental insults, leading to irreversible vision loss and, ultimately, blindness. Numerous strategies are being tested in different models of degeneration to restore vision and, in recent years, stem cell technologies have offered novel avenues to obtain donor cells for replacement therapies. To date, stem cell-based transplantation in the retina has been attempted as treatment for photoreceptor degeneration, but the same tools could potentially be applied to other retinal cell types, including RGCs. However, RGC-like cells are not an abundant cell type in stem cell-derived cultures and, often, these cells degenerate over time in vitro. To overcome this limitation, we have taken advantage of the neuroprotective properties of Müller glia (one of the main glial cell types in the retina) and we have examined whether Müller glia and the factors they secrete could promote RGC-like cell survival in organoid cultures. Accordingly, stem cell-derived RGC-like cells were co-cultured with adult Müller cells or Müller cell-conditioned media was added to the cultures. Remarkably, RGC-like cell survival was substantially enhanced in both culture conditions, and we also observed a significant increase in their neurite length. Interestingly, Atoh7, a transcription factor required for RGC development, was up-regulated in stem cell-derived organoids exposed to conditioned media, suggesting that Müller cells may also enhance the survival of retinal progenitors and/or postmitotic precursor cells. In conclusion, Müller cells and the factors they release promote organoid-derived RGC-like cell survival, neuritogenesis, and possibly neuronal maturation.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| | - Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| |
Collapse
|
32
|
Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci Rep 2020; 10:11828. [PMID: 32678240 PMCID: PMC7366935 DOI: 10.1038/s41598-020-68811-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-β (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.
Collapse
|
33
|
Hua ZQ, Liu H, Wang N, Jin ZB. Towards stem cell-based neuronal regeneration for glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:99-118. [PMID: 32988476 DOI: 10.1016/bs.pbr.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease as a leading cause of global blindness. Retinal ganglion cell (RGC) apoptosis and optic nerve damage are the main pathological changes. Patients have elevated intraocular pressure and progressive visual field loss. Unfortunately, current treatments for glaucoma merely stay at delaying the disease progression. As a promising treatment, stem cell-based neuronal regeneration therapy holds potential for glaucoma, thereby great efforts have been paid on it. RGC regeneration and transplantation are key approaches for the future treatment of glaucoma. A line of studies have shown that a variety of cells can be used to regenerate RGCs, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In this review, we overview the current progress on the regeneration of pluripotent stem cell-derived RGCs and outlook the perspective and challenges in this field.
Collapse
Affiliation(s)
- Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
34
|
VanderWall KB, Huang KC, Pan Y, Lavekar SS, Fligor CM, Allsop AR, Lentsch KA, Dang P, Zhang C, Tseng HC, Cummins TR, Meyer JS. Retinal Ganglion Cells With a Glaucoma OPTN(E50K) Mutation Exhibit Neurodegenerative Phenotypes when Derived from Three-Dimensional Retinal Organoids. Stem Cell Reports 2020; 15:52-66. [PMID: 32531194 PMCID: PMC7363877 DOI: 10.1016/j.stemcr.2020.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Retinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.
Collapse
Affiliation(s)
- Kirstin B VanderWall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yanling Pan
- Indiana BioMedical Gateway Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sailee S Lavekar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Anna R Allsop
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kelly A Lentsch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Pengtao Dang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Theodore R Cummins
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
35
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
36
|
Xiao D, Deng Q, Guo Y, Huang X, Zou M, Zhong J, Rao P, Xu Z, Liu Y, Hu Y, Shen Y, Jin K, Xiang M. Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. SCIENCE ADVANCES 2020; 6:eaaz5858. [PMID: 32523990 PMCID: PMC7259937 DOI: 10.1126/sciadv.aaz5858] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Neural organoids provide a powerful tool for investigating neural development, modeling neural diseases, screening drugs, and developing cell-based therapies. Somatic cells have previously been reprogrammed by transcription factors (TFs) into sensory ganglion (SG) neurons but not SG organoids. We identify a combination of triple TFs Ascl1, Brn3b/3a, and Isl1 (ABI) as an efficient means to reprogram mouse and human fibroblasts into self-organized and networked induced SG (iSG) organoids. The iSG neurons exhibit molecular features, subtype diversity, electrophysiological and calcium response properties, and innervation patterns characteristic of peripheral sensory neurons. Moreover, we have defined retinal ganglion cell (RGC)-specific identifiers to demonstrate the ability for ABI to reprogram induced RGCs (iRGCs) from fibroblasts. Unlike iSG neurons, iRGCs maintain a scattering distribution pattern characteristic of endogenous RGCs. iSG organoids may serve as a model to decipher the pathogenesis of sensorineural diseases and screen effective drugs and a source for cell replacement therapy.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qinqin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiuting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min Zou
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Room 312B, 1130 St. Nicholas Ave., New York, NY 10032, USA
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Pinhong Rao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zihui Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yifan Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
37
|
Lam PT, Gutierrez C, Del Rio-Tsonis K, Robinson ML. Generation of a Retina Reporter hiPSC Line to Label Progenitor, Ganglion, and Photoreceptor Cell Types. Transl Vis Sci Technol 2020; 9:21. [PMID: 32714647 PMCID: PMC7352077 DOI: 10.1167/tvst.9.3.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Early in mammalian eye development, VSX2, BRN3b, and RCVRN expression marks neural retinal progenitors (NRPs), retinal ganglion cells (RGCs), and photoreceptors (PRs), respectively. The ability to create retinal organoids from human induced pluripotent stem cells (hiPSC) holds great potential for modeling both human retinal development and retinal disease. However, no methods allowing the simultaneous, real-time monitoring of multiple specific retinal cell types during development currently exist. Methods CRISPR/Cas9-mediated homology-directed repair (HDR) in hiPSCs facilitated the replacement of the VSX2 (Progenitor), BRN3b (Ganglion), and RCVRN (Photoreceptor) stop codons with sequences encoding a viral P2A peptide fused to Cerulean, green fluorescent protein, and mCherry reporter genes, respectively, to generate a triple transgenic reporter hiPSC line called PGP1. This was accomplished by co-electroporating HDR templates and sgRNA/Cas9 vectors into hiPSCs followed by antibiotic selection. Functional validation of the PGP1 hiPSC line included the ability to generate retinal organoids, with all major retinal cell types, displaying the expression of the three fluorescent reporters consistent with the onset of target gene expression. Disaggregated organoids were also analyzed by fluorescence-activated cell sorting and fluorescent populations were tested for the expression of the targeted gene. Results Retinal organoids formed from the PGP1 line expressed appropriate fluorescent proteins consistent with the differentiation of NRPs, RGCs, and PRs. Organoids produced from the PGP1 line expressed transcripts consistent with the development of all major retinal cell types. Conclusions and Translational Relevance The PGP1 line offers a powerful new tool to study retinal development, retinal reprogramming, and therapeutic drug screening.
Collapse
Affiliation(s)
- Phuong T Lam
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Christian Gutierrez
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Michael L Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| |
Collapse
|
38
|
Ohlemacher SK, Langer KB, Fligor CM, Feder EM, Edler MC, Meyer JS. Advances in the Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:121-140. [PMID: 31654388 DOI: 10.1007/978-3-030-28471-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cell (hPSC) technology has revolutionized the field of biology through the unprecedented ability to study the differentiation of human cells in vitro. In the past decade, hPSCs have been applied to study development, model disease, develop drugs, and devise cell replacement therapies for numerous biological systems. Of particular interest is the application of this technology to study and treat optic neuropathies such as glaucoma. Retinal ganglion cells (RGCs) are the primary cell type affected in these diseases, and once lost, they are unable to regenerate in adulthood. This necessitates the development of strategies to study the mechanisms of degeneration as well as develop translational therapeutic approaches to treat early- and late-stage disease progression. Numerous protocols have been established to derive RGCs from hPSCs, with the ability to generate large populations of human RGCs for translational applications. In this review, the key applications of hPSCs within the retinal field are described, including the use of these cells as developmental models, disease models, drug development, and finally, cell replacement therapies. In greater detail, the current report focuses on the differentiation of hPSC-derived RGCs and the many unique characteristics associated with these cells in vitro including their genetic identifiers, their electrophysiological activity, and their morphological maturation. Also described is the current progress in the use of patient-specific hPSCs to study optic neuropathies affecting RGCs, with emphasis on the use of these RGCs for studying disease mechanisms and pathogenesis, drug screening, and cell replacement therapies in future studies.
Collapse
Affiliation(s)
- Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Elyse M Feder
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael C Edler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
39
|
Lidgerwood GE, Hewitt AW, Pébay A. Human pluripotent stem cells for the modelling of diseases of the retina and optic nerve: toward a retina in a dish. Curr Opin Pharmacol 2019; 48:114-119. [PMID: 31590110 DOI: 10.1016/j.coph.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Human pluripotent stem cells can be differentiated into specific, relevant cell types of interest including the cells of the retina and optic nerve. These cells can then be used to study fundamental biology as well as disease modelling and subsequent screening of potential treatments. Many models of differentiation and modelling have relied on two-dimensional monocultures of specific cell types, which are not representative of the complexity of the human retina and optic nerve. Hence, more complex models of the human retina and optic nerve are required. Three-dimensional organoids and emerging cell culture methods may provide more physiologically relevant models to study developmental biology and pathology of the retina and optic nerve.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia; Department of Surgery, The University of Melbourne, Parkville, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Alex W Hewitt
- Department of Surgery, The University of Melbourne, Parkville, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Alice Pébay
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia; Department of Surgery, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
40
|
Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. J Neurosci Methods 2019; 325:108350. [DOI: 10.1016/j.jneumeth.2019.108350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
41
|
Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. ACTA ACUST UNITED AC 2019; 60:3625-3635. [DOI: 10.1167/iovs.19-27184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kseniia Chernyshova
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) disorder in the population and it carries a poor visual prognosis. In this article, we review the development of treatment strategies for LHON, the evidence base and the areas of unmet clinical need. RECENT FINDINGS There is accumulating evidence that increasing mitochondrial biogenesis could be an effective strategy for protecting retinal ganglion cells in LHON. A number of clinical trials are currently investigating the efficacy of viral-based gene therapy for patients harbouring the m.11778G>A mtDNA mutation. For female LHON carriers of childbearing age, mitochondrial replacement therapy is being offered to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY Although disease-modifying treatment options remain limited, a better understanding of the underlying disease mechanisms in LHON is paving the way for complementary neuroprotective and gene therapeutic strategies for this mitochondrial optic nerve disorder.
Collapse
|
43
|
Hu Y, Wang X, Hu B, Mao Y, Chen Y, Yan L, Yong J, Dong J, Wei Y, Wang W, Wen L, Qiao J, Tang F. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol 2019; 17:e3000365. [PMID: 31269016 PMCID: PMC6634428 DOI: 10.1371/journal.pbio.3000365] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The developmental pathway of the neural retina (NR) and retinal pigment epithelium (RPE) has been revealed by extensive research in mice. However, the molecular mechanisms underlying the development of the human NR and RPE, as well as the interactions between these two tissues, have not been well defined. Here, we analyzed 2,421 individual cells from human fetal NR and RPE using single-cell RNA sequencing (RNA-seq) technique and revealed the tightly regulated spatiotemporal gene expression network of human retinal cells. We identified major cell classes of human fetal retina and potential crucial transcription factors for each cell class. We dissected the dynamic expression patterns of visual cycle- and ligand-receptor interaction-related genes in the RPE and NR. Moreover, we provided a map of disease-related genes for human fetal retinal cells and highlighted the importance of retinal progenitor cells as potential targets of inherited retinal diseases. Our findings captured the key in vivo features of the development of the human NR and RPE and offered insightful clues for further functional studies.
Collapse
Affiliation(s)
- Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaoye Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yidong Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yuan Wei
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Wei Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
44
|
Yang YP, Nguyen PNN, Lin TC, Yarmishyn AA, Chen WS, Hwang DK, Chiou GY, Lin TW, Chien CS, Tsai CY, Chiou SH, Chen SJ, Peng CH, Hsu CC. Glutamate Stimulation Dysregulates AMPA Receptors-Induced Signal Transduction Pathway in Leber's Inherited Optic Neuropathy Patient-Specific hiPSC-Derived Retinal Ganglion Cells. Cells 2019; 8:cells8060625. [PMID: 31234430 PMCID: PMC6627514 DOI: 10.3390/cells8060625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial genetic disorder, Leber’s hereditary optic neuropathy (LHON), is caused by a mutation in MT-ND4 gene, encoding NADH dehydrogenase subunit 4. It leads to the progressive death of retinal ganglion cells (RGCs) and causes visual impairment or even blindness. However, the precise mechanisms of LHON disease penetrance and progression are not completely elucidated. Human-induced pluripotent stem cells (hiPSCs) offer unique opportunities to investigate disease-relevant phenotypes and regulatory mechanisms underlying LHON pathogenesis at the cellular level. In this study, we successfully generated RGCs by differentiation of LHON patient-specific hiPSCs. We modified the protocol of differentiation to obtain a more enriched population of single-cell RGCs for LHON study. Based on assessing morphology, expression of specific markers and electrophysiological activity, we found that LHON-specific hiPSC-derived were more defective in comparison with normal wild-type RGCs. Based on our previous study, whereby by using microarray analysis we identified that the components of glutamatergic synapse signaling pathway were significantly downregulated in LHON-specific RGCs, we focused our study on glutamate-associated α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. We found that the protein expression levels of the subunits of the AMPA receptor, GluR1 and GluR2, and their associated scaffold proteins were decreased in LHON-RGCs. By performing the co-immunoprecipitation assay, we found several differences in the efficiencies of interaction between AMPA subunits and scaffold proteins between normal and LHON-specific RGCs.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Phan Nguyen Nhi Nguyen
- Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan.
| | - Tai-Chi Lin
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wun-Syuan Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ching-Yao Tsai
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei City Hospital, Taipei 103, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- Department of Ophthalmology, Fu-Jen Catholic University, Taipei 242, Taiwan.
| | - Chih-Chien Hsu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| |
Collapse
|
45
|
Chang KC, Sun C, Cameron EG, Madaan A, Wu S, Xia X, Zhang X, Tenerelli K, Nahmou M, Knasel CM, Russano KR, Hertz J, Goldberg JL. Opposing Effects of Growth and Differentiation Factors in Cell-Fate Specification. Curr Biol 2019; 29:1963-1975.e5. [PMID: 31155355 PMCID: PMC6581615 DOI: 10.1016/j.cub.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Following ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs. Here, we report a new mechanism by which growth and differentiation factor-15 (GDF-15), a ligand in the transforming growth factor-beta (TGF-β) superfamily, strongly promotes RGC differentiation in the developing retina in vivo in rodent retinal progenitor cells (RPCs) and in human embryonic stem cells (hESCs). This effect is in direct contrast to the closely related ligand GDF-11, which suppresses RGC-fate specification. We find these opposing effects are due in part to GDF-15's ability to specifically suppress Smad-2, but not Smad-1, signaling induced by GDF-11, which can be recapitulated by pharmacologic or genetic blockade of Smad-2 in vivo to increase RGC specification. No other retinal cell types were affected by GDF-11 knockout, but a slight reduction in photoreceptor cells was observed by GDF-15 knockout in the developing retina in vivo. These data define a novel regulatory mechanism of GDFs' opposing effects and their relevance in RGC differentiation and suggest a potential approach for advancing ESC-to-RGC cell-based replacement therapies.
Collapse
Affiliation(s)
- Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Evan G Cameron
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ankush Madaan
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Eye, Ear, Nose, & Throat Hospital, Department of Ophthalmology & Visual Science, Fudan University, 200031 Shanghai, China
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xiong Zhang
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Tenerelli
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Cara M Knasel
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Kristina R Russano
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
46
|
Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA. Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development. J Ocul Pharmacol Ther 2019; 36:25-29. [PMID: 31166829 PMCID: PMC6985761 DOI: 10.1089/jop.2018.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we describe efforts by the National Eye Institute (NEI) and National Center for Advancing Translational Science (NCATS) to catalyze advances in 3-dimensional (3-D) ocular organoid and microphysiological systems (MPS). We reviewed the recent literature regarding ocular organoids and tissue chips. Animal models, 2-dimensional cell culture models, and postmortem human tissue samples provide the vision research community with insights critical to understanding pathophysiology and therapeutic development. The advent of induced pluripotent stem cell technologies provide researchers with enticing new approaches and tools that augment study in more traditional models to provide the scientific community with insights that have previously been impossible to obtain. Efforts by the National Institutes of Health (NIH) have already accelerated the pace of scientific discovery, and recent advances in ocular organoid and MPS modeling approaches have opened new avenues of investigation. In addition to more closely recapitulating the morphologies and physiological responses of in vivo human tissue, key breakthroughs have been made in the past year to resolve long-standing scientific questions regarding tissue development, molecular signaling, and pathophysiological mechanisms that promise to provide advances critical to therapeutic development and patient care. 3-D tissue culture modeling and MPS offer platforms for future high-throughput testing of therapeutic candidates and studies of gene interactions to improve models of complex genetic diseases with no well-defined etiology, such as age-related macular degeneration and Fuchs' dystrophy.
Collapse
Affiliation(s)
- Charles B. Wright
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M. Becker
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L, Miller PE, Moroi SE, Plummer CE, Sapienza JS, Storey ES, Teixeira LB, Toris CB, Webb TR. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22:726-740. [PMID: 31106969 PMCID: PMC6744300 DOI: 10.1111/vop.12678] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO-VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP-lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
Collapse
Affiliation(s)
- András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, Puerto Rico
| | | | | | | | - Larry Kagemann
- U.S. Food and Drug Administration, Silver Spring, Maryland.,New York University School of Medicine, New York, New York.,Department of Ophthalmology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sayoko E Moroi
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Eric S Storey
- South Atlanta Veterinary Emergency & Specialty, Fayetteville, Georgia
| | - Leandro B Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol B Toris
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terah R Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, Ohio
| |
Collapse
|
48
|
Lee J, Choi SH, Kim YB, Jun I, Sung JJ, Lee DR, Kim YI, Cho MS, Byeon SH, Kim DS, Kim DW. Defined Conditions for Differentiation of Functional Retinal Ganglion Cells From Human Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2019; 59:3531-3542. [PMID: 30025074 DOI: 10.1167/iovs.17-23439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to establish an efficient method for retinal ganglion cell (RGC) differentiation from human pluripotent stem cells (hPSCs) using defined factors. Methods To define the contribution of specific signal pathways to RGC development and optimize the differentiation of hPSCs toward RGCs, we examined RGC differentiation in three stages: (1) eye field progenitors expressing the eye field transcription factors (EFTFs), (2) RGC progenitors expressing MATH5, and (3) RGCs expressing BRN3B and ISLET1. By monitoring the condition that elicited the highest yield of cells expressing stage-specific markers, we determined the optimal concentrations and combinations of signaling pathways required for efficient generation of RGCs from hPSCs. Results Precise modulation of signaling pathways, including Wnt, insulin growth factor-1, and fibroblast growth factor, in combination with mechanical isolation of neural rosette cell clusters significantly enriched RX and PAX6 double-positive eye field progenitors from hPSCs by day 12. Furthermore, Notch signal inhibition facilitated differentiation into MATH5-positive progenitors at 90% efficiency by day 20, and these cells further differentiated to BRN3B and ISLET1 double-positive RGCs at 45% efficiency by day 40. RGCs differentiated via this method were functional as exemplified by their ability to generate action potentials, express microfilament components on neuronal processes, and exhibit axonal transportation of mitochondria. Conclusions This protocol offers highly defined culture conditions for RGC differentiation from hPSCs and in vitro disease model and cell source for transplantation for diseases related to RGCs.
Collapse
Affiliation(s)
- Junwon Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Hwi Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Ikhyun Jun
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Jea Sung
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | | | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Brain Korea 21 Plus Project for Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
VanderWall KB, Vij R, Ohlemacher SK, Sridhar A, Fligor CM, Feder EM, Edler MC, Baucum AJ, Cummins TR, Meyer JS. Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:201-212. [PMID: 30639213 PMCID: PMC6373493 DOI: 10.1016/j.stemcr.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.
Collapse
Affiliation(s)
- Kirstin B VanderWall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Ridhima Vij
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Elyse M Feder
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA
| | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis IN 46202, USA; Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis IN 46202, USA.
| |
Collapse
|
50
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|