1
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
2
|
Rong M, Liu J, Lu L. Self-Assembly of 2D Polyphthalocyanine in Lysosome Enables Multienzyme Activity Enhancement to Induce Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2400325. [PMID: 38364772 DOI: 10.1002/adhm.202400325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nanozymes show great potential in facilitating tumor ferroptosis by upregulation of reactive oxygen species (ROS) and downregulation of glutathione (GSH). However, mild acidity (pH 6.5-6.9) of tumor microenvironment severely restricts the activity of nanozymes. Although lysosomes as acidic organelles (pH = 3.5-5.5) are hopeful for improving enzyme-like activity, most reported nanozymes are not capable of effectively accumulating in the lysosomes. Herein, an acid-responsive self-assembly strategy based on iron phthalocyanine-rich covalent organic framework nanosheets (COFFePc NSs) is developed, which enables lysosomal targeting aggregation of COFFePc NSs due to the existence of abundant negative hydroxyl groups and rigid structure. Meanwhile, COFFePc NSs display exceptional multienzyme-mimic performance at lower pH to efficiently generate ROS to cause lysosome damage and apoptosis by synergistic photothermal effect. Subsequently, the released COFFePc with GSH oxidase-mimicking activity can consume GSH to promote ferroptosis. This is the first report of a 2D COF using its own properties to achieve lysosomal self-assembly. Overall, the work provides a new paradigm for the development of lysosome-targeted nanosystems.
Collapse
Affiliation(s)
- Mingjie Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Yan X, Chen X, Shan Z, Bi L. Engineering Exosomes to Specifically Target the Mitochondria of Brain Cells. ACS OMEGA 2023; 8:48984-48993. [PMID: 38162779 PMCID: PMC10753542 DOI: 10.1021/acsomega.3c06617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has demonstrated promise in initial tests with primary neuron cells and healthy rats. This promising development represents a significant step forward in treating these debilitating conditions.
Collapse
Affiliation(s)
- Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xinqian Chen
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
4
|
Kim YJ, Jang M, Roh J, Lee YJ, Moon HJ, Byun J, Wi J, Ko SK, Tae J. Rhodamine-Based Cyclic Hydroxamate as Fluorescent pH Probe for Imaging of Lysosomes. Int J Mol Sci 2023; 24:15073. [PMID: 37894759 PMCID: PMC10606023 DOI: 10.3390/ijms242015073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Monitoring the microenvironment within specific cellular regions is crucial for a comprehensive understanding of life events. Fluorescent probes working in different ranges of pH regions have been developed for the local imaging of different pH environments. Especially, rhodamine-based fluorescent pH probes have been of great interest due to their ON/OFF fluorescence depending on the spirolactam ring's opening/closure. By introducing the N-alkyl-hydroxamic acid instead of the alkyl amines in the spirolactam of rhodamine, we were able to tune the pH range where the ring opening and closing of the spirolactam occurs. This six-membered cyclic hydroxamate spirolactam ring of rhodamine B proved to be highly fluorescent in acidic pH environments. In addition, we could monitor pH changes of lysosomes in live cells and zebrafish.
Collapse
Affiliation(s)
- Young Ju Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Mina Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Yoon Jeong Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Hee Jung Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jimin Byun
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jihyun Wi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| |
Collapse
|
5
|
Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, Zeng J, Lo CH. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation 2023; 20:185. [PMID: 37543564 PMCID: PMC10403868 DOI: 10.1186/s12974-023-02866-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.
Collapse
Affiliation(s)
- Joseph D Quick
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Silva
- Faculty of Graduate Studies, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Yan X, Chen X, Shan Z, Bi L. Design, Synthesis, and Biological Evaluation of Novel Mitochondria-targeting Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547719. [PMID: 37461660 PMCID: PMC10349970 DOI: 10.1101/2023.07.04.547719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Mitochondrial dysfunction is implicated in both brain tumors and neurodegenerative diseases, leading to various cellular abnormalities that can promote tumor growth and resistance to thera-pies, as well as impaired energy production and compromised neuronal function. Developing targeted therapies aimed at restoring mitochondrial function and improving overall cellular health could potentially be a promising approach to treating these conditions. Brain-derived exosomes (BR-EVs) have emerged as potential drug delivery vessels for neurological conditions. Herein, we report a new method for creating mitochondria-targeting exosomes and test its application in vitro and in vivo.
Collapse
|
7
|
Chang R, Tang Y, Jia H, Dong Z, Gao S, Song Q, Dong H, Xu Q, Jiang Q, Loor JJ, Sun X, Xu C. Activation of PINK1-mediated mitophagy protects bovine mammary epithelial cells against lipopolysaccharide-induced mitochondrial and inflammatory damage in vitro. Free Radic Biol Med 2023; 194:172-183. [PMID: 36464026 DOI: 10.1016/j.freeradbiomed.2022.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Increased metabolic stress during early lactation results in damage of mitochondria and inflammatory responses in bovine mammary epithelial cells, both of which could be aggravated by inhibition of mitophagy. PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy is essential in the removal of damaged mitochondria and the regulation of inflammatory responses. The aim of the present study was to elucidate the role of PINK1-mediated mitophagy on mitochondrial damage and inflammatory responses in bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). Exogenous LPS activated mitophagy and led to lower protein abundance of oxidative phosphorylation (OXPHOS) complexes (COI-V) and lower oxygen consumption rate (OCR) along with increased mitochondrial reactive oxygen species (Mito-ROS) content. These effects were also associated with increased protein abundance of Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) in a time-dependent manner. Pretreatment with 3-Methyladenine (3-MA) or knockdown of PINK1 aggravated the downregulation of COI-V protein abundance, the increase in Mito-ROS content, and the protein abundance of NLRP3, Cleaved-Caspase-1 and IL-1β induced by LPS. Overexpression of PINK1 activated mitophagy and alleviated LPS-induced NLRP3 inflammasome activation by reducing Mito-ROS production. Overall, the data suggested that PINK1-mediated mitophagy is a crucial anti-inflammatory mechanism that removes damaged mitochondria in bovine mammary epithelial cells experiencing an increased inflammatory load.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yan Tang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhihao Dong
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuang Gao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qian Song
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Dong
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiushi Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Xudong Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Chuang Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China.
| |
Collapse
|
8
|
Abeywickrama CS. Large Stokes shift benzothiazolium cyanine dyes with improved intramolecular charge transfer (ICT) for cell imaging applications. Chem Commun (Camb) 2022; 58:9855-9869. [PMID: 35983738 DOI: 10.1039/d2cc03880c] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular Charge Transfer (ICT) is a crucial photophysical phenomenon that can be used to improve the Stokes' shift in fluorescent dyes. The introduction of molecular asymmetry is a promising approach to mitigate significant drawbacks of the symmetric cyanine dyes due to their narrow Stokes' shifts (Δλ < 20 nm). In this feature article, we discuss recent progress towards improving the Stokes' shift (Δλ > 100 nm) in benzothiazolium-based fluorophore systems via efficient ICT and recent discoveries related to potentially useful live cell imaging applications of these asymmetric cyanine dyes. This article explores three interesting asymmetric benzothiazolium dye designs (D-π-A, π-A and D-π-2A) in detail while discussing their optical properties. The key advantage of these probes is the synthetic tunability of the probe's photophysical properties and cellular selectivity by simply modifying the donor (D) or the acceptor (A) group in the structure. These new asymmetric ICT fluorophore systems exhibit large Stokes' shifts, high biocompatibility, wash-free staining, red to NIR emission and facile excitation with commercially available laser wavelengths.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Umeno T, Seto R, Matsumoto S, Fujihara M, Karasawa S. Basic Fluorescent Protonation-Type pH Probe Sensitive to Small Δp Ka of Methanol and Ethanol. Anal Chem 2022; 94:10400-10407. [PMID: 35829731 DOI: 10.1021/acs.analchem.2c01415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An optical pH probe is a simple and effective tool for determining an accurate pH value in its localized area. However, basic pH probes with pKBH+ values above 8 have rarely been reported, although many components with high pKa such as arginine play important roles in vivo. Herein, we introduce novel colorimetric and fluorescent basic probes 1-5, which are designed using push-pull-type aminoquinoline and aminobenzoquinoline fluorophores, with pKBH+ values ranging from 8.4 to 9.9. After the basicity of the remarkably sensitive basic probe 4 was tuned, it was able to successfully distinguish between the pKa values of MeOH (15.5) and EtOH (15.9), thus displaying selective protonation and fluorescence enhancement in MeOH over EtOH. Our pH probes can be used to detect MeOH poisoning in commercial EtOH products such as hand sanitizers, providing an effective solution to this problem observed during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Remi Seto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Moeka Fujihara
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
10
|
Abeywickrama CS, Baumann HJ, Bertman KA, Corbin B, Pang Y. The Unexpected Selectivity Switching from Mitochondria to Lysosome in a D-π-A Cyanine Dye. BIOSENSORS 2022; 12:504. [PMID: 35884307 PMCID: PMC9313378 DOI: 10.3390/bios12070504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Two interesting benzothizolium-based D-π-A type hemicyanine dyes (3a-3b) with a diphenylamine (-NPh2) donor group were evaluated for fluorescence confocal microscopy imaging ability in live cells (MO3.13, NHLF). In sharp contrast to previously reported D-π-A dyes with alkyl amine donor (-NR2) groups (1), 3a and 3b exhibited significantly different photophysical properties and organelle selectivity. Probes 3a and 3b were nearly non-fluorescent in many polar and non-polar solvents but exhibited a bright red fluorescence (λem ≈ 630-640 nm) in stained MO3.13 and NHLF with very low probe concentrations (i.e., 200 nM). Fluorescence confocal microscopy-based co-localization studies revealed excellent lysosome selectivity from the probes 3a-3b, which is in sharp contrast to previously reported D-π-A type benzothiazolium dyes (1) with an alkyl amine donor group (-NR2) (exhibiting selectivity towards cellular mitochondria). The photostability of probe 3 was found to be dependent on the substituent (R') attached to the quaternary nitrogen atom in the cyanine dye structure. The observed donor-dependent selectivity switching phenomenon can be highly useful in designing novel organelle-targeted fluorescent probes for live-cell imaging applications.
Collapse
Affiliation(s)
- Chathura S. Abeywickrama
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA; (H.J.B.); (K.A.B.); (B.C.)
| | - Hannah J. Baumann
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA; (H.J.B.); (K.A.B.); (B.C.)
| | - Keti A. Bertman
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA; (H.J.B.); (K.A.B.); (B.C.)
| | - Brian Corbin
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA; (H.J.B.); (K.A.B.); (B.C.)
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA; (H.J.B.); (K.A.B.); (B.C.)
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
11
|
Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J Control Release 2022; 347:521-532. [PMID: 35569584 DOI: 10.1016/j.jconrel.2022.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Delivery of nucleic acids, such as mRNA, to immune cells has become a major focus in the past decade with ionizable lipid nanoparticles (LNPs) emerging as a clinically-validated delivery platform. LNPs-typically composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol lipids -have been designed and optimized for a variety of applications including cancer therapies, vaccines, and gene editing. However, LNPs have only recently been investigated for delivery to T cells, which has various therapeutic applications including the engineering of T cell immunotherapies. While several LNP formulations have been evaluated for mRNA delivery, recent work has demonstrated that the utilization of cholesterol analogs may enhance mRNA delivery. Other studies have shown that cholesterols modified with hydroxyl groups can alter endocytic recycling mechanisms. Here, we engineered a library of LNPs incorporating hydroxycholesterols to evaluate their impact on mRNA delivery to T cells by leveraging endosomal trafficking mechanisms. Substitution of 25% and 50% 7α-hydroxycholesterol for cholesterol in LNPs enhanced mRNA delivery to primary human T cells ex vivo by 1.8-fold and 2.0-fold, respectively. Investigation of endosomal trafficking revealed that these modifications also increase late endosome production and reduce the presence of recycling endosomes. These results suggest that hydroxyl modification of cholesterol molecules incorporated into LNP formulations provides a mechanism for improving delivery of nucleic acid cargo to T cells for a range of immunotherapy applications.
Collapse
|
12
|
Wu RS, Lin YS, Nain A, Unnikrishnan B, Lin YF, Yang CR, Chen TH, Huang YF, Huang CC, Chang HT. Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosens Bioelectron 2022; 211:114362. [PMID: 35617797 DOI: 10.1016/j.bios.2022.114362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023]
Abstract
Monitoring of structural changes in subcellular organelles is critical to evaluate the chemotherapeutic response of cells. However, commercial organelle selective fluorophores are easily photobleached, and thus are unsuitable for real-time and long-term observation. We have developed photostable carbon-dot liposomes (CDsomes)-based fluorophores for organellar and suborganellar imaging to circumvent these issues. The CDs synthesized through a mild pyrolysis/hydrolysis process exhibit amphipathic nature and underwent self-assembly to form liposome-like structures (CDsomes). The controlled hydrophilicity or hydrophobicity-guided preparation of CDsomes are used to selectively and rapidly (<1 min) stain nucleolus, cytoplasm, and membrane. In addition, the CDsomes offer universal high-contrast staining not only in fixed cells but also in living cells, allowing real-time observation and morphological identification in the specimen. The as-prepared CDsomes exhibit excitation-dependent fluorescence, and are much more stable under photoirradiation (e.g., ultraviolet light) than traditional subcellular dyes. Interestingly, the CDsomes can be transferred to daughter cells by diluting the particles, enabling multigenerational tracking of suborganelle for up to six generations, without interrupting the staining pattern. Therefore, we believe that the ultra-photostable CDsomes with high biocompatibility, and long-term suborganellar imaging capabilities, hold a great potential for screening and evaluating therapeutic performance of various chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Ruei Yang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Heng Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Benton JL, Li E, Weisbach E, Fukumura Y, Quinan VC, Chaves da Silva PG, Edwards AJ, Beltz BS. Adult neurogenesis in crayfish: Identity and regulation of neural progenitors produced by the immune system. iScience 2022; 25:103993. [PMID: 35340434 PMCID: PMC8941203 DOI: 10.1016/j.isci.2022.103993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeanne L. Benton
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Emmy Li
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Emily Weisbach
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Yuriko Fukumura
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | | | | | - Alex J. Edwards
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Barbara S. Beltz
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Corresponding author
| |
Collapse
|
14
|
Yapici N, Gao X, Yan X, Hou S, Jockusch S, Lesniak L, Gibson KM, Bi L. Novel Dual-Organelle-Targeting Probe (RCPP) for Simultaneous Measurement of Organellar Acidity and Alkalinity in Living Cells. ACS OMEGA 2021; 6:31447-31456. [PMID: 34869971 PMCID: PMC8637586 DOI: 10.1021/acsomega.1c03087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.
Collapse
Affiliation(s)
- Nazmiye
B. Yapici
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shanshan Hou
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lillian Lesniak
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
15
|
Abstract
Fluorescent tools have emerged as an important tool for studying the distinct chemical microenvironments of organelles, due to their high specificity and ability to be used in non-destructive, live cellular studies. These tools fall largely in two categories: exogenous fluorescent dyes, or endogenous labels such as genetically encoded fluorescent proteins. In both cases, the probe must be targeted to the organelle of interest. To date, many organelle-targeted fluorescent tools have been reported and used to uncover new information about processes that underpin health and disease. However, the majority of these tools only apply a handful of targeting groups, and less-studied organelles have few robust targeting strategies. While the development of new, robust strategies is difficult, it is essential to develop such strategies to allow for the development of new tools and broadening the effective study of organelles. This review aims to provide a comprehensive overview of the major targeting strategies for both endogenous and exogenous fluorescent cargo, outlining the specific challenges for targeting each organelle type and as well as new developments in the field.
Collapse
Affiliation(s)
- Jiarun Lin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Kylie Yang
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Zhang W, Du B, Gao M, Tung CH. A Hybrid Nanogel to Preserve Lysosome Integrity for Fluorescence Imaging. ACS NANO 2021; 15:16442-16451. [PMID: 34612039 DOI: 10.1021/acsnano.1c05864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence imaging of lysosomes provides a powerful tool to probe the lysosome physiology in living cells, yet the continuous light exposure inevitably causes lysosome damage and phototoxicity, which remains a formidable challenge. Here the long-term lysosome tracking with minimized photodamage was realized using a multifunctional nanoprobe, a platinum nanoparticle, and a quinacrine co-loaded nanogel. To construct the hybrid nanogel, cisplatin first functioned as cross-linker to withhold all components and then was reduced to a platinum nanoparticle in situ by ethanol. The platinum nanoparticle enabled a long-term quinacrine fluorescence imaging of lysosome by scavenging the light induced reactive oxygen species which could damage lysosomal membranes.
Collapse
Affiliation(s)
- Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Baoji Du
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Menghan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
17
|
Abeywickrama CS, Baumann HJ, Pang Y. Simultaneous Visualization of Mitochondria and Lysosome by a Single Cyanine Dye: The Impact of the Donor Group (-NR 2) Towards Organelle Selectivity. J Fluoresc 2021; 31:1227-1234. [PMID: 34297321 DOI: 10.1007/s10895-021-02786-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
A benzothiazolium-based hemicyanine dye (probe 3) has been synthesized by attaching a morpholine group into a phenyl benzothiazolium skeleton. Probe 3 exhibited interesting photophysical characteristics including red emission (λem ≈600 nm), enhanced Stokes shift (Δλ ≈80 nm) and sensitivity to solvent polarity. Although the probe 3 exhibited almost no emission in aqueous environments (φfl ≈0.002), its fluorescence could be increased by ≈50 fold in organic solvents (φfl ≈0.10), making it possible for live cell imaging under wash-free conditions. Probe 3 exhibited excellent ability to visualize cellular mitochondria and lysosomes simultaneously, as observed from fluorescence confocal microscopy. In addition, probe 3 also exhibited good biocompatibility (calculated LC50 > 20 µM) and high photostability.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Hannah J Baumann
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Yi Pang
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
18
|
Luther DC, Jeon T, Goswami R, Nagaraj H, Kim D, Lee YW, Rotello VM. Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. Bioconjug Chem 2021; 32:891-896. [PMID: 33872490 PMCID: PMC8508718 DOI: 10.1021/acs.bioconjchem.1c00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and effective delivery. Here, we highlight recent examples from the literature for the accurate assessment of cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.
Collapse
Affiliation(s)
- David C. Luther
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- These authors contributed equally
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
- These authors contributed equally
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Dongkap Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Scales JL, Koroma DC, Oancea E. Single organelle measurements of melanosome pH using the novel ratiometric indicator RpHiMEL. Methods Enzymol 2021; 654:315-344. [PMID: 34120720 PMCID: PMC11869214 DOI: 10.1016/bs.mie.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes. Defects in genes encoding pH-regulating melanosomal proteins result in oculocutaneous albinism, which is characterized by hypopigmentation, impaired vision, and increased susceptibility to skin and eye cancers. We recently uncovered several ion channels and transporters that modulate melanin synthesis by acidifying or neutralizing the luminal pH of melanosomes. However, our understanding of how melanosomes and other related organelles maintain their luminal pH is far from complete. The study of melanosome pH regulation requires robust imaging and quantification tools. Despite recent advances in the development of such methods, many limitations remain, particularly for quantitative analysis of individual organelle pH. In this chapter, we will provide an overview of the available methods used for melanosome pH determination, including their advantages, limitations, and challenges. To address the critical, unmet need for reliable melanosome pH quantification tools, we engineered a novel genetically encoded, ratiometric pH sensor for melanosomes that we named RpHiMEL. Here, we describe the design and optimization of RpHiMEL, and provide a pH quantification method for individual melanosomes in live cells. We demonstrate that RpHiMEL is a highly versatile tool with the potential to advance our understanding of pH regulation in melanosomes and related organelles.
Collapse
Affiliation(s)
- Jessica L Scales
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Donald C Koroma
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States.
| |
Collapse
|
20
|
Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi MA, Breitinger HG. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021; 102. [PMID: 33709903 DOI: 10.1099/jgv.0.001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Marwa Ahmed
- Present address: Institute of Biochemistry and Biophysics Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Mohamed A El-Azizi
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | | |
Collapse
|
21
|
Petersen AU, Kjær C, Jensen C, Brøndsted Nielsen M, Brøndsted Nielsen S. Gas‐Phase Ion Fluorescence Spectroscopy of Tailor‐made Rhodamine Homo‐ and Heterodyads: Quenching of Electronic Communication by π‐Conjugated Linkers. Angew Chem Int Ed Engl 2020; 59:20946-20955. [DOI: 10.1002/anie.202008314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
| | - Christina Kjær
- Department of Physics and Astronomy Aarhus University Denmark
| | - Cecilie Jensen
- Department of Chemistry University of Copenhagen Denmark
| | | | | |
Collapse
|
22
|
Petersen AU, Kjær C, Jensen C, Brøndsted Nielsen M, Brøndsted Nielsen S. Gas‐Phase Ion Fluorescence Spectroscopy of Tailor‐made Rhodamine Homo‐ and Heterodyads: Quenching of Electronic Communication by π‐Conjugated Linkers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Christina Kjær
- Department of Physics and Astronomy Aarhus University Denmark
| | - Cecilie Jensen
- Department of Chemistry University of Copenhagen Denmark
| | | | | |
Collapse
|
23
|
Yang L, Zhao J, Wang J, Han G, Liu B, Zhang W, Fu Y, Han MY, Wang Z, Zhang Z. An azacyclo-localizing fluorescent probe for the specific labeling of lysosome and autolysosome. Talanta 2020; 216:120941. [DOI: 10.1016/j.talanta.2020.120941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
24
|
Han Q, Han L, Tie F, Wang Z, Ma C, Li J, Wang H, Li G. (20S)-Protopanaxadiol Ginsenosides Induced Cytotoxicity via Blockade of Autophagic Flux in HGC-27 Cells. Chem Biodivers 2020; 17:e2000187. [PMID: 32384197 DOI: 10.1002/cbdv.202000187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
(20S)-Protopanaxadiol ginsenosides Rg3, Rh2 and PPD have been demonstrated for their anticancer activity. However, the underlying mechanism of their antitumor activity remains unclear. In the present study, we investigated the role of these three ginsenosides on cell proliferation and death of human gastric cancer cells (HGC-27 cells). The sulforhodamine B (SRB) assay, Western blot analysis, fluorescence microscopy, confocal microscopy, high performance liquid chromatography (HPLC) analysis, flow cytometry, and transmission electron microscopy (TEM) were used to evaluate cell proliferation, apoptosis, and autophagy. The results showed that both Rh2 and PPD were more effective than Rg3 in inhibiting HGC-27 cell proliferation and inducing cytoplasmic vacuolation, while no significant changes in apoptosis were observed. Interestingly, cytoplasmic vacuolation and blockade of autophagy flux were observed after treatment with Rh2 and PPD. Rh2 obviously up-regulated the expression of the LC3II and p62. Furthermore, the increase in lysosomal pH and membrane rupture was observed in Rh2-treated and PPD-treated cells. When HGC-27 cells were pretreated with bafilomycin A1, a specific inhibitor of endosomal acidification, cellular vacuolization was increased, and the cell viability was significantly decreased, which indicated that Rh2-induced lysosome-damage accelerated cell death. Furthermore, data derived from mitochondrial analysis showed that excessive mitochondrial reactive oxygen species (ROS) and dysregulation of mitochondrial energy metabolism were caused by Rh2 and PPD treatment in HGC-27 cells. Taken together, these phenomena indicated that Rh2 and PPD inhibited HCG-27 cells proliferation by inducing mitochondria damage, dysfunction of lysosomes, and blockade of autophagy flux. The number of glycosyl groups at C-3 position could have an important effect on the cytotoxicity of Rg3, Rh2 and PPD.
Collapse
Affiliation(s)
- Qingqing Han
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Lijuan Han
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, P. R. China
| | - Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Chengjun Ma
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Honglun Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
25
|
Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem 2020; 99:103848. [DOI: 10.1016/j.bioorg.2020.103848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022]
|
26
|
Tong L, Wang X, Chen Z, Liang Y, Yang Y, Gao W, Liu Z, Tang B. One-Step Fabrication of Functional Carbon Dots with 90% Fluorescence Quantum Yield for Long-Term Lysosome Imaging. Anal Chem 2020; 92:6430-6436. [DOI: 10.1021/acs.analchem.9b05553] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Xiuxiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yuhua Liang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yapei Yang
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
27
|
Immunotoxin SS1P is rapidly removed by proximal tubule cells of kidney, whose damage contributes to albumin loss in urine. Proc Natl Acad Sci U S A 2020; 117:6086-6091. [PMID: 32123080 DOI: 10.1073/pnas.1919038117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombinant immunotoxins (RITs) are chimeric proteins composed of an Fv and a protein toxin being developed for cancer treatment. The Fv brings the toxin to the cancer cell, but most of the RITs do not reach the tumor and are removed by other organs. To identify cells responsible for RIT removal, and the pathway by which RITs reach these cells, we studied SS1P, a 63-kDa RIT that targets mesothelin-expressing tumors and has a short serum half-life. The major organs that remove RIT were identified by live mouse imaging of RIT labeled with FNIR-Z-759. Cells responsible for SS1P removal were identified by immunohistochemistry and intravital two-photon microscopy of kidneys of rats. The primary organ of SS1P removal is kidney followed by liver. In the kidney, SS1P passes through the glomerulus, is taken up by proximal tubular cells, and transferred to lysosomes. In the liver, macrophages are involved in removal. The short half-life of SS1P is due to its very rapid filtration by the kidney followed by degradation in proximal tubular cells of the kidney. In mice treated with SS1P, proximal tubular cells are damaged and albumin in the urine is increased. SS1P uptake by kidney is reduced by coadministration of l-lysine. Our data suggests that l-lysine administration to humans might prevent SS1P-mediated kidney damage, reduce albumin loss in urine, and alleviate capillary leak syndrome.
Collapse
|
28
|
Abeywickrama CS, Bertman KA, Mcdonald LJ, Alexander N, Dahal D, Baumann HJ, Salmon CR, Wesdemiotis C, Konopka M, Tessier CA, Pang Y. Synthesis of highly selective lysosomal markers by coupling 2-(2'-hydroxyphenyl)benzothiazole (HBT) with benzothiazolium cyanine (Cy): the impact of substituents on selectivity and optical properties. J Mater Chem B 2019; 7:7502-7514. [PMID: 31712794 DOI: 10.1039/c9tb01672d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HBT-Cy 1 has been previously reported as a highly selective fluorescent probe for lysosome visualization in live cells. To further investigate the role of the structural components of HBT-Cy in lysosome selectivity, cyanine based fluorescent probe series (2-5) have been synthesized in good yields by connecting benzothiazolium cyanine (Cy) with 2-hydroxyphenylbenzothiazole (HBT) via a meta phenylene ring. Probes 2-5 exhibited exceptional photophysical properties including bright red-emission (λem≈ 630-650 nm), a large Stokes shift (Δλ > 130 nm) and high fluorescence quantum yields (φfl≈ 0.1-0.5). Probes 2, 3, and 5 exhibited exceptional selectivity towards cellular lysosomes in NHLF and MO3.13 cells. Our further study revealed that the phenyl benzothiazolium cyanine component (6) was the lysosome directing group in the HBT-Cy probe structure. The attachment of the hydroxyphenyl benzothiazole (HBT) component to the HBT-Cy probe structure has significantly improved its photophysical properties. Lysosome probes 2, 3 and 5 exhibited excellent biocompatibility, quick staining, bright red fluorescence, and wash-free application for live cell imaging. These probes further exhibited excellent characteristics for bioimaging experiments including a non-alkalinizing nature, high biocompatibility, high photostability and long-term imaging ability (>4 hours).
Collapse
Affiliation(s)
| | - Keti A Bertman
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Lucas J Mcdonald
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Nicolas Alexander
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Dipendra Dahal
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Hannah J Baumann
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Carrie R Salmon
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Chrys Wesdemiotis
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Michael Konopka
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Claire A Tessier
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, Ohio 44325, USA. and Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
29
|
Abstract
A novel pro-dye approach for the acid-selective staining of the subcellular compartments for better permeability and selectivity was applied. The designed sensor has suitable physicochemical properties such as a large Stokes shift and a long-lived intracellular fluorescence. The Schiff base fragment was used for the acid-sensitive release of a fluorophore without affecting the overall stability of the biological systems. Due to the presence of an imine bond in its structure and its unique fluorescent properties, it can be presented as a “pro-dye” for acidic structures such as lysosomes. As a result of an imine bond cleavage, a new fluorescent compound is released, whose substantially shifted excitation and emission wavelengths enable a more selective and effective imaging of lysosomes and endosomes. The presented report provides the chemical, physicochemical and optical profiles as well as biological assays and theoretical calculations.
Collapse
|
30
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorg Chem 2019; 91:103144. [PMID: 31377388 PMCID: PMC7065667 DOI: 10.1016/j.bioorg.2019.103144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
A series of pyrene-benzothiazolium dyes (1a-1d) were experimentally investigated to study their internalization mechanism into cellular lysosomes as well as their potential imaging applications for live cell imaging. The lysosome selectivity of the probes was further compared by using fluorescently tagged lysosome associated membrane protein-1 (LAMP-1) expression-dependent visualization in both normal (COS-7, HEK293) and cancer (A549, Huh 7.5) cell lines. These probes were successfully employed as reliable lysosome markers in tumor cell models, thus providing an attractive alternative to LAMP-1 expression-dependent visualization methods. One advantage of these probes is the elimination of significant background fluorescence arising from fluorescently tagged protein expression on the cell surface when cells were transfected with LAMP-1 expression plasmids. Probes exhibited remarkable ability to stain cellular lysosomes for long-term experiments (up to 24 h) and the highly lipophilic nature of the probe design allowed their accumulation in hydrophobic regions of the cellular lysosomes. Experimental evidences indicated that the probes are likely to be internalized into lysosomes via endocytosis and accumulated in the hydrophobic regions of the lysosomes rather than in the acidic lysosomal lumen. These probes also demonstrated significant stability and lysosome staining for fixed cell imaging applications as well. Lastly, the benzothiazolium moiety of the probes was identified as the key component for lysosome selectivity.
Collapse
Affiliation(s)
| | - Kaveesha J Wijesinghe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA; Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
31
|
de Carvalho LP, de Melo EJT. Autophagic elimination of Trypanosoma cruzi in the presence of metals. J Microbiol 2019; 57:918-926. [PMID: 31463789 DOI: 10.1007/s12275-019-9018-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Trypanosoma cruzi is an obligate intracellular parasite transmitted to vertebrate hosts by blood-sucking insects. Molecules present in parasites and mammalian cells allow the recognition and parasite internalization. Metallic ions play an essential role in the establishment and maintenance of host-parasite interaction. However, little is known about how parasites handle with essential and nonessential metal quotas. This study aimed to investigate the influence of metal ions on the biological processes of T. cruzi infected cells. Infected cells were incubated with ZnCl2, CdCl2, and HgCl2 for 12 h and labeled with different specific dyes to investigate the cellular events related to intracellular parasite death and elimination. Infected host cells and parasite's mitochondria underwent functional and structural disorders, in addition to parasite's DNA condensation and pH decrease on host cells, which led to parasite death. Further investigations suggested that lysosomes were involved in pH decrease and the double membrane of the endoplasmic reticulum formed vacuoles surrounding damaged parasites, which indicate the occurrence of autophagy for parasite elimination. In conclusion, low concentrations of nonessential and essential metals cause a series of damage to Trypanosoma cruzi organelles, leading to its loss of viability, death, and elimination, with no removal of the host cells.
Collapse
Affiliation(s)
- Laís Pessanha de Carvalho
- Laboratory of Tissue and Cell Biology, State University of North Fluminense - Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Edésio José Tenório de Melo
- Laboratory of Tissue and Cell Biology, State University of North Fluminense - Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Manipulation of autophagy for host-directed tuberculosis therapy. Afr J Thorac Crit Care Med 2019; 25. [PMID: 34286250 PMCID: PMC8278992 DOI: 10.7196/ajtccm.2019.v25i2.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the world’s most successful human pathogens, infecting ~2 billion people worldwide. Although
there are effective drugs against M. tb., the disease remains out of control owing to prolonged and toxic treatment. Shorter regimens are
urgently required to control TB. Drug-resistant TB (DR-TB) also threatens to derail TB control. These unfulfilled needs could be addressed
by the identification and development of host-directed therapeutic agents for TB. Manipulation of the innate immune response, including
autophagy, may lead to the identification of cellular pathways that could be exploited to develop host-directed therapeutic interventions.
Host-directed therapies (HDTs) aim to augment immune mechanisms against M. tb infection and/or reduce excess inflammation, thus
preventing end-organ tissue damage, preserving lung function and/or enhancing the effectiveness of TB drug therapy in eliminating
infection. HDTs may also have additional advantages for patients with TB/HIV co-infection, as HDTs may reduce the risk of interaction
with antiretroviral drugs and the risk of developing immune reconstitution inflammatory syndrome (IRIS) and death. In this review, we
discuss the role of autophagy as a potential pathway that could be exploited as a host-directed TB therapeutic agent.
Collapse
|
33
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Red-emitting pyrene-benzothiazolium: unexpected selectivity to lysosomes for real-time cell imaging without alkalinizing effect. Chem Commun (Camb) 2019; 55:3469-3472. [PMID: 30839045 PMCID: PMC6446231 DOI: 10.1039/c9cc01068h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of pyrene-benzothiazolium probes were synthesized. By replacing the pyridinium with a benzothiazolium unit, the selectivity of pyrene-derivatives is found to switch from nuclear to cellular lysosomes. New probes do not require proton participation and exhibit high biocompatibility and long-term imaging ability.
Collapse
|
34
|
Sharma G, Guardia CM, Roy A, Vassilev A, Saric A, Griner LN, Marugan J, Ferrer M, Bonifacino JS, DePamphilis ML. A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis. Autophagy 2019; 15:1694-1718. [PMID: 30806145 DOI: 10.1080/15548627.2019.1586257] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-throughput screening identified 5 chemical analogs (termed the WX8-family) that disrupted 3 events in lysosome homeostasis: (1) lysosome fission via tubulation without preventing homotypic lysosome fusion; (2) trafficking of molecules into lysosomes without altering lysosomal acidity, and (3) heterotypic fusion between lysosomes and autophagosomes. Remarkably, these compounds did not prevent homotypic fusion between lysosomes, despite the fact that homotypic fusion required some of the same machinery essential for heterotypic fusion. These effects varied 400-fold among WX8-family members, were time and concentration dependent, reversible, and resulted primarily from their ability to bind specifically to the PIKFYVE phosphoinositide kinase. The ability of the WX8-family to prevent lysosomes from participating in macroautophagy/autophagy suggested they have therapeutic potential in treating autophagy-dependent diseases. In fact, the most potent family member (WX8) was 100-times more lethal to 'autophagy-addicted' melanoma A375 cells than the lysosomal inhibitors hydroxychloroquine and chloroquine. In contrast, cells that were insensitive to hydroxychloroquine and chloroquine were also insensitive to WX8. Therefore, the WX8-family of PIKFYVE inhibitors provides a basis for developing drugs that could selectively kill autophagy-dependent cancer cells, as well as increasing the effectiveness of established anti-cancer therapies through combinatorial treatments. Abbreviations: ACTB: actin beta; Baf: bafilomycin A1; BECN1: beclin 1; BODIPY: boron-dipyrromethene; BORC: BLOC-1 related complex; BRAF: B-Raf proto-oncogene, serine/threonine kinase; BSA: bovine serum albumin; CTSD: cathepsin D; CQ: chloroquine; DNA: deoxyribonucleic acid; EC50: half maximal effective concentration; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCQ: hydroxychloroquine; HOPS complex: homotypic fusion and protein sorting complex; Kd: equilibrium binding constant; IC50: half maximal inhibitory concentration; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MES: 2-(N-morpholino)ethanesulphonic acid; MTOR: mechanistic target of rapamycin kinase; μM: micromolar; NDF: 3-methylbenzaldehyde (2,6-dimorpholin-4-ylpyrimidin-4-yl)hydrazine;NEM: N-ethylmaleimide; NSF: N-ethylmaleimide sensitive factor; PBS: phosphate-buffered saline; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PIP4K2C: phosphatidylinositol-5-phosphate 4-kinase type 2 gamma; PtdIns3P: phosphatidylinositol 3-phosphate; PtdIns(3,5)P2: phosphatidylinositol 3,5-biphosphate; RFP: red fluorescent protein; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TWEEN 20: polysorbate 20; V-ATPase: vacuolar-type H+-translocating ATPase; VPS39: VPS39 subunit of HOPS complex; VPS41: VPS41 subunit of HOPS complex; WWL: benzaldehyde [2,6-di(4-morpholinyl)-4-pyrimidinyl]hydrazone; WX8: 1H-indole-3-carbaldehyde [4-anilino-6-(4-morpholinyl)-1,3,5-triazin-2-yl]hydrazine; XBA: N-(3-chloro-4-fluorophenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride; XB6: N-(4-ethylphenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride.
Collapse
Affiliation(s)
- Gaurav Sharma
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Ajit Roy
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Alex Vassilev
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Amra Saric
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Lori N Griner
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Juan Marugan
- Division of Pre-Clinical Innovation, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , Rockville , MD , USA
| | - Marc Ferrer
- Division of Pre-Clinical Innovation, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , Rockville , MD , USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Melvin L DePamphilis
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
35
|
Egele K, Samaddar S, Schneider N, Thompson D, Wenz G. Synthesis of the Anionic Hydroxypropyl-β-cyclodextrin:Poly(decamethylenephosphate) Polyrotaxane and Evaluation of its Cholesterol Efflux Potential in Niemann-Pick C1 Cells. J Mater Chem B 2019; 7:528-537. [PMID: 31372225 PMCID: PMC6675466 DOI: 10.1039/c8tb02950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Niemann-Pick type C disease (NPC) is a lysosomal storage disease that is characterized by a progressive accumulation of unesterified cholesterol in the lysosomes leading to organ damage from cell dysfunction. Hydroxypropyl-β-cyclodextrin (HP-β-CD) is an attractive drug candidate for treating NPC, as it diminishes cholesterol accumulation in NPC cells. Systemic HP-β-CD treatment, however, is limited by rapid renal clearance. We designed a new anionic HP-β-CD polyrotaxane to act as a slow release formulation based on a polyalkylene phosphate core to improve the pharmacokinetics. The polyalkylene phosphate comprises hydrophobic decamethylene spacers linked by biodegradable anionic phosphodiester bonds. HP-β-CD was threaded onto this polymer first and α-CD afterwards to prevent burst release of the threaded HP-β-CD. Our findings show that HP-β-CD was slowly released from the watersoluble polyrotaxane over a 30 days period. The polyrotaxane provided persistently diminished cholesterol levels in NPC1 cells by 20% relative to untreated cells. These results demonstrate the therapeutic potential of this novel HP-β-CD polyrotaxane for the mobilization of aberrantly stored cholesterol in NPC1 cells.
Collapse
Affiliation(s)
- Kerstin Egele
- Organic Macromolecular Chemistry, Saarland University, Saarbrücken, Germany
| | | | | | | | - Gerhard Wenz
- Organic Macromolecular Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
36
|
Bi W, Bi Y, Li P, Hou S, Yan X, Hensley C, Bammert CE, Zhang Y, Gibson KM, Ju J, Bi L. Indole Alkaloid Derivative B, a Novel Bifunctional Agent That Mitigates 5-Fluorouracil-Induced Cardiotoxicity. ACS OMEGA 2018; 3:15850-15864. [PMID: 30533582 PMCID: PMC6275955 DOI: 10.1021/acsomega.8b02139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Clinically approved therapeutics that mitigate chemotherapy-induced cardiotoxicity, a serious adverse effect of chemotherapy, are lacking. The aim of this study was to determine the putative protective capacity of a novel indole alkaloid derivative B (IADB) against 5-fluorouracil (5-FU)-induced cardiotoxicity. To assess the free-radical scavenging activities of IADB, the acetylcholine-induced relaxation assay in rat thoracic aorta was used. Further, IADB was tested in normal and cancer cell lines with assays gauging autophagy induction. We further examined whether IADB could attenuate cardiotoxicity in 5-FU-treated male ICR mice. We found that IADB could serve as a novel bifunctional agent (displaying both antioxidant and autophagy-modulating activities). Further, we demonstrated that IADB induced production of cytosolic autophagy-associated structures in both cancer and normal cell lines. We observed that IADB cytotoxicity was much lower in normal versus cancer cell lines, suggesting an enhanced potency toward cancer cells. The cardiotoxicity induced by 5-FU was significantly relieved in animals pretreated with IADB. Taken together, IADB treatment, in combination with chemotherapy, may lead to reduced cardiotoxicity, as well as the reduction of anticancer drug dosages that may further improve chemotherapeutic efficacy with decreased off-target effects. Our data suggest that the use of IADB may be therapeutically beneficial in minimizing cardiotoxicity associated with high-dose chemotherapy. On the basis of the redox status difference between normal and tumor cells, IADB selectively induces autophagic cell death, mediated by reactive oxygen species overproduction, in cancer cells. This novel mechanism could reveal novel therapeutic targets in chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Yue Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Pengfei Li
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Shanshan Hou
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Connor Hensley
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Catherine E. Bammert
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Yanrong Zhang
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jingfang Ju
- Translational
Research Laboratory, Department of Pathology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lanrong Bi
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
37
|
Lou B, De Koker S, Lau CYJ, Hennink WE, Mastrobattista E. mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate Antigen Presenting Cells. Bioconjug Chem 2018; 30:461-475. [PMID: 30188694 PMCID: PMC6385079 DOI: 10.1021/acs.bioconjchem.8b00524] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Vaccines based on
mRNA have emerged as potent systems to elicit
CD8+ T cell responses against various cancers and viral
infectious diseases. The efficient intracellular delivery of mRNA
molecules encoding antigens into the cytosol of antigen-presenting
cells (APCs) is still challenging, requiring cell attachment, active
uptake, and subsequent endosomal escape. Here, we report a facile
approach for the formulation of peptide-functionalized mRNA polyplexes
using copper-free click chemistry to promote presentation of mRNA
antigen by dendritic cells (DCs). After screening different membrane
active peptides, GALA modified mRNA polyplexes (PPx-GALA) with a size
around 350 nm and with a slightly negative surface charge (−7
mV), exhibited the highest EGFP-mRNA transfection in RAW 246.7 macrophages
(∼36%) and D1 dendritic cells (∼50%) as compared to
polyplexes decorated with melittin or LEDE peptides. Interestingly,
we found that PPx-GALA enters DCs through sialic acid mediated endo/phagocytosis,
which was not influenced by DC maturation. The PPx-GALA formulation
exhibited 18-fold higher cellular uptake compared to a lipofectamine
mRNA formulation without inducing cytotoxicity. Live cell imaging
showed that PPx-GALA that were taken up by endocytosis induced calcein
release from endosomes into the cytosol. DCs treated with PPx-GALA
containing mRNA encoding for OVA displayed enhanced T cell responses
and DC maturation. Collectively, these data provide a strong rationale
for further study of this PPx-GALA formulation in vivo as a promising mRNA vaccine platform.
Collapse
Affiliation(s)
- Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , 3584CG Utrecht , The Netherlands
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology , Ghent University , 9052 Zwijnaarde , Belgium
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , 3584CG Utrecht , The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , 3584CG Utrecht , The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS) , Utrecht University , 3584CG Utrecht , The Netherlands
| |
Collapse
|
38
|
Roy I, Bobbala S, Zhou J, Nguyen MT, Nalluri SKM, Wu Y, Ferris DP, Scott EA, Wasielewski MR, Stoddart JF. ExTzBox: A Glowing Cyclophane for Live-Cell Imaging. J Am Chem Soc 2018; 140:7206-7212. [PMID: 29771509 DOI: 10.1021/jacs.8b03066] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF6-, Cl-), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield ΦF = 1.00. Furthermore, unlike its ExBIPY2+ and TzBIPY2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 64+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me2TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J Fraser Stoddart
- Institute of Molecular Design and Synthesis , Tianjin University , 92 Weijin Road , Nankai District , Tianjin 300072 , P. R. China
| |
Collapse
|
39
|
Further aspects of Toxoplasma gondii elimination in the presence of metals. Parasitol Res 2018; 117:1245-1256. [PMID: 29455419 DOI: 10.1007/s00436-018-5806-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/06/2023]
Abstract
Toxoplasma gondii, the etiological agent of toxoplasmosis, infects nucleated cells and then resides and multiplies within a parasitophorous vacuole. For this purpose, the parasite secretes many virulence factors for the purpose of invading and subverting the host microbicidal defenses in order to facilitate its survival in the intracellular milieu. Essential metals are structural components of proteins and enzymes or cofactors of enzymatic reactions responsible for these parasitic survival mechanisms. However, an excess of non-essential or essential metals can lead to parasite death. Thus, infected host cells were incubated with 20 μM ZnCl2 in conjunction with 3 μM CdCl2 or HgCl2 for 12 h in order to investigate cellular events and organelle damage related to intracellular parasite death and elimination. In the presence of these metals, the tachyzoites undergo lipid uptake and transport impairment, functional and structural mitochondrial disorders, DNA condensation, and acidification of the parasitophorous vacuole, thus leading to parasite death. Additional research has suggested that lysosome-vacuole fusion was involved in parasite elimination since acid phosphatases were found inside the parasitophorous vacuole, and vacuoles containing parasites were also positive for autophagy. In conclusion, low concentrations of CdCl2, HgCl2, and ZnCl2 can cause damage to Toxoplasma gondii organelles, leading to loss of viability, organelle death, and elimination without causing toxic effects to host cells.
Collapse
|
40
|
Chen X, Zhang X, Xia LY, Wang HY, Chen Z, Wu FG. One-Step Synthesis of Ultrasmall and Ultrabright Organosilica Nanodots with 100% Photoluminescence Quantum Yield: Long-Term Lysosome Imaging in Living, Fixed, and Permeabilized Cells. NANO LETTERS 2018; 18:1159-1167. [PMID: 29368935 DOI: 10.1021/acs.nanolett.7b04700] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Water-dispersible nanomaterials with superbright photoluminescence (PL) emissions and narrow PL bandwidths are urgently desired for various imaging applications. Herein, for the first time, we prepared ultrasmall organosilica nanodots (OSiNDs) with an average size of ∼2.0 nm and ∼100% green-emitting PL quantum efficiency via a one-step hydrothermal treatment of two commercial reagents (a silane molecule and rose bengal). In particular, the structural reorganization and halide loss of rose bengal during the hydrothermal treatment contribute to the ultrahigh quantum yield and low phototoxicity of OSiNDs. Owing to their low pH-induced precipitation/aggregation property, the as-prepared OSiNDs can be used as excellent lysosomal trackers with many advantages: (1) They have superior lysosomal targeting ability with a Pearson's coefficient of 0.98; (2) The lysosomal monitoring time of OSiNDs is up to 48 h, which is much longer than those of commercial lysosomal trackers (<2 h); (3) They do not disturb the pH environment of lysosomes and can be used to visualize lysosomes in living, fixed, and permeabilized cells; (4) They exhibit intrinsic lysosomal tracking ability without the introduction of lysosome-targeting ligands (such as morpholine) and superior photostability; (5) The easy, cost-effective, and scalable synthetic method further ensures that these OSiNDs can be readily used as exceptional lysosomal trackers. We expect that the ultrasmall OSiNDs with superior fluorescence properties and easily modifiable surfaces could be applied as fluorescent nanoprobes, light-emitting diode phosphor, and anticounterfeiting material, which should be able to promote the preparation and application of silicon-containing nanomaterials.
Collapse
Affiliation(s)
- Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Liu-Yuan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
41
|
Oxygen Concentration and Oxidative Stress Modulate the Influence of Alzheimer's Disease A β1-42 Peptide on Human Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7567959. [PMID: 29576854 PMCID: PMC5821958 DOI: 10.1155/2018/7567959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) generated after exposure to ionizing radiation and toxic peptides, in mitochondrial metabolism and during aging contribute to damage of cell's structural and functional components and can lead to diseases. Monomers and small oligomers of amyloid beta (Aβ) peptide, players in Alzheimer's disease, are recently suggested to be involved in damaging of neurons, instead of extracellular Aβ plaques. We demonstrate that externally applied disaggregated Aβ1–42 peptide interacts preferentially with acidic compartments (lysosomes). We compared standard cell cultivation (21% O2) to more physiological cell cultivation (5% O2). Cells did not exhibit a dramatic increase in ROS and change in glutathione level upon 4 μM Aβ peptide treatment, whereas exposure to 2 Gy X-rays increased ROS and changed glutathione level and ATP concentration. The occurrence of the 4977 bp deletion in mtDNA and significant protein carbonylation were specific effects of IR and more pronounced at 21% O2. An increase in cell death after Aβ peptide treatment or irradiation was unexpectedly restored to the control level or below when both were combined, particularly at 5% O2. Therefore, Aβ peptide at low concentration can trigger neuroprotective mechanisms in cells exposed to radiation. Oxygen concentration is an important modulator of cellular responses to stress.
Collapse
|
42
|
Abstract
Ageing is the gradual decline in biological function both at the cellular and organismal level. One of the key characteristics of cellular ageing is the accumulation of damaged proteins and organelles which, in turn, can cause cellular toxicity and death. Autophagy is an evolutionarily conserved process that is responsible for the sequestration of damaged or surplus cytoplasmic components which are then delivered to the lysosome for degradation. This house-keeping mechanism is essential to maintain cellular homeostasis and survival, particularly during stress. A decline or loss of sensitivity/responsiveness of autophagy is intimately linked with an accelerated rate of ageing as well as many age-related diseases including neurodegeneration, cancer and metabolic disease where damage accumulation exceeds damage removal. This chapter summarises current knowledge regarding the relationship between autophagy and ageing and outlines some strategies that can be implemented to promote the anti-ageing effects of autophagy to improve human health and lifespan.
Collapse
Affiliation(s)
- Charlotte J Pattison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
43
|
Kumari P, Verma SK, Mobin SM. Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids. Chem Commun (Camb) 2018; 54:539-542. [DOI: 10.1039/c7cc07812a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schematic representation of the proposed work.
Collapse
Affiliation(s)
- Pratibha Kumari
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
| | | | - Shaikh M. Mobin
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
- Discipline of Chemistry
- Indore
| |
Collapse
|
44
|
Zhang H, Liu J, Wang L, Sun M, Yan X, Wang J, Guo JP, Guo W. Amino-Si-rhodamines: A new class of two-photon fluorescent dyes with intrinsic targeting ability for lysosomes. Biomaterials 2017; 158:10-22. [PMID: 29272765 DOI: 10.1016/j.biomaterials.2017.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Noninvasive and specific visualization of lysosomes by fluorescence technology is critical for studying lysosomal trafficking in health and disease and for evaluating new cancer therapeutics that target tumor cell lysosomes. To date, there are two basic types of lysosomal probes whose lysosomal localization correlates with lysosomal acidity and endocytosis pathway, respectively. However, the former may suffer from pH-sensitive lysosomal localization and alkalization-induced lysosomal enzyme inactivation, and the latter need long incubation time to penetrate cell membrane due to the energy-dependency of endocytosis process. In this work, a new class of two-photon fluorescent dyes, termed amino-Si-rhodamines (ASiRs), were developed, which possess the intrinsic lysosome-targeted ability that is independent of lysosomal acidity and endocytosis pathway. As a result, ASiRs show not only the stable lysosomal localization against lysosomal pH changes and negligible interference to lysosomal function, but also excellent cell-membrane-permeability due to the energy-independent passive diffusion pathway. These merits, coupled with their excellent two-photon photophysical properties, long-term retention ability in lysosomes, and negligible cytotoxicity, make ASiRs very suitable for real-time and long-term tracking of lysosomes in living cells or tissues without interference to normal cellular processes. Moreover, the easy functionalization via amino linker further allows the construction of various fluorescent probes for biological targets of interest based on ASiR skeleton, as indicated by the cancer-targeted fluorescent probe ASiR6 as well as a fluorescent peroxynitrite probe ASiR-P.
Collapse
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Linfang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Minjia Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaohan Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Jian-Ping Guo
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing, 100041, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
45
|
Camargo TP, Neves A, Peralta RA, Chaves C, Maia ECP, Lizarazo-Jaimes EH, Gomes DA, Bortolotto T, Norberto DR, Terenzi H, Tierney DL, Schenk G. Second-Sphere Effects in Dinuclear FeIIIZnII Hydrolase Biomimetics: Tuning Binding and Reactivity Properties. Inorg Chem 2017; 57:187-203. [DOI: 10.1021/acs.inorgchem.7b02384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David L. Tierney
- Department
of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States,
| | - Gerhard Schenk
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
46
|
Non-invasive in vivo imaging of fluorescence-labeled bacterial distributions in aquatic species. Int J Vet Sci Med 2017; 5:187-195. [PMID: 30255070 PMCID: PMC6137844 DOI: 10.1016/j.ijvsm.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo imaging is becoming an advanced tool for noninvasive distribution of longitudinal small animals. However, the aquatic species have been limited to the optical imaging of noninvasively tracking on pathogen distribution. The purpose of this study was to develop shell-less fish and shrimp models of non-invasive in vivo imaging technique for visualization of pathogens. This experiment was utilized Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus and Vibrio harveyi labeled with fluorescence probes to imaging bacterial distributions by IVIS Lumina LT system. The study was traced the internal distribution of fluorescence probes labeled bacteria in systemic organs by quantified their fluorescence intensities. The ex vivo organ images were showed more obvious fluorescent signal in catfish intestine, liver, heart, kidney and the shrimp showed heart, hepatopancreas, and colon. Hence, the in vivo imaging methods using fluorescent labeled bacterial distribution were suggested to quantify by fluorescence intensity in whole pre-infected subjects. Therefore, it can offer the information about the localization and distribution of pathogens in the preclinical research, after immersion and injections.
Collapse
|
47
|
Liu X, Ardizzone A, Sui B, Anzola M, Ventosa N, Liu T, Veciana J, Belfield KD. Fluorenyl-Loaded Quatsome Nanostructured Fluorescent Probes. ACS OMEGA 2017; 2:4112-4122. [PMID: 30023713 PMCID: PMC6044886 DOI: 10.1021/acsomega.7b00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 05/25/2023]
Abstract
Delivery of hydrophobic materials in biological systems, for example, contrast agents or drugs, is an obdurate challenge, severely restricting the use of materials with otherwise advantageous properties. The synthesis and characterization of a highly stable and water-soluble nanovesicle, referred to as a quatsome (QS, vesicle prepared from cholesterol and amphiphilic quaternary amines), that allowed the nanostructuration of a nonwater soluble fluorene-based probe are reported. Photophysical properties of fluorenyl-quatsome nanovesicles were investigated via ultraviolet-visible absorption and fluorescence spectroscopy in various solvents. Colloidal stability and morphology of the nanostructured fluorescent probes were studied via cryogenic transmission electronic microscopy, revealing a "patchy" quatsome vascular morphology. As an example of the utility of these fluorescent nanoprobes, examination of cellular distribution was evaluated in HCT 116 (an epithelial colorectal carcinoma cell line) and COS-7 (an African green monkey kidney cell line) cell lines, demonstrating the selective localization of C-QS and M-QS vesicles in lysosomes with high Pearson's colocalization coefficient, where C-QS and M-QS refer to quatsomes prepared with hexadecyltrimethylammonium bromide or tetradecyldimethylbenzylammonium chloride, respectively. Further experiments demonstrated their use in time-dependent lysosomal tracking.
Collapse
Affiliation(s)
- Xinglei Liu
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Antonio Ardizzone
- Institut
de Ciencia de Materials de Barcelona (CSIC)-CIBER-BBN, Campus Universitari
de Bellaterra, 08193 Cerdanyola, Spain
| | - Binglin Sui
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Mattia Anzola
- Institut
de Ciencia de Materials de Barcelona (CSIC)-CIBER-BBN, Campus Universitari
de Bellaterra, 08193 Cerdanyola, Spain
| | - Nora Ventosa
- Institut
de Ciencia de Materials de Barcelona (CSIC)-CIBER-BBN, Campus Universitari
de Bellaterra, 08193 Cerdanyola, Spain
| | - Taihong Liu
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Jaume Veciana
- Institut
de Ciencia de Materials de Barcelona (CSIC)-CIBER-BBN, Campus Universitari
de Bellaterra, 08193 Cerdanyola, Spain
| | - Kevin D. Belfield
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| |
Collapse
|
48
|
Liu X, Su Y, Tian H, Yang L, Zhang H, Song X, Foley JW. Ratiometric Fluorescent Probe for Lysosomal pH Measurement and Imaging in Living Cells Using Single-Wavelength Excitation. Anal Chem 2017; 89:7038-7045. [PMID: 28553716 DOI: 10.1021/acs.analchem.7b00754] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel lysosome-targeting ratiometric fluorescent probe (CQ-Lyso) based on the chromenoquinoline chromorphore has been developed for the selective and sensitive detection of intracellular pH in living cells. In acidic media, the protonation of the quinoline ring of CQ-Lyso induces an enhanced intramolecular charge transfer (ICT) process, which results in large red-shifts in both the absorption (104 nm) and emission (53 nm) spectra which forms the basis of a new ratiometric fluorescence pH sensor. This probe efficiently stains lysosomes with high Pearson's colocalization coefficients using LysoTrackerDeep Red (0.97) and LysoTrackerBlue DND-22 (0.95) as references. Importantly, we show that CQ-Lyso quantitatively measures and images lysosomal pH values in a ratiometric manner using single-wavelength excitation.
Collapse
Affiliation(s)
- Xingjiang Liu
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Yuanan Su
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Huihui Tian
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Lei Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - James W Foley
- Rowland Institute at Harvard, Harvard University , Cambridge, Massachusetts 02142, United States
| |
Collapse
|
49
|
Niu G, Zhang P, Liu W, Wang M, Zhang H, Wu J, Zhang L, Wang P. Near-Infrared Probe Based on Rhodamine Derivative for Highly Sensitive and Selective Lysosomal pH Tracking. Anal Chem 2017; 89:1922-1929. [PMID: 28208300 DOI: 10.1021/acs.analchem.6b04417] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of near-infrared fluorescent probes with low pKa, high selectivity, high photostability, and high sensitivity for lysosomal pH detection is of great importance. In the present work, we developed a novel near-infrared lysosomal pH probe (Lyso-hNR) based on a rhodamine derivative. Lyso-hNR showed fast, highly sensitive, and highly selective fluorescence response to acidic pH caused by the H+-induced structure changes from the nonfluorescent spirolactam form to the highly emissive open-ring form. Lyso-hNR displays a significant fluorescence enhancement at 650 nm (over 280-fold) from pH 7.0 to 4.0 with a pKa value of 5.04. Live cell imaging data revealed that Lyso-hNR can selectively monitor lysosomal pH changes with excellent photostability and low cytotoxicity. In addition, Lyso-hNR can be successfully used in tracking lysosomal pH changes induced by chloroquine and those during apoptosis. All these features render Lyso-hNR a promising candidate to investigate lysosome-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Panpan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Mengqi Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Liping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| |
Collapse
|
50
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|