1
|
Guan T, Guo M, Wang L, Liu J. Production and recycling of the cutting edge material of gallium: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179046. [PMID: 40068420 DOI: 10.1016/j.scitotenv.2025.179046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Gallium, an indispensable scattering element, is driving the development of an array of latest generation functional materials. Due to its exceptionally conductive, fluidic, thermal, flexible, and biocompatible attributes, gallium and its derivatives are increasingly introduced into diverse cutting edge industries. Meanwhile, the aggravated irreconcilable contradiction between the rapid growth of gallium consumption and the severe shortage of gallium resources also brings about big concern regarding its availability for the coming era. In this review, we conducted a comprehensive examination on the global distribution and reserves of gallium which indicates sporadic locations and low concentrations of gallium, highlighting the daunting challenge of extracting gallium. Following that, extensive assessments of gallium production and recovery treatments were presented, ranging from ore mining to high-purity gallium extraction, from major to minor production methods, and from primary gallium extraction to recycling gallium reclamation. Finally, based on evaluating ongoing trends over the field, a forecast of the future gallium production and recycling was given. Potential barriers and their corresponding mitigation strategies were interpreted.
Collapse
Affiliation(s)
- Tangzhen Guan
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Guo
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Liu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Neha, Verma C, Kaur N. Fluorenone-naphthyl encapsulated dual sensor for recognition of F - and Hg 2+: Syngenetic effect with drug sobisis and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125042. [PMID: 39232312 DOI: 10.1016/j.saa.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
A novel fluorenone-naphthyl pendant sensor (FTU) possessing thiourea functionality has been synthesized via a simple condensation method and utilized for the recognition of F- and Hg2+ ions in the solution of CH3CN. The addition of F- and Hg2+ ions to the FTU solution led to the appearance of red-shifted absorption bands at 340 and 315 nm, respectively. On the other hand, in the fluorescence spectrum, the two-fold decrease in fluorescence intensity of probe FTU was observed with F- ions; while complete quenching of the fluorescence intensity was noticed with Hg2+ ions at 423 nm. The limit of detection values of F- and Hg2+ ions were found to be 1.02 & 29.1 nM, respectively, measured by UV-vis studies and 0.0185 & 0.81 nM, respectively, measured by fluorescence studies, which are less than recommended by WHO. DFT computational assessments and 1H NMR titration experiments pointed to F- induced deprotonation of thiourea NH signals. However, the chelation-enhanced quenching effect (CHEQ) was held responsible for fluorescence quenching with Hg2+ addition. Moreover, the in-situ formed FTU + F- complex was utilized for secondary sensing of drug sobisis. Furthermore, the real-world applicability of sensor FTU has been successfully scrutinized for the recognition of F- ions in the toothpaste samples. In addition, molecular docking studies revealed that FTU exhibited excellent antibacterial potency towards different gram-positive as well as negative strains.
Collapse
Affiliation(s)
- Neha
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Chetan Verma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Choi SR, Kulkarni S, Arnett E, Schlesinger LS, Britigan BE, Narayanasamy P. Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an In Vitro Granuloma Structure Model. ACS Infect Dis 2024; 10:4279-4290. [PMID: 39499869 DOI: 10.1021/acsinfecdis.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Coinfection of Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium meso-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in in vitro granuloma structures. GaNP significantly reduced viable Mtb within primary human in vitro granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created in vitro, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O2 reduction and a shift to respiration using exogenous NO3. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Smita Kulkarni
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, Texas 78227, United States
| | - Bradley E Britigan
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
He L, Zhu Z, Qi C. β-Glucan-A promising immunocyte-targeting drug delivery vehicle: Superiority, applications and future prospects. Carbohydr Polym 2024; 339:122252. [PMID: 38823919 DOI: 10.1016/j.carbpol.2024.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Drug delivery technologies that could convert promising therapeutics into successful therapies have been under broad research for many years. Recently, β-glucans, natural-occurring polysaccharides extracted from many organism species such as yeast, fungi and bacteria, have attracted increasing attention to serve as drug delivery carriers. With their unique structure and innate immunocompetence, β-glucans are considered as promising carriers for targeting delivery especially when applied in the vaccine construction and oral administration of therapeutic agents. In this review, we focus on three types of β-glucans applied in the drug delivery system including yeast β-glucan, Schizophyllan and curdlan, highlighting the benefits of β-glucan based delivery system. We summarize how β-glucans as delivery vehicles have aided various therapeutics ranging from macromolecules including proteins, peptides and nucleic acids to small molecular drugs to reach desired cells or organs in terms of loading strategies. We also outline the challenges and future directions for developing the next generation of β-glucan based delivery systems.
Collapse
Affiliation(s)
- Liuyang He
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Zhichao Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Chunjian Qi
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China.
| |
Collapse
|
5
|
Truong VK, Hayles A, Bright R, Luu TQ, Dickey MD, Kalantar-Zadeh K, Vasilev K. Gallium Liquid Metal: Nanotoolbox for Antimicrobial Applications. ACS NANO 2023; 17:14406-14423. [PMID: 37506260 DOI: 10.1021/acsnano.3c06486] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The proliferation of drug resistance in microbial pathogens poses a significant threat to human health. Hence, treatment measures are essential to surmount this growing problem. In this context, liquid metal nanoparticles are promising. Gallium, a post-transition metal notable for being a liquid at physiological temperature, has drawn attention for its distinctive properties, high antimicrobial efficacy, and low toxicity. Moreover, gallium nanoparticles demonstrate anti-inflammatory properties in immune cells. Gallium can alloy with other metals and be prepared in various composites to modify and tailor its characteristics and functionality. More importantly, the bactericidal mechanism of gallium liquid metal could sidestep the threat of emerging drug resistance mechanisms. Building on this rationale, gallium-based liquid metal nanoparticles can enable impactful and innovative strategic pathways in the battle against antimicrobial resistance. This review outlines the characteristics of gallium-based liquid metals at the nanoscale and their corresponding antimicrobial mechanisms to provide a comprehensive yet succinct overview of their current antimicrobial applications. In addition, challenges and opportunities that require further research efforts have been identified and discussed.
Collapse
Affiliation(s)
- Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Richard Bright
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Trong Quan Luu
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
6
|
Choi SR, Talmon GA, Hearne K, Woo J, Truong VL, Britigan BE, Narayanasamy P. Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity In Vitro and In Vivo against Methicillin-Resistant Staphylococcus aureus. Mol Pharm 2023; 20:4058-4070. [PMID: 37471668 DOI: 10.1021/acs.molpharmaceut.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kenneth Hearne
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Jennifer Woo
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Vu L Truong
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Bradley E Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
7
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
8
|
Leite DI, de Castro Bazan Moura S, da Conceição Avelino Dias M, Costa CCP, Machado GP, Pimentel LCF, Branco FSC, Moreira R, Bastos MM, Boechat N. A Review of the Development of Multitarget Molecules against HIV-TB Coinfection Pathogens. Molecules 2023; 28:molecules28083342. [PMID: 37110574 PMCID: PMC10143421 DOI: 10.3390/molecules28083342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The human immunodeficiency virus (HIV) produces the pathologic basis of acquired immunodeficiency syndrome (AIDS). An increase in the viral load in the body leads to a decline in the number of T lymphocytes, compromising the patient's immune system. Some opportunistic diseases may result, such as tuberculosis (TB), which is the most common in seropositive patients. Long-term treatment is required for HIV-TB coinfection, and cocktails of drugs for both diseases are used concomitantly. The most challenging aspects of treatment are the occurrence of drug interactions, overlapping toxicity, no adherence to treatment and cases of resistance. Recent approaches have involved using molecules that can act synergistically on two or more distinct targets. The development of multitarget molecules could overcome the disadvantages of the therapies used to treat HIV-TB coinfection. This report is the first review on using molecules with activities against HIV and Mycobacterium tuberculosis (MTB) for molecular hybridization and multitarget strategies. Here, we discuss the importance and development of multiple targets as a means of improving adherence to therapy in cases of the coexistence of these pathologies. In this context, several studies on the development of structural entities to treat HIV-TB simultaneously are discussed.
Collapse
Affiliation(s)
- Debora Inacio Leite
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Stefany de Castro Bazan Moura
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
- Programa de Pos-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, Rio de Janeiro 21941-902, Brazil
| | - Maria da Conceição Avelino Dias
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Carolina Catta Preta Costa
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Gustavo Peixoto Machado
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Luiz Claudio Ferreira Pimentel
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Frederico Silva Castelo Branco
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Rui Moreira
- Departamento de Química Medicinal, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Monica Macedo Bastos
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| | - Nubia Boechat
- Laboratorio de Sintese de Farmacos (LASFAR), Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos (Farmanguinhos), Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro 21041-000, Brazil
| |
Collapse
|
9
|
Borah Slater K, Kim D, Chand P, Xu Y, Shaikh H, Undale V. A Current Perspective on the Potential of Nanomedicine for Anti-Tuberculosis Therapy. Trop Med Infect Dis 2023; 8:100. [PMID: 36828516 PMCID: PMC9965948 DOI: 10.3390/tropicalmed8020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is one of the ten infectious diseases that cause the highest amount of human mortality and morbidity. This infection, which is caused by a single pathogen, Mycobacterium tuberculosis, kills over a million people every year. There is an emerging problem of antimicrobial resistance in TB that needs urgent treatment and management. Tuberculosis treatment is complicated by its complex drug regimen, its lengthy duration and the serious side-effects caused by the drugs required. There are a number of critical issues around drug delivery and subsequent intracellular bacterial clearance. Drugs have a short lifespan in systemic circulation, which limits their activity. Nanomedicine in TB is an emerging research area which offers the potential of effective drug delivery using nanoparticles and a reduction in drug doses and side-effects to improve patient compliance with the treatment and enhance their recovery. Here, we provide a minireview of anti-TB treatment, research progress on nanomedicine and the prospects for future applications in developing innovative therapies.
Collapse
Affiliation(s)
- Khushboo Borah Slater
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Daniel Kim
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Pooja Chand
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Ye Xu
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Hanif Shaikh
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune 411018, India
- Clinical, Assessment, Regulatory and Evaluation (CARE) Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune 411018, India
| |
Collapse
|
10
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
11
|
|
12
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea
| |
Collapse
|
13
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
14
|
Aldarondo D, Wayne E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv Drug Deliv Rev 2022; 182:114116. [PMID: 35085623 PMCID: PMC9359644 DOI: 10.1016/j.addr.2022.114116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Due to the increasing population of individuals with cardiovascular diseases and related comorbidities, there is an increasing need for development of synergistic therapeutics. Monocytes are implicated in a broad spectrum of diseases and can serve as a focal point for therapeutic targeting. This review discusses the role of monocytes in cardiovascular diseases and highlights trends in monocyte targets nanoparticles in three cardiovascular-related diseases: Diabetes, Atherosclerosis, and HIV. Finally, the review offers perspectives on how to develop nanoparticle monocyte targeting strategies that can be beneficial for treating co-morbidities.
Collapse
Affiliation(s)
- Dasia Aldarondo
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Elizabeth Wayne
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Mostafa N, Salem A, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI. Rationale for Tailoring an Alternative Oncology Trial Using a Novel Gallium-Based Nanocomplex: Mechanistic Insights and Preclinical Challenges. Technol Cancer Res Treat 2022; 21:15330338221085376. [PMID: 35382635 PMCID: PMC8990695 DOI: 10.1177/15330338221085376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: In the fight against cancer, cisplatin is most widely used as a clinical mainstay for the chemotherapy of various human cancers. Meanwhile, its cytotoxic profile, as well as drug resistance, limits its widespread application. The goal of precision medicine is to tailor an optimized therapeutic program based on the biology of the disease. Recently, nanotechnology has been demonstrated to be promising in this scenario. Objective: The current work provides a rationale for the design of an alternative oncology trial for the treatment of hepatocarcinogenesis using a novel eco-friendly nanocomplex, namely gallic acid-coated gallium nanoparticles. Moreover, the study tests whether the antineoplastic efficacy of gallic acid-coated gallium nanoparticles could be enhanced or not when it is administrated together with cisplatin. Methods: The work comprised a series of both in vitro and in vivo investigations. The in vivo therapeutic efficacy of such treatments, against diethylnitrosamine-induced hepatocarcinogenesis, was strictly evaluated by tracking target genes expressions, iron homeostasis, diverse biomarkers alterations, and lastly, routine paraclinical investigations were also assessed. Results: The in vitro biological evaluation of gallic acid-coated gallium nanoparticles in a HepG-2 cancer cell line established its superior cytotoxicity. Else more, the results of the in vivo experiment highlighted that gallic acid-coated gallium nanoparticles could diminish key hallmarks of cancer by ameliorating most of the investigated parameters. This was well-appreciated with the histopathological findings of the liver architectures of the treated groups. Conclusions: Our findings suggest that novel biogenic Ga-based nanocomplexes may potentially present new hope for the development of alternative liver cancer therapeutics, which should attract further scientific interest.
Collapse
Affiliation(s)
- Nihal Mostafa
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| | - Ahmed Salem
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), 68892Atomic Energy Authority (AEA), Cairo, Egypt
| | - Eman I Kandil
- Department of Biochemistry, Faculty of Science, 247928Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW People living with HIV (PLWH) are commonly coinfected with Mycobacterium tuberculosis, particularly in high-transmission resource-limited regions. Despite expanded access to antiretroviral therapy and tuberculosis (TB) treatment, TB remains the leading cause of death among PLWH. This review discusses recent advances in the management of TB in PLWH and examines emerging therapeutic approaches to improve outcomes of HIV-associated TB. RECENT FINDINGS Three recent key developments have transformed the management of HIV-associated TB. First, the scaling-up of rapid point-of-care urine-based tests for screening and diagnosis of TB in PLWH has facilitated early case detection and treatment. Second, increasing the availability of potent new and repurposed drugs to treat drug-resistant TB has generated optimism about the treatment and outcome of multidrug-resistant and extensively drug-resistant TB. Third, expanded access to the integrase inhibitor dolutegravir to treat HIV in resource-limited regions has simplified the management of TB/HIV coinfected patients and minimized serious adverse events. SUMMARY While it is unequivocal that substantial progress has been made in early detection and treatment of HIV-associated TB, significant therapeutic challenges persist. To optimize the management and outcomes of TB in HIV, therapeutic approaches that target the pathogen as well as enhance the host response should be explored.
Collapse
|
17
|
Choi SR, Talmon GA, Britigan BE, Narayanasamy P. Nanoparticulate β-Cyclodextrin with Gallium Tetraphenylporphyrin Demonstrates in Vitro and in Vivo Antimicrobial Efficacy against Mycobacteroides abscessus and Mycobacterium avium. ACS Infect Dis 2021; 7:2299-2309. [PMID: 34314150 DOI: 10.1021/acsinfecdis.0c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of drug-resistant pathogens causes the greatest challenge for drug development research. Recently, gallium(III)-based compounds have received great attention as novel antimicrobial agents against drug-resistant pathogens. Here, we synthesized a new β-cyclodextrin Ga nanoparticle (CDGaTP) using Ga tetraphenylporphyrin (GaTP, a hemin analogue) and β-cyclodextrin. The newly synthesized nanoparticle was nontoxic and efficient at a single dose, showing sustained drug release for 15 days in vitro. CDGaTP's activity with transferrin or lactoferrin was tested, and synergism in activity was observed against nontuberculosis mycobacteria (NTM), Mycobacterium avium (M. avium), and Mycobacteroides abscessus. Human serum albumin (HSA) decreased the efficacy of both GaTP and CDGaTP in a concentration-dependent manner. The NTMs incubated with GaTP or CDGaTP significantly produced reactive oxygen species (ROS), indicating potential inhibition of antioxidant enzymes, such as catalase. The single-dose CDGaTP displayed a prolonged intracellular inhibitory activity in an in vitro macrophage infection model against both NTMs. In addition, CDGaTP, not GaTP, was effective in a murine lung M. avium infection model when delivered via intranasal administration. These results suggest that CDGaTP provides new opportunities for the development of gallium-porphyrin based antibiotics.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bradley E. Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center−Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
18
|
Basavegowda N, Baek KH. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021; 26:912. [PMID: 33572219 PMCID: PMC7915418 DOI: 10.3390/molecules26040912] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host's immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
19
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Uchôa Teixeira JV, Azevedo Maia FR, Carvalho M, Reis R, Oliveira JM, Lisboa-Filho PN, Rosifni Alves Claro AP. Synthesis of mussel-inspired polydopamine-gallium nanoparticles for biomedical applications. Nanomedicine (Lond) 2021; 16:5-17. [PMID: 33410334 DOI: 10.2217/nnm-2020-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To established a simple, controlled and reproducible method to synthesize gallium (Ga)-coated polydopamine (PDA) nanoparticles (NPs). Materials & methods: PDA NPs were synthesized in alkali medium with posterior Ga shell formation due to ion chelation on the NP surface. Results: The obtained results with energy-dispersive x-ray spectroscopy confirmed the incorporation of Ga on the PDA NP surface. The cytotoxicity of Ga-coated PDA NPs was evaluated in vitro at different concentrations in contact with human adipose-derived stem cells. Further cell analysis also demonstrated the benefit of Ga-coated PDA NPs, which increased the cell proliferation rate compared with noncoated PDA NPs. Conclusion: This study indicated that Ga could work as an appropriate shell for PDA NPs, inducing cell proliferation at the analyzed concentrations.
Collapse
Affiliation(s)
- Jean Valdir Uchôa Teixeira
- Department of Materials & Technology, School of Engineering, UNESP - São Paulo State University, Guaratinguetá Campus, SP 12516-410l, Brazil
| | - Fátima Raquel Azevedo Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Guimarães 4710-553, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-553, Portugal
| | - Mariana Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Guimarães 4710-553, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-553, Portugal
| | - Rui Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Guimarães 4710-553, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-553, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Guimarães 4710-553, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-553, Portugal
| | | | - Ana Paula Rosifni Alves Claro
- Department of Materials & Technology, School of Engineering, UNESP - São Paulo State University, Guaratinguetá Campus, SP 12516-410l, Brazil
| |
Collapse
|
21
|
Li L, Chang H, Yong N, Li M, Hou Y, Rao W. Superior antibacterial activity of gallium based liquid metals due to Ga3+ induced intracellular ROS generation. J Mater Chem B 2021; 9:85-93. [DOI: 10.1039/d0tb00174k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gallium metals demonstrate enhanced antibacterial activity compared to gallium nitrate with the same gallium ion concentration.
Collapse
Affiliation(s)
- Lei Li
- CAS Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Hao Chang
- CAS Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Nie Yong
- College of Engineering
- Peking University
- Beijing 100781
- China
| | - Meixi Li
- CAS Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Yi Hou
- CAS Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Wei Rao
- CAS Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
22
|
Choi SR, Switzer B, Britigan BE, Narayanasamy P. Gallium Porphyrin and Gallium Nitrate Synergistically Inhibit Mycobacterial Species by Targeting Different Aspects of Iron/Heme Metabolism. ACS Infect Dis 2020; 6:2582-2591. [PMID: 32845117 DOI: 10.1021/acsinfecdis.0c00113] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an urgent need for new effective and safe antibiotics active against pathogenic mycobacterial species. Gallium (Ga) nitrate (Ga(NO3)3) and Ga porphyrin (GaPP) have each been shown to inhibit the growth of a variety of mycobacterial species. The Ga(III) ion derived from Ga(NO3)3 has the potential to disrupt the mycobacterial Fe(III) uptake mechanisms and utilization, including replacing iron (Fe) in the active site of enzymes, resulting in the disruption of function. Similarly, noniron metalloporphyrins such as heme mimetics, which can be transported across the bacterial membrane via heme-uptake pathways, would potentially block the acquisition of iron-containing heme and bind to heme-utilizing proteins, making them nonfunctional. Given that they likely act on different aspects of mycobacterial Fe metabolism, the efficacy of combining Ga(NO3)3 and GaPP was studied in vitro against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium tuberculosis (M. tb). The combination was then assessed in vivo in a murine pulmonary infection model of M. abscessus. We observed that Ga(NO3)3 in combination with GaPP exhibited synergistic inhibitory activity against the growth of M. avium, M. tb, and M. abscessus, being most active against M. abscessus. Activity assays indicated that Ga(NO3)3 and GaPP inhibited both catalase and aconitase at high concentrations. However, the combination showed a synergistic effect on the aconitase activity of M. abscessus. The Ga(NO3)3/GaPP combination via intranasal administration showed significant antimicrobial activity in mice infected with M. abscessus. M. abscessus CFU from the lungs of the Ga(NO3)3/GaPP-treated mice was significantly less compared to that of nontreated or single Ga(III)-treated mice. These findings suggest that combinations of different Ga(III) compounds can synergistically target multiple iron/heme-utilizing mycobacterial enzymes. The results support the potential of combination Ga therapy for development against mycobacterial pathogens.
Collapse
Affiliation(s)
| | | | - Bradley E. Britigan
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center−Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | | |
Collapse
|
23
|
Simões MF, Ottoni CA, Antunes A. Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses. Antibiotics (Basel) 2020; 9:E569. [PMID: 32887358 PMCID: PMC7559022 DOI: 10.3390/antibiotics9090569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Mycobacterial infections are a resurgent and increasingly relevant problem. Within these, tuberculosis (TB) is particularly worrying as it is one of the top ten causes of death in the world and is the infectious disease that causes the highest number of deaths. A further concern is the on-going emergence of antimicrobial resistance, which seriously limits treatment. The COVID-19 pandemic has worsened current circumstances and future infections will be more incident. It is urgent to plan, draw solutions, and act to mitigate these issues, namely by exploring new approaches. The aims of this review are to showcase the extensive research and application of silver nanoparticles (AgNPs) and other metal nanoparticles (MNPs) as antimicrobial agents. We highlight the advantages of mycogenic synthesis, and report on their underexplored potential as agents in the fight against all mycobacterioses (non-tuberculous mycobacterial infections as well as TB). We propose further exploration of this field.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| |
Collapse
|
24
|
Mukhtar M, Ali H, Ahmed N, Munir R, Talib S, Khan AS, Ambrus R. Drug delivery to macrophages: a review of nano-therapeutics targeted approach for inflammatory disorders and cancer. Expert Opin Drug Deliv 2020; 17:1239-1257. [PMID: 32543950 DOI: 10.1080/17425247.2020.1783237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Macrophages are involved in the normal defense of the body; however, the varying phenotypes of macrophages and imbalance in their ratio lead to the impairment of immune response initiating the production of inflammation. As the role of macrophages in immunological disorders and their surface receptors modulation has already been manifested; hence, macrophages can be exploited to make them a viable candidate for targeted delivery, which was not possible with previously designed conventional therapies for the immune disorders. AREAS COVERED Nanotechnology is a promising, clear cut, efficient, and adequate approach for targeting macrophages. Literature addresses the receptors available for targeting and the novel small dimensional therapeutic delivery vehicles to target them along with a brief overview of the role of macrophages in these diseases. Furthermore, the patents based on this idea are also listed. EXPERT OPINION Targeted drug delivery to macrophages should take into consideration the plasticity of macrophages and their modulation over time in the diseases. A cost-effective scale-up method of development will further facilitate the clinical trials. Besides, the implementation of safety guidelines to target macrophages and the studies of long-term effects of targeted approaches in humans would highly encourage the clinical outcomes.
Collapse
Affiliation(s)
- Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged , Szeged, Hungary.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Rashid Munir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Sumbal Talib
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Anam S Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University , Islamabad, Pakistan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged , Szeged, Hungary
| |
Collapse
|
25
|
Khan T, Mayuresh Patkar M, Momin M, Omri A. Macrophage targeted nanocarrier delivery systems in HIV therapeutics. Expert Opin Drug Deliv 2020; 17:903-918. [PMID: 32347124 DOI: 10.1080/17425247.2020.1762565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) targets and modulates the immune system increasing the risk of other associated infections. Highly active antiretroviral therapy (HAART) has significantly improved AIDS-associated morbidity, but has limitations of adverse effects, frequent dosing regimen leading to medical non-adherence. Drug delivery systems that target HIV reservoirs could potentially reduce dose-dependent toxicity and the duration of treatment. The major cellular HIV reservoirs are macrophages and CD4+ T cells with macrophages being responsible for carrying and spreading the virus. The crucial involvement of macrophages in the pathogenesis of HIV infection has led to development of macrophage targeted nanocarrier delivery systems. AREAS COVERED Eradication of viral reservoirs like HIV-infected macrophages has emerged to be a fundamental barrier and challenge for complete eradication of HIV from the immune system. Literature reports several macrophage targeted nanocarrier delivery systems developed as either functionalized or non-functionalized formulations such as liposomes, ethosomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles showcasing superior efficacy over the conventional antiretroviral delivery systems. EXPERT OPINION The development of fixed dose combination of antiretroviral drugs into macrophage targeted delivery systems should factor in the inherent plasticity and heterogeneity of macrophages that is dependent on their microenvironment. A rational selection of nanocarriers will facilitate selectivity and enhanced efficacy of antiretroviral drugs accompanied by reduced dosing and toxicity. Such macrophage targeted delivery systems would positively impact the therapeutic outcomes in the management of HIV infection.
Collapse
Affiliation(s)
- Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Mayuresh Mayuresh Patkar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University , Sudbury, ON, Canada
| |
Collapse
|
26
|
Basavegowda N, Patra JK, Baek KH. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020; 25:E1058. [PMID: 32120930 PMCID: PMC7179174 DOI: 10.3390/molecules25051058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, many pathogenic bacteria have become resistant to existing antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes, high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of selectivity. Combination therapy is currently blooming and represents a potential area that requires greater attention and is worthy of future investigations. This review summarizes the synergistic effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the development of new and alternative therapeutics against antibiotic resistant pathogens in the future.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
27
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
28
|
Treatment of Virulent Mycobacterium tuberculosis and HIV Coinfected Macrophages with Gallium Nanoparticles Inhibits Pathogen Growth and Modulates Macrophage Cytokine Production. mSphere 2019; 4:4/4/e00443-19. [PMID: 31341073 PMCID: PMC6656872 DOI: 10.1128/msphere.00443-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of virulent HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. Macrophage-targeting GaNP are a promising therapeutic approach to provide sustained antimicrobial activity against HIV-M. tuberculosis coinfection. Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a global threat. The course of TB is negatively impacted by coexistent infection with human immunodeficiency virus type 1 (HIV). Macrophage infection with these pathogens modulates their production of pro- and anti-inflammatory cytokines, which could play a crucial role in pathogenesis. Despite the important role of macrophages in containing infection by a variety of microbes, both HIV and M. tuberculosis infect and replicate within these cells during the course of HIV-M. tuberculosis coinfection. Both M. tuberculosis and HIV require iron for growth and replication. We have previously shown that gallium encapsulated in nanoparticles, which interferes with cellular iron acquisition and utilization, inhibited the growth of HIV and an attenuated strain of M. tuberculosis within human monocyte-derived macrophages (MDMs) in vitro. Whether this was true for a fully virulent strain of M. tuberculosis and whether gallium treatment modulates cytokine production by HIV- and/or M. tuberculosis-infected macrophages have not been previously addressed. Therefore, coinfection of MDMs with HIV and a virulent M. tuberculosis strain (H37Rv) was studied in the presence of different gallium nanoparticles (GaNP). All GaNP were readily internalized by the MDMs, which provided sustained drug (gallium) release for 15 days. This led to significant growth inhibition of both HIV and M. tuberculosis within MDMs for up to 15 days after loading of the cells with all GaNP tested in our study. Cytokine analysis showed that HIV-M. tuberculosis coinfected macrophages secreted large amounts of interleukin 6 (IL-6) and IL-8 and smaller amounts of IL-1β, IL-4, and tumor necrosis factor alpha (TNF-α) cytokines. However, all GaNP were able to regulate the release of cytokines significantly. GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. IMPORTANCE GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of virulent HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. Macrophage-targeting GaNP are a promising therapeutic approach to provide sustained antimicrobial activity against HIV-M. tuberculosis coinfection.
Collapse
|
29
|
Jadhav M, Khan T, Bhavsar C, Momin M, Omri A. Novel therapeutic approaches for targeting TB and HIV reservoirs prevailing in lungs. Expert Opin Drug Deliv 2019; 16:687-699. [PMID: 31111766 DOI: 10.1080/17425247.2019.1621287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Coinfection with Mycobacterium tuberculosis is the leading cause of death in HIV positive patients. In 2017, about 0.3 million HIV positive people died of tuberculosis. There is high load of mycobacteria and HIV in the lungs and eradication of the same is vital for patient survival. AREAS COVERED This review focuses on the pathogenesis of HIV-TB coinfection and the current management approaches of this coinfection. It presents a detailed discussion of current investigations in novel drug delivery systems for effective targeting of HIV-TB lung reservoirs, especially via pulmonary drug delivery. Additionally, emphasis is given to the need of HIV-TB cotargeting, an unmet need in management of HIV-TB coinfection. EXPERT OPINION To achieve the goal of complete eradication of HIV-TB reservoirs in lungs requires focused research strategies to be undertaken in the area of pulmonary delivery systems. These endeavors could eventually lead to better patient compliance and improved treatment outcomes. The treatment regimen of HIV-TB coinfection is associated with a major drawback of low therapeutic concentration of drugs in lungs. Nanotechnology provides an excellent platform for delivery of anti-TB and anti-HIV drugs via the pulmonary route thereby serving as a viable and effective means of managing the mycobacterial and HIV reservoirs in the lungs.
Collapse
Affiliation(s)
- Mrunal Jadhav
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Chintan Bhavsar
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Munira Momin
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Abdelwahab Omri
- b Department of chemistry & biochemistry , Laurentian university , Sudbury , ON , Canada
| |
Collapse
|
30
|
Iron/Heme Metabolism-Targeted Gallium(III) Nanoparticles Are Active against Extracellular and Intracellular Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 2019; 63:AAC.02643-18. [PMID: 30782994 DOI: 10.1128/aac.02643-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Iron/heme acquisition systems are critical for microorganisms to acquire iron from the human host, where iron sources are limited due to the nutritional immune system and insolubility of the ferric form of iron. Prior work has shown that a variety of gallium compounds can interfere with bacterial iron acquisition. This study explored the intra- and extracellular antimicrobial activities of gallium protoporphyrin (GaPP), gallium mesoporphyrin (GaMP), and nanoparticles encapsulating GaPP or GaMP against the Gram-negative pathogens Pseudomonas aeruginosa and Acinetobacter baumannii, including clinical isolates. All P. aeruginosa and A. baumannii isolates were susceptible to GaPP and GaMP, with MICs ranging from 0.5 to ∼32 μg/ml in iron-depleted medium. Significant intra- and extracellular growth inhibition was observed against P. aeruginosa cultured in macrophages at a gallium concentration of 3.3 μg/ml (5 μM) of all Ga(III) compounds, including nanoparticles. Nanoparticle formulations showed prolonged activity against both P. aeruginosa and A. baumannii in previously infected macrophages. When the macrophages were loaded with the nanoparticles 3 days prior to infection, there was a 5-fold decrease in growth of P. aeruginosa in the presence of single emulsion F127 copolymer nanoparticles encapsulating GaMP (eFGaMP). In addition, all Ga(III) porphyrins and nanoparticles showed significant intracellular and antibiofilm activity against both pathogens, with the nanoparticles exhibiting intracellular activity for 3 days. Ga nanoparticles also increased the survival rate of Caenorhabditis elegans nematodes infected by P. aeruginosa and A. baumannii Our results demonstrate that Ga nanoparticles have prolonged in vitro and in vivo activities against both P. aeruginosa and A. baumannii, including disruption of their biofilms.
Collapse
|
31
|
Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial Activity of Metal and Metal‐Oxide Based Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700033] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Buford Slay
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Mark Knackstedt
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health and Technology Texas A&M University College Station TX 77843 USA
| |
Collapse
|
32
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
33
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
34
|
Choi SR, Britigan BE, Switzer B, Hoke T, Moran D, Narayanasamy P. In Vitro Efficacy of Free and Nanoparticle Formulations of Gallium(III) meso-Tetraphenylporphyrine against Mycobacterium avium and Mycobacterium abscessus and Gallium Biodistribution in Mice. Mol Pharm 2018; 15:1215-1225. [DOI: 10.1021/acs.molpharmaceut.7b01036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bradley E. Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Barbara Switzer
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Traci Hoke
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - David Moran
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
35
|
Shivangi, Meena LS. A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol 2018; 185:815-821. [DOI: 10.1007/s12010-018-2695-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
|
36
|
Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017; 22:E1370. [PMID: 28820471 PMCID: PMC6152252 DOI: 10.3390/molecules22081370] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases can be transmitted and they cause a significant burden on public health globally. They are the greatest world killers and it is estimated that they are responsible for the demise of over 17 million people annually. The impact of these diseases is greater in the developing countries. People with compromised immune systems and children are the most affected. Infectious diseases may be caused by bacteria, viruses, and protozoa. The treatment of infectious diseases is hampered by simultaneous resistance to multiple drugs, indicating that there is a serious and pressing need to develop new therapeutics that can overcome drug resistance. This review will focus on the recent reports of metal-based nanoparticles that are potential therapeutics for the treatment of infectious diseases and their biological efficacy (in vitro and in vivo).
Collapse
Affiliation(s)
- Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
37
|
Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One 2017; 12:e0177987. [PMID: 28542623 PMCID: PMC5436895 DOI: 10.1371/journal.pone.0177987] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/05/2017] [Indexed: 11/26/2022] Open
Abstract
New treatments and novel drugs are required to counter the growing problem of drug-resistant strains of Mycobacterium tuberculosis (M.tb). Our approach against drug resistant M.tb, as well as other intracellular pathogens, is by targeted drug delivery using nanoformulations of drugs already in use, as well as drugs in development. Among the latter are gallium (III) (Ga)-based compounds. In the current work, six different types of Ga and rifampin nanoparticles were prepared in such a way as to enhance targeting of M.tb infected-macrophages. They were then tested for their ability to inhibit growth of a fully pathogenic strain (H37Rv) or a non-pathogenic strain (H37Ra) of M.tb. Encapsulating Ga in folate- or mannose-conjugated block copolymers provided sustained Ga release for 15 days and significantly inhibited M.tb growth in human monocyte-derived macrophages. Nanoformulations with dendrimers encapsulating Ga or rifampin also showed promising anti-tuberculous activity. The nanoparticles co-localized with M.tb containing phagosomes, as measured by detection of mature cathepsin D (34 kDa, lysosomal hydrogenase). They also promoted maturation of the phagosome, which would be expected to increase macrophage-mediated killing of the organism. Delivery of Ga or rifampin in the form of nanoparticles to macrophages offers a promising approach for the development of new therapeutic anti-tuberculous drugs.
Collapse
|
38
|
Ga(III) Nanoparticles Inhibit Growth of both Mycobacterium tuberculosis and HIV and Release of Interleukin-6 (IL-6) and IL-8 in Coinfected Macrophages. Antimicrob Agents Chemother 2017; 61:AAC.02505-16. [PMID: 28167548 PMCID: PMC5365726 DOI: 10.1128/aac.02505-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/28/2017] [Indexed: 02/06/2023] Open
Abstract
Treatment of individuals coinfected with human immunodeficiency virus (HIV) type 1 and Mycobacterium tuberculosis is challenging due to the prolonged treatment requirements, drug toxicity, and emergence of drug resistance. Mononuclear phagocytes (MP; macrophages) are one of the natural reservoirs for both HIV and M. tuberculosis. Here, the treatment of HIV and M. tuberculosis coinfection was studied by preloading human macrophages with MP-targeted gallium (Ga) nanoparticles to limit subsequent simultaneous infection with both HIV and M. tuberculosis. Ga nanoparticles provided sustained drug release for 15 days and significantly inhibited the replication of both HIV and M. tuberculosis. Addition of Ga nanoparticles to MP already infected with M. tuberculosis or HIV resulted in a significant decrease in the magnitude of these infections, but the magnitude was less than that achieved with nanoparticle preloading of the MP. In addition, macrophages that were coinfected with HIV and M. tuberculosis and that were loaded with Ga nanoparticles reduced the levels of interleukin-6 (IL-6) and IL-8 secretion for up to 15 days after drug loading. Ga nanoparticles also reduced the levels of IL-6 and IL-8 secretion by ionomycin- and lipopolysaccharide-induced macrophages, likely by modulating the IκB kinase-β/NF-κB pathway. Delivery of Ga nanoparticles to macrophages is a potent long-acting approach for suppressing HIV and M. tuberculosis coinfection of macrophages in vitro and sets the stage for the development of new approaches to the treatment of these important infections.
Collapse
|
39
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
40
|
Costa-Gouveia J, Aínsa JA, Brodin P, Lucía A. How can nanoparticles contribute to antituberculosis therapy? Drug Discov Today 2017; 22:600-607. [PMID: 28137645 DOI: 10.1016/j.drudis.2017.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
Therapeutic approaches using nanoparticles are being successfully used in foods and in several fields of medicine, including infectious diseases. Regarding tuberculosis (TB) treatment, nanoparticles can be a useful strategy for two distinct applications: (i) for their intrinsic antimycobacterial activity; (ii) as vehicles for known antitubercular drugs to allow reduction of dose- and drug-associated side-effects and administration via user-friendly administration routes such as pulmonary or oral ones. Promising results were obtained in vitro and in animal Mycobacterium tuberculosis models and need now to be translated into clinical drug candidates. Such a prospect can provide an opportunity regarding the current limited therapeutic options for drug-resistant TB and the scarcity of novel antituberculosis drugs in the drug discovery pipeline.
Collapse
Affiliation(s)
- Joana Costa-Gouveia
- University of Lille, CNRS, INSERM, University Hospital Center of Lille, Pasteur Institute of Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - José A Aínsa
- Departamento de Microbiología (Facultad de Medicina), and BIFI, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Zaragoza, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Priscille Brodin
- University of Lille, CNRS, INSERM, University Hospital Center of Lille, Pasteur Institute of Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Ainhoa Lucía
- Departamento de Microbiología (Facultad de Medicina), and BIFI, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Zaragoza, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Choi SR, Frandsen J, Narayanasamy P. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm. Sci Rep 2017; 7:40077. [PMID: 28071679 PMCID: PMC5223195 DOI: 10.1038/srep40077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.
Collapse
Affiliation(s)
- Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
42
|
Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv 2017; 7:7022-7032. [DOI: 10.1039/c6ra27868j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Arginine decorated nanocarriers exhibited intravacuolar targeting capability which was utilized to deliver antibiotics and reactive NO into the intracellular niche of pathogens likeSalmonellaandMycobacterium.
Collapse
Affiliation(s)
- Rajeev J. Mudakavi
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Department of Materials Engineering
| | - Surya Vanamali
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| |
Collapse
|
43
|
Halder A, Das S, Bera T, Mukherjee A. Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. RSC Adv 2017. [DOI: 10.1039/c6ra28632a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of monodispersed gold nanoparticles using kaempferol and antileishmanial activity with high macrophage uptake capacity.
Collapse
Affiliation(s)
- Asim Halder
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700 009
- India
| | - Suvadra Das
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700 009
- India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata-700 032
- India
| | - Arup Mukherjee
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700 009
- India
| |
Collapse
|
44
|
Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages. JOURNAL OF DRUG DELIVERY 2016; 2016:8520629. [PMID: 27965897 PMCID: PMC5124674 DOI: 10.1155/2016/8520629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles.
Collapse
|
45
|
McLean KJ, Munro AW. Drug targeting of heme proteins in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:566-575. [PMID: 27856345 DOI: 10.1016/j.drudis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
TB, caused by the human pathogen Mycobacterium tuberculosis (Mtb), causes more deaths than any other infectious disease. Iron is crucial for Mtb to infect the host and to sustain infection, with Mtb encoding large numbers of iron-binding proteins. Many of these are hemoproteins with key roles, including defense against oxidative stress, cellular signaling and regulation, host cholesterol metabolism, and respiratory processes. Various heme enzymes in Mtb are validated drug targets and/or products of genes essential for bacterial viability or survival in the host. Here, we review the structure, function, and druggability of key Mtb heme enzymes and strategies used for their inhibition.
Collapse
Affiliation(s)
- Kirsty J McLean
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew W Munro
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
46
|
Berg NG, Pearce BL, Snyder PJ, Rohrbaugh N, Nolan MW, Adhikari P, Khan SA, Ivanisevic A. Interfaces with Tunable Mechanical and Radiosensitizing Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21956-21961. [PMID: 26882455 DOI: 10.1021/acsami.5b11639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the fabrication of a composite containing nanostructured GaOOH and Matrigel with tunable radiosensitizing and stiffness properties. Composite characterization was done with microscopy and rheology. The utility of the interface was tested in vitro using fibroblasts. Cell viability and reactive oxygen species assays quantified the effects of radiation dosages and GaOOH concentrations. Fibroblasts' viability decreased with increasing concentration of GaOOH and composite stiffness. During ionizing radiation experiments the presence of the scintillating GaOOH triggered a different cellular response. Reactive oxygen species data demonstrated that one can reduce the amount of radiation needed to modulate the behavior of cells on interfaces with different stiffness containing a radiosensitizing material.
Collapse
Affiliation(s)
| | | | | | | | - Michael W Nolan
- Department of Clinical Sciences (College of Veterinary Medicine) and Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina 27606, United States
| | | | | | | |
Collapse
|
47
|
Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis. Biometals 2016; 29:637-50. [DOI: 10.1007/s10534-016-9940-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
48
|
Choi SR, Larson MA, Hinrichs SH, Narayanasamy P. Development of potential broad spectrum antimicrobials using C2-symmetric 9-fluorenone alkyl amine. Bioorg Med Chem Lett 2016; 26:1997-9. [PMID: 26965856 DOI: 10.1016/j.bmcl.2016.02.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
DNA-dependent RNA primase is essential for de novo primer synthesis during DNA replication in all living organisms. Bacterial DnaG primase is an attractive target for inhibition because it is essential, low in copy number and structurally distinct from eukaryotic and archaeal primases. DnaG primase is sensitive to known inhibitors including suramin and doxorubicin. Recently, tilorone was discovered by high throughput screening to be an inhibitor of Bacillus anthracis primase DnaG but it failed to reduce the growth of B. anthracis in vitro. In this study we determined that tilorone also inhibited DnaG primase from Staphylococcus aureus. C2-Symmetric fluorenone-based compounds, similar to tilorone chemical structure were synthesized and tested to identify potential lead compounds that inhibit bacterial growth in B. anthracis, MRSA and Burkholderia thailandensis. These compounds were evaluated by determining the minimum inhibitory concentration (MIC) against several different bacterial species which demonstrated 17.5 and 16 μg/ml MIC profiles. Importantly, some of the fluorenone-based compounds with a long carbon chain showed a relatively low MIC against B. anthracis, S. aureus, MRSA, Francisella tularensis, and B. thailandensis, suggesting it may be a promising lead compound.
Collapse
Affiliation(s)
- Seoung-ryoung Choi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Steven H Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States.
| |
Collapse
|
49
|
Roy U, Rodríguez J, Barber P, das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond) 2015; 10:3597-609. [PMID: 26400459 PMCID: PMC4910962 DOI: 10.2217/nnm.15.160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Since its discovery almost three decades ago, HIV-1 has grown into the most aggressive pandemic of modern time. Following the implementation of combination antiretroviral therapy, the pathological outcome of HIV infection has substantially improved. However, combination antiretroviral therapy is limited by several factors including, long-term toxicity, serious side effects and complex dosing regimens, and so on. In this regard, researchers have directed their attention toward enhancing current treatment strategies and/or developing alternative HIV-1 therapeutics. In recent years, this attention has fixated on nanomedicine-based anti-HIV therapeutics (HIV-1 nanotherapeutics). In the present study, we have reviewed several HIV-1 nanotherapeutics that have shown success at the preclinical level and/or Phase I/II clinical trials. We also discuss the possible benefits of these nanomedicine-based approaches and their future outlook.
Collapse
Affiliation(s)
- Upal Roy
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Paul Barber
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
50
|
Roy U, Barber P, Tse-Dinh YC, Batrakova EV, Mondal D, Nair M. Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections. Front Microbiol 2015; 6:948. [PMID: 26441882 PMCID: PMC4585023 DOI: 10.3389/fmicb.2015.00948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.
Collapse
Affiliation(s)
- Upal Roy
- Department of Immunology, Centre for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Paul Barber
- Department of Immunology, Centre for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University Miami, FL, USA
| | - Elena V Batrakova
- Department of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University Health Sciences Center New Orleans, LA, USA
| | - Madhavan Nair
- Department of Immunology, Centre for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|