1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025. [PMID: 40378355 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Lacombe
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Simindokht Rostami
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Arshia Arasteh Kani
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Borgonovo
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Gerald Striedner
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Birgit Wiltschi
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Shuster SO, Curtis AE, Davis CM. Optical Photothermal Infrared Imaging Using Metabolic Probes in Biological Systems. Anal Chem 2025; 97:8202-8212. [PMID: 40207400 DOI: 10.1021/acs.analchem.4c03752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Infrared spectroscopy is a powerful tool for identifying biomolecules. In biological systems, infrared spectra provide information on structure, reaction mechanisms, and conformational change of biomolecules. However, the promise of applying infrared imaging to biological systems has been hampered by low spatial resolution and the overwhelming water background arising from the aqueous nature of in-cell and in vivo work. Recently, optical photothermal infrared microscopy (OPTIR) has overcome these barriers and achieved both spatially and spectrally resolved images of live cells and organisms. Here, we determine the most effective modes of collection on a commercial OPTIR microscope for work in biological samples. We examine three cell lines (Huh-7, differentiated 3T3-L1, and U2OS) and three organisms (Escherichia coli, tardigrades, and zebrafish). Our results suggest that the information provided by multifrequency imaging is comparable to hyperspectral imaging while reducing imaging times 20-fold. We also explore the utility of IR active probes for OPTIR using global and site-specific noncanonical azide containing amino acid probes of proteins. We find that photoreactive IR probes are not compatible with OPTIR. We demonstrate live imaging of cells in buffers with water. 13C glucose metabolism monitored in live fat cells and E. coli highlights that the same probe may be used in different pathways. Further, we demonstrate that some drugs (e.g., neratinib) have IR active moieties that can be imaged by OPTIR. Our findings illustrate the versatility of OPTIR and, together, provide a direction for future dynamic imaging of living cells and organisms.
Collapse
Affiliation(s)
- Sydney O Shuster
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Anna E Curtis
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
3
|
Fernández de Santaella J, Koch NG, Widmer L, Nash MA. Amber Codon Mutational Scanning and Bioorthogonal PEGylation for Epitope Mapping of Antibody Binding Sites on Human Arginase-1. ACS Chem Biol 2025; 20:791-801. [PMID: 40168364 DOI: 10.1021/acschembio.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Epitope mapping is crucial for understanding immunological responses to protein therapeutics. Here, we combined genetic code expansion and bacterial surface display to incorporate S-allylcysteine (SAC) into human arginase-1 (hArg1) via Methanococcoides burtonii pyrrolysyl-tRNA synthetase. Using an amber codon deep mutational scanning and sequencing workflow, we mapped SAC incorporation efficiency across the hArg1 sequence, providing insights into structural and sequence dependencies of noncanonical amino acid incorporation. We used mutually bioorthogonal allyl/tetrazine and azide/DBCO chemistries to achieve site-specific PEGylation and fluorescent labeling of hArg1, revealing insights into SAC side chain reactivity and solvent accessibility of residues in hArg1. This system was further applied to determine the binding epitope of a monoclonal antibody on the surface of hArg1, providing high-resolution data on the impact of PEGylation residue position on antibody binding. Our method produces high dimensional data of noncanonical amino acid incorporation efficiency, site-specific functionalization enabled by mutually bioorthogonal chemistries, and epitope mapping of therapeutic proteins.
Collapse
Affiliation(s)
- Jaime Fernández de Santaella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
| | - Nikolaj G Koch
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Lorenz Widmer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Yang Y, Wang Y, Wang Z, Qi H. Efficient Incorporation of DOPA into Proteins Free from Competition with Endogenous Translation Termination Machinery. Biomolecules 2025; 15:382. [PMID: 40149918 PMCID: PMC11939889 DOI: 10.3390/biom15030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
3,4-Dihydroxy-L-phenylalanine (DOPA) is a promising noncanonical amino acid (ncAA) that introduces novel catechol chemical features into proteins, expanding their functional potential. However, the most common approach to incorporating ncAAs into proteins relies on stop codon suppression, which is often limited by the competition of endogenous translational termination machinery. Here, we employed a special in vitro protein expression system that facilitates the efficiency of DOPA incorporation into proteins by removing essential Class I peptide release factors through targeted degradation. In the absence of both RF1 and RF2, we successfully demonstrated DOPA incorporation at all three stop codons (TAG, TAA, and TGA). By optimizing the concentration of engineered DOPA-specific aminoacyl-tRNA synthetase (DOPARS), DOPA, and DNA template, we achieved a synthesis yield of 2.24 µg of sfGFP with 100% DOPA incorporation in a 20 μL reaction system. DOPARS exhibited a dissociation constant (Kd) of 11.7 μM for DOPA but showed no detectable binding to its native counterpart, tyrosine. Additionally, DOPA was successfully incorporated into a reverse transcriptase, which interfered with its activity. This system demonstrates a fast and efficient approach for precise DOPA incorporation into proteins, paving the way for advanced protein engineering applications.
Collapse
Affiliation(s)
- Youhui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (Y.W.); (Z.W.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yingchen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (Y.W.); (Z.W.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (Y.W.); (Z.W.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (Y.W.); (Z.W.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Qianzhu H, Abdelkader EH, Welegedara AP, Habel E, Paul N, Frkic RL, Jackson CJ, Huber T, Otting G. Rendering Proteins Fluorescent Inconspicuously: Genetically Encoded 4-Cyanotryptophan Conserves Their Structure and Enables the Detection of Ligand Binding Sites. Angew Chem Int Ed Engl 2025; 64:e202421000. [PMID: 39632265 DOI: 10.1002/anie.202421000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Cyanotryptophans (CN-Trp) are privileged multimodal reporters on protein structure. They are similar in size to the canonical amino acid tryptophan and some of them exhibit bright fluorescence which responds sensitively to changes in the environment. We selected aminoacyl-tRNA synthetases specific for 4-, 5-, 6-, and 7-CN-Trp for high-yield in vivo production of proteins with a single, site-specifically introduced nitrile label. The absorption maximum of 4-CN-Trp is distinct from Trp, allowing the selective excitation of its intense fluorescence. 4-CN-Trp fluoresces in the visible range with an intensity rivalling that of 7-hydroxy-coumarin. Crystal structures of maltose binding protein demonstrate near-complete structural conservation when a native buried Trp residue is replaced by 4-CN-Trp. Besides presenting an inconspicuous tag for live cell microscopy, the intense fluorescence of 4-CN-Trp enables measurements of subnanomolar ligand binding affinities in isotropic solution, as demonstrated by the complex between rapamycin and the peptidyl-prolyl isomerase FKBP12 furnished with a 4-CN-Trp residue in the substrate binding pocket. Furthermore, 4-CN-Trp residues positioned at different locations of a protein containing multiple tryptophan residues permits using fluorescence quenching experiments to detect the proximity of individual Trp residues to the binding site of aromatic ligands.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Adarshi P Welegedara
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Edan Habel
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nathan Paul
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca L Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Yuen D, Feeney OM, Noi L, Shengule S, McLeod VM, Reitano P, Tsegay S, Hufton R, Houston ZH, Fletcher NL, Humphries J, Thurecht KJ, Cullinane C, Owen DJ, Porter CJH, Johnston APR. Nanobody-Mediated Cellular Uptake Maximizes the Potency of Polylysine Dendrimers While Preserving Solid Tumor Penetration. ACS NANO 2025; 19:6044-6057. [PMID: 39910852 DOI: 10.1021/acsnano.4c10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Dendrimers are branched macromolecular structures that are useful nanocarriers for small-molecule drugs, such as cancer therapeutics. Their small size permits penetration into solid tumors, coupled with functionalization with a low-fouling PEG coating that minimizes transient cellular interactions and enhances plasma circulation time. While PEGylated dendrimers show significant promise as anticancer therapeutics, there is potential to increase tumor cell specificity and drive uptake of drugs into cells by conjugating cell-targeting ligands onto the dendrimers. To achieve this, we used an expanded genetic code and bio-orthogonal click chemistry to functionalize monomethyl auristatin E (MMAE)-loaded PEGylated dendrimers with a single tumor cell-targeting nanobody per dendrimer. The uniform addition of a single nanobody ligand facilitated greater intracellular uptake of the drug payload into HER2-positive target cells, while preserving the desirable circulatory characteristics of dendrimers. While the nanobody-dendrimer conjugates show similar levels of tumor infiltration over 24 h compared to unmodified dendrimers, the targeted dendrimers had significantly greater inhibition of tumor growth and long-term retention in the tumors. Our results highlight that biodistribution studies alone are poor predictors of therapeutic performance. The controlled conjugation strategy presented here preserves the size advantage and tissue penetration of dendrimers while maximizing targeted cellular uptake and potency in difficult-to-access solid tumor tissue.
Collapse
Affiliation(s)
- Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leo Noi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | - Sammi Tsegay
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
| | | | - Zachary H Houston
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - David J Owen
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
8
|
Casteleijn MG, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R, Kubick S. Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein. Chem Rev 2025; 125:1303-1331. [PMID: 39841856 PMCID: PMC11826901 DOI: 10.1021/acs.chemrev.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature's border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.
Collapse
Affiliation(s)
| | - Ulrike Abendroth
- VTT
Technical Research Centre of Finland Ltd, 02150 Espoo, Finland
| | - Anne Zemella
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Ruben Walter
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Rashmi Rashmi
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Rainer Haag
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Stefan Kubick
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
- Faculty
of Health Sciences, Joint Faculty of the
Brandenburg University of Technology Cottbus–Senftenberg, The
Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
- B4 PharmaTech
GmbH, Altensteinstraße
40, 14195 Berlin, Germany
| |
Collapse
|
9
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Shuster SO, Curtis AE, Davis CM. Optical photothermal infrared imaging using metabolic probes in biological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.19.613881. [PMID: 39345466 PMCID: PMC11430027 DOI: 10.1101/2024.09.19.613881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Infrared spectroscopy is a powerful tool for identifying biomolecules. In biological systems, infrared spectra provide information on structure, reaction mechanisms, and conformational change of biomolecules. However, the promise of applying infrared imaging to biological systems has been hampered by low spatial resolution and the overwhelming water background arising from the aqueous nature of in cell and in vivo work. Recently, optical photothermal infrared microscopy (OPTIR) has overcome these barriers and achieved both spatially and spectrally resolved images of live cells and organisms. Here, we determine the most effective modes of collection on a commercial OPTIR microscope for work in biological samples. We examine three cell lines (Huh-7, differentiated 3T3-L1, and U2OS) and three organisms (E. coli, tardigrades, and zebrafish). Our results suggest that the information provided by multifrequency imaging is comparable to hyperspectral imaging while reducing imaging times twenty-fold. We also explore the utility of IR active probes for OPTIR using global and site-specific noncanonical azide containing amino acid probes of proteins. We find that photoreactive IR probes are not compatible with OPTIR. We demonstrate live imaging of cells in buffers with water. 13C glucose metabolism monitored in live fat cells and E. coli highlights that the same probe may be used in different pathways. Further we demonstrate that some drugs (e.g. neratinib) have IR active moieties that can be imaged by OPTIR. Our findings illustrate the versatility of OPTIR, and together, provide a direction for future dynamic imaging of living cells and organisms.
Collapse
Affiliation(s)
- Sydney O. Shuster
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Anna E. Curtis
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Caitlin M. Davis
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
11
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Pigula ML, Ban Y, You H, Schultz PG. A Genetically Encoded Redox-Active Nicotinamide Amino Acid. Biochemistry 2024; 63:3184-3188. [PMID: 39586687 PMCID: PMC11797079 DOI: 10.1021/acs.biochem.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Nicotinamide-containing cofactors play an essential role in many enzymes that catalyze two-electron redox reactions. However, it is difficult to engineer nicotinamide binding sites into proteins due to the extended nature of the cofactor-protein interface and the precise orientation of the nicotinamide moiety required for efficient electron transfer to or from the substrate. To address these challenges, we genetically encoded a noncanonical amino acid (ncAA) bearing a nicotinamide side chain in bacteria. This redox-active amino acid, termed Nic1, exhibits similar electrochemical properties to the natural cofactor nicotinamide adenine dinucleotide (NAD+). Nic1 can be reversibly reduced and oxidized using chemical reagents both free in solution and when incorporated into a model protein. This genetically encodable cofactor can be introduced into proteins in a site-specific fashion and may serve as a tool to study electron-transfer mechanisms in enzymes and to engineer redox-active proteins.
Collapse
Affiliation(s)
- Michael L. Pigula
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yahui Ban
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hengyao You
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G. Schultz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Eggan P, Gordon SE, Zagotta WN. Ligand-coupled conformational changes in a cyclic nucleotide-gated ion channel revealed by time-resolved transition metal ion FRET. eLife 2024; 13:RP99854. [PMID: 39656198 PMCID: PMC11630820 DOI: 10.7554/elife.99854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG. In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
15
|
Eggan P, Gordon SE, Zagotta WN. Ligand-Coupled Conformational Changes in a Cyclic Nucleotide-Gated Ion Channel Revealed by Time-Resolved Transition Metal Ion FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591185. [PMID: 39411160 PMCID: PMC11475872 DOI: 10.1101/2024.04.25.591185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy ( ΔG ) and differences in free energy change ( ΔΔG ) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG . In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - William N. Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
16
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
17
|
Karbalaei-Heidari HR, Budisa N. Advanced and Safe Synthetic Microbial Chassis with Orthogonal Translation System Integration. ACS Synth Biol 2024; 13:2992-3002. [PMID: 39151168 DOI: 10.1021/acssynbio.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Through the use of CRISPR-assisted transposition, we have engineered a safe Escherichia coli chassis that integrates an orthogonal translation system (OTS) directly into the chromosome. This approach circumvents the limitations and genetic instability associated with conventional plasmid vectors. Precision in genome modification is crucial for the top-down creation of synthetic cells, especially in the orthogonalization of vital cellular processes, such as metabolism and protein translation. Here, we targeted multiple loci in the E. coli chromosome to integrate the OTS simultaneously, creating a synthetic auxotrophic chassis with an altered genetic code to establish a reliable, robust, and safe synthetic protein producer. Our OTS-integrated chassis enabled the site-specific incorporation of m-oNB-Dopa through in-frame amber stop codon readthrough. This allowed for the expression of advanced underwater bioglues containing Dopa-Lysine motifs, which are crucial for wound healing and tissue regeneration. Additionally, we have enhanced the expression process by incorporating scaffold-stabilizing fluoroprolines into bioglues, utilizing our chassis, which has been modified through metabolic engineering (i.e., by introducing proline auxotrophy). We also engineered a synthetic auxotroph reliant on caged Dopa, creating a genetic barrier (genetic firewall) between the synthetic cells and their surroundings, thereby boosting their stability and safety.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Nediljko Budisa
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
18
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
19
|
Isoda Y, Ohtake K, Piao W, Oashi T, Kiku F, Uchida A, Ikeda M, Masuda K, Sakamoto K, Shiraishi Y. Rational design of environmentally responsive antibodies with pH-sensing synthetic amino acids. Sci Rep 2024; 14:19428. [PMID: 39169153 PMCID: PMC11339442 DOI: 10.1038/s41598-024-70271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Antibodies are widely used as therapeutic agents to tackle various diseases. In the present study, to enhance their clinical values, we rationally designed pH-responsivity by exploiting the idiosyncratic protonation/deprotonation profiles of non-natural amino acids. 3-Nitro-L-tyrosine, 3-cyano-L-tyrosine, and 3, 5-halogenated-L-tyrosine, each with near neutral pKa, were thus incorporated into Fab fragments in place of tyrosines and other residues in the variable regions. Cell-based assays showed that these modifications achieved up to 140-fold tighter binding to antigens and several-fold tighter cytotoxicity to antigen-expressing cell at pH 6.0 than pH 7.4. The pH-dependent binding effect was retained in full-length antibodies. In silico structural analyses revealed electrostatic repulsion at neutral pH between antigens and antibodies or inside the antibody as the underlying mechanisms of the acid preference, and this finding increases the designability of pH-dependent antigen binding. The development of antibodies responsive to the microenvironments of diseased tissues will allow more disease-related antigens to be targeted in treatments, because of the reduced cross-reactivity toward healthy tissues.
Collapse
Affiliation(s)
- Yuya Isoda
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Kazumasa Ohtake
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Electrical Engineering and Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Wen Piao
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Taiji Oashi
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Fumika Kiku
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Aiko Uchida
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Masahiro Ikeda
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Kazuhiro Masuda
- Research Division, Kyowa Kirin Co. Ltd, Tokyo, 100-0004, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Department of Drug Target Protein Research, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
| | | |
Collapse
|
20
|
Eddins AJ, Pung AH, Cooley RB, Mehl RA. Tetrazine Amino Acid Encoding for Rapid and Complete Protein Bioconjugation. Bio Protoc 2024; 14:e5048. [PMID: 39210952 PMCID: PMC11349492 DOI: 10.21769/bioprotoc.5048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Generating protein conjugates using the bioorthogonal ligation between tetrazines and trans-cyclooctene groups avoids the need to manipulate cysteine amino acids; this ligation is rapid, site-specific, and stoichiometric and allows for labeling of proteins in complex biological environments. Here, we provide a protocol for the expression of conjugation-ready proteins at high yields in Escherichia coli with greater than 95% encoding and labeling fidelity. This protocol focuses on installing the Tet2 tetrazine amino acid using an optimized genetic code expansion (GCE) machinery system, Tet2 pAJE-E7, to direct Tet2 encoding at TAG stop codons in BL21 E. coli strains, enabling reproducible expression of Tet2-proteins that quantitatively react with trans-cyclooctene (TCO) groups within 5 min at room temperature and physiological pH. The use of the BL21 derivative B95(DE3) minimizes premature truncation byproducts caused by incomplete suppression of TAG stop codons, which makes it possible to use more diverse protein construct designs. Here, using a superfolder green fluorescent protein construct as an example protein, we describe in detail a four-day process for encoding Tet2 with yields of ~200 mg per liter of culture. Additionally, a simple and fast diagnostic gel electrophoretic mobility shift assay is described to confirm Tet2-Et encoding and reactivity. Finally, strategies are discussed to adapt the protocol to alternative proteins of interest and optimize expression yields and reactivity for that protein. Key features • Protocol describes site-specific encoding of the tetrazine amino acid Tet2-Et into proteins for bioorthogonal, quantitative, and rapid attachment of trans-cyclooctene-containing labels. • Protocol uses auto-induction methods for the production Tet2-Et protein in E. coli. • This protocol focuses on Tet-protein expressions in BL21(DE3) and B95(DE3) strains, which take approximately 4 days to complete. • SDS-PAGE mobility shift assay using a strained TCO-PEG5000 (sTCO-PEG5000) reagent provides a simple, generalizable method for testing Tet-protein reactivity.
Collapse
Affiliation(s)
- Alex J. Eddins
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
- GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
| | - Abigail H. Pung
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
- GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
- GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
- GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA
| |
Collapse
|
21
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
22
|
Ficaretta ED, Singha Roy SJ, Voss L, Chatterjee A. Native Aminoacyl-tRNA Synthetase/tRNA Pair Drives Highly Efficient Noncanonical Amino Acid Incorporation in Escherichia coli. ACS Chem Biol 2024; 19:1563-1569. [PMID: 38913984 PMCID: PMC11790294 DOI: 10.1021/acschembio.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Site-specific noncanonical amino acid (ncAA) mutagenesis in living cells has traditionally relied on heterologous, nonsense-suppressing aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that do not cross-react with their endogenous counterparts. Such heterologous pairs often perform suboptimally in a foreign host cell since they were not evolutionarily optimized to function in the foreign environment. This suboptimal performance restricts the number of ncAAs that can be simultaneously incorporated into a protein. Here, we show that the use of an endogenous aaRS/tRNA pair to drive ncAA incorporation can offer a potential solution to this limitation. To this end, we developed an engineered Escherichia coli strain (ATMY-C321), wherein the endogenous tyrosyl-tRNA synthetase (TyrRS)/tRNA pair has been functionally replaced with an archaeal counterpart, and the release factor 1 has been removed to eliminate competing termination at the UAG nonsense codons. The endogenous TyrRS/tRNACUATyr pair exhibits remarkably efficient nonsense suppression in the resulting cell, relative to established orthogonal ncAA-incorporation systems in E. coli, allowing the incorporation of an ncAA at up to 10 contiguous sites in a reporter protein. Our work highlights the limitations of orthogonal translation systems using heterologous aaRS/tRNA pairs and offers a potential alternative involving the use of endogenous pairs.
Collapse
Affiliation(s)
- Elise D. Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | | | - Lena Voss
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
23
|
Bennett ZD, Brunold TC. Non-standard amino acid incorporation into thiol dioxygenases. Methods Enzymol 2024; 703:121-145. [PMID: 39260993 PMCID: PMC11391102 DOI: 10.1016/bs.mie.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Thiol dioxygenases (TDOs) are non‑heme Fe(II)‑dependent enzymes that catalyze the O2-dependent oxidation of thiol substrates to their corresponding sulfinic acids. Six classes of TDOs have thus far been identified and two, cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), are found in eukaryotes. All TDOs belong to the cupin superfamily of enzymes, which share a common β‑barrel fold and two cupin motifs: G(X)5HXH(X)3-6E(X)6G and G(X)5-7PXG(X)2H(X)3N. Crystal structures of TDOs revealed that these enzymes contain a relatively rare, neutral 3‑His iron‑binding facial triad. Despite this shared metal-binding site, TDOs vary greatly in their secondary coordination spheres. Site‑directed mutagenesis has been used extensively to explore the impact of changes in secondary sphere residues on substrate specificity and enzymatic efficiency. This chapter summarizes site-directed mutagenesis studies of eukaryotic TDOs, focusing on the tools and practicality of non‑standard amino acid incorporation.
Collapse
Affiliation(s)
- Zachary D Bennett
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
24
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
25
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
26
|
Qianzhu H, Abdelkader EH, Otting G, Huber T. Genetic Encoding of Fluoro-l-tryptophans for Site-Specific Detection of Conformational Heterogeneity in Proteins by NMR Spectroscopy. J Am Chem Soc 2024; 146:13641-13650. [PMID: 38687675 DOI: 10.1021/jacs.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The substitution of a single hydrogen atom in a protein by fluorine yields a site-specific probe for sensitive detection by 19F nuclear magnetic resonance (NMR) spectroscopy, where the absence of background signal from the protein facilitates the detection of minor conformational species. We developed genetic encoding systems for the site-selective incorporation of 4-fluorotryptophan, 5-fluorotryptophan, 6-fluorotryptophan, and 7-fluorotryptophan in response to an amber stop codon and used them to investigate conformational heterogeneity in a designed amino acid binding protein and in flaviviral NS2B-NS3 proteases. These proteases have been shown to present variable conformations in X-ray crystal structures, including flips of the indole side chains of tryptophan residues. The 19F NMR spectra of different fluorotryptophan isomers installed at the conserved site of Trp83 indicate that the indole ring flip is common in flaviviral NS2B-NS3 proteases in the apo state and suppressed by an active-site inhibitor.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Thaenert A, Sevostyanova A, Chung CZ, Vargas-Rodriguez O, Melnikov SV, Söll D. Engineered mRNA-ribosome fusions for facile biosynthesis of selenoproteins. Proc Natl Acad Sci U S A 2024; 121:e2321700121. [PMID: 38442159 PMCID: PMC10945757 DOI: 10.1073/pnas.2321700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.
Collapse
Affiliation(s)
- Anna Thaenert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
- Biosciences Institute, Newcastle University Medical School, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
- Department of Chemistry, Yale University, New Haven, CT06511
| |
Collapse
|
28
|
Eddins AJ, Bednar RM, Jana S, Pung A, Mbengi L, Meyer K, Perona JJ, Cooley RB, Andrew Karplus P, Mehl RA. Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations. Bioconjug Chem 2023; 34:2243-2254. [PMID: 38047550 PMCID: PMC11641772 DOI: 10.1021/acs.bioconjchem.3c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.
Collapse
Affiliation(s)
- Alex J. Eddins
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Riley M. Bednar
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Abigail Pung
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Lea Mbengi
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Kyle Meyer
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - John J. Perona
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| |
Collapse
|
29
|
Abdelkader EH, Qianzhu H, Huber T, Otting G. Genetic Encoding of 7-Aza-l-tryptophan: Isoelectronic Substitution of a Single CH-Group in a Protein for a Nitrogen Atom for Site-Selective Isotope Labeling. ACS Sens 2023; 8:4402-4406. [PMID: 37890165 DOI: 10.1021/acssensors.3c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Genetic encoding of a noncanonical amino acid (ncAA) in an in vivo expression system requires an aminoacyl-tRNA synthetase that specifically recognizes the ncAA, while the ncAA must not be recognized by the canonical protein expression machinery. We succeeded in genetically encoding 7-aza-tryptophan (7AW), which is isoelectronic with tryptophan. The system is fully orthogonal to protein expression in Escherichia coli, enabling high-yielding site-selective isotope labeling in vivo. 7AW is readily synthesized from serine and 7-aza-indole using a tryptophan synthetase β-subunit (TrpB) mutant, affording easy access to isotope-labeled 7AW. Using labeled 7AW produced from 15N/13C-labeled serine, we produced 7AW mutants of the 25 kDa Zika virus NS2B-NS3 protease. 15N-HSQC spectra display single cross-peaks at chemical shifts near those observed for the wild-type protein labeled with 15N/13C-tryptophan, confirming the structural integrity of the protein and yielding straightforward NMR resonance assignments for site-specific probing.
Collapse
Affiliation(s)
- Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Mohler K, Moen JM, Rogulina S, Rinehart J. System-wide optimization of an orthogonal translation system with enhanced biological tolerance. Mol Syst Biol 2023; 19:e10591. [PMID: 37477096 PMCID: PMC10407733 DOI: 10.15252/msb.202110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI)University of California, San FranciscoSan FranciscoCAUSA
- 2QBI Coronavirus Research Group (QCRG)San FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Svetlana Rogulina
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jesse Rinehart
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| |
Collapse
|
31
|
Niu W, Guo J. Co-translational Installation of Posttranslational Modifications by Non-canonical Amino Acid Mutagenesis. Chembiochem 2023; 24:e202300039. [PMID: 36853967 PMCID: PMC10202221 DOI: 10.1002/cbic.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Protein posttranslational modifications (PTMs) play critical roles in regulating cellular activities. Here we provide a survey of genetic code expansion (GCE) methods that were applied in the co-translational installation and studies of PTMs through noncanonical amino acid (ncAA) mutagenesis. We begin by reviewing types of PTM that have been installed by GCE with a focus on modifications of tyrosine, serine, threonine, lysine, and arginine residues. We also discuss examples of applying these methods in biological studies. Finally, we end the piece with a short discussion on the challenges and the opportunities of the field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, N-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| |
Collapse
|
32
|
Zhu P, Stanisheuski S, Franklin R, Vogel A, Vesely CH, Reardon P, Sluchanko NN, Beckman JS, Karplus PA, Mehl RA, Cooley RB. Autonomous Synthesis of Functional, Permanently Phosphorylated Proteins for Defining the Interactome of Monomeric 14-3-3ζ. ACS CENTRAL SCIENCE 2023; 9:816-835. [PMID: 37122473 PMCID: PMC10141581 DOI: 10.1021/acscentsci.3c00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/03/2023]
Abstract
14-3-3 proteins are dimeric hubs that bind hundreds of phosphorylated "clients" to regulate their function. Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study 14-3-3 function in cellular-like environments, but a previous genetic code expansion (GCE) system to translationally install nonhydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with CH2, site-specifically into proteins has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a six-step biosynthetic pathway that produces nhpSer from phosphoenolpyruvate. Using this autonomous "PermaPhos" expression system, we produce three biologically relevant proteins with nhpSer and confirm that nhpSer mimics the effects of phosphoserine for activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein, promoting 14-3-3/client complexation, and monomerizing 14-3-3 dimers. Then, to understand the biological function of these phosphorylated 14-3-3ζ monomers (containing nhpSer at Ser58), we isolate its interactome from HEK293T lysates and compare it with that of wild-type 14-3-3ζ. These data identify two new subsets of 14-3-3 client proteins: (i) those that selectively bind dimeric 14-3-3ζ and (ii) those that selectively bind monomeric 14-3-3ζ. We discover that monomeric-but not dimeric-14-3-3ζ interacts with cereblon, an E3 ubiquitin-ligase adaptor protein of pharmacological interest.
Collapse
Affiliation(s)
- Phillip Zhu
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Stanislau Stanisheuski
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Rachel Franklin
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Amber Vogel
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Cat Hoang Vesely
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Patrick Reardon
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Nikolai N. Sluchanko
- A.N.
Bach Institute of Biochemistry, Federal Research Center of Biotechnology
of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Joseph S. Beckman
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- e-MSion
Inc., 2121 NE Jack London
St., Corvallis, Oregon 97330, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Richard B. Cooley
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| |
Collapse
|
33
|
Ekanayake KB, Mahawaththa MC, Qianzhu H, Abdelkader EH, George J, Ullrich S, Murphy RB, Fry SE, Johansen-Leete J, Payne RJ, Nitsche C, Huber T, Otting G. Probing Ligand Binding Sites on Large Proteins by Nuclear Magnetic Resonance Spectroscopy of Genetically Encoded Non-Canonical Amino Acids. J Med Chem 2023; 66:5289-5304. [PMID: 36920850 DOI: 10.1021/acs.jmedchem.3c00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
N6-(((trimethylsilyl)-methoxy)carbonyl)-l-lysine (TMSK) and N6-trifluoroacetyl-l-lysine (TFAK) are non-canonical amino acids, which can be installed in proteins by genetic encoding. In addition, we describe a new aminoacyl-tRNA synthetase specific for N6-(((trimethylsilyl)methyl)-carbamoyl)-l-lysine (TMSNK), which is chemically more stable than TMSK. Using the dimeric SARS-CoV-2 main protease (Mpro) as a model system with three different ligands, we show that the 1H and 19F nuclei of the solvent-exposed trimethylsilyl and CF3 groups produce intense signals in the nuclear magnetic resonance (NMR) spectrum. Their response to active-site ligands differed significantly when positioned near rather than far from the active site. Conversely, the NMR probes failed to confirm the previously reported binding site of the ligand pelitinib, which was found to enhance the activity of Mpro by promoting the formation of the enzymatically active dimer. In summary, the amino acids TMSK, TMSNK, and TFAK open an attractive path for site-specific NMR analysis of ligand binding to large proteins of limited stability and at low concentrations.
Collapse
Affiliation(s)
- Kasuni B Ekanayake
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mithun C Mahawaththa
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Elwy H Abdelkader
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Rhys B Murphy
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sarah E Fry
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jason Johansen-Leete
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Gottfried Otting
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
34
|
Yanagisawa T, Seki E, Tanabe H, Fujii Y, Sakamoto K, Yokoyama S. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids. Int J Mol Sci 2023; 24:ijms24076256. [PMID: 37047230 PMCID: PMC10094482 DOI: 10.3390/ijms24076256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Pairs of pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). Previously, we achieved full productivity of cell-free protein synthesis for bulky non-canonical amino acids, including Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS with structure-based mutations in and around the amino acid binding pocket (first-layer and second-layer mutations, respectively). Recently, the PylRS·tRNAPyl pair from a methanogenic archaeon ISO4-G1 was used for genetic code expansion. In the present study, we determined the crystal structure of the methanogenic archaeon ISO4-G1 PylRS (ISO4-G1 PylRS) and compared it with those of structure-known PylRSs. Based on the ISO4-G1 PylRS structure, we attempted the site-specific incorporation of Nε-(p-ethynylbenzyloxycarbonyl)-L-lysine (pEtZLys) into proteins, but it was much less efficient than that of TCO*Lys with M. alvus PylRS mutants. Thus, the first-layer mutations (Y125A and M128L) of ISO4-G1 PylRS, with no additional second-layer mutations, increased the protein productivity with pEtZLys up to 57 ± 8% of that with TCO*Lys at high enzyme concentrations in the cell-free protein synthesis.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| | - Eiko Seki
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Hiroaki Tanabe
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Yoshifumi Fujii
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Kensaku Sakamoto
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| |
Collapse
|
35
|
Violo T, Lambert A, Pillot A, Fanuel M, Mac-Béar J, Broussard C, Grandjean C, Camberlein E. Site-Selective Unnatural Amino Acid Incorporation at Single or Multiple Positions to Control Sugar-Protein Connectivity in Glycoconjugate Vaccine Candidates. Chemistry 2023; 29:e202203497. [PMID: 36533568 DOI: 10.1002/chem.202203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In cellulo site-specific unnatural amino acid incorporation based on amber stop codon reassignment is a powerful tool to modify proteins at defined positions. This technique is herein applied to the selective functionalization of the Pneumococcal surface adhesin A protein at three distinct positions. Nϵ -propargyloxycarbonyl-l-lysine residues were incorporated and their alkyne groups reacted using click-chemistry with a synthetic azido-functionalized tetrasaccharide representative of one repeat unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Anti-PsaA antibody response induced in mice by the trivalent glycoconjugate was determined in comparison with corresponding monovalent and randomly functionalized conjugates. Our results suggest that controlled was superior to random conjugation for preserving antigenicity. In definitive, the reported strategy offers a unique opportunity to study the impact of carbohydrate antigen-carrier protein connectivity on immunogenicity.
Collapse
Affiliation(s)
- Typhaine Violo
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Annie Lambert
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Aline Pillot
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Jessica Mac-Béar
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Cédric Broussard
- Protéom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Cyrille Grandjean
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Emilie Camberlein
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| |
Collapse
|
36
|
Zhu P, Nguyen KT, Estelle AB, Sluchanko NN, Mehl RA, Cooley RB. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Protein Sci 2023; 32:e4574. [PMID: 36691781 PMCID: PMC9926477 DOI: 10.1002/pro.4574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
14-3-3 proteins are central hub regulators of hundreds of phosphorylated "client" proteins. They are subject to over 60 post-translational modifications (PTMs), yet little is known how these PTMs alter 14-3-3 function and its ability to regulate downstream signaling pathways. An often neglected, but well-documented 14-3-3 PTM found under physiological and immune-stimulatory conditions is the conversion of tyrosine to 3-nitro-tyrosine at several Tyr sites, two of which are located at sites considered important for 14-3-3 function: Y130 (β-isoform numbering) is located in the primary phospho-client peptide-binding groove, while Y213 is found on a secondary binding site that engages with clients for full 14-3-3/client complex formation and client regulation. By genetically encoding 3-nitro-tyrosine, we sought to understand if nitration at Y130 and Y213 effectively modulated 14-3-3 structure, function, and client complexation. The 1.5 Å resolution crystal structure of 14-3-3 nitrated at Y130 showed the nitro group altered the conformation of key residues in the primary binding site, while functional studies confirmed client proteins failed to bind this variant of 14-3-3. But, in contrast to other client-binding deficient variants, it did not localize to the nucleus. The 1.9 Å resolution structure of 14-3-3 nitrated at Y213 revealed unusual flexibility of its C-terminal α-helix resulting in domain swapping, suggesting additional structural plasticity though its relevance is not clear as this nitrated form retained its ability to bind clients. Collectively, our data suggest that nitration of 14-3-3 will alter downstream signaling systems, and if uncontrolled could result in global dysregulation of the 14-3-3 interactome.
Collapse
Affiliation(s)
- Phillip Zhu
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Kyle T. Nguyen
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Aidan B. Estelle
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of SciencesA.N. Bach Institute of BiochemistryMoscowRussia
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
37
|
Romesberg FE. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220030. [PMID: 36633274 PMCID: PMC9835597 DOI: 10.1098/rstb.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Floyd E. Romesberg
- Platform Innovation, Synthorx, a Sanofi Company, 11099 N. Torrey Pines Road, Suite 190, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Xu C, Zou Q, Tian J, Li M, Xing B, Gong J, Wang J, Huo YX, Guo S. Simplified Construction of Engineered Bacillus subtilis Host for Improved Expression of Proteins Harboring Noncanonical Amino Acids. ACS Synth Biol 2023; 12:583-595. [PMID: 36653175 DOI: 10.1021/acssynbio.2c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The UAG-based genetic code expansion (GCE) enables site-specific incorporation of noncanonical amino acids (ncAAs) harboring novel chemical functionalities in specific target proteins. However, most GCE studies were done in several whole-genome engineered chassis cells whose hundreds of UAG stop codons were systematically edited to UAA to avoid readthrough in protein synthesis in the presence of GCE. The huge workload of removing all UAG limited the application of GCE in other microbial cell factories (MCF) such as Bacillus subtilis, which has 607 genes ended with UAG among its 4245 coding genes. Although the 257 essential genes count only 6.1% of the genes in B. subtilis, they transcribe 12.2% of the mRNAs and express 52.1% of the proteins under the exponential phase. Here, we engineered a strain named Bs-22 in which all 22 engineerable UAG stop codons in essential genes were edited to UAA via CRISPR/Cas9-mediated multiple-site engineering to minimize the negative effect of GCE on the expression of essential genes. Besides the process of constructing GCE-compatible B. subtilis was systematically optimized. Compared with wild-type B. subtilis (Bs-WT), the fluorescence signal of the eGFP expression could enhance 2.25-fold in Bs-22, and the production of protein tsPurple containing l-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) was increased 2.31-fold in Bs-22. We verified that all purified tsPurple proteins from Bs-22 contained Cou, indicating the excellent fidelity of the strategy. This proof-of-concept study reported efficient overexpression of ncAA-rich proteins in MCF with minimized engineering, shedding new light on solving the trade-off between efficiency and workload.
Collapse
Affiliation(s)
- Changgeng Xu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Qin Zou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China.,Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, 063611 Hebei, China
| | - Jiheng Tian
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Mengyuan Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Baowen Xing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| | - Julia Gong
- Marymount High School, Los Angeles, California 10643, United States
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101 Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China.,Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, 063611 Hebei, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
| |
Collapse
|
40
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
41
|
Morosky P, Comyns C, Nunes LGA, Chung CZ, Hoffmann PR, Söll D, Vargas-Rodriguez O, Krahn N. Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins. Front Mol Biosci 2023; 10:1096261. [PMID: 36762212 PMCID: PMC9902344 DOI: 10.3389/fmolb.2023.1096261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications (PTMs) can occur on almost all amino acids in eukaryotes as a key mechanism for regulating protein function. The ability to study the role of these modifications in various biological processes requires techniques to modify proteins site-specifically. One strategy for this is genetic code expansion (GCE) in bacteria. The low frequency of post-translational modifications in bacteria makes it a preferred host to study whether the presence of a post-translational modification influences a protein's function. Genetic code expansion employs orthogonal translation systems engineered to incorporate a modified amino acid at a designated protein position. Selenoproteins, proteins containing selenocysteine, are also known to be post-translationally modified. Selenoproteins have essential roles in oxidative stress, immune response, cell maintenance, and skeletal muscle regeneration. Their complicated biosynthesis mechanism has been a hurdle in our understanding of selenoprotein functions. As technologies for selenocysteine insertion have recently improved, we wanted to create a genetic system that would allow the study of post-translational modifications in selenoproteins. By combining genetic code expansion techniques and selenocysteine insertion technologies, we were able to recode stop codons for insertion of N ε-acetyl-l-lysine and selenocysteine, respectively, into multiple proteins. The specificity of these amino acids for their assigned position and the simplicity of reverting the modified amino acid via mutagenesis of the codon sequence demonstrates the capacity of this method to study selenoproteins and the role of their post-translational modifications. Moreover, the evidence that Sec insertion technology can be combined with genetic code expansion tools further expands the chemical biology applications.
Collapse
Affiliation(s)
- Pearl Morosky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Cody Comyns
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Lance G. A. Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Christina Z. Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
42
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
44
|
Hiefinger C, Mandl S, Wieland M, Kneuttinger A. Rational design, production and in vitro analysis of photoxenoproteins. Methods Enzymol 2023; 682:247-288. [PMID: 36948704 DOI: 10.1016/bs.mie.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sabrina Mandl
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Wieland
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Kneuttinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
45
|
Sakamoto K. Genetic Code Expansion: Another Solution to Codon Assignments. Int J Mol Sci 2022; 24:ijms24010361. [PMID: 36613803 PMCID: PMC9820421 DOI: 10.3390/ijms24010361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This Special Issue is intended to highlight recent advances in genetic code expansion, particularly the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins [...].
Collapse
Affiliation(s)
- Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
46
|
Koch NG, Baumann T, Nickling JH, Dziegielewski A, Budisa N. Engineered bacterial host for genetic encoding of physiologically stable protein nitration. Front Mol Biosci 2022; 9:992748. [PMID: 36353730 PMCID: PMC9638147 DOI: 10.3389/fmolb.2022.992748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Across scales, many biological phenomena, such as protein folding or bioadhesion and cohesion, rely on synergistic effects of different amino acid side chains at multiple positions in the protein sequence. These are often fine-tuned by post-translational modifications that introduce additional chemical properties. Several PTMs can now be genetically encoded and precisely installed at single and multiple sites by genetic code expansion. Protein nitration is a PTM of particular interest because it has been associated with several diseases. However, even when these nitro groups are directly incorporated into proteins, they are often physiologically reduced during or shortly after protein production. We have solved this problem by using an engineered Escherichia coli host strain. Six genes that are associated with nitroreductase activity were removed from the genome in a simple and robust manner. The result is a bacterial expression host that can stably produce proteins and peptides containing nitro groups, especially when these are amenable to modification. To demonstrate the applicability of this strain, we used this host for several applications. One of these was the multisite incorporation of a photocaged 3,4-dihydroxyphenylalanine derivative into Elastin-Like Polypeptides. For this non-canonical amino acid and several other photocaged ncAAs, the nitro group is critical for photocleavability. Accordingly, our approach also enhances the production of biomolecules containing photocaged tyrosine in the form of ortho-nitrobenzyl-tyrosine. We envision our engineered host as an efficient tool for the production of custom designed proteins, peptides or biomaterials for various applications ranging from research in cell biology to large-scale production in biotechnology.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Biocatalysis Group, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Tobias Baumann
- Biocatalysis Group, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jessica H. Nickling
- Biocatalysis Group, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Anna Dziegielewski
- Biocatalysis Group, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis Group, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
- Chemical Synthetic Biology Group, Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Nediljko Budisa,
| |
Collapse
|
47
|
Rennick JJ, Nowell CJ, Pouton CW, Johnston APR. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. Nat Commun 2022; 13:6023. [PMID: 36224168 PMCID: PMC9556823 DOI: 10.1038/s41467-022-33348-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Changes in sub-cellular pH play a key role in metabolism, membrane transport, and triggering cargo release from therapeutic delivery systems. Most methods to measure pH rely on intensity changes of pH sensitive fluorophores, however, these measurements are hampered by high uncertainty in the inferred pH and the need for multiple fluorophores. To address this, here we combine pH dependant fluorescent lifetime imaging microscopy (pHLIM) with deep learning to accurately quantify sub-cellular pH in individual vesicles. We engineer the pH sensitive protein mApple to localise in the cytosol, endosomes, and lysosomes, and demonstrate that pHLIM can rapidly detect pH changes induced by drugs such as bafilomycin A1 and chloroquine. We also demonstrate that polyethylenimine (a common transfection reagent) does not exhibit a proton sponge effect and had no measurable impact on the pH of endocytic vesicles. pHLIM is a simple and quantitative method that will help to understand drug action and disease progression.
Collapse
Affiliation(s)
- Joshua J Rennick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
48
|
Chen Y, He X, Ma B, Liu K, Gao T, Niu W, Guo J. Noncanonical amino acid mutagenesis in response to recoding signal-enhanced quadruplet codons. Nucleic Acids Res 2022; 50:e94. [PMID: 35657094 PMCID: PMC9458425 DOI: 10.1093/nar/gkac474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
While amber suppression is the most common approach to introduce noncanonical amino acids into proteins in live cells, quadruplet codon decoding has potential to enable a greatly expanded genetic code with up to 256 new codons for protein biosynthesis. Since triplet codons are the predominant form of genetic code in nature, quadruplet codon decoding often displays limited efficiency. In this work, we exploited a new approach to significantly improve quadruplet UAGN and AGGN (N = A, U, G, C) codon decoding efficiency by using recoding signals imbedded in mRNA. With representative recoding signals, the expression level of mutant proteins containing UAGN and AGGN codons reached 48% and 98% of that of the wild-type protein, respectively. Furthermore, this strategy mitigates a common concern of reading-through endogenous stop codons with amber suppression-based system. Since synthetic recoding signals are rarely found near the endogenous UAGN and AGGN sequences, a low level of undesirable suppression is expected. Our strategy will greatly enhance the utility of noncanonical amino acid mutagenesis in live-cell studies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kun Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tianyu Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
49
|
Crystal Structure of an Archaeal Tyrosyl-tRNA Synthetase Bound to Photocaged L-Tyrosine and Its Potential Application to Time-Resolved X-ray Crystallography. Int J Mol Sci 2022; 23:ijms231810399. [PMID: 36142308 PMCID: PMC9499402 DOI: 10.3390/ijms231810399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Genetically encoded caged amino acids can be used to control the dynamics of protein activities and cellular localization in response to external cues. In the present study, we revealed the structural basis for the recognition of O-(2-nitrobenzyl)-L-tyrosine (oNBTyr) by its specific variant of Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (oNBTyrRS), and then demonstrated its potential availability for time-resolved X-ray crystallography. The substrate-bound crystal structure of oNBTyrRS at a 2.79 Å resolution indicated that the replacement of tyrosine and leucine at positions 32 and 65 by glycine (Tyr32Gly and Leu65Gly, respectively) and Asp158Ser created sufficient space for entry of the bulky substitute into the amino acid binding pocket, while Glu in place of Leu162 formed a hydrogen bond with the nitro moiety of oNBTyr. We also produced an oNBTyr-containing lysozyme through a cell-free protein synthesis system derived from the Escherichia coli B95. ΔA strain with the UAG codon reassigned to the nonnatural amino acid. Another crystallographic study of the caged protein showed that the site-specifically incorporated oNBTyr was degraded to tyrosine by light irradiation of the crystals. Thus, cell-free protein synthesis of caged proteins with oNBTyr could facilitate time-resolved structural analysis of proteins, including medically important membrane proteins.
Collapse
|
50
|
Halogenation of tyrosine perturbs large-scale protein self-organization. Nat Commun 2022; 13:4843. [PMID: 35977922 PMCID: PMC9385671 DOI: 10.1038/s41467-022-32535-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Protein halogenation is a common non-enzymatic post-translational modification contributing to aging, oxidative stress-related diseases and cancer. Here, we report a genetically encodable halogenation of tyrosine residues in a reconstituted prokaryotic filamentous cell-division protein (FtsZ) as a platform to elucidate the implications of halogenation that can be extrapolated to living systems of much higher complexity. We show how single halogenations can fine-tune protein structures and dynamics of FtsZ with subtle perturbations collectively amplified by the process of FtsZ self-organization. Based on experiments and theories, we have gained valuable insights into the mechanism of halogen influence. The bending of FtsZ structures occurs by affecting surface charges and internal domain distances and is reflected in the decline of GTPase activities by reducing GTP binding energy during polymerization. Our results point to a better understanding of the physiological and pathological effects of protein halogenation and may contribute to the development of potential diagnostic tools.
Collapse
|