1
|
Yang L, Liu X, Zhen L, Liu Y, Wu L, Xu W, Peng L, Xie C. ANXA4 restricts HBV replication by inhibiting autophagic degradation of MCM2 in chronic hepatitis B. BMC Med 2024; 22:521. [PMID: 39511535 PMCID: PMC11546334 DOI: 10.1186/s12916-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is an enveloped DNA virus that causes chronic hepatitis B (CHB) infection. Annexin, a Ca2+-activated protein, is widely expressed in various organs and tissues and has potential utility in disease diagnosis and treatment. However, the relationship between the annexin family and CHB remains unclear. METHODS Clinical samples from hepatitis patients and donors or healthy individuals were collected. Transcriptome sequencing in CHB liver tissues and HBV-infected cells were performed. HepG2.2.15 cells with the full-length HBV genome and HBV-infected HepG2-NTCP cell models were established. HBV-infected mouse model was constructed and adeno-associated virus was utilized. RESULTS ANXA4 expression was elevated during CHB infection. ANXA4 knockdown promoted HBV replication and aggravated liver injury, while ANXA4 overexpression alleviated that. Mechanistically, autophagy pathway was activated by ANXA4 deficiency, promoting autophagic degradation of minichromosome maintenance complex component 2 (MCM2). MCM2 inhibition activated HBV replication, while MCM2 overexpression attenuated ANXA4 deficiency-induced HBV replication and liver injury. Clinically, the expression of hepatitis B viral protein was negatively correlated with the ANXA4 levels, and CHB patients with high ANXA4 levels (> 8 ng/ml) showed higher sensitivity to interferon therapy. CONCLUSIONS ANXA4 functions as a protective factor during HBV infection. ANXA4 expression is elevated under HBV attack to restrict HBV replication by inhibiting autophagic degradation of MCM2, thereby alleviating liver injury and suppressing the CHB infection process. ANXA4 also enhances the sensitivity of CHB patients to interferon therapy. Therefore, ANXA4 is expected to be a new target for CHB treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Luo Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Breast Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, China
| | - Xianzhi Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Pino-Belmar C, Aguilar R, Valenzuela-Nieto GE, Cavieres VA, Cerda-Troncoso C, Navarrete VC, Salazar P, Burgos PV, Otth C, Bustamante HA. An Intrinsic Host Defense against HSV-1 Relies on the Activation of Xenophagy with the Active Clearance of Autophagic Receptors. Cells 2024; 13:1256. [PMID: 39120287 PMCID: PMC11311385 DOI: 10.3390/cells13151256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.
Collapse
Affiliation(s)
- Camila Pino-Belmar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Rayén Aguilar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Guillermo E. Valenzuela-Nieto
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cristóbal Cerda-Troncoso
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Valentina C. Navarrete
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Paula Salazar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hianara A. Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| |
Collapse
|
4
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Marino-Merlo F, Klett A, Papaianni E, Drago SFA, Macchi B, Rincón MG, Andreola F, Serafino A, Grelli S, Mastino A, Borner C. Caspase-8 is required for HSV-1-induced apoptosis and promotes effective viral particle release via autophagy inhibition. Cell Death Differ 2023; 30:885-896. [PMID: 36418547 PMCID: PMC10070401 DOI: 10.1038/s41418-022-01084-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Regulated cell death (RCD) plays an important role in the progression of viral replication and particle release in cells infected by herpes simplex virus-1 (HSV-1). However, the kind of RCD (apoptosis, necroptosis, others) and the resulting cytopathic effect of HSV-1 depends on the cell type and the species. In this study, we further investigated the molecular mechanisms of apoptosis induced by HSV-1. Although a role of caspase-8 has previously been suggested, we now clearly show that caspase-8 is required for HSV-1-induced apoptosis in a FADD-/death receptor-independent manner in both mouse embryo fibroblasts (MEF) and human monocytes (U937). While wild-type (wt) MEFs and U937 cells exhibited increased caspase-8 and caspase-3 activation and apoptosis after HSV-1 infection, respective caspase-8-deficient (caspase-8-/-) cells were largely impeded in any of these effects. Unexpectedly, caspase-8-/- MEF and U937 cells also showed less virus particle release associated with increased autophagy as evidenced by higher Beclin-1 and lower p62/SQSTM1 levels and increased LC3-I to LC3-II conversion. Confocal and electron microscopy revealed that HSV-1 stimulated a strong perinuclear multivesicular body response, resembling increased autophagy in caspase-8-/- cells, entrapping virions in cellular endosomes. Pharmacological inhibition of autophagy by wortmannin restored the ability of caspase-8-/- cells to release viral particles in similar amounts as in wt cells. Altogether our results support a non-canonical role of caspase-8 in both HSV-1-induced apoptosis and viral particle release through autophagic regulation.
Collapse
Affiliation(s)
- Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Anusha Klett
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Emanuela Papaianni
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Selene Francesca Anna Drago
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - María Gabriela Rincón
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Federica Andreola
- The Institute of Translational Pharmacology, CNR, 00133, Rome, Italy
| | | | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133, Rome, Italy
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Oh PS, Han YH, Lim S, Jeong HJ. Blue light irradiation exerts anti-viral and anti-inflammatory properties against herpes simplex virus type 1 infection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112632. [PMID: 36608399 PMCID: PMC9771843 DOI: 10.1016/j.jphotobiol.2022.112632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the antiviral and anti-inflammatory functions of blue light (BL) in cutaneous viral infections. Previously, we examined the photo-biogoverning role of 450 nm BL in SARS-CoV-2-infected cells, which showed that photo-energy could inhibit viral activation depending on the number of photons. However, the communication network between photo-energy irradiation and immune cells involved in viral infections has not been clarified. We verified viral activation, inflammatory responses, and relevant downstream cascades caused by human simplex virus type I (HSV-1) after BL irradiation. To examine the antiviral effect of BL, we further tested whether BL could disturb viral absorption or entry into host cells. The results showed that BL irradiation, but not green light (GL) exposure, specifically decreased plaque-forming activity and viral copy numbers in HSV-1-infected cells. Accumulated BL irradiation inhibited the localization of viral proteins and the RNA expression of characteristic viral genes such as UL19, UL27, and US6, thus exerting to an anti-viral effect. The results also showed that BL exposure during viral absorption interfered with viral entry or destroyed the virus, as assessed by plaque formation and quantitative PCR assays. The levels of the pro-inflammatory mediators interleukin (IL)-18 and IL-1β in M1-polarized macrophages were increased by HSV-1 infection. However, these increases were attenuated by BL irradiation. Importantly, BL irradiation decreased cGAS and STING expression, as well as downstream NF-κB p65, in M1-polarized HSV-1-infected macrophages, demonstrating anti-viral and anti-inflammatory properties. These findings suggest that BL could serve as an anti-viral and anti-inflammatory therapeutic candidate to treat HSV-1 infections.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Yeon-Hee Han
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - SeokTae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
10
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
11
|
Patil CD, Suryawanshi R, Ames J, Koganti R, Agelidis A, Kapoor D, Yadavalli T, Koujah L, Tseng HC, Shukla D. Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:63-73. [PMID: 34880107 PMCID: PMC9015683 DOI: 10.4049/jimmunol.2100472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.
Collapse
Affiliation(s)
- Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Corresponding author. Phone number: 312-355-0908, Fax: 312-996-7773,
| |
Collapse
|
12
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
13
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
14
|
Kanda T, Yoshida A, Ikebuchi Y, Ikeda H, Sakaguchi T, Urabe S, Minami H, Nakao K, Inoue H, Isomoto H. Autophagy-related 16-like 1 is influenced by human herpes virus 1-encoded microRNAs in biopsy samples from the lower esophageal sphincter muscle during per-oral endoscopic myotomy for esophageal achalasia. Biomed Rep 2020; 14:7. [PMID: 33235722 DOI: 10.3892/br.2020.1383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal achalasia is characterized by abnormal peristalsis of the esophageal body and impaired relaxation of the lower esophageal sphincter (LES); however, its etiology remains unknown. One of the potential causes of esophageal achalasia is herpes simplex virus type 1 (HSV-1). Following infection with HSV-1, a complex interaction between the autoimmune and inflammatory responses is initiated. Viral microRNAs (miRNAs/miRs) serve a crucial role in this interaction. In the present study, the expression of E3 ubiquitin-protein ligase component n-recognition 1 (UBR1) and autophagy-related 16-like 1 (ATG16L1) was assessed in patients with sporadic and classic achalasia as potential targets of the viral miRNAs. We assessed the mRNA levels of target transcripts using reverse transcription-quantitative PCR. UBR1 expression was slightly decreased, although the difference was not significant. However, ATG16L1 expression was significantly decreased in the LES. In conclusion, ATG16L1 expression was reduced in the LES of achalasia patients; therefore, ATG16L1 might be a target of HSV1-miR-H1, and its reduction could be related to the disease mechanism.
Collapse
Affiliation(s)
- Tsutomu Kanda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Akira Yoshida
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Yuichiro Ikebuchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan.,Digestive Center, Showa University Koto-Toyusu Hospital, Tokyo 135-8577, Japan
| | - Haruo Ikeda
- Digestive Center, Showa University Koto-Toyusu Hospital, Tokyo 135-8577, Japan
| | - Takuki Sakaguchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan.,Digestive Center, Showa University Koto-Toyusu Hospital, Tokyo 135-8577, Japan
| | - Shigetoshi Urabe
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Haruhiro Inoue
- Digestive Center, Showa University Koto-Toyusu Hospital, Tokyo 135-8577, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| |
Collapse
|
15
|
Rawat P, Hon S, Teodorof-Diedrich C, Spector SA. Trehalose Inhibits Human Immunodeficiency Virus Type 1 Infection in Primary Human Macrophages and CD4 + T Lymphocytes through Two Distinct Mechanisms. J Virol 2020; 94:e00237-20. [PMID: 32554696 PMCID: PMC7431788 DOI: 10.1128/jvi.00237-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a highly conserved recycling pathway that promotes cell survival during periods of stress. We previously reported that induction of autophagy through the inhibition of the mechanistic target of rapamycin (MTOR) inhibits HIV replication in human macrophages and CD4+ T lymphocytes (T cells). However, the inhibition of MTOR has modulatory effects beyond autophagy that might affect viral replication. Here, we examined the effect on HIV replication of trehalose, a nontoxic, nonreducing disaccharide that induces autophagy through an MTOR-independent mechanism. Treatment of HIV-infected macrophages and T cells with trehalose inhibited infection in a dose-dependent manner. Uninfected and HIV-infected macrophages and T cells treated with trehalose exhibited increased markers of autophagy, including LC3B lipidation with further accumulation following bafilomycin A1 treatment, and increased levels of LAMP1, LAMP2, and RAB7 proteins required for lysosomal biogenesis and fusion. Moreover, the inhibition of HIV by trehalose was significantly reduced by knockdown of ATG5 Additionally, trehalose downregulated the expression of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages, which reduced HIV entry in these cells. Our data demonstrate that the naturally occurring sugar trehalose at doses safely achieved in humans inhibits HIV through two mechanisms: (i) decreased entry through the downregulation of CCR5 in T cells and decreased CD4 expression in both T cells and macrophages and (ii) degradation of intracellular HIV through the induction of MTOR-independent autophagy. These findings demonstrate that cellular mechanisms can be modulated to inhibit HIV entry and intracellular replication using a naturally occurring, nontoxic sugar.IMPORTANCE Induction of autophagy through inhibition of MTOR has been shown to inhibit HIV replication. However, inhibition of the mechanistic target of rapamycin (MTOR) has cellular effects that may alter HIV infection through other mechanisms. Here, we examined the HIV-inhibitory effects of the MTOR-independent inducer of autophagy, trehalose. Of note, we identified that in addition to the inhibition of the intracellular replication of HIV by autophagy, trehalose decreased viral entry in human primary macrophages and CD4+ T cells through the downregulation of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages. Thus, we showed that trehalose uniquely inhibits HIV replication through inhibition of viral entry and intracellular degradation in the two most important target cells for HIV infection.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Simson Hon
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
16
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
17
|
SIRT1 enhances hepatitis virus B transcription independent of hepatic autophagy. Biochem Biophys Res Commun 2020; 527:64-70. [PMID: 32446392 DOI: 10.1016/j.bbrc.2020.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023]
Abstract
Autophagy is an intracellular process that can lead to the degradation of malfunctioned proteins and damaged organelles to maintain homeostasis during cellular stress. Here, we evaluated the change in hepatitis B virus (HBV) production by regulating hepatic autophagy in HBV-producing cells. We examined focusing on a relation with a positive autophagy regulator, sirtuin1 (SIRT1). Starvation and rapamycin treatment induced autophagy with increasing SIRT1 protein, HBc protein and pregenomic RNA (pgRNA) levels in HBV- producing cells. Knockdown of Atg7 or Atg13 suppressed hepatic autophagy, and it did not change SIRT1 protein, HBc protein or pgRNA levels in HBV- producing cells. Resveratrol, which increases SIRT1 expression and activity, promoted autophagy and increased HBc protein and pgRNA levels. siRNA-mediated knockdown of SIRT1 inhibited autophagy and decreased HBc protein and pgRNA levels. In SIRT1-knockdown cells, starvation promoted autophagy but did not increase HBc protein and pgRNA levels. In conclusion, HBc protein and pgRNA levels are upregulated not by the autophagic process itself but by the SIRT1 expression level.
Collapse
|
18
|
MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. Sci Rep 2020; 10:6671. [PMID: 32317666 PMCID: PMC7174428 DOI: 10.1038/s41598-020-63438-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.
Collapse
|
19
|
NLRP3 Inflammasome and Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4063562. [PMID: 32148650 PMCID: PMC7049400 DOI: 10.1155/2020/4063562] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.
Collapse
|
20
|
Picot S, Morga B, Faury N, Chollet B, Dégremont L, Travers MA, Renault T, Arzul I. A study of autophagy in hemocytes of the Pacific oyster, Crassostrea gigas. Autophagy 2019; 15:1801-1809. [PMID: 30939979 PMCID: PMC6735588 DOI: 10.1080/15548627.2019.1596490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy is a mechanism that is involved in various cellular processes, including cellular homeostasis and innate immunity. This pathway has been described in organisms ranging in complexity from yeasts to mammals, and recent results indicate that it occurs in the mantle of the Pacific oyster, Crassostrea gigas. However, the autophagy pathway has never been explored in the hemocytes of C. gigas, which are the main effectors of its immune system and thus play a key role in the defence of the Pacific oyster against pathogens. To investigate autophagy in oyster hemocytes, tools currently used to monitor this mechanism in mammals, including flow cytometry, fluorescent microscopy and transmission electron microscopy, were adapted and applied to the hemocytes of the Pacific oyster. Oysters were exposed for 24 and 48 h to either an autophagy inducer (carbamazepine, which increases the production of autophagosomes) or an autophagy inhibitor (ammonium chloride, which prevents the degradation of autophagosomes). Autophagy was monitored in fresh hemocytes withdrawn from the adductor muscles of oysters using a combination of the three aforementioned methods. We successfully labelled autophagosomes and observed them by flow cytometry and fluorescence microscopy, and then used electron microscopy to observe ultrastructural modifications related to autophagy, including the presence of double-membrane-bound vacuoles. Our results demonstrated that autophagy occurs in hemocytes of C. gigas and can be modulated by molecules known to modulate autophagy in other organisms. This study describes an integrated approach that can be applied to investigate autophagy in marine bivalves at the cellular level. Abbreviations: MAP1LC3: microtubule associated protein 1 light chain 3; MCA: multiple correspondence analysis; NH4Cl: ammonium chloride; PI: propidium iodide; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
- Sandy Picot
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Benjamin Morga
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Nicole Faury
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Bruno Chollet
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Lionel Dégremont
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Marie-Agnès Travers
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Tristan Renault
- Département Ressources Biologiques et Environnement, Ifremer, Nantes, France
| | - Isabelle Arzul
- SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| |
Collapse
|
21
|
Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2019; 10:10/428/eaan5861. [PMID: 29444978 DOI: 10.1126/scitranslmed.aan5861] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes recurrent mucocutaneous lesions in the eye that may advance to corneal blindness. Nucleoside analogs exemplified by acyclovir (ACV) form the primary class of antiherpetic drugs, but this class suffers limitations due to the emergence of viral resistance and other side effects. While studying the molecular basis of ocular HSV-1 infection, we observed that BX795, a commonly used inhibitor of TANK-binding kinase 1 (TBK1), strongly suppressed infection by multiple strains of HSV-1 in transformed and primary human cells, cultured human and animal corneas, and a murine model of ocular infection. Our investigations revealed that the antiviral activity of BX795 relies on targeting Akt phosphorylation in infected cells, leading to the blockage of viral protein synthesis. This small-molecule inhibitor, which was also effective against an ACV-resistant HSV-1 strain, shows promise as an alternative to existing drugs and as an effective topical therapy for ocular herpes infection. Collectively, our results obtained using multiple infection models and virus strains establish BX795 as a promising lead compound for broad-spectrum antiviral applications in humans.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | - Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Neel Thakkar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Autophagy in corneal health and disease: A concise review. Ocul Surf 2019; 17:186-197. [DOI: 10.1016/j.jtos.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
|
23
|
Wang J, Chen J, Liu Y, Zeng X, Wei M, Wu S, Xiong Q, Song F, Yuan X, Xiao Y, Cao Y, Li C, Chen L, Guo M, Shi Y, Sun G, Guo D. Hepatitis B Virus Induces Autophagy to Promote its Replication by the Axis of miR-192-3p-XIAP Through NF kappa B Signaling. Hepatology 2019; 69:974-992. [PMID: 30180281 PMCID: PMC6519203 DOI: 10.1002/hep.30248] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma. It has been reported that viral infection can interfere with cellular microRNA (miRNA) expression and participate in the pathogenesis of oncogenicity. Here, we report that decreasing levels of the expression of the miRNA miR-192-3p is associated with rising levels of HBV DNA in the serum of HBV patients. We revealed that HBV infection repressed the expression of miR-192-3p through hepatitis B x protein interaction with c-myc. We further showed that miR-192-3p was repressed by HBV transfection in vitro and in a mouse model, leading to cellular autophagy. Using an miRNA target prediction database miRBase, we identified X-linked inhibitor of apoptosis protein (XIAP) as a target gene of miR-192-3p and demonstrated that miR-192-3p directly targeted the XIAP 3'-untranslated region of XIAP messenger RNA. Importantly, we discovered that HBV promoted autophagy through miR-192-3p-XIAP axis and that this process was important for HBV replication in vitro and in vivo. We demonstrated that miR-192-3p functioned through the nuclear factor kappa B signaling pathway to inhibit autophagy, thereby reducing HBV replication. Conclusions: Our findings indicate that miR-192-3p is a regulator of HBV infection and may play a potential role in hepatocellular carcinoma. It may also serve as a biomarker or therapeutic target for HBV patients.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jianwen Chen
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yang Liu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Xianhuang Zeng
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Mingcong Wei
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shaoshuai Wu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | | | - Feifei Song
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Xu Yuan
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yu Xiao
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yun Cao
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Changyong Li
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lang Chen
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life SciencesWuhan UniversityWuhanChina
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaMD
| | - Guihong Sun
- School of Basic Medical SciencesWuhan UniversityWuhanChina,Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanChina
| | - Deyin Guo
- Laboratory of Medical Virology, School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
24
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Ahmad L, Mostowy S, Sancho-Shimizu V. Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front Cell Dev Biol 2018; 6:155. [PMID: 30510929 PMCID: PMC6252315 DOI: 10.3389/fcell.2018.00155] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process that targets protein aggregates and damaged organelles. Autophagy is also implicated in numerous viral infections, including human immunodeficiency virus-1 (HIV-1), influenza A (IAV) and herpes simplex virus-1 (HSV-1). Depending on the virus, autophagy can restrict or promote viral replication, and play key roles in modulating inflammation and cell survival. In this review, we consider examples of autophagy-virus interplay, highlighting the protective role of autophagy in human infections. We summarize recent discoveries and emerging themes illuminating autophagy’s role in immunity and inflammation upon viral infection. Finally, we discuss future prospects and therapeutic implications, and potential caveats associated with using autophagy to control viral infections in humans.
Collapse
Affiliation(s)
- Liyana Ahmad
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom
| | - Serge Mostowy
- MRC Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom.,Department of Paediatrics, Division of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Bello-Morales R, López-Guerrero JA. Extracellular Vesicles in Herpes Viral Spread and Immune Evasion. Front Microbiol 2018; 9:2572. [PMID: 30410480 PMCID: PMC6209645 DOI: 10.3389/fmicb.2018.02572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in numerous processes during infections by both enveloped and non-enveloped viruses. Among them, herpes simplex virus type-1 (HSV-1) modulates secretory pathways, allowing EVs to exit infected cells. Many characteristics regarding the mechanisms of viral spread are still unidentified, and as such, secreted vesicles are promising candidates due to their role in intercellular communications during viral infection. Another relevant role for EVs is to protect virions from the action of neutralizing antibodies, thus increasing their stability within the host during hematogenous spread. Recent studies have suggested the participation of EVs in HSV-1 spread, wherein virion-containing microvesicles (MVs) released by infected cells were endocytosed by naïve cells, leading to a productive infection. This suggests that HSV-1 might use MVs to expand its tropism and evade the host immune response. In this review, we briefly describe the current knowledge about the involvement of EVs in viral infections in general, with a specific focus on recent research into their role in HSV-1 spread. Implications of the autophagic pathway in the biogenesis and secretion of EVs will also be discussed.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
27
|
Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome 2018; 29:425-445. [PMID: 30167845 PMCID: PMC6132704 DOI: 10.1007/s00335-018-9772-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
A majority of the world population is infected with herpes simplex viruses (HSV; human herpesvirus types 1 and 2). These viruses, perhaps best known for their manifestation in the genital or oral mucosa, can also cause herpes simplex encephalitis, a severe and often fatal disease of the central nervous system. Antiviral therapies for HSV are only partially effective since the virus can establish latent infections in neurons, and severe pathological sequelae in the brain are common. A better understanding of disease pathogenesis is required to develop new strategies against herpes simplex encephalitis, including the precise viral and host genetic determinants that promote virus invasion into the central nervous system and its associated immunopathology. Here we review the current understanding of herpes simplex encephalitis from the host genome perspective, which has been illuminated by groundbreaking work on rare herpes simplex encephalitis patients together with mechanistic insight from single-gene mouse models of disease. A complex picture has emerged, whereby innate type I interferon-mediated antiviral signaling is a central pathway to control viral replication, and the regulation of immunopathology and the balance between apoptosis and autophagy are critical to disease severity in the central nervous system. The lessons learned from mouse studies inform us on fundamental defense mechanisms at the interface of host–pathogen interactions within the central nervous system, as well as possible rationales for intervention against infections from severe neuropathogenic viruses.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
28
|
Wechman SL, Rao XM, Gomez-Gutierrez JG, Zhou HS, McMasters KM. The role of JNK phosphorylation as a molecular target to enhance adenovirus replication, oncolysis and cancer therapeutic efficacy. Cancer Biol Ther 2018; 19:1174-1184. [PMID: 30067431 PMCID: PMC6301809 DOI: 10.1080/15384047.2018.1491503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 01/17/2023] Open
Abstract
Oncolytic adenoviruses (Ads) are cancer selective tumoricidal agents; however their mechanism of Ad-mediated cancer cell lysis, or oncolysis, remains undefined. This report focuses upon the autophagy mediator c-JUN n-terminal kinase (JNK) and its effects upon Ad oncolysis and replication. Previously, E1b-deleted Ads have been used to treat several hundred cancer patients with limited clinical efficacy. We hypothesize that by studying the potential interactions between E1b and JNK, mechanisms to improve oncolytic Ad design and cancer therapeutic efficacy may be elucidated. To test this hypothesis, E1b was selectively deleted from the Ad genome. These studies indicated that Ads encoding E1b induced JNK phosphorylation predominately occurred via E1b-19K. The expression of another crucial Ad gene E1a was then overexpressed by the CMV promoter via the replication competent Ad vector Adhz69; these data indicated that E1A also induced JNK phosphorylation. To assess the effects of host cell JNK expression upon Ad oncolysis and replication, siRNA targeting JNK1 and JNK2 (JNK1/2) were utilized. The oncolysis and replication of the E1b-19K wild-type Ads Ad5 and Adhz63 were significantly attenuated following JNK1/2 siRNA transfection. However the oncolytic effects and replication of the E1b-19K deleted Ad Adhz60 were not altered by JNK1/2 siRNA transfection, further implicating the crucial role of E1b-19K for Ad oncolysis and replication via JNK phosphorylation. This study has demonstrated for the first time that JNK is an intriguing molecular marker associated with enhanced Ad virotherapy efficacy, influencing future Ad vector design.
Collapse
Affiliation(s)
- Stephen L. Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiao-Mei Rao
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kelly M. McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
29
|
Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Jia R, Sun K, Chen X. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget 2018; 9:30704-30719. [PMID: 30093980 PMCID: PMC6078129 DOI: 10.18632/oncotarget.25694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Programed cell death is an antiviral mechanism by which the host limits viral replication and protects uninfected cells. Many viruses encode proteins resistant to programed cell death to escape the host immune defenses, which indicates that programed cell death is more favorable for the host immune defense. Alpha-herpesviruses are pathogens that widely affect the health of humans and animals in different communities worldwide. Alpha-herpesviruses can induce apoptosis, autophagy and necroptosis through different molecular mechanisms. This review concisely illustrates the different pathways of apoptosis, autophagy, and necroptosis induced by alpha-herpesviruses. These pathways influence viral infection and replication and are a potential avenue for cancer treatment. This review will increase our understanding of the role of programed cell death in the host immune defense and provides new possibilities for cancer treatment.
Collapse
Affiliation(s)
- Chuankuo Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
30
|
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in the neurons of sensory ganglia. In some cases, the virus spreads into the central nervous system, causing encephalitis or meningitis. Cells infected with several different types of viruses may secrete microvesicles (MVs) containing viral proteins and RNAs. In some instances, extracellular microvesicles harboring infectious virus have been found. Here we describe the features of shedding microvesicles released by the human oligodendroglial HOG cell line infected with HSV-1 and their participation in the viral cycle. Using transmission electron microscopy, we detected for the first time microvesicles containing HSV-1 virions. Interestingly, the Chinese hamster ovary (CHO) cell line, which is resistant to infection by free HSV-1 virions, was susceptible to HSV-1 infection after being exposed to virus-containing microvesicles. Therefore, our results indicate for the first time that MVs released by infected cells contain virions, are endocytosed by naive cells, and lead to a productive infection. Furthermore, infection of CHO cells was not completely neutralized when virus-containing microvesicles were preincubated with neutralizing anti-HSV-1 antibodies. The lack of complete neutralization and the ability of MVs to infect nectin-1/HVEM-negative CHO-K1 cells suggest a novel way for HSV-1 to spread to and enter target cells. Taken together, our results suggest that HSV-1 could spread through microvesicles to expand its tropism and that microvesicles could shield the virus from neutralizing antibodies as a possible mechanism to escape the host immune response.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in neurons. Extracellular vesicles are a heterogeneous group of membrane vesicles secreted by most cell types. Microvesicles, which are extracellular vesicles which derive from the shedding of the plasma membrane, isolated from the supernatant of HSV-1-infected HOG cells were analyzed to find out whether they were involved in the viral cycle. The importance of our investigation lies in the detection, for the first time, of microvesicles containing HSV-1 virions. In addition, virus-containing microvesicles were endocytosed into CHO-K1 cells and were able to actively infect these otherwise nonpermissive cells. Finally, the infection of CHO cells with these virus-containing microvesicles was not completely neutralized by anti-HSV-1 antibodies, suggesting that these extracellular vesicles might shield the virus from neutralizing antibodies as a possible mechanism of immune evasion.
Collapse
|
31
|
Cytoplasmic Translocation of Nucleolar Protein NOP53 Promotes Viral Replication by Suppressing Host Defense. Viruses 2018; 10:v10040208. [PMID: 29677136 PMCID: PMC5923502 DOI: 10.3390/v10040208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
NOP53 is a tumor suppressor protein located in the nucleolus and is translocated to the cytoplasm during infection by vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1), as shown in our previous study. Cytoplasmic NOP53 interacts with the retinoic acid-inducible gene I (RIG-I) to remove its K63-linked ubiquitination, leading to attenuation of type I interferon IFN-β. In the present study, we found no obvious translocation of NOP53 in infection by a mutant virus lacking ICP4 (HSV-1/d120, replication inadequate). Blocking cytoplasmic translocation of NOP53 by the deletion of its nuclear export sequence (NES) abrogated its ability to support viral replication. These results demonstrated that NOP53 redistribution is related to viral replication. It is interesting that treatment with poly (I:C) or RIG-I-N (a constitutively-active variant) directly induced NOP53 cytoplasmic translocation. To better assess the function of cytoplasmic NOP53 in viral replication, the NOP53-derived protein N3-T, which contains a human immunodeficiency virus (HIV)-derived cell-penetrating Tat peptide at the C-terminal region of N3 (residues 330–432), was constructed and expressed. The recombinant N3-T protein formed trimers, attenuated the expression of IFN-β and IFN-stimulated genes, as well as decreased the phosphorylation level of interferon regulatory factor 3 (IRF3). Furthermore, N3-T promoted the efficient replication of enveloped and non-enveloped DNA and RNA viruses belonging to 5 families. Our findings expand the understanding of the mechanism by which viruses utilize the nucleolar protein NOP53 for optimal viral replication.
Collapse
|
32
|
Xu C, Wang M, Song Z, Wang Z, Liu Q, Jiang P, Bai J, Li Y, Wang X. Pseudorabies virus induces autophagy to enhance viral replication in mouse neuro-2a cells in vitro. Virus Res 2018; 248:44-52. [PMID: 29452162 DOI: 10.1016/j.virusres.2018.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy of cytoplasmic components plays an essential role in the pathogenic infection process. Furthermore, research suggests that autophagy is an extremely important component of the innate immune response. Our study aimed to reveal the effect of virus-induced autophagy on pseudorabies virus (PRV) replication. Our results confirmed that light chain 3 (LC3)-I was converted into LC3-II after PRV infection; this transition is considered an important indicator of autophagy. Transmission electron microscopy (TEM) revealed that PRV infection could notably increase the number of autophagosomes in mouse neuro-2a (N2a) cells. In addition, LC3-II accumulated in response to chloroquine (CQ) treatment, indicating that PRV infection induced a complete autophagic flux response. Furthermore, our analyses verified differences in the magnitude of autophagy induction by two different PRV isolates, LA and ZJ01. Subsequent analysis showed that the induction of autophagy by rapamycin facilitated PRV replication, while inhibition of autophagy by 3-methyladenine (3-MA) reduced PRV replication. These results indicated that PRV induced autophagy via the classical Beclin-1-Atg7-Atg5 pathway to enhance viral replication in N2a cells in vitro.
Collapse
Affiliation(s)
- Changmeng Xu
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongbao Song
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijian Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianyu Liu
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
34
|
|
35
|
Chen Y, Chen Q, Li M, Mao Q, Chen H, Wu W, Jia D, Wei T. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLoS Pathog 2017; 13:e1006727. [PMID: 29125860 PMCID: PMC5708841 DOI: 10.1371/journal.ppat.1006727] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/30/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023] Open
Abstract
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
36
|
MG-132 reduces virus release in Bovine herpesvirus-1 infection. Sci Rep 2017; 7:13306. [PMID: 29042667 PMCID: PMC5645422 DOI: 10.1038/s41598-017-13717-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 12/25/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) can provoke conjunctivitis, abortions and shipping fever. BoHV-1 infection can also cause immunosuppression and increased susceptibility to secondary bacterial infections, leading to pneumonia and occasionally to death. Herein, we investigated the influence of MG-132, a proteasome inhibitor, on BoHV-1 infection in bovine kidney (MDBK) cells. Infection of MDBK cells with BoHV-1 induces apoptotic cell death that enhances virus release. Whereas, MG-132 inhibited virus-induced apoptosis and stimulated autophagy. Protein expression of viral infected cell protein 0 (bICP0), which is constitutively expressed during infection and is able to stimulate Nuclear factor kappa B (NF-κB), was completely inhibited by MG-132. These results were accompanied by a significant delay in the NF-κB activation. Interestingly, the efficient virus release provoked by BoHV-1-induced apoptosis was significantly reduced by MG-132. Overall, this study suggests that MG-132, through the activation of autophagy, may limit BoHV-1 replication during productive infection, by providing an antiviral defense mechanism.
Collapse
|
37
|
Role of autophagy in oncolytic herpes simplex virus type 1-induced cell death in squamous cell carcinoma cells. Cancer Gene Ther 2017; 24:393-400. [PMID: 28984290 DOI: 10.1038/cgt.2017.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the most widely studied viruses for oncolytic virotherapy. In squamous cell carcinoma (SCC) cells, the role of autophagy induced by neurovirulence gene-deficient HSV-1s in programmed cell death has not yet been elucidated. The oncolytic HSV-1 strain RH2, which lacks the γ34.5 gene and induces the fusion of human SCC cells, was used. RH2 replicated and induced cell death in SCC cells. RH2 infection was accompanied by the aggregation of microtubule-associated protein 1 light chain 3 (LC3) in the cytoplasm, the conversion of LC3-I to LC3-II and the formation of double-membrane vacuoles containing cell contents. No significant changes were observed in the expression of Bcl-2 or Bax, while a slight decrease was observed in that of Beclin 1. The autophagy inhibitors, 3-methyladenine (3-MA) and bafilomycin A1, did not affect viral replication, but significantly inhibited the cytotoxicity of RH2. The caspase-3 inhibitor z-DEVD-fmk and caspase-1 inhibitor z-YVAD-fmk also reduced the cytotoxicity of RH2. These results demonstrated that γ34.5 gene-deficient HSV-1 RH2 induced autophagic cell death in SCC cells as well as pyroptosis and apoptosis.
Collapse
|
38
|
Ko S, Gu MJ, Kim CG, Kye YC, Lim Y, Lee JE, Park BC, Chu H, Han SH, Yun CH. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells. Antiviral Res 2017; 146:86-95. [PMID: 28842266 PMCID: PMC7113733 DOI: 10.1016/j.antiviral.2017.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) invades porcine intestinal epithelial cells (IECs) and causes diarrhea and dehydration in pigs. In the present study, we showed a suppression of PEDV infection in porcine jejunum intestinal epithelial cells (IPEC-J2) by an increase in autophagy. Autophagy was activated by rapamycin at a dose that does not affect cell viability and tight junction permeability. The induction of autophagy was examined by LC3I/LC3II conversion. To confirm the autophagic-flux (entire autophagy pathway), autophagolysosomes were examined by an immunofluorescence assay. Pre-treatment with rapamycin significantly restricted not only a 1 h infection but also a longer infection (24 h) with PEDV, while this effect disappeared when autophagy was blocked. Co-localization of PEDV and autophagosomes suggests that PEDV could be a target of autophagy. Moreover, alleviation of PEDV-induced cell death in IPEC-J2 cells pretreated with rapamycin demonstrates a protective effect of rapamycin against PEDV-induced epithelial cell death. Collectively, the present study suggests an early prevention against PEDV infection in IPEC-J2 cells via autophagy that might be an effective strategy for the restriction of PEDV, and opens up the possibility of the use of rapamycin in vivo as an effective prophylactic and prevention treatment. Rapamycin has an antiviral effect against PEDV infection. Rapamycin prevents PEDV-induced cell death. Rapamycin-induced autophagy restricted PEDV infection in porcine intestinal epithelial cells.
Collapse
Affiliation(s)
- Seongyeol Ko
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Younggap Lim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eun Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Chul Park
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 23254, Republic of Korea
| | - Hyuk Chu
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 28159, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 23254, Republic of Korea.
| |
Collapse
|
39
|
Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells. Sci Rep 2017; 7:42559. [PMID: 28198435 PMCID: PMC5309814 DOI: 10.1038/srep42559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes life-long morbidities in humans. While fever blisters are more common, occasionally the cornea is infected resulting in vision loss. A very intriguing aspect of HSV-1 corneal infection is that the virus spread is normally restricted to only a small fraction of cells on the corneal surface that connect with each other in a dendritic fashion. Here, to develop a comprehensive understanding of the susceptibility of human corneal epithelial (HCE) cells to HSV-1 infection, we infected HCE cells at three different dosages of HSV-1 and measured the outcomes in terms of viral entry, gene and protein expression, viral replication and cytokine induction. In cultured cells, infectivity and cytokine induction were observed even at the minimum viral dosage tested, while a more pronounced dose-restricted infectivity was seen in ex vivo cultures of porcine corneas. Use of fluorescent HSV-1 virions demonstrated a pattern of viral spread ex vivo that mimics clinical findings. We conclude that HCE cell cultures are highly susceptible to infection whereas the cultured corneas demonstrate a higher ability to restrict the infection even in the absence of systemic immune system. The restriction is helped in part by local interferon response and the unique cellular architecture of the cornea.
Collapse
|
40
|
van Niekerk G, Hattingh SM, Engelbrecht AM. Enhanced Therapeutic Efficacy in Cancer Patients by Short-term Fasting: The Autophagy Connection. Front Oncol 2016; 6:242. [PMID: 27896219 PMCID: PMC5107564 DOI: 10.3389/fonc.2016.00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/31/2016] [Indexed: 12/26/2022] Open
Abstract
Preclinical studies suggest that fasting prior to chemotherapy may be an effective strategy to protect patients against the adverse effects of chemo-toxicity. Fasting may also sensitize cancer cells to chemotherapy. It is further suggested that fasting may similarly augment the efficacy of oncolytic viral therapy. The primary mechanism mediating these beneficial effects is thought to relate to the fact that fasting results in a decrease of circulating growth factors. In turn, such fasting cues would prompt normal cells to redirect energy toward cell maintenance and repair processes, rather than growth and proliferation. However, fasting is also known to upregulate autophagy, an evolutionarily conserved catabolic process that is upregulated in response to various cell stressors. Here, we review a number of mechanisms by which fasting-induced autophagy may have an impact on both chemo-tolerance and chemo-sensitization. First, fasting may exert a protective effect by mobilizing autophagic components prior to chemo-induction. In turn, the autophagic apparatus can be repurposed for removing cellular components damaged by chemotherapy. Autophagy also plays a key role in epitope expression as well as in modulating inflammation. Chemo-sensitization resulting from fasting may in fact be an effect of enhanced immune surveillance as a result of better autophagy-dependent epitope processing. Finally, autophagy is involved in host defense against viruses, and aspects of the autophagic process are also often targets for viral subversion. Consequently, altering autophagic flux by fasting may alter viral infectivity. These observations suggest that fasting-induced autophagy may have an impact on therapeutic efficacy in various oncological contexts.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University , Stellenbosch , South Africa
| | - Suzèl M Hattingh
- Department of Biomedical Sciences, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University , Tygerberg , South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
41
|
Siracusano G, Venuti A, Lombardo D, Mastino A, Esclatine A, Sciortino MT. Early activation of MyD88-mediated autophagy sustains HSV-1 replication in human monocytic THP-1 cells. Sci Rep 2016; 6:31302. [PMID: 27509841 PMCID: PMC4980660 DOI: 10.1038/srep31302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular degradation pathway that exerts numerous functions in vital biological processes. Among these, it contributes to both innate and adaptive immunity. On the other hand, pathogens have evolved strategies to manipulate autophagy for their own advantage. By monitoring autophagic markers, we showed that HSV-1 transiently induced autophagosome formation during early times of the infection of monocytic THP-1 cells and human monocytes. Autophagy is induced in THP-1 cells by a mechanism independent of viral gene expression or viral DNA accumulation. We found that the MyD88 signaling pathway is required for HSV-1-mediated autophagy, and it is linked to the toll-like receptor 2 (TLR2). Interestingly, autophagy inhibition by pharmacological modulators or siRNA knockdown impaired viral replication in both THP-1 cells and human monocytes, suggest that the virus exploits the autophagic machinery to its own benefit in these cells. Taken together, these findings indicate that the early autophagic response induced by HSV-1 exerts a proviral role, improving viral production in a semi-permissive model such as THP-1 cells and human monocytes.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Daniele Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.,The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, I-00133, Rome, Italy
| | - Audrey Esclatine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
42
|
Keating R, McGargill MA. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front Immunol 2016; 7:180. [PMID: 27242787 PMCID: PMC4862984 DOI: 10.3389/fimmu.2016.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases.
Collapse
Affiliation(s)
- Rachael Keating
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | | |
Collapse
|
43
|
Abstract
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.
Collapse
Affiliation(s)
- Douglas O'Connell
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| | - Chengyu Liang
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
44
|
Zhou KL, Zhou YF, Wu K, Tian NF, Wu YS, Wang YL, Chen DH, Zhou B, Wang XY, Xu HZ, Zhang XL. Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury. Sci Rep 2015; 5:17130. [PMID: 26597839 PMCID: PMC4657088 DOI: 10.1038/srep17130] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
In this study we examined the relationship between autophagy and apoptosis in diabetic rats after spinal cord injury (SCI), also we determined the role of autophagy in diabetes-aggravated neurological injury in vivo and in vitro. Our results showed that diabetes decreased the survival of neurons, promoted astrocytes proliferation, increased inflammatory cells infiltration and inhibited functional recovery after SCI. Diabetes was shown to confer increased activation of apoptotic pathways, along with an increase in autophagy; similar effects were also observed in vitro in neuronal PC12 cells. Treatment with rapamycin, an autophagy activator, partially abolished the adverse effect of diabetes, suggesting that diabetes may enhance neurological damage and suppress locomotor recovery after SCI, in addition to its effects on apoptosis and autophagy. In contrast, further stimulation of autophagy improved neurological function via inhibition of apoptosis. These results explained how diabetes exacerbates SCI in cellular level and suggested autophagy stimulation to be a new therapeutic strategy for diabetic SCI.
Collapse
Affiliation(s)
- Kai-liang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yi-fei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Kai Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Nai-feng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yao-sen Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yong-li Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - De-heng Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Bin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiang-yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Hua-zi Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiao-lei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
45
|
Trehalose, an mTOR-Independent Inducer of Autophagy, Inhibits Human Cytomegalovirus Infection in Multiple Cell Types. J Virol 2015; 90:1259-77. [PMID: 26559848 DOI: 10.1128/jvi.02651-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is the major viral cause of birth defects and a serious problem in immunocompromised individuals and has been associated with atherosclerosis. Previous studies have shown that the induction of autophagy can inhibit the replication of several different types of DNA and RNA viruses. The goal of the work presented here was to determine whether constitutive activation of autophagy would also block replication of HCMV. Most prior studies have used agents that induce autophagy via inhibition of the mTOR pathway. However, since HCMV infection alters the sensitivity of mTOR kinase-containing complexes to inhibitors, we sought an alternative method of inducing autophagy. We chose to use trehalose, a nontoxic naturally occurring disaccharide that is found in plants, insects, microorganisms, and invertebrates but not in mammals and that induces autophagy by an mTOR-independent mechanism. Given the many different cell targets of HCMV, we proceeded to determine whether trehalose would inhibit HCMV infection in human fibroblasts, aortic artery endothelial cells, and neural cells derived from human embryonic stem cells. We found that in all of these cell types, trehalose induces autophagy and inhibits HCMV gene expression and production of cell-free virus. Treatment of HCMV-infected neural cells with trehalose also inhibited production of cell-associated virus and partially blocked the reduction in neurite growth and cytomegaly. These results suggest that activation of autophagy by the natural sugar trehalose or other safe mTOR-independent agents might provide a novel therapeutic approach for treating HCMV disease. IMPORTANCE HCMV infects multiple cell types in vivo, establishes lifelong persistence in the host, and can cause serious health problems for fetuses and immunocompromised individuals. HCMV, like all other persistent pathogens, has to finely tune its interplay with the host cellular machinery to replicate efficiently and evade detection by the immune system. In this study, we investigated whether modulation of autophagy, a host pathway necessary for the recycling of nutrients and removal of protein aggregates, misfolded proteins, and pathogens, could be used to target HCMV. We found that autophagy could be significantly increased by treatment with the nontoxic, natural disaccharide trehalose. Importantly, trehalose had a profound inhibitory effect on viral gene expression and strongly impaired viral spread. These data constitute a proof-of-concept for the use of natural products targeting host pathways rather than the virus itself, thus reducing the risk of the development of resistance to treatment.
Collapse
|
46
|
Justice JL, Verhalen B, Kumar R, Lefkowitz EJ, Imperiale MJ, Jiang M. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells. J Proteome Res 2015; 14:4413-24. [PMID: 26354146 DOI: 10.1021/acs.jproteome.5b00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here, we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with liquid chromatography-tandem mass spectrometry. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Imperiale
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
47
|
Yakoub AM, Shukla D. Basal Autophagy Is Required for Herpes simplex Virus-2 Infection. Sci Rep 2015; 5:12985. [PMID: 26248741 PMCID: PMC4528227 DOI: 10.1038/srep12985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a conserved catabolic process of the cell, which plays an important role in regulating plethora of infections. The role of autophagy in Herpes simplex virus-2 (HSV-2) infection is unknown. Here, we found that HSV-2 does not allow induction of an autophagic response to infection, but maintains basal autophagy levels mostly unchanged during productive infection. Thus, we investigated the importance of basal autophagy for HSV-2 infection, using pharmacological autophagy suppression or cells genetically deficient in an autophagy-essential gene (ATG5). Interference with basal autophagy flux in cells significantly reduced viral replication and diminished the infection. These results indicate that basal autophagy plays an indispensable role required for a productive infection. Importantly, this study draws a sharp distinction between induced and basal autophagy, where the former acts as a viral clearance mechanism abrogating infection, while the latter supports infection.
Collapse
Affiliation(s)
- Abraam M Yakoub
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| | - Deepak Shukla
- 1] Department of Microbiology and Immunology, University of Illinois, Chicago, IL USA, 60612 [2] Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL USA, 60612
| |
Collapse
|
48
|
Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: Consequences for human disease. Autophagy 2015. [PMID: 26222012 PMCID: PMC4836004 DOI: 10.1080/15548627.2015.1071759] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autophagy and inflammation are 2 fundamental biological processes involved in both physiological and pathological conditions. Through its crucial role in maintaining cellular homeostasis, autophagy is involved in modulation of cell metabolism, cell survival, and host defense. Defective autophagy is associated with pathological conditions such as cancer, autoimmune disease, neurodegenerative disease, and senescence. Inflammation represents a crucial line of defense against microorganisms and other pathogens, and there is increasing evidence that autophagy has important effects on the induction and modulation of the inflammatory reaction; understanding the balance between these 2 processes may point to important possibilities for therapeutic targeting. This review focuses on the crosstalk between autophagy and inflammation as an emerging field with major implications for understanding the host defense on the one hand, and for the pathogenesis and treatment of immune-mediated diseases on the other hand.
Collapse
Affiliation(s)
- Romana T Netea-Maier
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Division of Endocrinology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theo S Plantinga
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Frank L van de Veerdonk
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,c Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johannes W Smit
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Division of Endocrinology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Mihai G Netea
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,c Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|