1
|
Li X, Srikanthan K, Rahmawati SF, Slebos DJ, Shah PL, Johnson PJ, Kistemaker LE, Nagelkerke A, Gosens R. A network of pro-inflammatory genes repressed by clock signalling in bronchial epithelium. ERJ Open Res 2025; 11:00605-2024. [PMID: 40337332 PMCID: PMC12053922 DOI: 10.1183/23120541.00605-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/17/2024] [Indexed: 05/09/2025] Open
Abstract
Background Circadian rhythms are biological cycles that regulate various physiological processes, including immune responses, tissue repair and oxidative stress. Previous studies indicated a role for distorted circadian signalling in COPD. Methods In this study, we performed an unbiased analysis of the gene network that coexpressed with circadian clock signalling in COPD using weighted gene coexpression network analysis on RNA sequencing data from bronchial brushes of COPD patients. Results We found that a large network of pro-inflammatory genes, including CXCL8, IL1B, IL1A, CSF1 and TGFB1, was inversely correlated with the expression of core clock genes in bronchial brushes of COPD patients. In contrast, genes that positively coexpressed with circadian clock signalling associated with ciliated cell differentiation. Furthermore, we found that both circadian clock genes and their coexpressed genes were differentially expressed in lung tissues of COPD patients compared with healthy smokers. Conclusions Our results provide an unbiased and comprehensive analysis of the gene expression network coexpressed with circadian clock signalling in bronchial epithelium. Our findings suggest an association between circadian clock signalling and enhanced inflammatory gene expression in COPD patients.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Karthi Srikanthan
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Siti Farah Rahmawati
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Dirk-Jan Slebos
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Pallav L. Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | | | | | - Anika Nagelkerke
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Edgar RS, O'Donnell AJ, Xiaodong Zhuang A, Reece SE. Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230336. [PMID: 39842489 PMCID: PMC11753885 DOI: 10.1098/rstb.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025] Open
Abstract
The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission. Explaining and exploiting rhythms in infections require an integrative and multidisciplinary approach, which is a hallmark of research within chronobiology. Many researchers are welcomed into chronobiology from other fields after observing an unexpected rhythm or time-of-day effect in their data. Such findings can launch a rich new research topic, but engaging with the concepts, approaches and dogma in a new discipline can be daunting. Fortunately, chronobiology has well-developed frameworks for interrogating rhythms that can be readily applied in novel contexts. Here, we provide a 'how to' guide for exploring unexpected daily rhythms in infectious disease research. We outline how to establish: whether the rhythm is circadian, to what extent the host and pathogen are responsible, the relevance for host-pathogen interactions, and how to explore therapeutic potential.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| | - Aidan J. O'Donnell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alan Xiaodong Zhuang
- 4. Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, LondonWC1E 6BT, UK
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| |
Collapse
|
3
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
4
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
5
|
Bartman CM, Nesbitt L, Lee KK, Khalfaoui L, Fang Y, Pabelick CM, Prakash YS. BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia. Physiol Rep 2024; 12:e16122. [PMID: 38942729 PMCID: PMC11213646 DOI: 10.14814/phy2.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Kenge K. Lee
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yun‐Hua Fang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Castillejos-López M, Romero Y, Varela-Ordoñez A, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Vázquez-Pérez JA, Ruiz V, Gomez-Verjan JC, Rivero-Segura NA, Camarena Á, Torres-Soria AK, Gonzalez-Avila G, Sommer B, Solís-Chagoyán H, Jaimez R, Torres-Espíndola LM, Aquino-Gálvez A. Hypoxia Induces Alterations in the Circadian Rhythm in Patients with Chronic Respiratory Diseases. Cells 2023; 12:2724. [PMID: 38067152 PMCID: PMC10706372 DOI: 10.3390/cells12232724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología e Infectología Hospitalaria, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Angelica Varela-Ordoñez
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Biología Molecular de Enfermedades Emergentes y EPOC, Instituto Nacional de Enferdades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (INP), Mexico City 11340, Mexico
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Nadia A. Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Ángel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | | | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
8
|
Sundar IK, Duraisamy SK, Choudhary I, Saini Y, Silveyra P. Acute and Repeated Ozone Exposures Differentially Affect Circadian Clock Gene Expression in Mice. Adv Biol (Weinh) 2023; 7:e2300045. [PMID: 37204107 PMCID: PMC10657336 DOI: 10.1002/adbi.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Circadian rhythms have an established role in regulating physiological processes, such as inflammation, immunity, and metabolism. Ozone, a common environmental pollutant with strong oxidative potential, is implicated in lung inflammation/injury in asthmatics. However, whether O3 exposure affects the expression of circadian clock genes in the lungs is not known. In this study, changes in the expression of core clock genes are analyzed in the lungs of adult female and male mice exposed to filtered air (FA) or O3 using qRT-PCR. The findings are confirmed using an existing RNA-sequencing dataset from repeated FA- and O3 -exposed mouse lungs and validated by qRT-PCR. Acute O3 exposure significantly alters the expression of clock genes in the lungs of females (Per1, Cry1, and Rora) and males (Per1). RNA-seq data revealing sex-based differences in clock gene expression in the airway of males (decreased Nr1d1/Rev-erbα) and females (increased Skp1), parenchyma of females and males (decreased Nr1d1 and Fbxl3 and increased Bhlhe40 and Skp1), and alveolar macrophages of males (decreased Arntl/Bmal1, Per1, Per2, Prkab1, and Prkab2) and females (increased Cry2, Per1, Per2, Csnk1d, Csnk1e, Prkab2, and Fbxl3). These findings suggest that lung inflammation caused by O3 exposure affects clock genes which may regulate key signaling pathways.
Collapse
Affiliation(s)
- Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN, USA
| |
Collapse
|
9
|
Prasad C, Duraisamy SK, Sundar IK. Lung mechanics showing sex-based differences and circadian time-of-day response to bleomycin-induced lung injury in mice. Physiol Rep 2023; 11:e15828. [PMID: 37798115 PMCID: PMC10555704 DOI: 10.14814/phy2.15828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease that impairs lung mechanical properties due to dysregulated extracellular matrix remodeling. Lung function assessment is an important physiological endpoint in the mouse model of pulmonary fibrosis (PF) that has gained a broader scientific acceptance in the field. IPF pathophysiology shows sex-based differences, disproportionately affecting more men compared to women. Prior reports suggest that the circadian clock is perturbed during the pathogenesis of PF. We have comprehensively assessed the sex-based differences and time-of-day response (at Zeitgeber time: ZT0/6:00 a.m. or ZT12/6 p.m.) in lung mechanics among sham (control) versus bleomycin (BLM)-challenged female and male (C57BL/6: WT) mice using Flexi-vent. BLM challenge altered lung function significantly in males in both total lung (reduced dynamic compliance, and increased resistance and elastance) as well as lung tissue-specific parameters (increased tissue elastance and tissue damping) but less pronounced in females. BLM-challenged mice showed a time-of-day response in lung function at ZT0 versus ZT12, which was pronounced in the ZT0 BLM group. Overall, these findings provide a comprehensive analysis of altered lung function in female and male mice and the time-of-day difference in lung function parameters following BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar Prasad
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
10
|
Shlykova O, Izmailova O, Kabaliei A, Palchyk V, Shynkevych V, Kaidashev I. PPARG stimulation restored lung mRNA expression of core clock, inflammation- and metabolism-related genes disrupted by reversed feeding in male mice. Physiol Rep 2023; 11:e15823. [PMID: 37704580 PMCID: PMC10499569 DOI: 10.14814/phy2.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian rhythm system regulates lung function as well as local and systemic inflammations. The alteration of this rhythm might be induced by a change in the eating rhythm. Peroxisome proliferator-activated receptor gamma (PPARG) is a key molecule involved in circadian rhythm regulation, lung functions, and metabolic processes. We described the effect of the PPARG agonist pioglitazone (PZ) on the diurnal mRNA expression profile of core circadian clock genes (Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, and Per2) and metabolism- and inflammation-related genes (Nfe2l2, Pparg, Rela, and Cxcl5) in the male murine lung disrupted by reversed feeding (RF). In mice, RF disrupted the diurnal expression pattern of core clock genes. It decreased Nfe2l2 and Pparg and increased Rela and Cxcl5 expression in lung tissue. There were elevated levels of IL-6, TNF-alpha, total cells, macrophages, and lymphocyte counts in bronchoalveolar lavage (BAL) with a significant increase in vascular congestion and cellular infiltrates in male mouse lung tissue. Administration of PZ regained the diurnal clock gene expression, increased Nfe2l2 and Pparg expression, and reduced Rela, Cxcl5 expression and IL-6, TNF-alpha, and cellularity in BAL. PZ administration at 7 p.m. was more efficient than at 7 a.m.
Collapse
|
11
|
Panda K, Chinnapaiyan S, Rahman MS, Santiago MJ, Black SM, Unwalla HJ. Circadian-Coupled Genes Expression and Regulation in HIV-Associated Chronic Obstructive Pulmonary Disease (COPD) and Lung Comorbidities. Int J Mol Sci 2023; 24:9140. [PMID: 37298092 PMCID: PMC10253051 DOI: 10.3390/ijms24119140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
People living with HIV (PLWH) have an elevated risk of chronic obstructive pulmonary disease (COPD) and are at a higher risk of asthma and worse outcomes. Even though the combination of antiretroviral therapy (cART) has significantly improved the life expectancy of HIV-infected patients, it still shows a higher incidence of COPD in patients as young as 40 years old. Circadian rhythms are endogenous 24 h oscillations that regulate physiological processes, including immune responses. Additionally, they play a significant role in health and diseases by regulating viral replication and its corresponding immune responses. Circadian genes play an essential role in lung pathology, especially in PLWH. The dysregulation of core clock and clock output genes plays an important role in chronic inflammation and aberrant peripheral circadian rhythmicity, particularly in PLWH. In this review, we explained the mechanism underlying circadian clock dysregulation in HIV and its effects on the development and progression of COPD. Furthermore, we discussed potential therapeutic approaches to reset the peripheral molecular clocks and mitigate airway inflammation.
Collapse
Affiliation(s)
- Kingshuk Panda
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Maria J. Santiago
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| | - Stephen M. Black
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (K.P.); (S.C.); (M.S.R.); (M.J.S.)
| |
Collapse
|
12
|
Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization. Nat Commun 2023; 14:1295. [PMID: 36894533 PMCID: PMC9996598 DOI: 10.1038/s41467-023-36896-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Molecular clock REV-ERBα is central to regulating lung injuries, and decreased REV-ERBα abundance mediates sensitivity to pro-fibrotic insults and exacerbates fibrotic progression. In this study, we determine the role of REV-ERBα in fibrogenesis induced by bleomycin and Influenza A virus (IAV). Bleomycin exposure decreases the abundance of REV-ERBα, and mice dosed with bleomycin at night display exacerbated lung fibrogenesis. Rev-erbα agonist (SR9009) treatment prevents bleomycin induced collagen overexpression in mice. Rev-erbα global heterozygous (Rev-erbα Het) mice infected with IAV showed augmented levels of collagens and lysyl oxidases compared with WT-infected mice. Furthermore, Rev-erbα agonist (GSK4112) prevents collagen and lysyl oxidase overexpression induced by TGFβ in human lung fibroblasts, whereas the Rev-erbα antagonist exacerbates it. Overall, these results indicate that loss of REV-ERBα exacerbates the fibrotic responses by promoting collagen and lysyl oxidase expression, whereas Rev-erbα agonist prevents it. This study provides the potential of Rev-erbα agonists in the treatment of pulmonary fibrosis.
Collapse
|
13
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
14
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
15
|
Hahn K, Sundar IK. Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2455. [PMID: 36767821 PMCID: PMC9915635 DOI: 10.3390/ijerph20032455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock is a biochemical oscillator that rhythmically regulates physiological and behavioral processes such as inflammation, immunity, and metabolism in mammals. Circadian clock disruption is a key driver for chronic inflammatory as well as fibrotic lung diseases. While the mechanism of circadian clock regulation in the lung has been minimally explored, some evidence suggests that the transforming growth factor β (TGFβ) signaling pathway and subsequent extracellular matrix (ECM) accumulation in the lung may be controlled via a clock-dependent mechanism. Recent advancements in this area led us to believe that pharmacologically targeting the circadian clock molecules may be a novel therapeutic approach for treating chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Here, we update the current perspective on the circadian clock role in TGFβ1 signaling and extracellular matrix production during chronic lung diseases.
Collapse
Affiliation(s)
- Kameron Hahn
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Huang H, Mehta A, Kalmanovich J, Anand A, Bejarano MC, Garg T, Khan N, Tonpouwo GK, Shkodina AD, Bardhan M. Immunological and inflammatory effects of infectious diseases in circadian rhythm disruption and future therapeutic directions. Mol Biol Rep 2023; 50:3739-3753. [PMID: 36656437 PMCID: PMC9851103 DOI: 10.1007/s11033-023-08276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circadian rhythm is characterised by daily variations in biological activity to align with the light and dark cycle. These diurnal variations, in turn, influence physiological functions such as blood pressure, temperature, and sleep-wake cycle. Though it is well established that the circadian pathway is linked to pro-inflammatory responses and circulating immune cells, its association with infectious diseases is widely unknown. OBJECTIVE This comprehensive review aims to describe the association between circadian rhythm and host immune response to various kinds of infection. METHODS We conducted a literature search in databases Pubmed/Medline and Science direct. Our paper includes a comprehensive analysis of findings from articles in English which was related to our hypothesis. FINDINGS Molecular clocks determine circadian rhythm disruption in response to infection, influencing the host's response toward infection. Moreover, there is a complex interplay with intrinsic oscillators of pathogens and the influence of specific infectious processes on the CLOCK: BMAL1 pathway. Such mechanisms vary for bacterial and viral infections, both well studied in the literature. However, less is known about the association of parasitic infections and fungal pathogens with circadian rhythm modulation. CONCLUSION It is shown that bidirectional relationships exist between circadian rhythm disruption and infectious process, which contains interplay between the host's and pathogens' circadian oscillator, immune response, and the influence of specific infectious. Further studies exploring the modulations of circadian rhythm and immunity can offer novel explanations of different susceptibilities to infection and can lead to therapeutic avenues in circadian immune modulation of infectious diseases.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | | | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Maria Chilo Bejarano
- Facultad de Ciencias de la Salud Humana, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | - Nida Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Gauvain Kankeu Tonpouwo
- Faculté de Médecine, Université de Lubumbashi, Plaine Tshombé, Lubumbashi, Democratic Republic of the Congo
| | | | - Mainak Bardhan
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| |
Collapse
|
17
|
Bmal1 and Gut-lung axis in SARS-CoV-2 infection: new insight into the effects of melatonin on COVID-19 patients? Biomed Pharmacother 2023. [PMCID: PMC9868388 DOI: 10.1016/j.biopha.2023.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
19
|
Blanco JR, Verdugo-Sivianes EM, Amiama A, Muñoz-Galván S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert Rev Anti Infect Ther 2022; 20:1109-1117. [PMID: 35546444 DOI: 10.1080/14787210.2022.2072296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Circadian genes have an impact on multiple hormonal, metabolic, and immunological pathways and have recently been implicated in some infectious diseases. AREAS COVERED We review aspects related to the current knowledge about circadian rhythm and viral infections, their consequences, and the potential therapeutic options. EXPERT OPINION Expert opinion: In order to address a problem, it is necessary to know the topic in depth. Although in recent years there has been a growing interest in the role of circadian rhythms, many relevant questions remain to be resolved. Thus, the mechanisms linking the circadian machinery against viral infections are poorly understood. In a clear approach to personalized precision medicine, in order to treat a disease in the most appropriate phase of the circadian rhythm, and in order to achieve the optimal efficacy, it is highly recommended to carry out studies that improve the knowledge about the circadian rhythm.
Collapse
Affiliation(s)
- José-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain.,Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Amiama
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Giri A, Wang Q, Rahman I, Sundar IK. Circadian molecular clock disruption in chronic pulmonary diseases. Trends Mol Med 2022; 28:513-527. [DOI: 10.1016/j.molmed.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
21
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
22
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
23
|
NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet 2021; 17:e1009933. [PMID: 34807912 PMCID: PMC8648109 DOI: 10.1371/journal.pgen.1009933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.
Collapse
|
24
|
Palomino-Segura M, Hidalgo A. Circadian immune circuits. J Exp Med 2021; 218:211639. [PMID: 33372990 PMCID: PMC7774593 DOI: 10.1084/jem.20200798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Immune responses are gated to protect the host against specific antigens and microbes, a task that is achieved through antigen- and pattern-specific receptors. Less appreciated is that in order to optimize responses and to avoid collateral damage to the host, immune responses must be additionally gated in intensity and time. An evolutionary solution to this challenge is provided by the circadian clock, an ancient time-keeping mechanism that anticipates environmental changes and represents a fundamental property of immunity. Immune responses, however, are not exclusive to immune cells and demand the coordinated action of nonhematopoietic cells interspersed within the architecture of tissues. Here, we review the circadian features of innate immunity as they encompass effector immune cells as well as structural cells that orchestrate their responses in space and time. We finally propose models in which the central clock, structural elements, and immune cells establish multidirectional circadian circuits that may shape the efficacy and strength of immune responses and other physiological processes.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Maremanda KP, Sundar IK, Rahman I. Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol 2021; 45:102055. [PMID: 34214709 PMCID: PMC8258692 DOI: 10.1016/j.redox.2021.102055] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are linked to several mitochondrial alterations. Cigarette smoke (CS) alters the structure and function of mitochondria. OPA1 is the main inner mitochondrial GTPase responsible for the fusion events. OPA1 undergoes proteolytic cleavage from long to short forms during acute stress and mitophagy. However, the exact role of OPA1 isoforms and related proteins during CS-induced mitophagy and COPD is not clear. METHODS Lung tissues from non-smokers, smokers, COPD and IPF were used to determine the relative expression of OPA1 and related proteins. Additionally, we used mouse lungs from chronic (6 months) CS exposure to evaluate the status of OPA1. Primary lung fibroblasts from normal and COPD patients and naked mole rat (NMR) lung fibroblasts, human fetal lung fibroblast (HFL1), mouse embryonic fibroblast from wild type (WT), OPA1-/-, MFN1 and MFN2-/- were used to determine the effect of CS on OPA1 isoforms. Various mitochondrial fusion promoters/activators (BGP-15, leflunomide, M1) and fission inhibitor (DRP1) were used to determine their effect on OPA1 status and cigarette smoke extract (CSE)-induced lung epithelial (BEAS2B) cell damage, respectively. Seahorse flux analyzer was used to determine the effect of these compounds in BEAS2B cells with and without CSE exposure. FINDINGS Short OPA1 isoforms were predominantly detected and significantly increased in COPD subjects. Acute CSE treatment in various cell lines except NMR was found to increase the conversion of long to short OPA1 isoforms. CSE treatment significantly increased mitochondrial stress-related protein SLP2 in all the cells used. OPA1 interacting partners like prohibitins (PHB1 and 2) were also altered depending on the CS exposure. Finally, BGP-15 and leflunomide treatment were able to preserve the long OPA1 isoform in cells treated with CSE. INTERPRETATION/CONCLUSION The long OPA1 isoform along with SLP2 and prohibitins play a crucial role in CS-induced lung damage, causing mitophagy/mitochondrial dysfunction in COPD, which may be used as a novel therapeutic target in COPD.
Collapse
Affiliation(s)
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
26
|
Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Song X, Zhou Y, Chen J, Fan L, Jiang J, Wang C, Hao K. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116951. [PMID: 33780843 DOI: 10.1016/j.envpol.2021.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrate is a major pollutant component in ambient PM2.5. It is known that chronic exposure to PM2.5 NO3- damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution. METHODS We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM2.5 NO3- exposure were characterized at bulk-tissue and single-cell resolution. RESULTS PM2.5 NO3- exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m3), exposure significantly (FDR<10%) altered 95 genes' expression. Among the genes associated with respiratory functions, a large fraction (74.6-91.7%) were significantly perturbed by PM2.5 NO3- exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM2.5 NO3- exposure. CONCLUSIONS This study extended our knowledge of PM2.5 NO3- exposure's effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM2.5 NO3- exposure and subsequent pulmonary disease risks.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Zhou
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Wang Q, Sundar IK, Lucas JH, Muthumalage T, Rahman I. Molecular clock REV-ERBα regulates cigarette smoke-induced pulmonary inflammation and epithelial-mesenchymal transition. JCI Insight 2021; 6:145200. [PMID: 34014841 PMCID: PMC8262497 DOI: 10.1172/jci.insight.145200] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoke (CS) is the main etiological factor in the pathogenesis of emphysema/chronic obstructive pulmonary disease (COPD), which is associated with abnormal epithelial-mesenchymal transition (EMT). Previously, we have shown an association among circadian rhythms, CS-induced lung inflammation, and nuclear heme receptor α (REV-ERBα), acting as an antiinflammatory target in both pulmonary epithelial cells and fibroblasts. We hypothesized that molecular clock REV-ERBα plays an important role in CS-induced circadian dysfunction and EMT alteration. C57BL/6J WT and REV-ERBα heterozygous (Het) and –KO mice were exposed to CS for 30 days (subchronic) and 4 months (chronic), and WT mice were exposed to CS for 10 days with or without REV-ERBα agonist (SR9009) administration. Subchronic/chronic CS exposure caused circadian disruption and dysregulated EMT in the lungs of WT and REV-ERBα–KO mice; both circadian and EMT dysregulation were exaggerated in the REV-ERBα–KO condition. REV-ERBα agonist, SR9009 treatment reduced acute CS-induced inflammatory response and abnormal EMT in the lungs. Moreover, REV-ERBα agonist (GSK4112) inhibited TGF-β/CS–induced fibroblast differentiation in human fetal lung fibroblast 1 (HFL-1). Thus, CS-induced circadian gene alterations and EMT activation are mediated through a Rev-erbα–dependent mechanism, which suggests activation of REV-ERBα as a novel therapeutic approach for smoking-induced chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Isaac K Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph H Lucas
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
28
|
Giri A, Srinivasan A, Sundar IK. COVID-19: Sleep, Circadian Rhythms and Immunity - Repurposing Drugs and Chronotherapeutics for SARS-CoV-2. Front Neurosci 2021; 15:674204. [PMID: 34220430 PMCID: PMC8249936 DOI: 10.3389/fnins.2021.674204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected nearly 28 million people in the United States and has caused more than five hundred thousand deaths as of February 21, 2021. As the novel coronavirus continues to take its toll in the United States and all across the globe, particularly among the elderly (>65 years), clinicians and translational researchers are taking a closer look at the nexus of sleep, circadian rhythms and immunity that may contribute toward a more severe coronavirus disease-19 (COVID-19). SARS-CoV-2-induced multi-organ failure affects both central and peripheral organs, causing increased mortality in the elderly. However, whether differences in sleep, circadian rhythms, and immunity between older and younger individuals contribute to the age-related differences in systemic dysregulation of target organs observed in SARS-CoV-2 infection remain largely unknown. Current literature demonstrates the emerging role of sleep, circadian rhythms, and immunity in the development of chronic pulmonary diseases and respiratory infections in human and mouse models. The exact mechanism underlying acute respiratory distress syndrome (ARDS) and other cardiopulmonary complications in elderly patients in combination with associated comorbidities remain unclear. Nevertheless, understanding the critical role of sleep, circadian clock dysfunction in target organs, and immune status of patients with SARS-CoV-2 may provide novel insights into possible therapies. Chronotherapy is an emerging concept that is gaining attention in sleep medicine. Accumulating evidence suggests that nearly half of all physiological functions follow a strict daily rhythm. However, healthcare professionals rarely take implementing timed-administration of drugs into consideration. In this review, we summarize recent findings directly relating to the contributing roles of sleep, circadian rhythms and immune response in modulating infectious disease processes, and integrate chronotherapy in the discussion of the potential drugs that can be repurposed to improve the treatment and management of COVID-19.
Collapse
Affiliation(s)
| | | | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Issah Y, Naik A, Tang SY, Forrest K, Brooks TG, Lahens N, Theken KN, Mermigos M, Sehgal A, Worthen GS, FitzGerald GA, Sengupta S. Loss of circadian protection against influenza infection in adult mice exposed to hyperoxia as neonates. eLife 2021; 10:e61241. [PMID: 33650487 PMCID: PMC7924938 DOI: 10.7554/elife.61241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.
Collapse
Affiliation(s)
- Yasmine Issah
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amruta Naik
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Kaitlyn Forrest
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Thomas G Brooks
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Lahens
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Katherine N Theken
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Mara Mermigos
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - George S Worthen
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Shaon Sengupta
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
30
|
Bartman CM, Matveyenko A, Pabelick C, Prakash YS. Cellular clocks in hyperoxia effects on [Ca 2+] i regulation in developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L451-L466. [PMID: 33404366 PMCID: PMC8294620 DOI: 10.1152/ajplung.00406.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023] Open
Abstract
Supplemental O2 (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O2) enhances intracellular calcium ([Ca2+]i) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption whereas entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O2 on the developing airway. We report that human fASM express core clock machinery (PER1, PER2, CRY1, ARNTL/BMAL1, CLOCK) that is responsive to dexamethasone (Dex) and altered by O2. Disruption of the clock via siRNA-mediated PER1 or ARNTL knockdown alters store-operated calcium entry (SOCE) and [Ca2+]i response to histamine in hyperoxia. Effects of O2 on [Ca2+]i are rescued by driving expression of clock proteins, via effects on the Ca2+ channels IP3R and Orai1. These data reveal a functional fASM clock that modulates [Ca2+]i regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christina Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
31
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
32
|
Abstract
The circadian clock controls several aspects of mammalian physiology and orchestrates the daily oscillations of biological processes and behavior. Our circadian rhythms are driven by an endogenous central clock in the brain that synchronizes with clocks in peripheral tissues, thereby regulating our immune system and the severity of infections. These rhythms affect the pharmacokinetics and efficacy of therapeutic agents and vaccines. The core circadian regulatory circuits and clock-regulated host pathways provide fertile ground to identify novel antiviral therapies. An increased understanding of the role circadian systems play in regulating virus infection and the host response to the virus will inform our clinical management of these diseases. This review provides an overview of the experimental and clinical evidence reporting on the interplay between the circadian clock and viral infections, highlighting the importance of virus-clock research.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Xiaodong Zhuang
- Xiaodong Zhuang, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK; e-mail:
| |
Collapse
|
33
|
Sengupta S, Ince L, Sartor F, Borrmann H, Zhuang X, Naik A, Curtis A, McKeating JA. Clocks, Viruses, and Immunity: Lessons for the COVID-19 Pandemic. J Biol Rhythms 2021; 36:23-34. [PMID: 33480287 PMCID: PMC7970201 DOI: 10.1177/0748730420987669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are evolutionarily conserved anticipatory systems that
allow the host to prepare and respond to threats in its environment.
This article summarizes a European Biological Rhythms Society (EBRS)
workshop held in July 2020 to review current knowledge of the
interplay between the circadian clock and viral infections to inform
therapeutic strategies against SARS-CoV-2 and COVID-19. A large body
of work supports the role of the circadian clock in regulating various
aspects of viral replication, host responses, and associated
pathogenesis. We review the evidence describing the multifaceted role
of the circadian clock, spanning host susceptibility, antiviral
mechanisms, and host resilience. Finally, we define the most pressing
research questions and how our knowledge of chronobiology can inform
key translational research priorities.
Collapse
Affiliation(s)
- Shaon Sengupta
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louise Ince
- Departement de Pathologie et Immunologie, Geneva, Switzerland
| | - Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Annie Curtis
- School of Pharmacy and Biomolecular Sciences, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Bartman CM, Matveyenko A, Prakash YS. It's about time: clocks in the developing lung. J Clin Invest 2020; 130:39-50. [PMID: 31895049 DOI: 10.1172/jci130143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The discovery of peripheral intracellular clocks revealed circadian oscillations of clock genes and their targets in all cell types, including those in the lung, sparking exploration of clocks in lung disease pathophysiology. While the focus has been on the role of these clocks in adult airway diseases, clock biology is also likely to be important in perinatal lung development, where it has received far less attention. Historically, fetal circadian rhythms have been considered irrelevant owing to lack of external light exposure, but more recent insights into peripheral clock biology raise questions of clock emergence, its concordance with tissue-specific structure/function, the interdependence of clock synchrony and functionality in perinatal lung development, and the possibility of lung clocks in priming the fetus for postnatal life. Understanding the perinatal molecular clock may unravel mechanistic targets for chronic airway disease across the lifespan. With current research providing more questions than answers, it is about time to investigate clocks in the developing lung.
Collapse
Affiliation(s)
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Bartman CM, Prakash YS. Bringing the cellular clock into understanding lung disease: it's time, period! Am J Physiol Lung Cell Mol Physiol 2020; 319:L273-L276. [PMID: 32639868 DOI: 10.1152/ajplung.00320.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Anderson G, Reiter RJ. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev Med Virol 2020; 30:e2109. [PMID: 32314850 PMCID: PMC7235470 DOI: 10.1002/rmv.2109] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.
Collapse
Affiliation(s)
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science at San AntonioSan Antonio, Texas
| |
Collapse
|
37
|
Morris AR, Stanton DL, Roman D, Liu AC. Systems Level Understanding of Circadian Integration with Cell Physiology. J Mol Biol 2020; 432:3547-3564. [PMID: 32061938 DOI: 10.1016/j.jmb.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The mammalian circadian clock regulates a wide variety of physiological and behavioral processes. In turn, its disruption is associated with sleep deficiency, metabolic syndrome, neurological and psychiatric disorders, and cancer. At the turn of the century, the circadian clock was determined to be regulated by a transcriptional negative feedback mechanism composed of a dozen core clock genes. More recently, large-scale genomic studies have expanded the clock into a complex network composed of thousands of gene outputs and inputs. A major task of circadian research is to utilize systems biological approaches to uncover the governing principles underlying cellular oscillatory behavior and advance understanding of biological functions at the genomic level with spatiotemporal resolution. This review focuses on the genes and pathways that provide inputs to the circadian clock. Several emerging examples include AMP-activated protein kinase AMPK, nutrient/energy sensor mTOR, NAD+-dependent deacetylase SIRT1, hypoxia-inducible factor HIF1α, oxidative stress-inducible factor NRF2, and the proinflammatory factor NF-κB. Among others that continue to be revealed, these input pathways reflect the extensive interplay between the clock and cell physiology through the regulation of core clock genes and proteins. While the scope of this crosstalk is well-recognized, precise molecular links are scarce, and the underlying regulatory mechanisms are not well understood. Future research must leverage genetic and genomic tools and technologies, network analysis, and computational modeling to characterize additional modifiers and input pathways. This systems-based framework promises to advance understanding of the circadian timekeeping system and may enable the enhancement of circadian functions through related input pathways.
Collapse
Affiliation(s)
- Andrew R Morris
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Daniel L Stanton
- Department of Animal Sciences, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, United States of America
| | - Destino Roman
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America.
| |
Collapse
|
38
|
Abstract
Circadian rhythms are daily cycles in biological function that are ubiquitous in nature. Understood as a means for organisms to anticipate daily environmental changes, circadian rhythms are also important for orchestrating complex biological processes such as immunity. Nowhere is this more evident than in the respiratory system, where circadian rhythms in inflammatory lung disease have been appreciated since ancient times. In this focused review we examine how emerging research on circadian rhythms is being applied to the study of fundamental lung biology and respiratory disease. We begin with a general introduction to circadian rhythms and the molecular circadian clock that underpins them. We then focus on emerging data tying circadian clock function to immunologic activities within the respiratory system. We conclude by considering outstanding questions about biological timing in the lung and how a better command of chronobiology could inform our understanding of complex lung diseases.
Collapse
Affiliation(s)
- Charles Nosal
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Anna Ehlers
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
39
|
The Circadian Clock, the Immune System, and Viral Infections: The Intricate Relationship Between Biological Time and Host-Virus Interaction. Pathogens 2020; 9:pathogens9020083. [PMID: 32012758 PMCID: PMC7168639 DOI: 10.3390/pathogens9020083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Living beings spend their lives and carry out their daily activities interacting with environmental situations that present space-time variations and that involve contact with other life forms, which may behave as commensals or as invaders and/or parasites. The characteristics of the environment, as well as the processes that support the maintenance of life and that characterize the execution of activities of daily life generally present periodic variations, which are mostly synchronized with the light–dark cycle determined by Earth’s rotation on its axis. These rhythms with 24-h periodicity, defined as circadian, influence events linked to the interaction between hosts and hosted microorganisms and can dramatically determine the outcome of this interplay. As for the various pathological conditions resulting from host–microorganism interactions, a particularly interesting scenario concerns infections by viruses. When a viral agent enters the body, it alters the biological processes of the infected cells in order to favour its replication and to spread to various tissues. Though our knowledge concerning the mutual influence between the biological clock and viruses is still limited, recent studies start to unravel interesting aspects of the clock–virus molecular interplay. Three different aspects of this interplay are addressed in this mini-review and include the circadian regulation of both innate and adaptive immune systems, the impact of the biological clock on viral infection itself, and finally the putative perturbations that the virus may confer to the clock leading to its deregulation.
Collapse
|
40
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
41
|
Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol 2019; 17:e3000579. [PMID: 31830037 PMCID: PMC6932827 DOI: 10.1371/journal.pbio.3000579] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/26/2019] [Accepted: 11/26/2019] [Indexed: 01/28/2023] Open
Abstract
Bacteria convert changes in sensory inputs into alterations in gene expression, behavior, and lifestyles. A common lifestyle choice that bacteria make is whether to exhibit individual behavior and exist in the free-living planktonic state or to engage in collective behavior and form sessile communities called biofilms. Transitions between individual and collective behaviors are controlled by the chemical cell-to-cell communication process called quorum sensing. Here, we show that quorum sensing represses Pseudomonas aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB–AlgB two-component system (TCS). Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates and thereby inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect and respond to light. The KinB–AlgB–BphP module is present in all pseudomonads, and we demonstrate that AlgB is the partner response regulator for BphP in diverse bacterial phyla. We propose that in the KinB–AlgB–BphP system, AlgB functions as the node at which varied sensory information is integrated. This network architecture provides a mechanism enabling bacteria to integrate at least two different sensory inputs, quorum sensing (via RhlR-driven activation of algB) and light (via BphP–AlgB), into the control of collective behaviors. This study sets the stage for light-mediated control of P. aeruginosa infectivity. Photosensing and quorum sensing are integrated to control collective behaviors of the pathogenic bacterium Pseudomonas aeruginosa; the information is transduced via a phosphorylation–dephosphorylation sensory system. The study has implications for light-mediated control of P. aeruginosa infectivity.
Collapse
Affiliation(s)
- Sampriti Mukherjee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Vasiliki Stergioula
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mikhail Tikhonov
- Physics Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Barik S. Molecular Interactions between Pathogens and the Circadian Clock. Int J Mol Sci 2019; 20:ijms20235824. [PMID: 31756974 PMCID: PMC6928883 DOI: 10.3390/ijms20235824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022] Open
Abstract
The daily periodicity of the Earth's rotation around the Sun, referred to as circadian (Latin "circa" = about, and "diem" = day), is also mirrored in the behavior and metabolism of living beings. The discovery that dedicated cellular genes control various aspects of this periodicity has led to studies of the molecular mechanism of the circadian response at the cellular level. It is now established that the circadian genes impact on a large network of hormonal, metabolic, and immunological pathways, affecting multiple aspects of biology. Recent studies have extended the role of the circadian system to the regulation of infection, host-pathogen interaction, and the resultant disease outcome. This critical review summarizes our current knowledge of circadian-pathogen interaction at both systemic and cellular levels, but with emphasis on the molecular aspects of the regulation. Wherever applicable, the potential of a direct interaction between circadian factors and pathogenic macromolecules is also explored. Finally, this review offers new directions and guidelines for future research in this area, which should facilitate progress.
Collapse
|
43
|
Yanar K, Simsek B, Çakatay U. Integration of Melatonin Related Redox Homeostasis, Aging, and Circadian Rhythm. Rejuvenation Res 2019; 22:409-419. [DOI: 10.1089/rej.2018.2159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
44
|
Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL, Valenzuela A, Fisher DG, Grant GR, López CB, FitzGerald GA. Circadian control of lung inflammation in influenza infection. Nat Commun 2019; 10:4107. [PMID: 31511530 PMCID: PMC6739310 DOI: 10.1038/s41467-019-11400-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza is a leading cause of respiratory mortality and morbidity. While inflammation is essential for fighting infection, a balance of anti-viral defense and host tolerance is necessary for recovery. Circadian rhythms have been shown to modulate inflammation. However, the importance of diurnal variability in the timing of influenza infection is not well understood. Here we demonstrate that endogenous rhythms affect survival in influenza infection. Circadian control of influenza infection is mediated by enhanced inflammation as proven by increased cellularity in bronchoalveolar lavage (BAL), pulmonary transcriptomic profile and histology and is not attributable to viral burden. Better survival is associated with a time dependent preponderance of NK and NKT cells and lower proportion of inflammatory monocytes in the lung. Further, using a series of genetic mouse mutants, we elucidate cellular mechanisms underlying circadian gating of influenza infection.
Collapse
Affiliation(s)
- Shaon Sengupta
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jill C Devine
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seán T Anderson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Soumyashant Nayak
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shirley L Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alex Valenzuela
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Devin G Fisher
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Gregory R Grant
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Carolina B López
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
45
|
Zhang Z, Hunter L, Wu G, Maidstone R, Mizoro Y, Vonslow R, Fife M, Hopwood T, Begley N, Saer B, Wang P, Cunningham P, Baxter M, Durrington H, Blaikley JF, Hussell T, Rattray M, Hogenesch JB, Gibbs J, Ray DW, Loudon ASI. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion. FASEB J 2019; 33:6226-6238. [PMID: 30794439 PMCID: PMC6463917 DOI: 10.1096/fj.201801682r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Pulmonary airway epithelial cells (AECs) form a critical interface between host and environment. We investigated the role of the circadian clock using mice bearing targeted deletion of the circadian gene brain and muscle ARNT-like 1 (Bmal1) in AECs. Pulmonary neutrophil infiltration, biomechanical function, and responses to influenza infection were all disrupted. A circadian time-series RNA sequencing study of laser-captured AECs revealed widespread disruption in genes of the core circadian clock and output pathways regulating cell metabolism (lipids and xenobiotics), extracellular matrix, and chemokine signaling, but strikingly also the gain of a novel rhythmic transcriptome in Bmal1-targeted cells. Many of the rhythmic components were replicated in primary AECs cultured in air-liquid interface, indicating significant cell autonomy for control of pulmonary circadian physiology. Finally, we found that metabolic cues dictate phasing of the pulmonary clock and circadian responses to immunologic challenges. Thus, the local circadian clock in AECs is vital in lung health by coordinating major cell processes such as metabolism and immunity.-Zhang, Z. Hunter, L., Wu, G., Maidstone, R., Mizoro, Y., Vonslow, R., Fife, M., Hopwood, T., Begley, N., Saer, B., Wang, P., Cunningham, P., Baxter, M., Durrington, H., Blaikley, J. F., Hussell, T., Rattray, M., Hogenesch, J. B., Gibbs, J., Ray, D. W., Loudon, A. S. I. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion.
Collapse
Affiliation(s)
- Zhenguang Zhang
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Gang Wu
- Division of Human Genetics, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Robert Maidstone
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Yasutaka Mizoro
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ryan Vonslow
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Mark Fife
- Manchester Center for Collaborative Inflammation Research, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, United Kingdom
| | - Thomas Hopwood
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Nicola Begley
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ben Saer
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ping Wang
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Peter Cunningham
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Matthew Baxter
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Hannah Durrington
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - John F. Blaikley
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Center for Collaborative Inflammation Research, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - John B. Hogenesch
- Division of Human Genetics, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Julie Gibbs
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - David W. Ray
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Khan NA, Yogeswaran S, Wang Q, Muthumalage T, Sundar IK, Rahman I. Waterpipe smoke and e-cigarette vapor differentially affect circadian molecular clock gene expression in mouse lungs. PLoS One 2019; 14:e0211645. [PMID: 30811401 PMCID: PMC6392409 DOI: 10.1371/journal.pone.0211645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
The use of emerging tobacco products, such as waterpipe or hookah and electronic cigarettes (e-cigs), has gained significant popularity and are promoted as safer alternatives to conventional cigarettes. Circadian systems are internal biological oscillations that are considered important regulators of immune functions in mammals. Tobacco induced inflammatory lung diseases frequently exhibit time-of-day/night variation in lung function and symptom severity. We investigated the impact of inhaled e-cig vapor and waterpipe smoke (WPS) on pulmonary circadian molecular clock disruption by determining the changes in expression levels and abundance of core clock component genes (BMAL1, CLOCK) and clock-controlled output genes (Rev-erbα, Per2, Rev-erbβ, Cry2, Rorα) in mouse lungs. We showed that the expression levels of these pulmonary core clock genes and clock-controlled output genes were altered significantly following exposure to WPS (Bmal1, Clock, and Rev-erbα). We further showed a significant yet differential effect on expression levels of core clock and clock-controlled genes (Bmal1, Per2) in the lungs of mice exposed to e-cig vapor containing nicotine. Thus, acute exposure to WPS and e-cig vapor containing nicotine contributes to altered expression of circadian molecular clock genes in mouse lungs, which may have repercussions on lung cellular and biological functions.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Isaac K. Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
47
|
Lung physiology and defense. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Krakowiak K, Durrington HJ. The Role of the Body Clock in Asthma and COPD: Implication for Treatment. Pulm Ther 2018; 4:29-43. [PMID: 32026248 PMCID: PMC6967276 DOI: 10.1007/s41030-018-0058-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 01/12/2023] Open
Abstract
Asthma exhibits a marked time of day variation in symptoms, airway physiology, and airway inflammation. This is also seen in chronic obstructive pulmonary disease (COPD), but to a lesser extent. Our understanding of how physiological daily rhythms are regulated by the circadian clock is increasing, and there is growing evidence that the molecular clock is important in the pathogenesis of these two airway diseases. If time of day is important, then it follows that treatment of asthma and COPD should also be tailored to the most efficacious time of the day, a concept known as 'chronotherapy'. There have been a number of studies to determine the optimal time of day at which to take medications for asthma and COPD. Some of these agents are already used 'chronotherapeutically' in practice (often at night-time). However, several studies investigating systemic and inhaled corticosteroids have consistently shown that the best time of day to take these medications for treating asthma is in the afternoon or early evening and not in the morning, when these medications are often prescribed. Future, large, randomized, placebo-controlled studies of systemic and inhaled corticosteroids in asthma and COPD are needed to inform clinical practice.
Collapse
Affiliation(s)
- Karolina Krakowiak
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Durrington
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK.
| |
Collapse
|
49
|
Krakowiak K, Durrington HJ. The Role of the Body Clock in Asthma and COPD: Implication for Treatment. Pulm Ther 2018. [DOI: 10.1007/s41030-018-0058-6#x002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractAsthma exhibits a marked time of day variation in symptoms, airway physiology, and airway inflammation. This is also seen in chronic obstructive pulmonary disease (COPD), but to a lesser extent. Our understanding of how physiological daily rhythms are regulated by the circadian clock is increasing, and there is growing evidence that the molecular clock is important in the pathogenesis of these two airway diseases. If time of day is important, then it follows that treatment of asthma and COPD should also be tailored to the most efficacious time of the day, a concept known as ‘chronotherapy’. There have been a number of studies to determine the optimal time of day at which to take medications for asthma and COPD. Some of these agents are already used ‘chronotherapeutically’ in practice (often at night-time). However, several studies investigating systemic and inhaled corticosteroids have consistently shown that the best time of day to take these medications for treating asthma is in the afternoon or early evening and not in the morning, when these medications are often prescribed. Future, large, randomized, placebo-controlled studies of systemic and inhaled corticosteroids in asthma and COPD are needed to inform clinical practice.
Digital Features
This article is published with a graphical abstract to facilitate understanding of the article. To view digital features for this article go to the Supplementary Information of the article.
Collapse
|
50
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|