1
|
Mądra-Gackowska K, Szewczyk-Golec K, Gackowski M, Hołyńska-Iwan I, Parzych D, Czuczejko J, Graczyk M, Husejko J, Jabłoński T, Kędziora-Kornatowska K. Selected Biochemical, Hematological, and Immunological Blood Parameters for the Identification of Malnutrition in Polish Senile Inpatients: A Cross-Sectional Study. J Clin Med 2025; 14:1494. [PMID: 40094974 PMCID: PMC11900367 DOI: 10.3390/jcm14051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Malnutrition in senile patients leads to functional disability while reducing quality of life. Medical professionals should routinely assess their nutritional status during hospitalization. However, diagnosing malnutrition may be difficult, especially since obesity may mask malnourishment. Thus, it is essential to search for biomarkers that improve the identification of malnourished inpatients. Methods: In the present cross-sectional study, selected venous blood parameters were analyzed in 137 older inpatients at the age of 80.5 ± 7.78 admitted to the Geriatrics Clinic of the Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Poland between 2017 and 2018, for a comprehensive geriatric assessment. The participants were grouped according to their nutritional risks based on the Mini Nutritional Assessment (MNA) and the Geriatric Nutrition Risk Index (GNRI). The Kruskal-Wallis test was utilized to evaluate the equality of variances for a variable calculated for two or more groups. The level of significance was set at p < 0.05. Results: For total protein, albumin, homocysteine, hemoglobin, hematocrit, total magnesium, total calcium, C-reactive protein (CRP), interleukin 6 (IL-6), and interferon γ-induced protein 10 (IP-10), statistically significant differences were found between groups of patients classified by the MNA. However, additional significant differences were also observed for creatinine, folic acid, and triglycerides, according to the GNRI compartmentalization. The results indicate that decreased levels of albumin (<3 g/dL) and hemoglobin (<11 g/dL), along with elevated homocysteine, CRP, IL-6 (>7.5 pg/mL), and IP-10 (>250 pg/mL), should alert medical professionals to potential malnutrition in hospitalized patients. Conclusions: Routine analysis of venous blood parameters can help rapidly identify malnutrition and the immediate implementation of a specialized diet.
Collapse
Affiliation(s)
- Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; (D.P.); (J.H.); (K.K.-K.)
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karłowicza 24 Street, PL–85092 Bydgoszcz, Poland;
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland;
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Dominika Parzych
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; (D.P.); (J.H.); (K.K.-K.)
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Michał Graczyk
- Department of Palliative Care, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Jakub Husejko
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; (D.P.); (J.H.); (K.K.-K.)
| | - Tomasz Jabłoński
- Faculty of Health Sciences and Physical Culture, Kazimierz Wielki University, PL–85064 Bydgoszcz, Poland;
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; (D.P.); (J.H.); (K.K.-K.)
| |
Collapse
|
2
|
Wang J, Wang Z, Yu Y, Cheng S, Wu J. Advances in research on metabolic dysfunction-associated steatotic liver disease. Life Sci 2025; 362:123362. [PMID: 39761743 DOI: 10.1016/j.lfs.2024.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The global increase in obesity-related metabolic disorders has led to metabolic dysfunction-associated steatotic liver disease (MASLD) emerging as one of the most prevalent chronic liver disease worldwide. Despite growing concerns, the exact pathogenesis of MASLD remains unclear and no definitive treatments have been made available. Consequently, the need for comprehensive research on MASLD is more critical than ever. Gaining insight into the mechanisms of the disease can lay the groundwork for identifying new therapeutic targets and can facilitate the development of diagnostic tools that enable the early detection and intervention of MASLD. Research has discovered a multifactorial etiology for MASLD, suggesting that potential therapeutic strategies should be considered from a variety of perspectives. This review delves into the pathogenesis of MASLD, current diagnostic approaches, potential therapeutic targets, the status of clinical trials for emerging drugs, and the most promising treatment methods available today. With a focus on therapeutic targets, the aim is to offer fresh insights and guide for future research in the treatment of MASLD.
Collapse
Affiliation(s)
- Jiawang Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yao Yu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Si Cheng
- Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Department of Pharmacology, Hubei University of Medicine, Shiyan 440070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| |
Collapse
|
3
|
Adeva-Andany MM, Carneiro-Freire N, Castro-Quintela E, Ameneiros-Rodriguez E, Adeva-Contreras L, Fernandez-Fernandez C. Interferon Upregulation Associates with Insulin Resistance in Humans. Curr Diabetes Rev 2025; 21:86-105. [PMID: 38500280 DOI: 10.2174/0115733998294022240309105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles (transcriptomes) from patients with insulin resistance show a robust overexpression of interferon- stimulated genes (interferon signature). In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon- γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Maria M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Eva Ameneiros-Rodriguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | |
Collapse
|
4
|
Shera S, Katzka W, Yang JC, Chang C, Arias-Jayo N, Lagishetty V, Balioukova A, Chen Y, Dutson E, Li Z, Mayer EA, Pisegna JR, Sanmiguel C, Pawar S, Zhang D, Leitman M, Hernandez L, Jacobs JP, Dong TS. Bariatric-induced microbiome changes alter MASLD development in association with changes in the innate immune system. Front Microbiol 2024; 15:1407555. [PMID: 39184030 PMCID: PMC11342267 DOI: 10.3389/fmicb.2024.1407555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 25% of the population and is the leading cause for liver-related mortality. Bariatric surgery is a well-known treatment for MASLD and obesity. Understanding the fundamental mechanisms by which bariatric surgery can alter MASLD can lead to new avenues of therapy and research. Previous studies have identified the microbiome's role in bariatric surgery and in inflammatory immune cell populations. The host innate immune system modulates hepatic inflammation and fibrosis, and thus the progression of MASLD. The precise role of immune cell types in the pathogenesis of MASLD remains an active area of investigation. The aim of this study was to understand the interplay between microbiota composition post-bariatric surgery and the immune system in MASLD. METHODS Eighteen morbidly obese females undergoing sleeve gastrectomy were followed pre-and post-surgery. Stool from four patients, showing resolved MASLD post-surgery with sustained weight loss, was transplanted into antibiotic treated mice. Mice received pre-or post-surgery stool and were fed a standard or high-fat diet. Bodyweight, food intake, and physiological parameters were tracked weekly. Metabolic parameters were measured post-study termination. RESULTS The human study revealed that bariatric surgery led to significant weight loss (p > 0.05), decreased inflammatory markers, and improved glucose levels six months post-surgery. Patients with weight loss of 20% or more showed distinct changes in blood metabolites and gut microbiome composition, notably an increase in Bacteroides. The mouse model confirmed surgery-induced microbiome changes to be a major factor in the reduction of markers and attenuation of MASLD progression. Mice receiving post-surgery fecal transplants had significantly less weight gain and liver steatosis compared to pre-surgery recipients. There was also a significant decrease in inflammatory cytokines interferon gamma, interleukin 2, interleukin 15, and mig. This was accompanied by alterations in liver immunophenotype, including an increase in natural killer T cells and reduction of Kupfer cells in the post-surgery transplant group. DISCUSSION Our findings suggest surgery induced microbial changes significantly reduce inflammatory markers and fatty liver progression. The results indicate a potential causal link between the microbiome and the host immune system, possibly mediated through modulation of liver NKT and Kupffer cells.
Collapse
Affiliation(s)
- Simer Shera
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - William Katzka
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Julianne C. Yang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Candace Chang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nerea Arias-Jayo
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anna Balioukova
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yijun Chen
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Erik Dutson
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Zhaoping Li
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- UCLA Center for Human Nutrition, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emeran A. Mayer
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph R. Pisegna
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Claudia Sanmiguel
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shrey Pawar
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David Zhang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Madelaine Leitman
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Laura Hernandez
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tien S. Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Kochumon S, Al-Sayyar A, Jacob T, Arefanian H, Bahman F, Almansour N, Alzaid F, Al-Mulla F, Sindhu S, Ahmad R. IL-1β-Induced CXCL10 Expression in THP-1 Monocytic Cells Involves the JNK/c-Jun and NF-κB-Mediated Signaling. Pharmaceuticals (Basel) 2024; 17:823. [PMID: 39065674 PMCID: PMC11279630 DOI: 10.3390/ph17070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
CXCL10 (IP-10) plays a key role in leukocyte homing to the inflamed tissues and its increased levels are associated with the pathophysiology of various inflammatory diseases including obesity and type 2 diabetes. IL-1β is a key proinflammatory cytokine that is found upregulated in meta-inflammatory conditions and acts as a potent activator, inducing the expression of cytokines/chemokines by immune cells. However, it is unclear whether IL-1β induces the expression of CXCL10 in monocytic cells. We, therefore, determined the CXCL10 induction using IL-1β in THP1 monocytic cells and investigated the mechanisms involved. Monocytes (human monocytic THP-1 cells) were stimulated with IL-1β. CXCL10 gene expression was determined with real-time RT-PCR. CXCL10 protein was determined using ELISA. Signaling pathways were identified by using Western blotting, inhibitors, siRNA transfections, and kinase assay. Our data show that IL-1β induced the CXCL10 expression at both mRNA and protein levels in monocytic cells (p = 0.0001). Notably, only the JNK inhibitor (SP600125) significantly suppressed the IL-1β-induced CXCL10 expression, while the inhibitors of MEK1/2 (U0126), ERK1/2 (PD98059), and p38 MAPK (SB203580) had no significant effect. Furthermore, IL-1β-induced CXCL10 expression was decreased in monocytic cells deficient in JNK/c-Jun. Accordingly, inhibiting the JNK kinase activity markedly reduced the IL-1β-induced JNK/c-Jun phosphorylation in monocytic cells. NF-κB inhibition by Bay-117085 and resveratrol also suppressed the CXCL10 expression. Our findings provide preliminary evidence that IL-1β stimulation induces the expression of CXCL10 in monocytic cells which requires signaling via the JNK/c-Jun/NF-κB axis.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Amnah Al-Sayyar
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, 13288 Marseille, France;
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Nourah Almansour
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| | - Fawaz Alzaid
- Bioenergetics & Neurometabolism Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMRS8253, IMMEDIAB, Université deParis Cité, 75015 Paris, France
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (T.J.); (H.A.); (F.B.); (N.A.); (S.S.)
| |
Collapse
|
6
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
7
|
Cao L, An Y, Liu H, Jiang J, Liu W, Zhou Y, Shi M, Dai W, Lv Y, Zhao Y, Lu Y, Chen L, Xia Y. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis. BMC Med 2024; 22:101. [PMID: 38448943 PMCID: PMC10919055 DOI: 10.1186/s12916-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD) shares common pathophysiological mechanisms with type 2 diabetes, making them significant risk factors for type 2 diabetes. The present study aimed to assess the epidemiological feature of type 2 diabetes in patients with NAFLD or MAFLD at global levels. METHODS Published studies were searched for terms that included type 2 diabetes, and NAFLD or MAFLD using PubMed, EMBASE, MEDLINE, and Web of Science databases from their inception to December 2022. The pooled global and regional prevalence and incidence density of type 2 diabetes in patients with NAFLD or MAFLD were evaluated using random-effects meta-analysis. Potential sources of heterogeneity were investigated using stratified meta-analysis and meta-regression. RESULTS A total of 395 studies (6,878,568 participants with NAFLD; 1,172,637 participants with MAFLD) from 40 countries or areas were included in the meta-analysis. The pooled prevalence of type 2 diabetes among NAFLD or MAFLD patients was 28.3% (95% confidence interval 25.2-31.6%) and 26.2% (23.9-28.6%) globally. The incidence density of type 2 diabetes in NAFLD or MAFLD patients was 24.6 per 1000-person year (20.7 to 29.2) and 26.9 per 1000-person year (7.3 to 44.4), respectively. CONCLUSIONS The present study describes the global prevalence and incidence of type 2 diabetes in patients with NAFLD or MAFLD. The study findings serve as a valuable resource to assess the global clinical and economic impact of type 2 diabetes in patients with NAFLD or MAFLD.
Collapse
Affiliation(s)
- Limin Cao
- The Third Central Hospital of Tianjin, Tianjin, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huiyuan Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Jinguo Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Wenqi Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yuhan Zhou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Mengyuan Shi
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Wei Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yanhui Lu
- School of Nursing, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China.
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China.
| |
Collapse
|
8
|
Sanches MD, Goldberg TBL, Rizzo ADCB, da Silva VN, Mosca LN, Romagnoli GG, Gorgulho CM, Araujo Junior JP, de Lima GR, Betti IR, Kurokawa CS. Inflammatory cytokines and chemokines in obese adolescents with antibody against to adenovirus 36. Sci Rep 2023; 13:9918. [PMID: 37336969 DOI: 10.1038/s41598-023-33084-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 06/21/2023] Open
Abstract
Obesity in adolescents has reached epidemic proportions and is associated with the inflammatory response and viral infections. The aim of this study was to understand the profile of inflammatory cytokines and chemokines associated with the inflammatory response and metabolic syndrome (MetS) in obese adolescents with positive serology for adenovirus 36 (ADV36). Thirty-six overweight, 36 obese, and 25 severe obesity adolescents aged 10 to 16 years were included in the study. The following variables were analyzed: sex, age, body mass index (BMI), blood pressure, total cholesterol and fractions, triglycerides, glucose, serum cytokine concentrations, and ADV36 antibodies. Cytokines and chemokines were quantified by cytometry and ADV36 serology was determined by enzyme-linked immunosorbent assay (ELISA). The results showed higher levels of the cytokines interleukin-1beta (IL-1β), IL-6, IL-10 and of the chemokine interferon-gamma-inducible protein 10 (IP-10) in severe obesity adolescents compared to the obese and overweight groups, as well as in the group with MetS compared to the group without this syndrome. The frequency of ADV36-positive individuals did not differ between groups. The findings revealed differences in BMI between the obese and severe obesity groups versus the overweight group in the presence of positivity for ADV36, suggesting an association with weight gain and possibly MetS installation.
Collapse
|
9
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
10
|
Al-Reshed F, Sindhu S, Al Madhoun A, Bahman F, AlSaeed H, Akhter N, Malik MZ, Alzaid F, Al-Mulla F, Ahmad R. Low carbohydrate intake correlates with trends of insulin resistance and metabolic acidosis in healthy lean individuals. Front Public Health 2023; 11:1115333. [PMID: 37006572 PMCID: PMC10061153 DOI: 10.3389/fpubh.2023.1115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Both obesity and a poor diet are considered major risk factors for triggering insulin resistance syndrome (IRS) and the development of type 2 diabetes mellitus (T2DM). Owing to the impact of low-carbohydrate diets, such as the keto diet and the Atkins diet, on weight loss in individuals with obesity, these diets have become an effective strategy for a healthy lifestyle. However, the impact of the ketogenic diet on IRS in healthy individuals of a normal weight has been less well researched. This study presents a cross-sectional observational study that aimed to investigate the effect of low carbohydrate intake in healthy individuals of a normal weight with regard to glucose homeostasis, inflammatory, and metabolic parameters. METHODS The study included 120 participants who were healthy, had a normal weight (BMI 25 kg/m2), and had no history of a major medical condition. Self-reported dietary intake and objective physical activity measured by accelerometry were tracked for 7 days. The participants were divided into three groups according to their dietary intake of carbohydrates: the low-carbohydrate (LC) group (those consuming <45% of their daily energy intake from carbohydrates), the recommended range of carbohydrate (RC) group (those consuming 45-65% of their daily energy intake from carbohydrates), and the high-carbohydrate (HC) group (those consuming more than 65% of their daily energy intake from carbohydrates). Blood samples were collected for the analysis of metabolic markers. HOMA of insulin resistance (HOMA-IR) and HOMA of β-cell function (HOMA-β), as well as C-peptide levels, were used for the evaluation of glucose homeostasis. RESULTS Low carbohydrate intake (<45% of total energy) was found to significantly correlate with dysregulated glucose homeostasis as measured by elevations in HOMA-IR, HOMA-β% assessment, and C-peptide levels. Low carbohydrate intake was also found to be coupled with lower serum bicarbonate and serum albumin levels, with an increased anion gap indicating metabolic acidosis. The elevation in C-peptide under low carbohydrate intake was found to be positively correlated with the secretion of IRS-related inflammatory markers, including FGF2, IP-10, IL-6, IL-17A, and MDC, but negatively correlated with IL-3. DISCUSSION Overall, the findings of the study showed that, for the first time, low-carbohydrate intake in healthy individuals of a normal weight might lead to dysfunctional glucose homeostasis, increased metabolic acidosis, and the possibility of triggering inflammation by C-peptide elevation in plasma.
Collapse
Affiliation(s)
- Fatema Al-Reshed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatemah Bahman
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Halemah AlSaeed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nadeem Akhter
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Md. Zubbair Malik
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fawaz Alzaid
- Institute Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
11
|
He GY, Hsu TY, Chen CW, Nien FJ, Chen HY, Chu CY, Wang LF. Serum Mediators in Patients with Both Type 2 Diabetes Mellitus and Pruritus. Acta Derm Venereol 2023; 103:adv00875. [PMID: 36852577 PMCID: PMC9986763 DOI: 10.2340/actadv.v103.4863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
Chronic pruritus is an unpleasant sensory perception that negatively affects quality of life and is common among patients with type 2 diabetes mellitus. Current antipruritic therapies are insufficiently effective. Thus, the mediation of diabetic pruritus by histamine-independent pathways is likely. The aim of this study was to identify possible mediators responsible for diabetic pruritus. A total of 87 patients with type 2 diabetes mellitus were analysed, of whom 59 had pruritus and 28 did not. The 2 groups were assessed for baseline demographics, serum biochemistry parameters, cytokines, and chemokines. This study also investigated the associations of these factors with the severity of itching. Neither haemoglobin A1c nor serum creatinine levels were correlated with severity of itching. Significantly higher levels of interleukin-4 (p = 0.004), interleukin-13 (p = 0.006), granulocyte-macrophage colony-stimulating factor (p < 0.001) and C-X-C motif chemokine ligand 10 (p = 0.028) were observed in the patients with pruritus than in those without pruritus. Moreover, the levels of these mediators were positively correlated with the severity of itching. Thus, novel antipruritic drugs can be developed to target these molecules. This is the first study to compare inflammatory mediators comprehensively in patients with diabetes mellitus with pruritus vs those without pruritus.
Collapse
Affiliation(s)
- Guan-Yi He
- Department of Dermatology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Tai-Yi Hsu
- 4School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan; Department of Emergency Medicine, China Medical University Hospital, Taichung City, Taiwan; Department of Public Health, China Medical University, Taichung City, Taiwan
| | - Ching-Wen Chen
- Subdivision of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Feng-Jung Nien
- Department of General Medicine, National Taiwan University Cancer Center, Taipei City, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 8, Zhongshan S. Road, Zhongzheng District, Taipei City 100226, Taiwan.
| |
Collapse
|
12
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
13
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
14
|
Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, Kalemba KM, Shah A, Rustgi VK, Wang H, Bech PR, Abbara A, Izzi-Engbeaya C, Manousou P, Guo JY, Guo GL, Radovick S, Dhillo WS, Wondisford FE, Babwah AV, Bhattacharya M. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132:145889. [PMID: 35349482 PMCID: PMC9106350 DOI: 10.1172/jci145889] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, and
| | | | - Shivani Rao
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | - Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vinod K. Rustgi
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Paul R. Bech
- Section of Endocrinology and Investigative Medicine and
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine and
| | | | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jessie Y. Guo
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, and
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Pournaras N, Andersson A, Kovach MA, Padra M, Che KF, Brundin B, Yoshihara S, Bozinovski S, Lindén SK, Jansson PA, Sköld MC, Qvarfordt I, Lindén A. Glucose Homeostasis in Relation to Neutrophil Mobilization in Smokers with COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1179-1194. [PMID: 35620349 PMCID: PMC9129100 DOI: 10.2147/copd.s353753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Nikolaos Pournaras
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Correspondence: Nikolaos Pournaras, Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden and Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden, Email
| | - Anders Andersson
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
- COPD Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Melissa A Kovach
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Médea Padra
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karlhans F Che
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Bettina Brundin
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shigemi Yoshihara
- Pediatric Allergology and Respiratory Medicine, Department of Pediatrics, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Sara K Lindén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus C Sköld
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Division for Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Qvarfordt
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Division for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Lee SH, Choi MR, Chung J, Choi SH, Park SK, Kim YM. Povidone iodine suppresses LPS-induced inflammation by inhibiting TLR4/MyD88 formation in airway epithelial cells. Sci Rep 2022; 12:3681. [PMID: 35256715 PMCID: PMC8901750 DOI: 10.1038/s41598-022-07803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Povidone-iodine (PVP-I) is an antiseptic and a disinfectant with broad-spectrum antimicrobial activity against various pathogens. However, it is unclear whether PVP-I nasal instillation can suppress mucosal inflammation in non-eosinophilic chronic rhinosinusitis (CRS) mice. This study aimed to explore the anti-inflammatory effects and underlying molecular mechanism of PVP-I on lipopolysaccharide-stimulated airway epithelial cells and investigate whether nasal instillation of PVP-I can suppress mucosal inflammation in non-eosinophilic CRS mice. Inflammation-related molecules in the nasal epithelial cells and non-eosinophilic CRS mice were measured by enzyme-linked immunosorbent assay, western blotting, quantitative real-time polymerase chain reaction, immunoprecipitation, and histopathological analysis. PVP-I blocked expressions of various inflammation-related molecules, such as NLRP3, NF-κB-p65, caspase-1, and IL-1β. Translocation of NF-κB to the nucleus, and assembly of NLRP3/ASC complexes in the nasal epithelial cells and non-eosinophilic CRS mice were also restricted. Notably, PVP-I strongly blocked the receptor co-localization of TLR4 and MyD88 in the epithelial cells of nasal mucosa. We demonstrated that PVP-I significantly attenuated inflammatory molecules and cytokines via blocking the formation of TLR4 and MyD88 complexes during LPS-induced mucosal inflammation in non-eosinophilic CRS.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Mi-Ra Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaein Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, South Korea
| | - Seung-Hyeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Soo Kyoung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Yong Min Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, South Korea.
| |
Collapse
|
17
|
Sottili M, Filardi T, Cantini G, Cosmi L, Morano S, Luconi M, Lenzi A, Crescioli C. Human cell-based anti-inflammatory effects of rosiglitazone. J Endocrinol Invest 2022; 45:105-114. [PMID: 34170488 DOI: 10.1007/s40618-021-01621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. METHODS Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. RESULTS In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. CONCLUSION As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.
Collapse
Affiliation(s)
- M Sottili
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - T Filardi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - G Cantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- DENOTHE Center of Excellence for Research, Transfer and High Education, University of Florence, 50139, Florence, Italy
| | - L Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Morano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- DENOTHE Center of Excellence for Research, Transfer and High Education, University of Florence, 50139, Florence, Italy
- Istituto Nazionale Biostrutture E Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Piazza L. de Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
18
|
Kochumon S, Al-Sayyar A, Jacob T, Hasan A, Al-Mulla F, Sindhu S, Ahmad R. TNF-α Increases IP-10 Expression in MCF-7 Breast Cancer Cells via Activation of the JNK/c-Jun Pathways. Biomolecules 2021; 11:biom11091355. [PMID: 34572567 PMCID: PMC8464892 DOI: 10.3390/biom11091355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
IP-10 (also called CXCL10) plays a significant role in leukocyte homing to inflamed tissues, and increased IP-10 levels are associated with the pathologies of various inflammatory disorders, including type 2 diabetes, atherosclerosis, and cancer. TNF-α is a potent activator of immune cells and induces inflammatory cytokine expression in these cells. However, it is unclear whether TNF-α is able to induce IP-10 expression in MCF-7 breast cancer cells. We therefore determined IP-10 expression in TNF-α-treated MCF-7 cells and investigated the mechanism involved. Our data show that TNF-α induced/upregulated the IP-10 expression at both mRNA and protein levels in MCF-7 cells. Inhibition of JNK (SP600125) significantly suppressed the TNF-α-induced IP-10 in MCF-7 cells, while the inhibition of p38 MAPK (SB203580), MEK1/2 (U0126), and ERK1/2 (PD98059) had no significant effect. Furthermore, TNF-α-induced IP-10 expression was abolished in MCF-7 cells deficient in JNK. Similar results were obtained using MCF-7 cells deficient in c-Jun. Moreover, the JNK kinase inhibitor markedly reduced the TNF-α-induced JNK and c-Jun phosphorylation. The kinase activity of JNK induced by TNF-α stimulation of MCF-7 cells was significantly inhibited by SP600125. Altogether, our novel findings provide the evidence that TNF-α induces IP-10 expression in MCF-7 breast cancer cells via activation of the JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amnah Al-Sayyar
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amal Hasan
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Correspondence:
| |
Collapse
|
19
|
Abstract
Helicobacter pylori is the most prevalent infection worldwide, while non-alcoholic fatty liver disease emerged as the most frequent liver disease. The common occurrence can be either by chance or due to certain pathogenetic factors. Epidemiologic studies revealed that the risk of non-alcoholic liver disease is increased in patients infected with Helicobacter pylori. DNA fragments of Helicobacter pylori were rarely identified in human samples of liver carcinoma and fatty liver. Helicobacter pylori could influence the development of non-alcoholic fatty liver either by hormonal (ghrelin? gastrin? insulin?), or by effect of pro-inflammatory cytokines (interleukin 1 and 8, tumor necrosis factor ɑ, interferon ɣ) and by changes of gut microbiome as well. Probiotic supplementation could improve some clinical parameters of non-alcoholic fatty liver disease and eradication rates of Helicobacter pylori. Regimens used for eradication can be safely administered, although non-alcoholic fatty liver increases the risk of drug-induced liver damage. Controlled studies of the effect of eradication on the development and progression of non-alcoholic fatty liver are warranted.
Collapse
Affiliation(s)
- György M Buzás
- Department of Gastroenterology, Ferencváros Health Center, Budapest, Hungary -
| |
Collapse
|
20
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front Immunol 2021; 12:622438. [PMID: 34054797 PMCID: PMC8161229 DOI: 10.3389/fimmu.2021.622438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background A growing number of studies found inconsistent results on the role of chemokines in the progression of type 2 diabetes (T2DM) and prediabetes (PDM). The purpose of this meta-analysis was to summarize the results of previous studies on the association between the chemokines system and T2DM/PDM. Methods We searched in the databases, PubMed, Web of Science, Embase and Cochrane Library, for eligible studies published not later than March 1, 2020. Data extraction was performed independently by 2 reviewers, on a standardized, prepiloted form. Group differences in chemokines concentrations were summarized using the standardized mean difference (SMD) with a 95% confidence interval (CI), calculated by performing a meta-analysis using the random-effects model. Results We identified 98 relevant studies that investigated the association between 32 different chemokines and T2DM/PDM. Altogether, these studies involved 14,708 patients and 14,574 controls. Results showed that the concentrations of CCL1, CCL2, CCL4, CCL5, CCL11, CXCL8, CXCL10 and CX3CL1 in the T2DM patients were significantly higher than that in the controls, while no difference in these concentrations was found between the PDM patients and controls. Conclusion Progression of T2DM may be associated with elevated concentrations of chemokines. Meta-Analysis Registration PROSPERO, identifier CRD42019148305.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Obstetrics and Gynaecology and School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
21
|
Simoes E, Correia-Lima J, Sardas L, Storti F, Otani TZDS, Vasques DAC, Otani VHO, Bertolazzi P, Kochi C, Seelaender M, Uchida RR. Sex dimorphism in inflammatory response to obesity in childhood. Int J Obes (Lond) 2021; 45:879-887. [PMID: 33526854 PMCID: PMC8005372 DOI: 10.1038/s41366-021-00753-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Childhood overweight and obesity are a global concern, with prevalence rising dramatically over the last decades. The condition is caused by an increase in energy intake and reduction of physical activity, leading to excessive fat accumulation, followed by systemic chronic inflammation and altered function of immune cell responses. This study aimed at providing new insights regarding sex-specificity on the inflammatory response to obesity in the young patient. DESIGN Forty-three Brazilian obese adolescents (Female = 22 and Male=21, BMI (body mass index) Z-score average = 2.78 ± 0.51) and forty-nine eutrophic adolescents (Female = 24 and Male = 25, BMI Z-score average = -0.35 ± 0.88) were enrolled in the study. Anthropometrical analyses and blood cell counts were carried out. Using Luminex®xMAP™ technology, circulating serum cytokines, chemokines, and inflammatory biomarkers were analyzed. Two-way ANOVA test, Tukey's test, and Spearman's correlation coefficient were employed, with a significance threshold set at p < 0.05. RESULTS We identified increased levels of serum amyloid A (SAA), platelets, and leukocytes solely in male obese patients. We found a noteworthy sex-dependent pattern in regard to inflammatory response: obese boys showed higher TNFβ, IL15, and IL2 and lower IL10 and IL13, while obese girls showed increased TNFα, CCL3, CCL4, and IP10 content in the circulation. BMI Z-score was significantly linearly correlated with neutrophils, leukocytes, platelets, SAA, TNFα, CCL3, CCL4, IP10, and IL13 levels within the entire cohort (non-sex-dependent). CONCLUSIONS Our data support a complex relationship between adiposity, blood cell count, and circulating inflammatory cytokine content. High SAA levels suggest that this factor may play a critical role in local and systemic inflammation. In the eutrophic group, females presented a lower status of inflammation, as compared to males. Both obese boys and girls showed an increased inflammatory response in relation to eutrophic counterparts. Taken together, results point out to clear sex dimorphism in the inflammatory profile of obese adolescents.
Collapse
Affiliation(s)
- Estefania Simoes
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil.
| | - Joanna Correia-Lima
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
| | - Leonardo Sardas
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Felipe Storti
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | | | | | | | - Pamela Bertolazzi
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Cristiane Kochi
- Physiology Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- LIM 26, Hospital das Clínicas of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Riyoiti Uchida
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
22
|
Uekita H, Yamamoto H, Niinaga R, Yamane N, Yoshii M, Yamauchi-Takihara K, Kihara S. Reciprocal association of serum Mac-2 binding protein and HDL-cholesterol concentrations. Clin Chim Acta 2021; 516:142-148. [PMID: 33571485 DOI: 10.1016/j.cca.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mac-2 binding protein (Mac-2BP) is used as a serum biomarker of nonalcoholic steatohepatitis, considered to be a liver phenotype of metabolic syndrome (MetS). In this study, we investigated the serum Mac-2BP concentrations-correlated MetS-related clinical parameters in vivo, and the underlying mechanism in vitro. MATERIALS & METHODS We enrolled 54 healthy Japanese men who underwent health examination at Osaka University Health Care Center in this study. Physical and serum biochemical parameters were obtained from all the subjects. In the cultured HepG2 cells, the effects of interferon (IFN)-γ on the expression of Mac-2BP, apolipoprotein (apo) A-I, and ATP binding cassette transporter A1 (ABCA1) were studied. RESULTS Serum Mac-2BP concentrations correlated negatively with HDL-C, and positively with body mass index and systolic blood pressure in univariate analysis. These results suggested the association between Mac-2BP and MetS, although none of these 3 parameters had significant correlation with serum Mac-2BP concentrations in multivariate analysis. In HepG2 cells, IFN-γ stimulation resulted in the increased Mac-2BP and the decreased ABCA1 and apo A-I mRNA concentrations, while Mac-2BP had no effects on ABCA1 and apo A-I concentrations. CONCLUSIONS The serum Mac-2BP concentrations are negatively correlated with HDL-C concentrations in healthy subjects, as a result of chronic inflammation.
Collapse
Affiliation(s)
- Hiromi Uekita
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Medical Technology, Faculty of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Ryu Niinaga
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriko Yamane
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manami Yoshii
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
23
|
Alizadeh F, O'Halloran A, Alghamdi A, Chen C, Trissal M, Traum A, DeCourcey D. Toddler With New Onset Diabetes and Atypical Hemolytic-Uremic Syndrome in the Setting of COVID-19. Pediatrics 2021; 147:peds.2020-016774. [PMID: 33037119 DOI: 10.1542/peds.2020-016774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
This is a novel case of a 16-month-old boy with a history of prematurity with intrauterine growth restriction, severe failure to thrive, microcephaly, pachygyria, agenesis of the corpus callosum, and postnatal embolic stroke, who presented with new-onset diabetes mellitus with diabetic ketoacidosis in the setting of severe acute respiratory syndrome coronavirus 2 infection, with a course complicated by atypical hemolytic syndrome (aHUS). This patient demonstrated remarkable insulin resistance in the period before aHUS diagnosis, which resolved with the first dose of eculizumab therapy. There is increasing evidence that COVID-19 is associated with thrombotic disorders and that microangiopathic processes and complement-mediated inflammation may be implicated. In this case report, we describe a pediatric patient with COVID-19 and a new complement-mediated microangiopathic thrombotic disease. Because whole-exome sequencing and extensive workup returned without a clear etiology for aHUS, this is likely a COVID-19 triggered case of aHUS versus an idiopathic case that was unmasked by the infection.
Collapse
Affiliation(s)
- Faraz Alizadeh
- Boston Children's Hospital, Boston, Massachusetts; and .,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Amanda O'Halloran
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Areej Alghamdi
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Charlotte Chen
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Maria Trissal
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Avram Traum
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Danielle DeCourcey
- Boston Children's Hospital, Boston, Massachusetts; and.,Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
24
|
Zhang C, Cui S, Mao G, Li G. Clinical Characteristics and the Risk Factors of Hepatic Injury in 221 Children With Infectious Mononucleosis. Front Pediatr 2021; 9:809005. [PMID: 35096718 PMCID: PMC8790314 DOI: 10.3389/fped.2021.809005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Infectious mononucleosis caused by Epstein-Barr Virus infection is a common acute infectious disease in children. About 40-80% of children with infectious mononucleosis have hepatic injury, and hepatic failure is one of the main causes of death in patients with fatal infectious mononucleosis. Identifying the demographics, presenting clinical characteristics and the risk factors of hepatic injury in infectious mononucleosis children are helpful to remind clinicians which patients are prone to have hepatic damage. Methods: A descriptive, cross-sectional study with a 31-month retrospective review was performed on all infectious mononucleosis children hospitalized in the pediatric department of Fuyang People's Hospital. Demographic data, presenting features, radiology imaging, clinical and laboratory parameters, and clinical outcomes of infectious mononucleosis children were collected. Results: Two-hundred twenty-one infectious mononucleosis inpatients were enrolled, and 43.9% (97/221) patients were considered to have a hepatic injury (defined as alanine amino transaminase > 40 U/L). Compared with patients without hepatic injury, hepatic injury patients were marked with a significantly higher percentage of hepatomegaly (31 vs. 49%), splenomegaly (58 vs. 81%) and palpebral edema (47 vs. 63%), higher age (3.05 ± 2.12 vs. 3.84 ± 2.44), hospitalization days (6.85 ± 2.64 vs. 8.08 ± 2.83), leukocyte (14.24 ± 5.32 vs. 18.53 ± 8.63), lymphocytes (9.48 ± 4.49 vs. 13.80 ± 7.47), the proportion of atypical lymphocytes (0.12 ± 0.07 vs. 0.15 ± 0.08) and aspartate aminotransferase (33.71 ± 10.94 vs. 107.82 ± 93.52). The results of correlation analysis and multiple linear regression analysis indicated that age (OR = 1.185; 95% CI = 1.035-1.357, p = 0.014), female (OR = 2.002, 95% CI: 0.261-0.955, p = 0.036) and splenomegaly (OR = 2.171, 95% CI: 1.018-4.628, p = 0.045) were independent risk factors of hepatic injury. Conclusions: In this study, the hepatic injury was associated with gender, age, and splenomegaly, which improved our understanding of risk factors about hepatic injury among infectious mononucleosis children.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pediatrics, Fuyang People's Hospital, Fuyang, China
| | - Shu Cui
- Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Guoshun Mao
- Department of Pediatrics, Fuyang People's Hospital, Fuyang, China
| | - Guitao Li
- Department of Pediatrics, Fuyang People's Hospital, Fuyang, China
| |
Collapse
|
25
|
Singh SP, Pritam M, Pandey B, Yadav TP. Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. J Med Virol 2021; 93:275-299. [PMID: 32617987 PMCID: PMC7361355 DOI: 10.1002/jmv.26254] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
There have been over seven million cases and almost 413 372 deaths globally due to the novel coronavirus (2019-nCoV) associated disease COVID-19, as of 11 June 2020. Phylogenetic analysis suggests that there is a common source for these infections. The overall sequence similarities between the spike protein of 2019-nCoV and that of SARS-CoV are known to be around 76% to 78% and 73% to 76% for the whole protein and receptor-binding domain (RBD), respectively. Thus, they have the potential to serve as the drug and/or vaccine candidate. However, the individual response against 2019-nCoV differs due to genetic variations in the human population. Understanding the variations in angiotensin-converting enzyme 2 (ACE2) and human leukocyte antigen (HLA) that may affect the severity of 2019-nCoV infection could help in identifying individuals at a higher risk from the COVID-19. A number of potential drugs/vaccines as well as antibody/cytokine-based therapeutics are in various developmental stages of preclinical/clinical trials against SARS-CoV, MERS-CoV, and 2019-nCoV with substantial cross-reactivity, and may be used against COVID-19. For diagnosis, the reverse-transcription polymerase chain reaction is the gold standard test for initial diagnosis of COVID-19. A kit based on serological tests are also recommended for investigating the spread of COVID-19 but this is challenging due to the antibodies cross-reactivity. This review comprehensively summarizes the recent reports available regarding the host-pathogen interaction, morphological and genomic structure of the virus, and the diagnostic techniques as well as the available potential therapeutics against COVID-19.
Collapse
Affiliation(s)
| | - Manisha Pritam
- Amity Institute of BiotechnologyAmity University Uttar PradeshLucknowIndia
| | - Brijesh Pandey
- Department of BiotechnologyMahatma Gandhi Central UniversityMotihariIndia
| | - Thakur Prasad Yadav
- Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
26
|
Moyse E, Haddad M, Benlabiod C, Ramassamy C, Krantic S. Common Pathological Mechanisms and Risk Factors for Alzheimer's Disease and Type-2 Diabetes: Focus on Inflammation. Curr Alzheimer Res 2020; 16:986-1006. [PMID: 31692443 DOI: 10.2174/1567205016666191106094356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetes is considered as a risk factor for Alzheimer's Disease, but it is yet unclear whether this pathological link is reciprocal. Although Alzheimer's disease and diabetes appear as entirely different pathological entities affecting the Central Nervous System and a peripheral organ (pancreas), respectively, they share a common pathological core. Recent evidence suggests that in the pancreas in the case of diabetes, as in the brain for Alzheimer's Disease, the initial pathological event may be the accumulation of toxic proteins yielding amyloidosis. Moreover, in both pathologies, amyloidosis is likely responsible for local inflammation, which acts as a driving force for cell death and tissue degeneration. These pathological events are all inter-connected and establish a vicious cycle resulting in the progressive character of both pathologies. OBJECTIVE To address the literature supporting the hypothesis of a common pathological core for both diseases. DISCUSSION We will focus on the analogies and differences between the disease-related inflammatory changes in a peripheral organ, such as the pancreas, versus those observed in the brain. Recent evidence suggesting an impact of peripheral inflammation on neuroinflammation in Alzheimer's disease will be presented. CONCLUSION We propose that it is now necessary to consider whether neuroinflammation in Alzheimer's disease affects inflammation in the pancreas related to diabetes.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS-Centre Armand-Frappier Sante Biotechnologie, Laval, QC, Canada
| | | | | | | |
Collapse
|
27
|
Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Arch Med Sci 2020; 19:895-911. [PMID: 37560741 PMCID: PMC10408029 DOI: 10.5114/aoms.2020.92674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
The immune system is frequently described in the context of its protective function against infections and its role in the development of autoimmunity. For more than a decade, the interactions between the immune system and metabolic processes have been reported, in effect creating a new research field, termed immunometabolism. Accumulating evidence supports the hypothesis that the development of metabolic diseases may be linked to inflammation, and reflects, in some cases, the activation of immune responses. As such, immunometabolism is defined by 1) inflammation as a driver of disease development and/or 2) metabolic processes stimulating cellular differentiation of the immune components. In this review, the main factors capable of altering the immuno-metabolic communication leading to the development and establishment of obesity and diabetes are comprehensively presented. Tissue-specific immune responses suggested to impair metabolic processes are described, with an emphasis on the adipose tissue, gut, muscle, liver, and pancreas.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Lin TC, Liu WC, Hsu YH, Lin JJ, Chiu YC, Chiu HC, Cheng PN, Chen CY, Chang TT, Wu IC. Insulin Resistance Associated Disorders Pivoting Long-Term Hepatitis B Surface Antigen Decline During Entecavir Therapy. J Clin Med 2019; 8:jcm8111892. [PMID: 31698809 PMCID: PMC6912775 DOI: 10.3390/jcm8111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Insulin resistance associated disorders (IRAD), including prediabetes, type 2 diabetes mellitus (T2DM), and fatty liver are significant risk factors of liver-related death in chronic hepatitis B (CHB). However, their relationship remains unclear. We aimed to evaluate how IRAD influence the kinetics of serum hepatitis B surface antigen (HBsAg) in patients with CHB during long-term entecavir treatment. We enrolled 140 patients with CHB receiving at least 3 years of consecutive entecavir treatment in this retrospective study. A linear mixed effects model was adopted to examine the effects of variables and their interaction over time on the HBsAg trajectory. Furthermore, we acquired cytokine profiles and baseline fibrosis-4 index (FIB-4) scores for in-depth analysis. The median treatment time was 6.90 (4.47–9.01) years. Multivariate analysis revealed that older patients or those with prediabetes or T2DM had a significantly slower HBsAg decline over time (p = 0.0001 and p < 0.0001, respectively). Conversely, advanced fatty liver engendered a more rapid HBsAg decrease (p = 0.001). Patients with prediabetes or T2DM possessed higher IP-10 levels six years after entecavir therapy (p = 0.013). Compared to patients without prediabetes or T2DM, diabetic patients had more unfavorable features at the baseline, especially higher FIB-4 scores. Prediabetes or T2DM delays the clearance of HBsAg, but advanced hepatic fatty change counterbalances the effect. Additionally, IRAD could cause hepatic sequelae in CHB through immune-metabolic pathways.
Collapse
Affiliation(s)
- Tien-Ching Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Chun Liu
- Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jia-Jhen Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
| | - Yen-Cheng Chiu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
| | - Hung-Chih Chiu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
| | - Chiung-Yu Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan 701, Taiwan;
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Chin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (T.-C.L.); (J.-J.L.); (Y.-C.C.); (H.-C.C.); (P.-N.C.); (C.-Y.C.); (T.-T.C.)
- Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan 701, Taiwan;
- Correspondence: ; Tel.: +886-6-2353535 (ext. 3588); Fax: +886-6-2743166
| |
Collapse
|
29
|
Jiménez-Castro MB, Casillas-Ramírez A, Negrete-Sánchez E, Avalos-de León CG, Gracia-Sancho J, Peralta C. Adipocytokines in Steatotic Liver Surgery/Transplantation. Transplantation 2019; 103:71-77. [PMID: 30586349 DOI: 10.1097/tp.0000000000002098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the shortage of liver grafts available for transplantation, the restrictions on graft quality have been relaxed, and marginal grafts, such as steatotic livers, are now accepted. However, this policy change has not solved the problem, because steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly. Adipocytokines differentially modulate steatosis, inflammation, and fibrosis and are broadly present in hepatic resections and transplants. The potential use of adipocytokines as biomarkers of the severity of steatosis and liver damage to aid the identification of high-risk steatotic liver donors and to evaluate hepatic injury in the postoperative period are discussed. The hope of finding new therapeutic strategies aimed specifically at protecting steatotic livers undergoing surgery is a strong impetus for identifying the mechanisms responsible for hepatic failure after major surgical intervention. Hence, the most recently described roles of adipocytokines in steatotic livers subject to I/R injury are discussed, the conflicting results in the literature are summarized, and reasons are offered as to why strategic pharmacologic control of adipocytokines has yet to yield clinical benefits. After this, the next steps needed to transfer basic knowledge about adipocytokines into clinical practice to protect marginal livers subject to I/R injury are presented. Recent strategies based on adipocytokine regulation, which have shown efficacy in various pathologies, and hold promise for hepatic resection and transplantation are also outlined.
Collapse
Affiliation(s)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, México
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, México
| | - Elsa Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Facultad de Medicina, Universidad International de Cataluña, Barcelona, Spain
| |
Collapse
|
30
|
Chemokines and Chemokine Receptors in the Development of NAFLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:45-53. [PMID: 29956205 DOI: 10.1007/978-981-10-8684-7_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemokines are chemo-attractants for leukocyte trafficking, growth, and activation in injured and inflammatory tissues. The chemokine system is comprised of 50 chemokine ligands and 20 cognate chemokine receptors. In the context of liver diseases, leukocytes, hepatocytes, hepatic stellate cells, endothelial cells, and vascular smooth muscle cells are capable of producing chemokines. Chemokine receptors are typically expressed in various leukocyte subsets. Given that inflammation is a critical factor for the transition from simple steatosis to non-alcoholic steatohepatitis (NASH), and fibrosis, the chemokine system may play a prominent role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Indeed, accumulating evidence shows elevated expression of chemokines and their receptors in the livers of obese patients with advanced steatosis and NASH. This chapter will discuss the underlying molecular mechanisms and the therapeutic potential of the chemokine systems in the pathogenesis of NAFLD. Among chemokines, we will highlight CCL2, CCL5, CXCL8-10, CX3CL1, and CXCL16 as pivotal mediators in the development of steatosis, NASH, and fibrosis.
Collapse
|
31
|
Kosmalski M, Mokros Ł, Kuna P, Witusik A, Pietras T. Changes in the immune system - the key to diagnostics and therapy of patients with non-alcoholic fatty liver disease. Cent Eur J Immunol 2018; 43:231-239. [PMID: 30135638 PMCID: PMC6102613 DOI: 10.5114/ceji.2018.77395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common pathologies of that organ. The development of the disease involves a variety of mechanisms, including insulin resistance, oxidative stress, endoplasmic reticulum stress, endotoxins from the intestinal flora and genetic predispositions. Additionally, clinical data suggest that the presence of NAFLD is associated with excessive activation of the immune system. For practical purposes, attention should be paid to the moment when the subjects predisposed to NAFLD develop inflammatory infiltration and signs of fibrosis in the liver (non-alcoholic steatohepatitis - NASH). Their presence is an important risk factor for hepatic cirrhosis, hepatic failure, and hepatocellular carcinoma, as well as for the occurrence of cardiovascular events. Regardless of the diagnostic methods used, including laboratory tests and imaging, liver biopsy remains the gold standard to identify and differentiate patients with NAFLD and NASH. The search for other, safer, cheaper and more readily available diagnostic tests is still being continued. Attention has been drawn to the usefulness of markers of immune status of the organism, not only for the diagnosis of NASH, but also for the identification of NAFLD patients at risk of disease progression. Despite the effectiveness of medication, no recommendations have been established for pharmacotherapy of NAFLD. Data indicate the primary need for non-pharmacological interventions to reduce body weight. However, there is evidence of the applicability of certain drugs and dietary supplements, which, by their effect on the immune system, inhibit its excessive activity, thus preventing the progression of NAFLD to NASH.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Poland
| | - Andrzej Witusik
- Department of Psychology, Piotrków Trybunalski Branch, Jan Kochanowski University in Kielce, Poland
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| |
Collapse
|
32
|
Zhao Y, Yang X, Zhang X, Yu Q, Zhao P, Wang J, Duan C, Li J, Johnson H, Feng X, Zhang H. IP-10 and RANTES as biomarkers for pulmonary tuberculosis diagnosis and monitoring. Tuberculosis (Edinb) 2018; 111:45-53. [PMID: 30029914 DOI: 10.1016/j.tube.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/20/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We aimed to determine whether IP-10 and RANTES plasma levels can be used in diagnosis and monitoring of pulmonary tuberculosis (PTB). METHODS Plasma levels of cytokines/chemokines were measured using a Bio-Plex® multiplex cytokine assay system in a cohort containing 457 clinically suspected PTB patients including a training set (n = 41)and two independent test sets A (n = 242) and B (n = 174). RESULTS Plasma levels of IP-10 and RANTES were significantly higher in PTB patients than healthy controls' in both training and independent test sets (P < 0.05). Compared with other combinations, the combination of IP-10 and RANTES had the best performance with an AUC of 1.0 in training set. The performance characteristic of this model was successfully validated in independent test set A although this combination only resulted in a slightly improvement of AUC value in independent test set B. Plasma IP-10 and RANTES levels were weakly and positively correlated with blood glucose concentrations. Moreover, IP-10 levels were positively correlated with CRP and ESR in PTB patients. Furthermore, in response to therapy, both IP-10 and RANTES levels significantly decreased over the period of 6 months (P < 0.001). CONCLUSIONS Taken together, combination of IP-10 and RANTES could be potentially used as diagnostic and monitoring biomarker in PTB management.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China; Beijing Research Institute for Tuberculosis Control, No 5, Dongguang Hutong, Xinjiekou, Beijing, 100035, China
| | - Xiqin Yang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Xuhui Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Qin Yu
- Chaoyang District Center for Disease Control and Prevention, 25 Panjiayuan, Huaweili, Beijing, 100029, China
| | - Ping Zhao
- Chaoyang District Center for Disease Control and Prevention, 25 Panjiayuan, Huaweili, Beijing, 100029, China
| | - Jianxia Wang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Cuimi Duan
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | - Jiangxue Li
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China
| | | | - Xiaoyan Feng
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China.
| | - Heqiu Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing, 100850, China.
| |
Collapse
|
33
|
Aqbi HF, Wallace M, Sappal S, Payne KK, Manjili MH. IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J Leukoc Biol 2018; 103:10.1002/JLB.5MIR0917-351R. [PMID: 29469956 PMCID: PMC6157004 DOI: 10.1002/jlb.5mir0917-351r] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 12/10/2017] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor immunoediting consisting of three phases of elimination, equilibrium or dormancy, and escape has been supported by preclinical and clinical data. A comprehensive understanding of the molecular mechanisms by which antitumor immune responses regulate these three phases are important for developing highly tailored immunotherapeutics that can control cancer. To this end, IFN-γ produced by Th1 cells, cytotoxic T cells, NK cells, and NKT cells is a pleiotropic cytokine that is involved in all three phases of tumor immunoediting, as well as during inflammation-mediated tumorigenesis processes. This essay presents a review of literature and suggests that overcoming tumor escape is feasible by driving tumor cells into a state of quiescent but not indolent dormancy in order for IFN-γ-producing tumor-specific T cells to prevent tumor relapse.
Collapse
Affiliation(s)
- Hussein F. Aqbi
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Matthew Wallace
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
| | - Samay Sappal
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Masoud H Manjili
- Department of Microbiology & Immunology, University School of Medicine, Richmond, VA 23298 USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
34
|
Choi RY, Woo MJ, Ham JR, Lee MK. Anti-steatotic and anti-inflammatory effects of Hovenia dulcis Thunb. extracts in chronic alcohol-fed rats. Biomed Pharmacother 2017; 90:393-401. [PMID: 28380415 DOI: 10.1016/j.biopha.2017.03.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
The anti-steatotic and anti-inflammatory effects of fruit water extract (FW) and seed ethanol extract (SE) of Hovenia dulcis Thunb. in chronic alcohol-fed rats were investigated. Rats were fed a liquid diet containing 36% calories from alcohol and orally administered FW or SE (300 and 500mg/kg/day). Both FW and SE reduced hepatic lipid contents and droplets, serum lipid concentration and inflammatory markers (hs-CRP, TNF-α and IL-6) levels compared with the alcohol control group. Alcohol led to significant decreases in the hepatic fatty acid oxidative gene (Ppargc1a, Cpt1a and Acsl1) levels, while it significantly increased the Myd88 and Tnfa gene levels. However, FW or SE supplementation significantly up-regulated gene expression of Ppargc1a, Ppara, Cpt1a and Acsl1, and down-regulated gene expression of Myd88, Tnfa and Crp compared with the alcohol control group. FW or SE supplementation also significantly decreased hepatic activities of fatty acid synthase and phosphatidate phosphohydrolase in chronic alcohol-fed rats. Plasma alcohol and acetaldehyde levels, hepatic enzyme activity and protein expression of CYP2E1 were lowered by FW or SE supplementation. These results indicate that both FW and SE play an important role in improvement of alcoholic hepatic steatosis and inflammation via regulation of lipid and inflammation metabolism.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Moon-Jae Woo
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul, 06650, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
35
|
Deng H, Li Z, Liu G, Li X, Chen Y, Zhang Y, Sun Y, Fu J. Elevated serum interferon γ-inducible protein-10 in women with polycystic ovary syndrome. Gynecol Endocrinol 2017; 33:363-367. [PMID: 28051885 DOI: 10.1080/09513590.2016.1269740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Interferon γ-induced protein 10 kDa (IP10/CXCL10) is a chemokine related to endocrine disorders; however, the serum concentrations of IP10 in women with polycystic ovary syndrome (PCOS) have not yet been reported. Therefore, we investigated whether IP10 is increased in PCOS patients and its potential clinical value in PCOS patients. METHODS For this research, the serum IP10, glucose, insulin, high sensitivity C-reactive protein (hs-CRP), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone (TT) concentrations were measured in 60 women with PCOS and healthy controls. RESULTS The median IP10 concentration was 45.60 pg/mL [interquartile range (IQR):29.75, 79.69], which was significantly higher than that of the body mass index (BMI)-matched controls (median: 36.46 pg/mL; IQR:28.98, 45.80). In the multivariate linear regression analysis, hs-CRP and the homeostasis model assessment of insulin resistance index (HOMA2-IR) were independent predictors of the IP10 values, while FSH was inversely associated with the IP10.No significant association was observed between the IP10 and BMI, glucose, LH and TT. CONCLUSIONS The serum IP10 concentrations increase in women with PCOS, moreover, IP10 appears to be correlated with the inflammatory and IR statuses of PCOS. IP10 may be a potential biomarker to estimate the disease activity of PCOS.
Collapse
Affiliation(s)
- Hongli Deng
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Zhibo Li
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Guang Liu
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Xianhua Li
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Yong Chen
- b Department of Clinical Laboratory , Affiliated Changsha Hospital of University of South China, The First Hospital of Changsha City , Changsha , Hunan , China
| | - Yong Zhang
- c Department of Gastrointestinal Surgery , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Chang sha , Hunan , China
| | - Yifan Sun
- d Department of Clinical Laboratory , Third Affiliated Hospital of Guangxi University of Chinese Medicine , Liuzhou , Guangxi , China , and
| | - Jinjian Fu
- e Department of Clinical Laboratory , Liuzhou Maternity and Child Health Care Hospital , Liuzhou , Guangxi , China
| |
Collapse
|
36
|
Hou WH, Li CY, Chang HH, Sun Y, Tsai CC. A population-based cohort study suggests an increased risk of multiple sclerosis incidence in patients with type 2 diabetes mellitus. J Epidemiol 2017; 27:235-241. [PMID: 28142047 PMCID: PMC5394222 DOI: 10.1016/j.je.2016.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
Background To prospectively investigate the incidence and relative risks of multiple sclerosis (MS) in patients with type 2 diabetes (T2DM). Materials and methods Patients with T2DM (n = 614,623) and age- and sex-matched controls (n = 614,021) were followed from 2000 to 2008 to identify cases of newly diagnosed MS (ICD-9-CM: 340). The person-year approach with Poisson assumption was used to evaluate the incidence density. We estimated the covariate-adjusted hazard ratio (HR) of MS incidence in relation to T2DM diabetes using a multiple Cox proportional hazard regression model. Results Over 9 years of follow-up, 175 T2DM patients were newly diagnosed with MS, and 114 matched controls had the same first-ever diagnosis, representing a covariate-adjusted HR of 1.44 (95% confidence interval [CI], 1.08–1.94). The sex-specific adjusted HR for both men and women with T2DM was also elevated at 1.34 (95% CI, 0.81–2.23) and 1.51 (95% CI, 1.05–2.19), respectively. Women aged ≤50 years had the greatest risk of MS (HR 2.16; 95% CI, 1.02–4.59). Conclusion This study demonstrated a moderate but significant association of T2DM with MS incidence, and the association was not confounded by socio-demographic characteristics or certain MS-related co-morbidities. Risk ratio of incident multiple sclerosis (MS) in T2DM patients was 1.44. Risk ratio of incident MS was highest in women aged <50 years. The PAR% for T2DM in the MS incidence was estimated at 2.55%.
Collapse
Affiliation(s)
- Wen-Hsuan Hou
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan; School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Yi Li
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung City, Taiwan
| | - Hsin-Hui Chang
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, Sanxia District, New Taipei City, Taiwan
| | - Chiang-Chin Tsai
- Department of Surgery, Tainan Sin-Lau Hospital, Tainan, Taiwan; Department of Health Care Administration, Chang Jung Christian University, Tainan, Taiwan.
| |
Collapse
|
37
|
Huang WY, Huang CC, Chang CC, Kor CT, Chen TY, Wu HM. Associations of Self-Reported Sleep Quality with Circulating Interferon Gamma-Inducible Protein 10, Interleukin 6, and High-Sensitivity C-Reactive Protein in Healthy Menopausal Women. PLoS One 2017; 12:e0169216. [PMID: 28060925 PMCID: PMC5218483 DOI: 10.1371/journal.pone.0169216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Introduction Sleep disturbance is very common in menopausal women and poor sleep quality has been linked to systemic inflammation. However, the impact of poor sleep quality on health outcomes of menopausal women remains unclear. This study evaluated the relationships between sleep quality and inflammation in menopausal women. Participants and design This cross-sectional study enrolled 281 healthy women aged 45 to 60 years. The Pittsburgh Sleep Quality Index (PSQI) was used to measure quality of sleep. Multiplex assays were used to measure the levels of 9 cytokines in morning fasting plasma samples. Other variables measured in this study included clinical characteristics and high-sensitivity C-reactive protein (hs-CRP). Setting The study was performed at a medical center. Results The 281 participants comprised 79 (28%) perimenopausal women and 202 (72%) postmenopausal women. Global PSQI scores were positively correlated with plasma hs-CRP levels (P = 0.012) and were marginally associated with interferon gamma-inducible protein-10 (IP10), interleukin 6 (IL6), and macrophage inflammatory protein-1beta (MIP-1β) levels. After adjusting for age, body mass index, menopause duration, and follicle stimulating hormone, multiple linear regression analysis revealed that high PSQI scores and sleep efficiency < 65% were associated with elevated plasma levels of hs-CRP, IP10, and IL6. In addition, sleep duration < 5 hours was associated with high hs-CRP levels. Conclusion Our data show that poor sleep quality and low sleep efficiency are associated with elevated levels of circulating inflammatory factors IP10, IL6 and hs-CRP and that short sleep duration is associated with high levels of hs-CRP in menopausal women. These findings provide novel evidence that poor sleep quality is linked to low-grade systemic inflammation in menopausal women.
Collapse
Affiliation(s)
- Wan-Yu Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Huang
- Department of Obstetrics & Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chu Chang
- Department of Nephrology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chew-Teng Kor
- Division of statistics, Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Yu Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Guo J, Dou L, Meng X, Chen Z, Yang W, Fang W, Yang C, Huang X, Tang W, Yang J, Li J. Hepatic MiR-291b-3p Mediated Glucose Metabolism by Directly Targeting p65 to Upregulate PTEN Expression. Sci Rep 2017; 7:39899. [PMID: 28054586 PMCID: PMC5214750 DOI: 10.1038/srep39899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Several studies have suggested an important role of miR-291b-3p in the development of embryonic stem cells. In previous study, we found that the expression of miR-291b-3p was significantly upregulated in the liver of db/db mice. However, the role of miR-291b-3p in glucose metabolism and its underlying mechanisms remain unknown. In the present study, we demonstrated that miR-291b-3p was abundantly expressed in the liver. Of note, hepatic miR-291b-3p expression was upregulated in HFD-fed mice and induced by fasting in C57BL/6 J normal mice. Importantly, hepatic inhibition miR-291b-3p expression ameliorated hyperglycemia and insulin resistance in HFD-fed mice, whereas hepatic overexpression of miR-291b-3p led to hyperglycemia and insulin resistance in C57BL/6 J normal mice. Further study revealed that miR-291b-3p suppressed insulin-stimulated AKT/GSK signaling and increased the expression of gluconeogenic genes in hepatocytes. Moreover, we identified that p65, a subunit of nuclear factor-κB (NF-κB), is a target of miR-291b-3p by bioinformatics analysis and luciferase reporter assay. Silencing of p65 significantly augmented the expression of PTEN and impaired AKT activation. In conclusion, we found novel evidence suggesting that hepatic miR-291b-3p mediated glycogen synthesis and gluconeogenesis through targeting p65 to regulate PTEN expression. Our findings indicate the therapeutic potential of miR-291b-3p inhibitor in hyperglycemia and insulin resistance.
Collapse
Affiliation(s)
- Jun Guo
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Lin Dou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Xiangyu Meng
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Zhenzhen Chen
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Weiwei Fang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Chunxiao Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Xiuqing Huang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Weiqing Tang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Jichun Yang
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| |
Collapse
|
39
|
Zhang N, Hu Y, Ding C, Zeng W, Shan W, Fan H, Zhao Y, Shi X, Gao L, Xu T, Wang R, Gao D, Yao J. Salvianolic acid B protects against chronic alcoholic liver injury via SIRT1-mediated inhibition of CRP and ChREBP in rats. Toxicol Lett 2016; 267:1-10. [PMID: 27989594 DOI: 10.1016/j.toxlet.2016.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Salvianolic acid B (SalB), a water-soluble polyphenol extracted from Radix Salvia miltiorrhiza, has been reported to possess many pharmacological activities. This study investigated the hepatoprotective effects of SalB in chronic alcoholic liver disease (ALD) and explored the related signaling mechanisms. In vivo, SalB treatment significantly attenuated ethanol-induced liver injury by blocking the elevation of serum aminotransferase activities and markedly decreased hepatic lipid accumulation by reducing serum and liver triglyceride (TG) and total cholesterol (TC) levels. Moreover, SalB treatment ameliorated ethanol-induced hepatic inflammation by decreasing the levels of hepatotoxic cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Importantly, SalB pretreatment significantly increased the expression of SIRT1 and downregulated the expression of inflammatory mediator C-reactive protein (CRP) and lipoprotein carbohydrate response element-binding protein (ChREBP). In vitro, SalB significantly reversed ethanol-induced down-regulation of SIRT1 and increased CRP and ChREBP expression. Interestingly, the effects of SalB on SIRT1, CRP and ChREBP were mostly abolished by treatment with either SIRT1 siRNA or EX527, a specific inhibitor of SIRT1, indicating that SalB decreased CRP and ChREBP expression by activating SIRT1. SalB exerted anti-steatotic and anti-inflammatory effects against alcoholic liver injury by inducing SIRT1-mediated inhibition of CRP and ChREBP expression.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China; Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Yan Hu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Chunchun Ding
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zeng
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Wen Shan
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Hui Fan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Lili Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Ruiwen Wang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
40
|
Naka S, Hatakeyama R, Takashima Y, Matsumoto-Nakano M, Nomura R, Nakano K. Contributions of Streptococcus mutans Cnm and PA antigens to aggravation of non-alcoholic steatohepatitis in mice. Sci Rep 2016; 6:36886. [PMID: 27833139 PMCID: PMC5105074 DOI: 10.1038/srep36886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, can cause infective endocarditis after invading the bloodstream. Recently, intravenous administration of specific S. mutans strains was shown to aggravate non-alcoholic steatohepatitis (NASH) in a mouse model fed a high-fat diet. Here, we investigated the mechanism of this aggravation in a NASH mouse model by focusing on the S. mutans cell surface collagen-binding protein (Cnm) and the 190-kDa protein antigen (PA). Mice that were intravenously administered a S. mutans strain with a defect in Cnm (TW871CND) or PA (TW871PD) did not show clinical or histopathological signs of NASH aggravation, in contrast to those administered the parent strain TW871. The immunochemical analyses demonstrated higher levels of interferon-γ and metallothionein expression in the TW871 group than in the TW871CND and TW871PD groups. Analysis of bacterial affinity to cultured hepatic cells in the presence of unsaturated fatty acids revealed that the incorporation rate of TW871 was significantly higher than those of TW871CND and TW871PD. Together, our results suggest that Cnm and PA are important cell surface proteins for the NASH aggravation caused by S. mutans adhesion and affinity for hepatic cells.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Rina Hatakeyama
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
41
|
Sun J, Ruan Y, Wang M, Chen R, Yu N, Sun L, Liu T, Chen H. Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients. Sci Rep 2016; 6:35421. [PMID: 27767123 PMCID: PMC5073332 DOI: 10.1038/srep35421] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Circulating long non-coding RNAs (lncRNAs) serve as valuable biomarkers in a number of human diseases. However, lncRNA biomarkers have yet to be identified in obesity. We aim to characterize circulating lncRNA expression in obese and non-obese human subjects. First, we assessed the genome-wide circulating lncRNA expression profiles in blood from 3 obese and 3 non-obese human subjects. We found a significant decrease in circulating levels of three lncRNAs (lncRNA-p5549, lncRNA-p21015 and lncRNA-p19461) in obese human subjects only. Next, using RT-PCR we measured the expression levels of these three lncRNAs in 33 obese and 33 non-obese human subjects and found similar differences. Moreover, we found a negative correlation between circulating levels of these three lncRNAs and body mass index (BMI), waist circumference, waist to hip ratio and fasting insulin. There was also a significant negative correlation between expression of lncRNA-p19461 and homeostasis model assessment-estimated insulin resistance. Finally, we tested the circulating levels of these three lncRNAs in 8 obese human subjects after a 12-week diet-induced weight loss program. We found that only lncRNA-p19461 expression level significantly increased. In summary, circulating lncRNAs are deregulated in obesity. Weight loss–induced changes in this profile support this observation and suggest a potential mechanistic relevance.
Collapse
Affiliation(s)
- Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Wang
- Nephrology center of integrated traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Yu
- The Second Clinical College of Southern Medical University, Guangzhou, China
| | - Lei Sun
- The Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Tiemin Liu
- The Third Affiliated Hospital, Harbin Medical University, Harbin, China.,Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Shih KL, Su WW, Chang CC, Kor CT, Chou CT, Chen TY, Wu HM. Comparisons of parallel potential biomarkers of 1H-MRS-measured hepatic lipid content in patients with non-alcoholic fatty liver disease. Sci Rep 2016; 6:24031. [PMID: 27079922 PMCID: PMC4832180 DOI: 10.1038/srep24031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease. This cross-sectional study aimed to evaluate whether parallel clinical features and serum markers are related to the severity of NAFLD. We enrolled 111 participants with different metabolic syndrome (MetS) scores (zero, n = 22; one, n = 19; two, n = 22; and ≥ three, n = 48) and used 1H-MRS to measure liver fat content. Biochemical profiles and potential biomarkers of NAFLD were measured in fasting plasma. We found that 1H-MRS-measured fat content was significantly associated with MetS score ≥1, endotoxin, and hs-CRP. Ordinal logistic regression analysis revealed that MetS score ≥2 and endotoxin were predictive of NAFLD (1H-MRS > 5%) and that endotoxin, hs-CRP, and malondialdehyde (MDA) were predictive of NAFLD with liver injury (1H-MRS > 9.67%). Endotoxin plus MetS score was shown to be the most accurate predictor of overall NAFLD (AUC = 0.854; (95% CI: 0.785–0.924), P < 0.001), and endotoxin plus hs-CRP and MDA was found to be predictive of NAFLD with liver injury (0.868; (0.801–0.936), P < 0.001). These results suggest that MetS score plus certain serum biomarkers with 1H-MRS findings may hold promise for developing an effective model for monitoring the severity of NAFLD.
Collapse
Affiliation(s)
- Kai-Lun Shih
- Department of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Wen Su
- Department of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chu Chang
- Department of Nephrology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chew-Teng Kor
- Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chen-Te Chou
- Department of Medical Imaging, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Yu Chen
- Inflammation Research &Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Inflammation Research &Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| |
Collapse
|