1
|
Liang D, Li L, Ai Y, Li Z, Hedrich WD, Sakamuru S, Lynch C, Yu W, Watts-Ouattara I, Heyward S, Xia M, MacKerell AD, Wang H, Xue F. Potent and Selective Human Constitutive Androstane Receptor Activator DL5055 Facilitates Cyclophosphamide-Based Chemotherapies. J Med Chem 2025; 68:7044-7061. [PMID: 40145447 DOI: 10.1021/acs.jmedchem.4c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Enhancement of the metabolic conversion of cyclophosphamide (CPA) increases its therapeutic effects. Activation of the human constitutive androstane receptor (hCAR) induces CYP2B6, a key enzyme responsible for CPA bioactivation. Based on our previous hCAR activator DL5016, we designed and synthesized a series of new hCAR activators. Compared to DL5016, three new compounds 6i, 6k (DL5055), and 7e, showed significantly improved activating potency for hCAR. Particularly, DL5055 activates hCAR with an EC50 of 0.35 μM and EMAX of 4.3, and does not activate hPXR and other related nuclear receptors. It induced the expression of CYP2B6 and caused the translocation of hCAR from the cytoplasm to the nucleus in human primary hepatocytes. DL5055 also induces the expression of Cyp2b10 (the mouse analog of human CYP2B6) in hCAR-transgenic mice. In addition, it significantly enhances the efficacy of CPA-based chemotherapy regimen, CHOP, in a coculture system and a mouse xenograft model in vivo.
Collapse
Affiliation(s)
- Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Srilatha Sakamuru
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Caitlin Lynch
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ismael Watts-Ouattara
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Scott Heyward
- BioIVT, 1450 S Rolling Rd, Halethorpe, Maryland 21227, United States
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Heydari Z, Gramignoli R, Piryaei A, Zahmatkesh E, Pooyan P, Seydi H, Nussler A, Szkolnicka D, Rashidi H, Najimi M, Hay DC, Vosough M. Standard Protocols for Characterising Primary and In Vitro-Generated Human Hepatocytes. J Cell Mol Med 2025; 29:e70390. [PMID: 39910642 PMCID: PMC11798750 DOI: 10.1111/jcmm.70390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocyte-like cells (HLCs) derived from pluripotent stem cells (PSCs) or direct reprogramming are an unlimited source of human hepatocytes for biomedical applications. HLCs are used to model human diseases, develop precise drugs and establish groundbreaking regenerative cell-based therapies. Primary human hepatocytes are the gold standard for studying human liver biology and pathology. However, their widespread use is limited by their rapid dedifferentiation in vitro, reliance on transplant-rejected donor organs, poor scalability and significant batch-to-batch variations. Therefore, high-quality 'off-the-shelf' HLCs are needed to overcome those limitations. Basic stepwise differentiation protocols have been developed to generate HLCs from PSCs. To evaluate the quality of the in vitro generated products, HLCs have been phenotyped using various methods. This review discusses various biological assays and methods available for the robust evaluation of HLC quality, emphasising the importance of using 24-h cultured primary human hepatocytes (PHHs) as a reference standard for comparison.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Paria Pooyan
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma ResearchUniversity of TübingenTübingenGermany
| | - Dagmara Szkolnicka
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Hassan Rashidi
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research, UCLouvainBrusselsBelgium
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer MedicineInstitution for Laboratory Medicine, Karolinska Institute HuddingeHuddingeSweden
| |
Collapse
|
3
|
Monrose M, Holota H, Martinez G, Damon-Soubeyrand C, Thirouard L, Martinot E, Battistelli E, de Haze A, Bravard S, Tamisier C, Caira F, Coutton C, Barbotin AL, Boursier A, Lakhal L, Beaudoin C, Volle DH. Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402082. [PMID: 39318179 DOI: 10.1002/advs.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 09/26/2024]
Abstract
Male sexual function can be disrupted by exposure to exogenous compounds that cause testicular physiological alterations. The constitutive androstane receptor (Car) is a receptor for both endobiotics and xenobiotics involved in detoxification. However, its role in male fertility, particularly in regard to the reprotoxic effects of environmental pollutants, remains unclear. This study aims to investigate the role of the Car signaling pathway in male fertility. In vivo, in vitro, and pharmacological approaches are utilized in wild-type and Car-deficient mouse models. The results indicate that Car inhibition impaired male fertility due to altered sperm quality, specifically histone retention, which is correlated with an increased percentage of dying offspring in utero. The data highlighted interactions among Car, Akt, Foxo1, and histone acetylation. This study demonstrates that Car is crucial in germ cell homeostasis and male fertility. Further research on the Car signaling pathway is necessary to reveal unidentified causes of altered fertility and understand the harmful impact of environmental molecules on male fertility and offspring health.
Collapse
Affiliation(s)
- Mélusine Monrose
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Guillaume Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Christelle Damon-Soubeyrand
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Edwige Battistelli
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Stéphanie Bravard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Christelle Tamisier
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Charles Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Laila Lakhal
- INRAe UMR1331, ToxAlim, University of Toulouse, Toulouse, F-31027, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| |
Collapse
|
4
|
Sekiguchi M, Fujinami Y, Takado K, Kimoto Y, Higashimura Y. Activity difference of three labdane diterpenoids on human constitutive androstane receptor. Biosci Biotechnol Biochem 2023; 87:1310-1315. [PMID: 37580155 DOI: 10.1093/bbb/zbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The constitutive androstane receptor (CAR) regulates enzyme transcription related to drug metabolism; therefore, natural compound clarification in food that interacts with CAR is significant for drug development. We revealed that 13-epimanool, which is a compound found in the common sage, is bound to hCAR based on differential scanning fluorometry (DSF) measurements using recombinant hCAR protein. Similar labdane diterpenoids were examined, which revealed that manool and sclareol, which were both natural compounds contained in herbs, are bound to hCAR. They exhibited different effects for CAR activity in the luciferase assay despite the structural similarity. Manool was a partial agonist, 13-epimanool was a weak partial agonist, and sclareol was an antagonist. The activity of hCAR may be regulated by slight differences in the bound compound.
Collapse
Affiliation(s)
- Mitsuhiro Sekiguchi
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yui Fujinami
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Keiyu Takado
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuu Kimoto
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
5
|
Honkakoski P. Searching for Constitutive Androstane Receptor Modulators. Drug Metab Dispos 2022; 50:1002-1009. [PMID: 35184042 DOI: 10.1124/dmd.121.000482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/01/2022] [Indexed: 02/13/2025] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) has been established as one of the main drug- and xenobiotic-responsive transcriptional regulators, collectively called xenosensors. CAR activates the expression of several oxidative, hydrolytic, and conjugative drug-metabolizing enzymes and drug transporters, and therefore, it contributes to drug and xenobiotic elimination, drug interactions, and toxicological processes. This minireview introduces mechanisms that modulate CAR activity and focuses on the recent approaches used to search and characterize CAR agonists, inverse agonists, and indirect activators. This minireview is dedicated to Dr. Masahiko Negishi to celebrate his scientific achievements during his long service at the National Institutes of Health. SIGNIFICANCE STATEMENT: Discovery and characterization of human constitutive androstane receptor (CAR) modulators is important for drug development, toxicity studies, and in generation of chemical tools to dissect biological functions of CAR. This minireview focuses on the main methods used to search for these compounds and discusses their essential features.
Collapse
Affiliation(s)
- Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Stern S, Liang D, Li L, Kurian R, Lynch C, Sakamuru S, Heyward S, Zhang J, Kareem KA, Chun YW, Huang R, Xia M, Hong CC, Xue F, Wang H. Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight 2022; 7:e153868. [PMID: 35579950 PMCID: PMC9309041 DOI: 10.1172/jci.insight.153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC), although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular coculture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Furthermore, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as potentially novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy/toxicity ratio of CPA/DOX-containing chemotherapy.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Caitlin Lynch
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, Halethorpe, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio, USA
| | - Kafayat Ajoke Kareem
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young Wook Chun
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Charles C. Hong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Lynch C, Zhao J, Wang H, Xia M. Identifying CAR Modulators Utilizing a Reporter Gene Assay. Methods Mol Biol 2022; 2474:29-38. [PMID: 35294753 PMCID: PMC9434986 DOI: 10.1007/978-1-0716-2213-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Shehu AI, Zhu J, Li J, Lu J, McMahon D, Xie W, Gonzalez FJ, Ma X. Targeting Xenobiotic Nuclear Receptors PXR and CAR to Prevent Cobicistat Hepatotoxicity. Toxicol Sci 2021; 181:58-67. [PMID: 33629115 DOI: 10.1093/toxsci/kfab023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liver-related diseases including drug-induced liver injury are becoming increasingly prominent in AIDS patients. Cobicistat (COBI) is the backbone of multiple regimens for antiretroviral therapy. The current work investigated the mechanisms of adverse drug-drug interactions associated with COBI that lead to liver damage. For individuals co-infected with HIV and tuberculosis (TB), the World Health Organization recommends the initiation of TB treatment followed by antiretroviral therapy. Rifampicin (RIF), a first line anti-TB drug, is a human specific activator of pregnane X receptor (PXR). Using PXR-humanized mice, we found that RIF-mediated PXR activation potentiates COBI hepatotoxicity. In contrast, rifabutin, a PXR-neutral analog of RIF, has no impact on COBI hepatotoxicity. Because of the crosstalk between PXR and the constitutive androstane receptor (CAR), the role of CAR in COBI hepatotoxicity was also investigated. Similar to PXR, ligand-dependent activation of CAR also potentiates COBI hepatotoxicity. Our further studies illustrated that PXR and CAR modulate COBI hepatotoxicity through the CYP3A4-dependent pathways. In summary, the current work determined PXR and CAR as key modulators of COBI hepatotoxicity. Given the fact that many prescription drugs and herbal supplements can activate PXR and CAR, these two receptors should be considered as targets to prevent COBI hepatotoxicity in the clinic.
Collapse
Affiliation(s)
- Amina I Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| | - Jianhua Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| | - Deborah McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences
| |
Collapse
|
9
|
Burk O, Kronenberger T, Keminer O, Lee SML, Schiergens TS, Schwab M, Windshügel B. Nelfinavir and Its Active Metabolite M8 Are Partial Agonists and Competitive Antagonists of the Human Pregnane X Receptor. Mol Pharmacol 2021; 99:184-196. [PMID: 33483427 DOI: 10.1124/molpharm.120.000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The HIV protease inhibitor nelfinavir is currently being analyzed for repurposing as an anticancer drug for many different cancers because it exerts manifold off-target protein interactions, finally resulting in cancer cell death. Xenosensing pregnane X receptor (PXR), which also participates in the control of cancer cell proliferation and apoptosis, was previously shown to be activated by nelfinavir; however, the exact molecular mechanism is still unknown. The present study addresses the effects of nelfinavir and its major and pharmacologically active metabolite nelfinavir hydroxy-tert-butylamide (M8) on PXR to elucidate the underlying molecular mechanism. Molecular docking suggested direct binding to the PXR ligand-binding domain, which was confirmed experimentally by limited proteolytic digestion and competitive ligand-binding assays. Concentration-response analyses using cellular transactivation assays identified nelfinavir and M8 as partial agonists with EC50 values of 0.9 and 7.3 µM and competitive antagonists of rifampin-dependent induction with IC50 values of 7.5 and 25.3 µM, respectively. Antagonism exclusively resulted from binding into the PXR ligand-binding pocket. Impaired coactivator recruitment by nelfinavir as compared with the full agonist rifampin proved to be the underlying mechanism of both effects on PXR. Physiologic relevance of nelfinavir-dependent modulation of PXR activity was investigated in respectively treated primary human hepatocytes, which showed differential induction of PXR target genes and antagonism of rifampin-induced ABCB1 and CYP3A4 gene expression. In conclusion, we elucidate here the molecular mechanism of nelfinavir interaction with PXR. It is hypothesized that modulation of PXR activity may impact the anticancer effects of nelfinavir. SIGNIFICANCE STATEMENT: Nelfinavir, which is being investigated for repurposing as an anticancer medication, is shown here to directly bind to human pregnane X receptor (PXR) and thereby act as a partial agonist and competitive antagonist. Its major metabolite nelfinavir hydroxy-tert-butylamide exerts the same effects, which are based on impaired coactivator recruitment. Nelfinavir anticancer activity may involve modulation of PXR, which itself is discussed as a therapeutic target in cancer therapy and for the reversal of chemoresistance.
Collapse
Affiliation(s)
- Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Thales Kronenberger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Oliver Keminer
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Serene M L Lee
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Tobias S Schiergens
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Björn Windshügel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| |
Collapse
|
10
|
Diethelm-Varela B, Kumar A, Lynch C, Imler GH, Deschamps JR, Li Y, Xia M, MacKerell AD, Xue F. Stereoisomerization of human constitutive androstane receptor agonist CITCO. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Skoda J, Dusek J, Drastik M, Stefela A, Dohnalova K, Chalupsky K, Smutny T, Micuda S, Gerbal-Chaloin S, Pavek P. Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells 2020; 9:cells9122532. [PMID: 33255185 PMCID: PMC7761063 DOI: 10.3390/cells9122532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Klara Dohnalova
- 1 Medical Faculty, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic;
| | | | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
- Correspondence: ; Tel.: +420-495-067-334
| |
Collapse
|
12
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
13
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
14
|
Keminer O, Windshügel B, Essmann F, Lee SML, Schiergens TS, Schwab M, Burk O. Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Arch Toxicol 2019; 93:2247-2264. [PMID: 31312845 DOI: 10.1007/s00204-019-02495-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
Prediction of drug interactions, based on the induction of drug disposition, calls for the identification of chemicals, which activate xenosensing nuclear receptors. Constitutive androstane receptor (CAR) is one of the major human xenosensors; however, the constitutive activity of its reference variant CAR1 in immortalized cell lines complicates the identification of agonists. The exclusively ligand-dependent isoform CAR3 represents an obvious alternative for screening of CAR agonists. As CAR3 is even more abundant in human liver than CAR1, identification of its agonists is also of pharmacological value in its own right. We here established a cellular high-throughput screening assay for CAR3 to identify ligands of this isoform and to analyse its suitability for identifying CAR ligands in general. Proof-of-concept screening of 2054 drug-like compounds at 10 µM resulted in the identification of novel CAR3 agonists. The CAR3 assay proved to detect the previously described CAR1 ligands in the screened libraries. However, we failed to detect CAR3-selective compounds, as the four novel agonists, which were selected for further investigations, all proved to activate CAR1 in different cellular and in vitro assays. In primary human hepatocytes, the compounds preferentially induced the expression of the prototypical CAR target gene CYP2B6. Failure to identify CAR3-selective compounds was investigated by molecular modelling, which showed that the isoform-specific insertion of five amino acids did not impact on the ligand binding pocket but only on heterodimerization with retinoid X receptor. In conclusion, we demonstrate here the usability of CAR3 for screening compound libraries for the presence of CAR agonists.
Collapse
Affiliation(s)
- Oliver Keminer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schnackenburgallee 114, 22525, Hamburg, Germany.
| | - Frank Essmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Serene M L Lee
- Biobank of the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias S Schiergens
- Biobank of the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376, Stuttgart, Germany. .,University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Mackowiak B, Li L, Lynch C, Ziman A, Heyward S, Xia M, Wang H. High-content analysis of constitutive androstane receptor (CAR) translocation identifies mosapride citrate as a CAR agonist that represses gluconeogenesis. Biochem Pharmacol 2019; 168:224-236. [PMID: 31306645 DOI: 10.1016/j.bcp.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds. Comparison of hCAR nuclear translocation results with the Tox21 hCAR luciferase reporter assay database in 643 shared compounds revealed significant overlap between these two assays, with approximately half of hCAR agonists also mediating nuclear translocation. Further validation of these compounds in HPH and/or using published data from literature demonstrated that hCAR translocation exhibits a higher correlation with the induction of hCAR target genes, such as CYP2B6, than the luciferase assay. In addition, some CAR antagonists which repress CYP2B6 mRNA expression in HPH, such as sorafenib, rimonabant, and CINPA1, were found to translocate hCAR to the nucleus of HPH. Notably, both the translocation assay and the luciferase assay identified mosapride citrate (MOS), a gastroprokinetic agent that is known to reduce fasting blood glucose levels in humans, as a novel hCAR activator. Further studies with MOS in HPH uncovered that MOS can repress the expression of gluconeogenic genes and decrease glucose output from hepatocytes, providing a previously unidentified liver-specific mechanism by which MOS modulates blood glucose levels.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrew Ziman
- Nikon Instruments Inc., 1300 Walt Whitman Road, Melville, NY 11747, United States
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, 1450 S Rolling Rd, Halethorpe, MD 21227, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
16
|
Liang D, Li L, Lynch C, Diethelm-Varela B, Xia M, Xue F, Wang H. DL5050, a Selective Agonist for the Human Constitutive Androstane Receptor. ACS Med Chem Lett 2019; 10:1039-1044. [PMID: 31312405 DOI: 10.1021/acsmedchemlett.9b00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a xenobiotic sensor governing the transcription of genes involved in drug disposition, energy homeostasis, and cell proliferation. However, currently available human CAR (hCAR) agonists are nonselective, which commonly activate hCAR along with other nuclear receptors, especially the closely related human pregnane X receptor (hPXR). Using a well-known hCAR agonist CITCO as a template, we report our efforts in the discovery of a potent and highly selective hCAR agonist. Two of the new compounds of the series, 18 and 19 (DL5050), demonstrated excellent potency and selectivity for hCAR over hPXR. DL5050 preferentially induced the expression of CYP2B6 (target of hCAR) over CYP3A4 (target of hPXR) on both the mRNA and protein levels. The selective hCAR agonist DL5050 represents a valuable tool molecule to further define the biological functions of hCAR, and may also be used as a new lead in the discovery of hCAR agonists for various therapeutic applications.
Collapse
Affiliation(s)
- Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892-3375, United States
| | - Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892-3375, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
17
|
Liang D, Li L, Lynch C, Mackowiak B, Hedrich WD, Ai Y, Yin Y, Heyward S, Xia M, Wang H, Xue F. Human constitutive androstane receptor agonist DL5016: A novel sensitizer for cyclophosphamide-based chemotherapies. Eur J Med Chem 2019; 179:84-99. [PMID: 31247375 DOI: 10.1016/j.ejmech.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
The DNA alkylating prodrug cyclophosphamide (CPA), alone or in combination with other agents, is one of the most commonly used anti-cancer agents. As a prodrug, CPA is activated by cytochrome P450 2B6 (CYP2B6), which is transcriptionally regulated by the human constitutive androstane receptor (hCAR). Therefore, hCAR agonists represent novel sensitizers for CPA-based therapies. Among known hCAR agonists, compound 6-(4-chlorophenyl)imidazo-[2,1-b]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is the most potent and broadly utilized in biological studies. Through structural modification of CITCO, we have developed a novel compound DL5016 (32), which has an EC50 value of 0.66 μM and EMAX value of 4.9 when activating hCAR. DL5016 robustly induced the expression of hCAR target gene CYP2B6, at both the mRNA and protein levels, and caused translocation of hCAR from the cytoplasm to the nucleus in human primary hepatocytes. The effects of DL5016 were highlighted by dramatically enhancing the efficacy of CPA-based cytotoxicity to non-Hodgkin lymphoma cells.
Collapse
Affiliation(s)
- Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Caitlin Lynch
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Yue Yin
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Scott Heyward
- BioIVT, 1450 S Rolling Rd, Halethorpe, MD, 21227, United States
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| |
Collapse
|
18
|
Lynch C, Zhao J, Sakamuru S, Zhang L, Huang R, Witt KL, Merrick BA, Teng CT, Xia M. Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules 2019; 24:E841. [PMID: 30818834 PMCID: PMC6429183 DOI: 10.3390/molecules24050841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Li Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - B Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - Christina T Teng
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
McMahon M, Ding S, Jimenez LA, Terranova R, Gerard MA, Vitobello A, Moggs J, Henderson CJ, Wolf CR. Constitutive androstane receptor 1 is constitutively bound to chromatin and 'primed' for transactivation in hepatocytes. Mol Pharmacol 2019; 95:97-105. [PMID: 30361333 PMCID: PMC6277922 DOI: 10.1124/mol.118.113555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localized in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus.
Collapse
Affiliation(s)
- Michael McMahon
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Shaohong Ding
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Lourdes Acosta Jimenez
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Remi Terranova
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Marie-Apolline Gerard
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Antonio Vitobello
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Jonathan Moggs
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Colin J Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| |
Collapse
|
20
|
Lynch C, Mackowiak B, Huang R, Li L, Heyward S, Sakamuru S, Wang H, Xia M. Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicol Sci 2019; 167:282-292. [PMID: 30247703 PMCID: PMC6657574 DOI: 10.1093/toxsci/kfy242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor involved in all phases of drug metabolism and disposition. However, recently it's been implicated in energy metabolism, tumor progression, and cancer therapy as well. It is, therefore, important to identify compounds that induce human CAR (hCAR) activation to predict drug-drug interactions and potential therapeutic usage. In this study, we screen the Tox21 10,000 compound collection to characterize hCAR activators. A potential novel structural cluster of compounds was identified, which included nitazoxanide and tenonitrozole, whereas known structural clusters, such as flavones and prazoles, were also detected. Four compounds, neticonazole, diphenamid, phenothrin, and rimcazole, have been identified as novel hCAR activators, one of which, rimcazole, shows potential selectivity toward hCAR over its sister receptor, the pregnane X receptor (PXR). All 4 compounds translocated hCAR from the cytoplasm into the nucleus demonstrating the first step to CAR activation. Profiling these compounds as hCAR activators would enable an estimation of drug-drug interactions, as well as identify prospective therapeutically beneficial drugs.
Collapse
Affiliation(s)
- Caitlin Lynch
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | | | - Srilatha Sakamuru
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Kearney SE, Zahoránszky-Kőhalmi G, Brimacombe KR, Henderson MJ, Lynch C, Zhao T, Wan K, Itkin Z, Dillon C, Shen M, Cheff D, Lee T, Bougie D, Cheng K, Coussens N, Dorjsuren D, Eastman R, Huang R, Iannotti M, Karavadhi S, Klumpp-Thomas C, Roth J, Sakamuru S, Sun W, Titus S, Yasgar A, Zhang YQ, Zhao J, Andrade R, Brown MK, Burns N, Cha JK, Mevers E, Clardy J, Clement J, Crooks P, Cuny G, Ganor J, Moreno J, Morrill L, Picazo E, Susick R, Garg N, Goess B, Grossman R, Hughes C, Johnston J, Joullie M, Kinghorn AD, Kingston D, Krische M, Kwon O, Maimone T, Majumdar S, Maloney K, Mohamed E, Murphy B, Nagorny P, Olson D, Overman L, Brown L, Snyder J, Porco J, Rivas F, Ross S, Sarpong R, Sharma I, Shaw J, Xu Z, Shen B, Shi W, Stephenson C, Verano A, Tan D, Tang Y, Taylor R, Thomson R, Vosburg D, Wu J, Wuest W, Zakarian A, Zhang Y, Ren T, Zuo Z, Inglese J, Michael S, Simeonov A, Zheng W, Shinn P, Jadhav A, Boxer M, Hall MD, Xia M, Guha R, Rohde JM. Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS CENTRAL SCIENCE 2018; 4:1727-1741. [PMID: 30648156 PMCID: PMC6311695 DOI: 10.1021/acscentsci.8b00747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/20/2023]
Abstract
Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (-)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.
Collapse
Affiliation(s)
- Sara E. Kearney
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gergely Zahoránszky-Kőhalmi
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Kyle R. Brimacombe
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Caitlin Lynch
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Tongan Zhao
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Kanny
K. Wan
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Zina Itkin
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Christopher Dillon
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Dorian
M. Cheff
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Tobie
D. Lee
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Danielle Bougie
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ken Cheng
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Nathan
P. Coussens
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Dorjbal Dorjsuren
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Richard
T. Eastman
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ruili Huang
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Michael
J. Iannotti
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carleen Klumpp-Thomas
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jacob
S. Roth
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Srilatha Sakamuru
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Sun
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Steven
A. Titus
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ya-Qin Zhang
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jinghua Zhao
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rodrigo
B. Andrade
- Department
of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - M. Kevin Brown
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Noah
Z. Burns
- Department
of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Jin K. Cha
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Emily
E. Mevers
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jason
A. Clement
- Natural
Products Discovery Institute, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Peter
A. Crooks
- University
of Arkansas for Medical Sciences, 4301 West Markham Street 522, Little Rock, Arkansas 72205, United States
| | - Gregory
D. Cuny
- Department
of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Road, Houston, Texas 77204, United
States
| | - Jake Ganor
- Diamond
Age Corp., 344 East Louisiana
Street, McKinney, Texas 75069, United States
| | - Jesus Moreno
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Lucas
A. Morrill
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Elias Picazo
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Robert
B. Susick
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil
K. Garg
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Brian
C. Goess
- Department
of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Robert
B. Grossman
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chambers
C. Hughes
- Scripps
Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jeffrey
N. Johnston
- Department
of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Madeleine
M. Joullie
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - A. Douglas Kinghorn
- College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - David
G.I. Kingston
- Department
of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Michael
J. Krische
- Chemistry
Department, The University of Texas at Austin, 105 East 24th Street STOP A5300, Austin, Texas 78712, United States
| | - Ohyun Kwon
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Thomas
J. Maimone
- Department
of Chemistry, University of California Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Susruta Majumdar
- Department
of Molecular Pharmacology and Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Center for
Clinical Pharmacology, St Louis College
of Pharmacy and Washington University School of Medicine, 2 Pharmacy Place, St. Louis, Missouri 63110, United States
| | - Katherine
N. Maloney
- Department
of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, California 92106, United States
| | - Enas Mohamed
- University
of Mississippi School of Pharmacy, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Brian
T. Murphy
- College
of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Pavel Nagorny
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - David
E. Olson
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- School of
Medicine, Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, California 95817, United States
- Center for
Neuroscience, University of California,
Davis, 1544 Newton Court, Davis, California 95618, United States
| | - Larry
E. Overman
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Lauren
E. Brown
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John
K. Snyder
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John
A. Porco
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Fatima Rivas
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Samir
A. Ross
- University
of Mississippi School of Pharmacy, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California Berkeley, 841-A Latimer Hall, Berkeley, California 94720, United States
| | - Indrajeet Sharma
- Department
of Chemistry and Biochemistry, and Institute of Natural Products and
Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jared
T. Shaw
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zhengren Xu
- Department
of Chemistry, Florida Campus, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department
of Chemistry, Florida Campus, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Wei Shi
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Corey
R.J. Stephenson
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alyssa
L. Verano
- Pharmacology
Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Derek
S. Tan
- Pharmacology
Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Chemical
Biology Program, Sloan Kettering Institute and Tri-Institutional Research
Program, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Yi Tang
- Department
of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Richard
E. Taylor
- Department
of Chemistry and Biochemistry and the Warren Family Research Center
for Drug Discovery and Development, University
of Notre Dame, 305 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Regan
J. Thomson
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David
A. Vosburg
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Jimmy Wu
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - William
M. Wuest
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic
Resistance Center, Emory University School
of Medicine, 201 Dowman
Drive, Atlanta, Georgia 30322, United States
| | - Armen Zakarian
- Santa
Barbara
Department of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Yufeng Zhang
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Tianjing Ren
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Zhong Zuo
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - James Inglese
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sam Michael
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew
B. Boxer
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Menghang Xia
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rajarshi Guha
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jason M. Rohde
- National
Center for Advancing Translational Sciences, National Institutes of
Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
22
|
Hakkola J, Bernasconi C, Coecke S, Richert L, Andersson TB, Pelkonen O. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor α at the Crossroads of Toxicokinetics and Toxicodynamics. Basic Clin Pharmacol Toxicol 2018. [DOI: 10.1111/bcpt.13004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology; Faculty of Medicine; University of Oulu; Oulu Finland
- Medical Research Center Oulu; University of Oulu; Oulu Finland
| | | | - Sandra Coecke
- European Commission Joint Research Centre; EURL ECVAM; Ispra Italy
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics; Cardiovascular and Metabolic Diseases; IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
- Department of Physiology and Pharmacology; Section of Pharmacogenetics; Karolinska Institutet; Stockholm Sweden
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology; Faculty of Medicine; University of Oulu; Oulu Finland
- Medical Research Center Oulu; University of Oulu; Oulu Finland
| |
Collapse
|
23
|
Bogen KT. Biphasic hCAR Inhibition-Activation by Two Aminoazo Liver Carcinogens. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Lynch C, Zhao J, Huang R, Kanaya N, Bernal L, Hsieh JH, Auerbach SS, Witt KL, Merrick BA, Chen S, Teng CT, Xia M. Identification of Estrogen-Related Receptor α Agonists in the Tox21 Compound Library. Endocrinology 2018; 159:744-753. [PMID: 29216352 PMCID: PMC5774247 DOI: 10.1210/en.2017-00658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the β-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina 27560
| | - Scott S. Auerbach
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kristine L. Witt
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - B. Alex Merrick
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Christina T. Teng
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Mackowiak B, Li L, Welch MA, Li D, Jones JW, Heyward S, Kane MA, Swaan PW, Wang H. Molecular Basis of Metabolism-Mediated Conversion of PK11195 from an Antagonist to an Agonist of the Constitutive Androstane Receptor. Mol Pharmacol 2017; 92:75-87. [PMID: 28442602 PMCID: PMC5452073 DOI: 10.1124/mol.117.108621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
The constitutive androstane receptor (CAR) plays an important role in xenobiotic metabolism, energy homeostasis, and cell proliferation. Antagonism of the CAR represents a key strategy for studying its function and may have potential clinical applications. However, specific human CAR (hCAR) antagonists are limited and conflicting data on the activity of these compounds have been reported. 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a typical peripheral benzodiazepine receptor ligand, has been established as a potent hCAR deactivator in immortalized cells; whether it inhibits hCAR activity under physiologically relevant conditions remains unclear. Here, we investigated the effects of PK11195 on hCAR in metabolically competent human primary hepatocytes (HPH) and HepaRG cells. We show that although PK11195 antagonizes hCAR in HepG2 cells, it induces the expression of CYP2B6 and CYP3A4, targets of hCAR and the pregnane X receptor (PXR), in HPH, HepaRG, and PXR-knockout HepaRG cells. Utilizing a HPH-HepG2 coculture model, we demonstrate that inclusion of HPH converts PK11195 from an antagonist to an agonist of hCAR, and such conversion was attenuated by potent CYP3A4 inhibitor ketoconazole. Metabolically, we show that the N-desmethyl metabolite is responsible for PK11195-mediated hCAR activation by facilitating hCAR interaction with coactivators and enhancing hCAR nuclear translocation in HPHs. Structure-activity analysis revealed that N-demethylation alters the interaction of PK11195 with the binding pocket of hCAR to favor activation. Together, these results indicate that removal of a methyl group switches PK11195 from a potent antagonist of hCAR to an agonist in HPH and highlights the importance of physiologically relevant metabolism when attempting to define the biologic action of small molecules.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| |
Collapse
|
26
|
Kato H, Yamaotsu N, Iwazaki N, Okamura S, Kume T, Hirono S. Precise prediction of activators for the human constitutive androstane receptor using structure-based three-dimensional quantitative structure–activity relationship methods. Drug Metab Pharmacokinet 2017; 32:179-188. [DOI: 10.1016/j.dmpk.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
|
27
|
Hsu CW, Hsieh JH, Huang R, Pijnenburg D, Khuc T, Hamm J, Zhao J, Lynch C, van Beuningen R, Chang X, Houtman R, Xia M. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs. Toxicol Appl Pharmacol 2016; 313:138-148. [PMID: 27773686 DOI: 10.1016/j.taap.2016.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/10/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023]
Abstract
Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to alter CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs.
Collapse
Affiliation(s)
- Chia-Wen Hsu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jui-Hua Hsieh
- National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ruili Huang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Thai Khuc
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jon Hamm
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - Jinghua Zhao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin Lynch
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Xiaoqing Chang
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Menghang Xia
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Pinne M, Ponce E, Raucy JL. Transactivation Assays to Assess Canine and Rodent Pregnane X Receptor (PXR) and Constitutive Androstane Receptor (CAR) Activation. PLoS One 2016; 11:e0164642. [PMID: 27732639 PMCID: PMC5061317 DOI: 10.1371/journal.pone.0164642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/28/2016] [Indexed: 11/21/2022] Open
Abstract
The pregnane X receptor (PXR/SXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are nuclear receptors (NRs) involved in the regulation of many genes including cytochrome P450 enzymes (CYPs) and transporters important in metabolism and uptake of both endogenous substrates and xenobiotics. Activation of these receptors can lead to adverse drug effects as well as drug-drug interactions. Depending on which nuclear receptor is activated will determine which adverse effect could occur, making identification important. Screening for NR activation by New Molecular Entities (NMEs) using cell-based transactivation assays is the singular high throughput method currently available for identifying the activation of a particular NR. Moreover, screening for species-specific NR activation can minimize the use of animals in drug development and toxicology studies. With this in mind, we have developed in vitro transactivation assays to identify compounds that activate canine and rat PXR and CAR3. We found differences in specificity for canine and rat PXR, with the best activator for canine PXR being 10 μM SR12813 (60.1 ± 3.1-fold) and for rat PXR, 10 μM dexamethasone (60.9 ± 8.4 fold). Of the 19 test agents examined, 10 and 9 significantly activated rat and canine PXR at varying degrees, respectively. In contrast, 5 compounds exhibited statistically significant activation of rat CAR3 and 4 activated the canine receptor. For canine CAR3, 50 μM artemisinin proved to be the best activator (7.3 ± 1.8 and 10.5 ± 2.2 fold) while clotrimazole (10 μM) was the primary activator of the rat variant (13.7 ± 0.8 and 26.9 ± 1.3 fold). Results from these studies demonstrated that cell-based transactivation assays can detect species-specific activators and revealed that PXR was activated by at least twice as many compounds as was CAR3, suggesting that there are many more agonists for PXR than CAR.
Collapse
Affiliation(s)
- Marija Pinne
- Puracyp, Inc., Carlsbad, California, United States of America
- * E-mail:
| | - Elsa Ponce
- Puracyp, Inc., Carlsbad, California, United States of America
| | - Judy L. Raucy
- Puracyp, Inc., Carlsbad, California, United States of America
| |
Collapse
|
29
|
Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1141-1154. [PMID: 26921498 PMCID: PMC4975625 DOI: 10.1016/j.bbagrm.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Milu T Cherian
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
30
|
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1218-1227. [PMID: 26994748 DOI: 10.1016/j.bbagrm.2016.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
Abstract
The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
31
|
Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1183-1197. [PMID: 26962022 DOI: 10.1016/j.bbagrm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) acts as a xenosensing transcriptional regulator of many drug metabolizing enzymes and transporters of the 'detoxification machinery' that coordinate in elimination of xenobiotics and endobiotics from the cellular milieu. It is an accepted view that some individuals or specific populations display considerable differences in their ability to metabolize different drugs, dietary constituents, herbals etc. In this context we speculated that polymorphisms in PXR gene might contribute to variability in cytochrome P450 (CYP450) metabolizing enzymes of phase I, drug metabolizing components of phase II and efflux components of the detoxification machinery. Therefore, in this study, we have undertaken a comprehensive functional analysis of seventeen naturally occurring non-synonymous variants of human PXR. When compared, we observed that some of the PXR SNP variants exhibit distinct functional and dynamic responses on parameters which included transcriptional function, sub-cellular localization, mitotic chromatin binding, DNA-binding properties and other molecular interactions. One of the unique SNP located within the DNA-binding domain of PXR was found to be functionally null and distinct on other parameters. Similarly, some of the non-synonymous SNPs in PXR imparted reduced transactivation function as compared to wild type PXR. Interestingly, PXR is reported to be a mitotic chromatin binding protein and such an association has been correlated to an emerging concept of 'transcription memory' and altered transcription output. In view of the observations made herein our data suggest that some of the natural PXR variants may have adverse physiological consequences owing to its influence on the expression levels and functional output of drug-metabolizing enzymes and transporters. The present study is expected to explain not only the observed inter-individual responses to different drugs but may also highlight the mechanistic details and importance of PXR in drug clearance, drug-drug interactions and diverse metabolic disorders. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneeta Devi
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
32
|
Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1130-1140. [PMID: 26877237 DOI: 10.1016/j.bbagrm.2016.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
33
|
Lynch C, Zhao J, Wang H, Xia M. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators. Methods Mol Biol 2016; 1473:33-42. [PMID: 27518621 DOI: 10.1007/978-1-4939-6346-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|