1
|
Josifova T, Konieczka K, Schötzau A, Flammer J. The effect of a specific vitamin supplement containing L-methylfolate (Ocufolin forte) in patients with neovascular age-related macular degeneration. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:135-141. [PMID: 40276027 PMCID: PMC12020837 DOI: 10.1016/j.aopr.2025.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025]
Abstract
Background Patients with nAMD often have pathologically elevated homocysteine (Hcy) and increased retinal venous pressure (RVP). We tested whether the administration of a specific vitamin preparation containing L-methylfolate (Ocufolin forte) as an addition to anti-VEGF therapy reduces these two risk factors and favorably influences the disease course. Methods A total of 27 eyes/27 patients with intra- and subretinal fluid, Hcy above 12 μmol/L, RVP of at least 8 mm above the IOP, and an IOP between 10 and 20 mmHg were included in this study. All eyes received three injections of 0.05 ml aflibercept at one-month intervals as clinically indicated. Fifteen patients additionally received one capsule of Ocufolin forte per day (Ocufolin group, OG), and the other twelve patients served as a control group (control group, CG). The following factors were measured before therapy and four months later: blood Hcy, best-corrected visual acuity (BCVA), intra-ocular pressure (IOP), RVP, optical coherence tomography (OCT), and optical coherence tomography - angiography (OCTA). Results Hcy decreased on average by 5.58 μmol/L in the OG and by 0.57 μmol/L in the CG. The RVP decreased on average by 4.60 mmHg in the OG and by 0.75 mmHg in the CG. The difference between the two groups was significant for both parameters (P <0.001); 66% of the OG and 41% of the CG had no retinal fluid at the end of the study. After the completion of the study, the injection intervals could be extended more often in the OG patients than in the CG patients. Conclusions When Ocufolin forte was added to the standard therapy, RVP and Hcy were reduced to a significantly greater extent than without Ocufolin forte. In addition, Ocufolin had a positive influence on morphology and future treatment intervals with anti-VEGF therapy.
Collapse
Affiliation(s)
- Tatjana Josifova
- Eye Clinic Orasis, Department for Medical and Surgical Retina, Reinach, Switzerland
| | - Katarzyna Konieczka
- Department of Ophthalmology, University of Basel, Switzerland
- Glaucoma Eye Practice Dr. K. Konieczka, Basel, Switzerland
| | | | - Josef Flammer
- Department of Ophthalmology, University of Basel, Switzerland
| |
Collapse
|
2
|
Huang KH, Chang YL, Lee CB, Gau SY, Tsai TH, Chung NJ, Lee CY. Dose-response association of metformin use and risk of age-related macular degeneration among patients with type 2 diabetes mellitus: a population-based study. Front Pharmacol 2023; 14:1275095. [PMID: 38074151 PMCID: PMC10710142 DOI: 10.3389/fphar.2023.1275095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 09/23/2024] Open
Abstract
Background: Recent studies have demonstrated that patients with type 2 diabetes mellitus (T2DM) who receive metformin have a decreased risk of developing age-related macular degeneration (AMD). However, other studies have also suggested that metformin may increase the risk of AMD development. Therefore, this study investigated the association between treatment with metformin and the risk of AMD in patients with T2DM by using Taiwan' National Health Insurance Research Database. Methods: Patients who received a diagnosis of new-onset T2DM between 2002 and 2013 were enrolled in this study. The patients were divided into patients treated and not treated with metformin to evaluate the risk of AMD after 5 years of follow-up. The logistic regression was used to estimate the risk of AMD associated with the intensity of treatment with metformin. Result: A total of 7 517 patients (103.16 patients per 10,000 people) developed AMD in 5 years after DM diagnosis. After adjusting for the relevant variables, patients with T2DM treated with <5 defined daily dose (DDD)/month of metformin had a lower risk of AMD (odds ratios [OR]: 0.93; 95% confidence interval [CI]: 0.88 0.99). Patients treated with >25 DDD/month of metformin had a higher risk of AMD (OR: 1.39; 95% CI: 1.08-1.78). Conclusion: Metformin use may be associated with a risk of AMD among patients with T2DM in a dose-dependent association manner, with the greater benefit at lower DDD/month. However, higher DDD/month exhibited an increased risk of AMD.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ya-Lan Chang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiachi Bonnie Lee
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ning-Jen Chung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Bjørke-Monsen AL, Lysne V. Vitamin B 12 - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10257. [PMID: 38084149 PMCID: PMC10710864 DOI: 10.29219/fnr.v67.10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/02/2022] [Accepted: 09/27/2023] [Indexed: 01/31/2025] Open
Abstract
Vitamin B12 (cobalamin) is essential for normal metabolic function, and even moderate deficiency of this vitamin has negative health effects. Vitamin B12 is found in animal foods, and as vegetarian diets are increasingly popular in Western countries, one might expect a higher prevalence of vitamin B12 deficiency in the Nordic population. Setting recommendations for vitamin B12 intake has proven to be difficult, as uptake of vitamin B12 varies substantially, the clinical deficiency symptoms are often diffuse, and there is no clear agreement on the decision limits for vitamin B12 deficiency. Vitamin B12 deficiency is reported to be particularly common among pregnant women and infants, despite the fact that less than 1% of Norwegian pregnant women have a cobalamin intake below the Nordic Nutrition Recommendations 2012-recommended level of 2.0 µg/day. In addition, the assumption that breast milk contains sufficient vitamin B12 for optimal health and neurodevelopment during the first 6 months of life does not comply with the high prevalence of insufficient vitamin B12 status in this age group. Recommended intakes of vitamin B12 vary among age groups and must be based on markers of cobalamin status, indicating an optimal intracellular biochemical status, and not merely absence of clinical signs of vitamin B12 deficiency.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
4
|
Merle B. [Nutrition and age-related macular degeneration]. J Fr Ophtalmol 2023; 46:949-955. [PMID: 37758543 DOI: 10.1016/j.jfo.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in France and in other industrialized countries. AMD affects around 20 % of the population over the age of 80 years. This complex and multifactorial disease involves both genetic susceptibility and environmental factors. Smoking and nutrition are well-known modifiable risk factors for AMD. Numerous studies provide convincing arguments in favor of micronutrients to encourage dietary advice and the prescription of nutritional supplements containing antioxidant vitamins, lutein and omega-3 fatty acids. Attention to modifiable risk factors is of utmost importance to reduce progression to advanced AMD and associated medical and societal burdens.
Collapse
Affiliation(s)
- B Merle
- University of Bordeaux, Inserm, BPH, U1219, 33000 Bordeaux, France.
| |
Collapse
|
5
|
Pereira A, Adekunle RD, Zaman M, Wan MJ. Association Between Vitamin Deficiencies and Ophthalmological Conditions. Clin Ophthalmol 2023; 17:2045-2062. [PMID: 37489231 PMCID: PMC10363387 DOI: 10.2147/opth.s401262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Vitamin deficiencies can have adverse effects on health, including on the visual system. The ocular manifestations of a vitamin deficiency are related to the underlying biochemical function of the particular nutrient. While vitamin deficiencies are not common in developed counties, they are still prevalent in parts of the developing world and in specific, vulnerable populations. Vitamin deficiencies can cause or contribute to many ophthalmological conditions and eye diseases may even be the first presenting finding of a vitamin deficiency. As such, it is important for ophthalmologists to be aware of the ocular manifestations of vitamin deficiencies, especially given that the complications can be severe and effectively treated if identified early. This review summarizes the literature on the main vitamins known to have characteristic ocular manifestations: vitamins A, B1, B2, B9, B12, C, D, E and K. The function, epidemiology, manifestations, workup, and management of each vitamin is discussed in detail.
Collapse
Affiliation(s)
- Austin Pereira
- University of Toronto Department of Ophthalmology & Vision Sciences, Toronto, Ontario, Canada
| | - R Damilola Adekunle
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Michele Zaman
- Queen’s School of Medicine, Kingston, Ontario, Canada
| | - Michael J Wan
- University of Toronto Department of Ophthalmology & Vision Sciences, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kubo Y, Shoji K, Tajima A, Horiguchi S, Fukuoka H, Nishikawa M, Kagawa Y, Kawabata T. Serum 5-Methyltetrahydrofolate Status Is Associated with One-Carbon Metabolism-Related Metabolite Concentrations and Enzyme Activity Indicators in Young Women. Int J Mol Sci 2023; 24:10993. [PMID: 37446171 DOI: 10.3390/ijms241310993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| |
Collapse
|
7
|
B Vitamins and Incidence of Advanced Age-Related Macular Degeneration: The Alienor Study. Nutrients 2022; 14:nu14142821. [PMID: 35889778 PMCID: PMC9318446 DOI: 10.3390/nu14142821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
B vitamins may protect against age-related macular degeneration (AMD). We evaluated the associations of dietary intake and serum vitamins with the incidence of advanced AMD in the Alienor study. The Alienor study is a prospective population-based cohort of 963 residents of Bordeaux, France, who were 73 years or older at baseline (2006-2008). Examinations were performed every two years over an eight-year period. The incidence of AMD is based on retinal fundus photographs and spectral-domain optical coherence tomography examinations. Among the 861 included participants, 93 developed incident AMD during a median follow-up time of 9.8 years. Participants with normal serum folate (≥10 nmol/L) significantly had a 51% reduced risk for AMD in the fully adjusted Cox model (HR, 0.49 [95% CI, 0.25-0.95], p = 0.036). Participants with a higher dietary intake of B5 and B6 vitamins had a lower risk for developing AMD of up to 28% (HR, 0.72 for 1-SD increase [0.53-0.99], p = 0.049; HR, 0.90 [0.81-0.99], p = 0.049, respectively). This cohort study of older adults suggests a strong association between a normal serum folate status, a high dietary intake of B5 and B6 and a lower risk for developing advanced AMD. Adopting a healthy diet rich in B vitamins may help to reduce vision loss due to AMD.
Collapse
|
8
|
Su S, Zhang D, Liu J, Zhao H, Tang X, Che H, Wang Q, Ren W, Zhen D. Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells. J Bone Miner Metab 2022; 40:422-433. [PMID: 35190897 DOI: 10.1007/s00774-022-01313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/14/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Homocysteine (Hcy) is considered a newly identified risk factor for osteoporosis. Nevertheless, the underlying mechanism of folate (FA), a key factor in the metabolism of Hcy, in protection against osteoblast dysfunction remains unclear. The purpose of this study was to investigate the mechanism by which FA attenuates Hcy-induced osteoblast damage. MATERIALS AND METHODS The Hcy-induced MC3T3-E1 cells were treated with different concentrations of FA. Cell morphology, cell density, cell proliferation ability, alkaline phosphatase (ALP) activity and mineralization capacity were observed and determined; the gene expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) and ERS-associated factors, including glucose-regulated protein 78 (GRP-78), activating transcription factor 4 (ATF-4) and growth arrest and DNA damage inducible gene 153 (CHOP/GADD153), were assessed by RT-PCR; and protein levels of GRP-78 and ATF-4 were analyzed by western blotting. RESULTS Hcy suppressed the proliferation, differentiation and mineralization ability of MC3T3-E1 cells in a concentration-dependent manner and activated the ERS signaling pathway. After intervention with different concentrations of FA, the cell viability and density, ALP activity, number of mineralized nodules, calcium content and Bcl-2 gene expression were all significantly increased, whereas the gene expression of GRP-78, CHOP/GADD153, ATF-4 and Bax was markedly downregulated, and protein levels of GRP-78 and ATF-4 were also markedly decreased. CONCLUSION The adverse effects of Hcy on osteoblast differentiation are dose dependent. FA not only protects against osteoblasts apoptosis but also has a direct osteogenic effect on Hcy-induced osteoblasts, which could be partially mediated by inhibition of the PERK-activated ERS pathway.
Collapse
Affiliation(s)
- Shan Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Di Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyan Zhao
- Department of Paediatrics, Gansu Province People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Hongxia Che
- Department of Endocrinology, The Third People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Qiangmei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Wanna Ren
- Department of Opthalmology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
9
|
Effect of long-term chronic hyperhomocysteinemia on retinal structure and function in the cystathionine-β-synthase mutant mouse. Exp Eye Res 2022; 214:108894. [PMID: 34906600 PMCID: PMC9251730 DOI: 10.1016/j.exer.2021.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023]
Abstract
Elevated levels of the excitatory amino acid homocysteine (Hcy) have been implicated in retinal diseases in humans including glaucoma and macular degeneration. It is not clear whether elevated Hcy levels are pathogenic. Models of hyperhomocysteinemia (Hhcy) have proven useful in addressing this including mice with deficiency in the enzyme cystathionine β-synthase (CBS). Cbs+/- mice have a ∼two-fold increase in plasma and retinal Hcy levels. Previous studies of visual function and structure in Cbs+/- mice during the first 10 months of life revealed mild ganglion cell loss, but minimal electrophysiological alterations. It is not clear whether extended, chronic exposure to moderate Hhcy elevation will lead to visual function loss and retinal pathology. The present study addressed this by performing comprehensive analyses of retinal function/structure in 20 month Cbs+/- and Cbs+/+ (WT) mice including IOP, SD-OCT, scotopic and photopic ERG, pattern ERG (pERG), and visual acuity. Eyes were harvested for histology and immunohistochemical analysis of Brn3a (ganglion cells), dihydroethidium (oxidative stress) and GFAP (gliosis). The analyses revealed no difference in IOP between groups for age/strain. Visual acuity measured ∼0.36c/d for mice at 20 months in Cbs+/- and WT mice; contrast sensitivity did not differ between groups at either age. Similarly SD-OCT, scotopic/photopic ERG and pERG revealed no differences between 20 month Cbs+/- and WT mice. There was minimal disruption in retinal structure when eyes were examined histologically. Morphometric analysis revealed no significant differences in retinal layers. Immunohistochemistry revealed ∼5 RGCs/100 μm retinal length in both Cbs+/- and WT mice at 20 months. While there was greater oxidative stress and gliosis in older (20 month) mice versus young (4 month) mice, there was no difference in these parameters between the 20 month Cbs+/- and WT mice. We conclude that chronic, moderate Hhcy (at least due to deficiency of Cbs) is not accompanied by retinal structural/functional changes that differ significantly from age-matched WT littermates. Despite considerable evidence that severe Hhcy is toxic to retina, moderate Hhcy appears tolerated by retina suggesting compensatory cellular survival mechanisms.
Collapse
|
10
|
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, Kubatka P, Golubnitschaja O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J 2021; 12:477-505. [PMID: 34786033 PMCID: PMC8581606 DOI: 10.1007/s13167-021-00263-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Homocysteine (Hcy) metabolism is crucial for regulating methionine availability, protein homeostasis, and DNA-methylation presenting, therefore, key pathways in post-genomic and epigenetic regulation mechanisms. Consequently, impaired Hcy metabolism leading to elevated concentrations of Hcy in the blood plasma (hyperhomocysteinemia) is linked to the overproduction of free radicals, induced oxidative stress, mitochondrial impairments, systemic inflammation and increased risks of eye disorders, coronary artery diseases, atherosclerosis, myocardial infarction, ischemic stroke, thrombotic events, cancer development and progression, osteoporosis, neurodegenerative disorders, pregnancy complications, delayed healing processes, and poor COVID-19 outcomes, among others. This review focuses on the homocysteine metabolism impairments relevant for various pathological conditions. Innovative strategies in the framework of 3P medicine consider Hcy metabolic pathways as the specific target for in vitro diagnostics, predictive medical approaches, cost-effective preventive measures, and optimized treatments tailored to the individualized patient profiles in primary, secondary, and tertiary care.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
11
|
Smith AD, Refsum H. Homocysteine - from disease biomarker to disease prevention. J Intern Med 2021; 290:826-854. [PMID: 33660358 DOI: 10.1111/joim.13279] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023]
Abstract
We have reviewed the literature and have identified more than 100 diseases or conditions that are associated with raised concentrations of plasma total homocysteine. The commonest associations are with cardiovascular diseases and diseases of the central nervous system, but a large number of developmental and age-related conditions are also associated. Few other disease biomarkers have so many associations. The clinical importance of these associations becomes especially relevant if lowering plasma total homocysteine by B vitamin treatment can prevent disease and so improve health. Five diseases can at least in part be prevented by lowering total homocysteine: neural tube defects, impaired childhood cognition, macular degeneration, primary stroke, and cognitive impairment in the elderly. We conclude from our review that total homocysteine values in adults of 10 μmol/L or below are probably safe, but that values of 11 μmol/L or above may justify intervention. Homocysteine is more than a disease biomarker: it is a guide for the prevention of disease.
Collapse
Affiliation(s)
- A D Smith
- From the, University Department of Pharmacology, Oxford, UK
| | - H Refsum
- From the, University Department of Pharmacology, Oxford, UK.,Department Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Ravi R, Kumaraswamy A, Chauhan P, Subramaniam Rajesh B. Exogenous administration of hydrogen sulfide alleviates homocysteine induced inflammation in ARPE-19 cells. Exp Eye Res 2021; 212:108759. [PMID: 34499917 DOI: 10.1016/j.exer.2021.108759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023]
Abstract
Plasma homocysteine (Hcy) is an independent risk factor for Age related macular degeneration (AMD) and an inducer of inflammation. Homocysteine catabolism releases hydrogen sulfide (H2S). H2S has controversial effects on inflammation. In this study we have analysed the endogenous and exogenous H2S in modulating inflammation using adult retinal pigment epithelial (ARPE-19) cells as an in vitro model for AMD. ARPE-19 cells were treated with various concentrations of Hcy (15, 30 and 50 μM) for 3 h. Expression of Hcy transulfuration genes (CBS, CSE) by qPCR and western blot. H2S levels were measured using Free Radical Analyzer System (WPI, USA). The inflammatory markers (IL-6 and IL-8) were evaluated using real-time PCR and ELISA. Hcy exposure increased CBS protein expression, hydrogen sulfide levels and pro-inflammatory cytokines, modulating CBS by silencing did not alter H2S levels, but inhibition of CSE with PAG inhibited H2S production and decreased cytokine (IL-6 and IL-8) levels. On the contrary exogenous supply of hydrogen sulfide with NaHS and by compound 1c showed anti-inflammatory effects even in the presence of Hcy. This study shows that exogenous delivery of H2S decreases inflammation in retinal pigment epithelial cells on exposure to Hcy in ARPE-19 cells.
Collapse
Affiliation(s)
- Ramya Ravi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India; School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Anand Kumaraswamy
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Bharathidevi Subramaniam Rajesh
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India.
| |
Collapse
|
13
|
Implication of N-Methyl-d-Aspartate Receptor in Homocysteine-Induced Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22179356. [PMID: 34502266 PMCID: PMC8431693 DOI: 10.3390/ijms22179356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-β-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR−/−) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient’s serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.
Collapse
|
14
|
Leng S, Zhao A, Zhang J, Wu W, Wang Q, Wu S, Chen L, Zeng Q. Methylenetetrahydrofolate Reductase Gene C677T Polymorphism-Dietary Pattern Interaction on Hyperhomocysteinemia in a Chinese Population: A Cross-Sectional Study. Front Cardiovasc Med 2021; 8:638322. [PMID: 34250034 PMCID: PMC8263928 DOI: 10.3389/fcvm.2021.638322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023] Open
Abstract
Background and aim: Hyperhomocysteinemia (Hhcy) has been recognized as a risk factor of several chronic diseases. There is accumulating evidence that both genetic and dietary factors had a notable impact on the risk of Hhcy. The present study aims to investigate the interaction effect on Hhcy between methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and dietary intake. Methods: Data were collected in a cross-sectional survey conducted in China; 3,966 participants with complete information on sociodemographic characteristics, anthropometric measurements, and dietary intake were included in the analyses. Dietary patterns were identified by factor analysis combined with cluster analysis. Blood samples were collected and MTHFR C677T genotypes were tested. Both the multiplicative statistical model and the additive model were conducted to investigate the interactive effects. Results: Proportions of MTHFR C677T genotypes among participants were 29.2% for TT, 47.4% for CT, and 23.4% for CC. Three dietary patterns were identified, namely, the balanced pattern, the snack pattern, and the high-meat pattern. Compared with the balanced pattern, the other two patterns were associated with an elevated risk of Hhcy [the snack pattern: odds ratio (OR) 1.2, 95% confidence interval (CI) 1.0–1.5; the high-meat pattern: OR 1.3, 95% CI 1.1–1.6] after adjustment for age group, gender, residential region, and MTHFR C677T genotypes. A multiplicative interaction between the high-meat pattern and MTHFR 677TT genotype was observed, and synergistic effects between both the snack pattern and the high-meat pattern with MTHFR 677TT were identified. Conclusion: Our results indicated that MTHFR C677T polymorphism and dietary patterns had interactive effects on Hhcy among the Chinese population. Subsequent targeted and appropriate dietary guidelines should be recommended for high-risk populations or patients of Hhcy carrying specific genotypes.
Collapse
Affiliation(s)
- Song Leng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China.,Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Jian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Wei Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Qian Wang
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shan Wu
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Li Chen
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
15
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
16
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Wang X, Wang F, Feng Z, Cai J, Liu J. The association between levels of serum homocysteine and chronic heart failure: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24117. [PMID: 33592862 PMCID: PMC7870206 DOI: 10.1097/md.0000000000024117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Homocysteine (Hcy) is one of the main factors leading to arteriosclerosis, which is closely related to cardiovascular disease. Recent studies have found that serum Hcy levels are increased in patients with chronic heart failure (CHF), and it is speculated that Hcy may be a risk factor for CHF, but evidence-based medicine evidence is lacking. The aim of this study was to investigate the correlation between serum Hcy levels and CHF by means of systematic review. METHODS The databases of PubMed, Embase, The Cochrance Library, Web of Science, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), Wanfang and China Biology Medicine disc were searched by computer. In addition, Baidu Scholar and Google Scholar were manually searched to collect all case-control studies related to serum Hcy and CHF. The search time limit was from database establishment to November 2020. Two reviewers independently screened the literatures, extracted the data and evaluated the risk of bias of the included literatures. RESULTS In this study, we evaluated the correlation between serum Hcy levels and CHF by the levels of serum Hcy in CHF patients and non-CHF patients. CONCLUSIONS This study will provide reliable evidence for the clinical value of serum Hcy in the field of CHF disease. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/QMPRC.
Collapse
Affiliation(s)
| | - Fu Wang
- Gulang County People's Hospital, Wuwei, Gansu Province, China
| | | | | | | |
Collapse
|
18
|
George AK, Homme RP, Stanisic D, Tyagi SC, Singh M. Protecting the aging eye with hydrogen sulfide. Can J Physiol Pharmacol 2021; 99:161-170. [PMID: 32721225 DOI: 10.1139/cjpp-2020-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Research demonstrates that senescence is associated with tissue and organ dysfunction, and the eye is no exception. Sequelae arising from aging have been well defined as distinct clinical entities and vision impairment has significant psychosocial consequences. Retina and adjacent tissues like retinal pigmented epithelium and choroid are the key structures that are required for visual perception. Any structural and functional changes in retinal layers and blood retinal barrier could lead to age-related macular degeneration, diabetic retinopathy, and glaucoma. Further, there are significant oxygen gradients in the eye that can lead to excessive reactive oxygen species, resulting in endoplasmic reticulum and mitochondrial stress response. These radicals are source of functional and morphological impairment in retinal pigmented epithelium and retinal ganglion cells. Therefore, ocular diseases could be summarized as disturbance in the redox homeostasis. Hyperhomocysteinemia is a risk factor and causes vascular occlusive disease of the retina. Interestingly, hydrogen sulfide (H2S) has been proven to be an effective antioxidant agent, and it can help treat diseases by alleviating stress and inflammation. Concurrent glutamate excitotoxicity, endoplasmic reticulum stress, and microglia activation are also linked to stress; thus, H2S may offer additional interventional strategy. A refined understanding of the aging eye along with H2S biology and pharmacology may help guide newer therapies for the eye.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
19
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
20
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
21
|
Agrón E, Mares J, Clemons TE, Swaroop A, Chew EY, Keenan TDL. Dietary Nutrient Intake and Progression to Late Age-Related Macular Degeneration in the Age-Related Eye Disease Studies 1 and 2. Ophthalmology 2020; 128:425-442. [PMID: 32858063 DOI: 10.1016/j.ophtha.2020.08.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To analyze associations between the dietary intake of multiple nutrients and risk of progression to late age-related macular degeneration (AMD), its subtypes, and large drusen. DESIGN Post hoc analysis of 2 controlled clinical trial cohorts: Age-Related Eye Disease Study (AREDS) and AREDS2. PARTICIPANTS Eyes with no late AMD at baseline among AREDS participants (n = 4504) and AREDS2 participants (n = 3738) totaled 14 135 eyes. Mean age was 71.0 years (standard deviation, 6.7 years), and 56.5% of patients were women. METHODS Fundus photographs were collected at annual study visits and graded centrally for late AMD. Dietary intake of multiple nutrients was calculated from food frequency questionnaires. MAIN OUTCOME MEASURES Progression to late AMD, geographic atrophy (GA), neovascular AMD, and (separate analyses) large drusen. RESULTS Over median follow-up of 10.2 years, of the 14 135 eyes, 32.7% progressed to late AMD. For 9 nutrients, intake quintiles 4 or 5 (vs. 1) were associated significantly (P ≤ 0.0005) with decreased risk of late AMD: vitamin A, vitamin B6, vitamin C, folate, β-carotene, lutein and zeaxanthin, magnesium, copper, and alcohol. For 3 nutrients, quintiles 4 or 5 were associated significantly with increased risk: saturated fatty acid, monounsaturated fatty acid, and oleic acid. Similar results were observed for GA. Regarding neovascular AMD, 9 nutrients were associated nominally with decreased risk-vitamin A, vitamin B6, β-carotene, lutein and zeaxanthin, magnesium, copper, docosahexaenoic acid, omega-3 fatty acid, and alcohol-and 3 nutrients were associated with increased risk-saturated fatty acid, monounsaturated fatty acid, and oleic acid. In separate analyses (n = 5399 eyes of 3164 AREDS participants), 12 nutrients were associated nominally with decreased risk of large drusen. CONCLUSIONS Higher dietary intake of multiple nutrients, including minerals, vitamins, and carotenoids, is associated with decreased risk of progression to late AMD. These associations are stronger for GA than for neovascular AMD. The same nutrients also tend to show protective associations against large drusen development. Strong genetic interactions exist for some nutrient-genotype combinations, particularly omega-3 fatty acids and CFH. These data may justify further research into underlying mechanisms and randomized trials of supplementation.
Collapse
Affiliation(s)
- Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie Mares
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | | |
Collapse
|
22
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
23
|
Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. EYE AND VISION (LONDON, ENGLAND) 2020; 7:33. [PMID: 32582807 PMCID: PMC7310218 DOI: 10.1186/s40662-020-00199-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a form of microangiopathy. Reducing oxidative stress in the mitochondria and cell membranes decreases ischemic injury and end-organ damage to the retina. New approaches are needed, which reduce the risk and improve the outcomes of DR while complementing current therapeutic approaches. Homocysteine (Hcy) elevation and oxidative stress are potential therapeutic targets in DR. Common genetic polymorphisms such as those of methylenetetrahydrofolate reductase (MTHFR), increase Hcy and DR risk and severity. Patients with DR have high incidences of deficiencies of crucial vitamins, minerals, and related compounds, which also lead to elevation of Hcy and oxidative stress. Addressing the effects of the MTHFR polymorphism and addressing comorbid deficiencies and insufficiencies reduce the impact and severity of the disease. This approach provides safe and simple strategies that support conventional care and improve outcomes. Suboptimal vitamin co-factor availability also impairs the release of neurotrophic and neuroprotective growth factors. Collectively, this accounts for variability in presentation and response of DR to conventional therapy. Fortunately, there are straightforward recommendations for addressing these issues and supporting traditional treatment plans. We have reviewed the literature for nutritional interventions that support conventional therapies to reduce disease risk and severity. Optimal combinations of vitamins B1, B2, B6, L-methylfolate, methylcobalamin (B12), C, D, natural vitamin E complex, lutein, zeaxanthin, alpha-lipoic acid, and n-acetylcysteine are identified for protecting the retina and choroid. Certain medical foods have been successfully used as therapy for retinopathy. Recommendations based on this review and our clinical experience are developed for clinicians to use to support conventional therapy for DR. DR from both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have similar retinal findings and responses to nutritional therapies.
Collapse
Affiliation(s)
- Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shriya Airen
- College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Craig Brown
- Department of Ophthalmology, College of Medicine, the University of Arkansas for Medical Sciences, Fayetteville, AR USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Justin H. Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
24
|
Schmidl D, Howorka K, Szegedi S, Stjepanek K, Puchner S, Bata A, Scheschy U, Aschinger G, Werkmeister RM, Schmetterer L, Garhofer G. A pilot study to assess the effect of a three-month vitamin supplementation containing L-methylfolate on systemic homocysteine plasma concentrations and retinal blood flow in patients with diabetes. Mol Vis 2020; 26:326-333. [PMID: 32355442 PMCID: PMC7190578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/22/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose The aim of the present study was to investigate the effect of a three-month dietary supplementation with a methylfolate formulation on homocysteine plasma concentrations and ocular blood flow parameters in patients with diabetes. Methods Twenty-four patients with diabetes received a dietary supplement (Oculofolin, Aprofol AG, Switzerland) containing 900 µg L‑methylfolate (levomefolate calcium or [6S]-5-methyltetrahydrofolic acid, calcium salt), methylcobalamin, and other ingredients for three consecutive months. The patients' plasma homocysteine concentration and retinal blood flow were assessed at baseline and after three months of folate intake. Retinal blood flow was measured using a custom-built dual-beam Doppler optical coherence tomography (OCT) system. In addition, flicker-induced retinal vasodilatation was assessed by means of a commercially available dynamic vessel analyzer (IMEDOS, Jena, Germany). Results Supplementation was well tolerated by all patients. After three months, plasma homocysteine concentration significantly decreased from 14.2 ± 9.3 to 9.6 ± 6.6 µmol/L (p < 0.001). In addition, a tendency toward an increased total retinal blood flow from 36.8 ± 12.9 to 39.2 ± 10.8 µl/min was observed, but this effect did not reach the level of significance (p = 0.11). Supplementation had no effect on retinal vessel diameter or flicker-induced vasodilatation. Conclusions The present data show that a three-month intake of a dietary supplement containing methylfolate can significantly reduce blood homocysteine levels in patients with diabetes. This is of importance because higher homocysteine plasma levels have been found to be associated with an increased risk of vascular associated systemic diseases and eye diseases. Whether systemic methylfolate supplementation affects retinal perfusion must be studied in a larger population.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kinga Howorka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Stephan Szegedi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kristina Stjepanek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria,Department of Ophthalmology, Vienna Institute for Research in Ocular Surgery – Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
| | - Stefan Puchner
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ahmed Bata
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Scheschy
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerold Aschinger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria,Singapore Eye Research Institute, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore,Institute of Ophthalmology, Basel, Switzerland
| | - Gerhard Garhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Elsherbiny NM, Sharma I, Kira D, Alhusban S, Samra YA, Jadeja R, Martin P, Al-Shabrawey M, Tawfik A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules 2020; 10:biom10030393. [PMID: 32138265 PMCID: PMC7175372 DOI: 10.3390/biom10030393] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/03/2023] Open
Abstract
Homocysteine (Hcy) is an amino acid that requires vitamins B12 and folic acid for its metabolism. Vitamins B12 and folic acid deficiencies lead to hyperhomocysteinemia (HHcy, elevated Hcy), which is linked to the development of diabetic retinopathy (DR), age-related macular degeneration (AMD), and Alzheimer’s disease (AD). The goal of the current study was to explore inflammation as an underlying mechanism of HHcy-induced pathology in age related diseases such as AMD, DR, and AD. Mice with HHcy due to a lack of the enzyme cystathionine-β-synthase (CBS) and wild-type mice were evaluated for microglia activation and inflammatory markers using immuno-fluorescence (IF). Tissue lysates isolated from the brain hippocampal area from mice with HHcy were evaluated for inflammatory cytokines using the multiplex assay. Human retinal endothelial cells, retinal pigment epithelial cells, and monocyte cell lines treated with/without Hcy were evaluated for inflammatory cytokines and NFκB activation using the multiplex assay, western blot analysis, and IF. HHcy induced inflammatory responses in mouse brain, retina, cultured retinal, and microglial cells. NFκB was activated and cytokine array analysis showed marked increase in pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Therefore, elimination of excess Hcy or reduction of inflammation is a promising intervention for mitigating damage associated with HHcy in aging diseases such as DR, AMD, and AD.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Isha Sharma
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Yara A. Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ravirajsinh Jadeja
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
| | - Pamela Martin
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
26
|
Lister T. Nutritional, Alternative, and Complementary Therapies for Age-related Macular Degeneration. Integr Med (Encinitas) 2019; 18:30-36. [PMID: 32549854 PMCID: PMC7238905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in people over the age of 65 particularly in those who are smokers, obese, White race, genetically predisposed and environmentally exposed. The root cause is thought to be photochemical damage causing oxidative stress to the macula coupled with low grade inflammation over many years which also contributes to the progression of the disease. The hallmark studies Age-Related Eye Disease Study (AREDS) and AREDS2 found a formulation consisting of 500 mg vitamin C, 400 IU vitamin E, 25 mg zinc, 2 mg copper, 10 mg lutein and 2 mg zeaxanthin effective for slowing the progression AMD. Subsequent studies suggest diet therapy, higher dosages of zeaxanthin and supplementing with vitamin D, vitamin B12, and omega-3 fatty acids may further reduce the progression of the disease.
Collapse
Affiliation(s)
- Tracy Lister
- Corresponding author: Tracy Lister, RD, MHS, MSCN E-mail address:
| |
Collapse
|
27
|
Alam SF, Kumar S, Ganguly P. Measurement of homocysteine: a historical perspective. J Clin Biochem Nutr 2019; 65:171-177. [PMID: 31777417 PMCID: PMC6877406 DOI: 10.3164/jcbn.19-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/28/2019] [Indexed: 02/03/2023] Open
Abstract
Elevated plasma level of homocysteine is being increasingly associated with many diseases. There is a significant interest in the development of methods to determine the total homocysteine in biologically relevant tissues. Over the years, researchers use various methods to determine the exact concentrations of homocysteine in these tissues. However, the precise method used in many studies earlier was questionable. We have reviewed various methodologies for the measurement of homocysteine. We list the commonly used methodologies currently in use to determine homocysteine levels. Through extensive literature search, we have come up with the most popular as well as the newest measurement modalities and listed them with a brief discussion of each of the methodology. In conclusion, we have presented the historical perspective of homocysteine measurement in biological fluids in this manuscript. Thus, the precise understanding of its concentration in biological fluids coupled with its importance in health and disease should justify a newer but reliable technique in the area of ongoing research in homocysteine.
Collapse
Affiliation(s)
- Sreyoshi Fatima Alam
- College of Medicine, Alfaisal University, PO Box 50927, Riyadh 11533, Kingdom of Saudi Arabia
| | - Santosh Kumar
- College of Medicine, Alfaisal University, PO Box 50927, Riyadh 11533, Kingdom of Saudi Arabia
| | - Paul Ganguly
- College of Medicine, Alfaisal University, PO Box 50927, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
George AK, Homme RP, Majumder A, Laha A, Metreveli N, Sandhu HS, Tyagi SC, Singh M. Hydrogen sulfide intervention in cystathionine-β-synthase mutant mouse helps restore ocular homeostasis. Int J Ophthalmol 2019; 12:754-764. [PMID: 31131233 DOI: 10.18240/ijo.2019.05.09] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/24/2019] [Indexed: 02/03/2023] Open
Abstract
AIM To investigate the applications of hydrogen sulfide (H2S) in eye-specific ailments in mice. METHODS Heterozygous cystathionine-β-synthase (CBS+/-) and wild-type C57BL/6J (WT) mice fed with or without high methionine diet (HMD) were administered either phosphate buffered saline (PBS) or the slow-release H2S donor: GYY4137. Several analyses were performed to study GYY4137 effects by examining retinal lysates for key protein expressions along with plasma glutamate and glutathione estimations. Intraocular pressure (IOP) was monitored during GYY4137 treatment; barium sulfate and bovine serum albumin conjugated fluorescein isothiocyanate (BSA-FITC) angiographies were performed for examining vasculature and its permeability post-treatment. Vision-guided behavior was also tested employing novel object recognition test (NORT) and light-dark box test (LDBT) recordings. RESULTS CBS deficiency (CBS+/-) coupled with HMD led disruption of methionine/homocysteine (Hcy) metabolism leading to hyperhomocysteinemia (HHcy) in CBS+/- mice as reflected by increased Hcy, and s-adenosylhomocysteine hydrolase (SAHH) levels. Unlike CBS, cystathionine-γ lyase (CSE), methylenetetrahydrofolate reductase (MTHFR) levels which were reduced but compensated by GYY4137 intervention. Heightened oxidative and endoplasmic reticulum (ER) stress responses were mitigated by GYY4137 effects along with enhanced glutathione (GSH) levels. Increased glutamate levels in CBS+/- strain were prominent than WT mice and these mice also exhibited higher IOP that was lowered by GYY4137 treatment. CBS deficiency also resulted in vision-guided behavioral impairment as revealed by NORT and LDBT findings. Interestingly, GYY4137 was able to improve CBS+/- mice behavior together with lowering their glutamate levels. Blood-retinal barrier (BRB) appeared compromised in CBS+/- with vessels' leakage that was mitigated in GYY4137 treated group. This corroborated the results for occludin (an integral plasma membrane protein of the cellular tight junctions) stabilization. CONCLUSION Findings reveal that HHcy-induced glutamate excitotoxicity, oxidative damage, ER-stress and vascular permeability alone or together can compromise ocular health and that GYY4137 could serve as a potential therapeutic agent for treating HHcy induced ocular disorders.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Naira Metreveli
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Harpal S Sandhu
- Department of Ophthalmology and Visual Sciences; Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
30
|
AnandBabu K, Sen P, Angayarkanni N. Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells. PLoS One 2019; 14:e0216899. [PMID: 31086404 PMCID: PMC6516731 DOI: 10.1371/journal.pone.0216899] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Age-related Macular Degeneration (AMD) is one of the major vision-threatening diseases of the eye. Oxidative stress is one of the key factors in the onset and progression of AMD. In this study, metabolites associated with AMD pathology more so at the systemic level namely, oxidized LDL (oxLDL), homocysteine (Hcy), homocysteine thiolactone (HCTL), advanced glycation end product (AGE) were evaluated for their pro-oxidant nature in a localized ocular environment based on in vitro studies in human retinal pigment epithelial cells (ARPE-19 cells). Human ARPE-19 cells were treated with pro-oxidants 50 μg/mL oxLDL, 500 μM Hcy, 500 nM HCTL, 100 μg/mL AGE, 200 μM H2O2 and 200 μM H2O2 with and without pre-treatment of 5 mM N-acetyl cysteine (NAC). The cytokines IL-6, IL-8 and vascular endothelial growth factor (VEGF) secreted from ARPE-19 cells exposed to pro-oxidants were estimated by ELISA. In vitro angiogenesis assay was performed with conditioned media of the pro-oxidant treated ARPE-19 cells in Geltrex-Matrigel coated 96-well plate. The human acute monocytic leukemia cell line (THP-1) was differentiated into macrophages and its migration in response to conditioned media of ARPE-19 cells insulted with the pro-oxidants was studied by transwell migration assay. Western blot was performed to detect the protein expression of Bax, Bcl-2 and NF-κB to assess apoptotic changes. The compounds involved in the study showed a significant increase in reactive oxygen species (ROS) generation in ARPE-19 cells (oxLDL; Hcy; AGE: p < 0.001 and HCTL: p < 0.05). NAC pre-treatment significantly lowered the oxidative stress brought about by pro-oxidants as seen by lowered ROS and MDA levels in the cells. Treatment with pro-oxidants significantly increased the secretion of IL-6 (oxLDL: p < 0.05; Hcy, HCTL and AGE: p < 0.01) and IL-8 cytokines (oxLDL: p < 0.05; HCTL: p <. 001 and AGE: p < 0.01) in ARPE-19 cells. Serum samples of AMD patients (n = 23) revealed significantly higher IL-6 and IL-8 levels compared to control subjects (n = 23) (IL6: p < 0.01 and IL8: p < 0.05). The pro-oxidants also promoted VEGF secretion by ARPE-19 cells compared to untreated control (oxLDL: p < 0.001; Hcy: p < 0.01; HCTL and AGE: p < 0.05). In vitro angiogenesis assay showed that the conditioned media significantly increased the tube formation in RF/6A endothelial cells. Transwell migration assay revealed significant infiltration of macrophages in response to pro-oxidants. We further demonstrated that the pro-oxidants increased the Bax/Bcl-2 ratio and increased the NF-κB activation resulting in pro-apoptotic changes in ARPE-19 cells. Thus, oxLDL, Hcy, HCTL and AGE act as pro-oxidant metabolites in RPE that promote AMD through oxidative stress, inflammation, chemotaxis and neovascularization.
Collapse
Affiliation(s)
- Kannadasan AnandBabu
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Narayanasamy Angayarkanni
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: ,
| |
Collapse
|
31
|
Waugh N, Loveman E, Colquitt J, Royle P, Yeong JL, Hoad G, Lois N. Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol Assess 2019; 22:1-168. [PMID: 29846169 DOI: 10.3310/hta22270] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual loss in older people. Advanced AMD takes two forms, neovascular (wet) and atrophic (dry). Stargardt disease (STGD) is the commonest form of inherited macular dystrophy. OBJECTIVE To carry out a systematic review of treatments for dry AMD and STGD, and to identify emerging treatments where future NIHR research might be commissioned. DESIGN Systematic review. METHODS We searched MEDLINE, EMBASE, Web of Science and The Cochrane Library from 2005 to 13 July 2017 for reviews, journal articles and meeting abstracts. We looked for studies of interventions that aim to preserve or restore vision in people with dry AMD or STGD. The most important outcomes are those that matter to patients: visual acuity (VA), contrast sensitivity, reading speed, ability to drive, adverse effects of treatment, quality of life, progression of disease and patient preference. However, visual loss is a late event and intermediate predictors of future decline were accepted if there was good evidence that they are strong predictors of subsequent visual outcomes. These include changes detectable by investigation, but not necessarily noticed by people with AMD or STGD. ClinicalTrials.gov, the World Health Organization search portal and the UK Clinical Trials gateway were searched for ongoing and recently completed clinical trials. RESULTS The titles and abstracts of 7948 articles were screened for inclusion. The full text of 398 articles were obtained for further screening and checking of references and 112 articles were included in the final report. Overall, there were disappointingly few good-quality studies (including of sufficient size and duration) reporting useful outcomes, particularly in STGD. However we did identify a number of promising research topics, including drug treatments, stem cells, new forms of laser treatment, and implantable intraocular lens telescopes. In many cases, research is already under way, funded by industry or governments. LIMITATIONS In AMD, the main limitation came from the poor quality of much of the evidence. Many studies used VA as their main outcome despite not having sufficient duration to observe changes. The evidence on treatments for STGD is sparse. Most studies tested interventions with no comparison group, were far too short term, and the quality of some studies was poor. FUTURE WORK We think that the topics on which the Health Technology Assessment (HTA) and Efficacy Mechanism and Evaluation (EME) programmes might consider commissioning primary research are in STGD, a HTA trial of fenretinide (ReVision Therapeutics, San Diego, CA, USA), a visual cycle inhibitor, and EME research into the value of lutein and zeaxanthin supplements, using short-term measures of retinal function. In AMD, we suggest trials of fenretinide and of a potent statin. There is epidemiological evidence from the USA that the drug, levodopa, used for treating Parkinson's disease, may reduce the incidence of AMD. We suggest that similar research should be carried out using the large general practice databases in the UK. Ideally, future research should be at earlier stages in both diseases, before vision is impaired, using sensitive measures of macular function. This may require early detection of AMD by screening. STUDY REGISTRATION This study is registered as PROSPERO CRD42016038708. FUNDING The National Institute for Health Research HTA programme.
Collapse
Affiliation(s)
- Norman Waugh
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Pamela Royle
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Noemi Lois
- Ophthalmology, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Centre for Experimental Medicine, Queens University, Belfast, UK
| |
Collapse
|
32
|
Folic acid deficiency and vision: a review. Graefes Arch Clin Exp Ophthalmol 2019; 257:1573-1580. [PMID: 30919078 DOI: 10.1007/s00417-019-04304-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 03/20/2019] [Indexed: 02/03/2023] Open
Abstract
Folic acid (FA), also termed folate, is an essential vitamin for health at all ages since it participates in the biosynthesis of nucleotides, amino acids, neurotransmitters, and certain vitamins. It is therefore crucial for rapidly growing tissues such as those of the fetus. It is becoming clear that FA deficiency and impaired folate pathways are implicated in many diseases of both early life and old age. FA can be transported into the cell by the folate receptor, the reduced folate transporter, and proton-coupled folate transporter. Folate transport proteins are present in certain eye tissues, which explains why FA plays an important role in eye development. The purpose of this literature review is to investigate the evidence relating FA deficiency to eye diseases.
Collapse
|
33
|
Huang P, Sun J, Wang F, Luo X, Zhu H, Gu Q, Sun X, Liu T, Sun X. DNMT1 and Sp1 competitively regulate the expression of BACE1 in A2E-mediated photo-oxidative damage in RPE cells. Neurochem Int 2018; 121:59-68. [PMID: 30273642 DOI: 10.1016/j.neuint.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Numerous studies have focused on the deteriorate role of amyloid-β (Aβ) on retina, implying the potential pathogenic mechanism underlying age-related macular degeneration (AMD). However, the mechanism underlying the Aβ deposition in AMD patients remains unknown. Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), rate-limiting enzyme for Aβ production, plays an important role in Aβ deposition in the brain. In the current study, we aimed to clarify the regulation mechanism of BACE1 and explore potential drug targets using a lipofuscinfluorophore A2E-mediated photo-oxidation model. In this model, Aβ1-40 and Aβ1-42 levels increased simultaneously with the enhanced BACE1 expression. These changes were associated with the hypomethylation of specific loci within the BACE1 gene promoter and the decreased levels of DNA methyltransferase 1 (DNMT1). Furthermore, we noticed overlapping regions of differentially methylated CpG islands and specificity protein (Sp1) binding sites within the BACE1 promoter. We employed chromatin immunoprecipitation (ChIP) assay to verify that the decreased BACE1 promoter methylation by DNMT1 enabled increased binding between Sp1 and the BACE1 promoter, which further enhanced BACE1 transcription. The inhibition of Sp1 with mithramycin A (MTM) could down-regulate the expression of BACE1 as well as alleviate the RPE barrier morphology and function impairment. Our results for the first time show the competitive regulation of BACE1 by transcription factor Sp1 and DNMT1 after photo-oxidation and confirm the potential novel protective role of MTM on RPE cells.
Collapse
Affiliation(s)
- Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xiangjun Sun
- School of Biology and Agriculture, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, USA; Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Murillo González J, Barrio Asensio MDC. Biometric Alterations of Mouse Embryonic Eye Structures Due to Short-Term Folic Acid Deficiency. Curr Eye Res 2018; 44:428-435. [PMID: 30403890 DOI: 10.1080/02713683.2018.1545911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Folic acid (FA) is an essential nutrient for normal embryonic development. FA deficiency (FAD) in maternal diet increases the risk of several defects among the progeny, especially, neural tube defects. The eye begins its development from the neural tube; however, the relationship between FAD and ocular development in the offspring has been little explored and it isn't known how the FAD affects the formation of the eye. Our objective was to analyze the effect of maternal FAD on mouse embryos ocular biometry. METHODS Female mice C57/BL/6J were distributed into three different groups, according to the assigned diet: control group fed a standard FA diet (2 mg FA/kg), FAD group for short term fed (0 mg FA/kg + 1% succinylsulfathiazole) from the day after mating until day 14.5 of gestation, and FAD group for long term fed the same FA-deficient diet for 6 weeks prior mating and continued with this diet during gestation. A total of 57 embryos (19 embryos of each dietary group) at 14.5 gestational days were evaluated. As indicators of changes in ocular biometry, we analyze two parameters: area and circularity of the lens and whole eye, and the area of the retina. The program used in the treatment and selection of the areas of interest was ImageJ. The statistical analysis was performed by IBM SPSS Statistics 19. RESULTS Regarding the measures of the area, FA-deficient lenses and eyes were smaller than that of controls. We have also observed increase in the size of the neural retina, spatially, in embryos from females fed FAD diet during long term. On the other hand, as regard to circularity measures, we have seen that eyes and lenses were more circular than control. CONCLUSION Maternal FAD diet for a very short term generates morphological changes in ocular structures to the offspring.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain.,b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - José Manuel López-Alonso
- b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Aurora Del Río Sevilla
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Jorge Murillo González
- c Faculty of medicine, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - María Del Carmen Barrio Asensio
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| |
Collapse
|
35
|
Hyperhomocysteinemia Causes Chorioretinal Angiogenesis with Placental Growth Factor Upregulation. Sci Rep 2018; 8:15755. [PMID: 30361676 PMCID: PMC6202361 DOI: 10.1038/s41598-018-34187-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/12/2018] [Indexed: 02/03/2023] Open
Abstract
Hyperhomocysteinemia is a risk factor for atherosclerosis, which may also be associated with retinal vascular disease, diabetic retinopathy, retinal vein occlusion, and glaucoma. For this study, we established a hyperhomocysteinemia animal model to explore homocysteine (hcy)-related choroidal angiogenesis and possible related factors. We injected Sprague Dawley (SD) rats with different concentrations of hcy and performed color fundus imaging, fluorescein angiography, image-guided optical coherence tomography, and retinal histology to observe the retinal and choroidal changes. Subsequently, we observed prominent choroidal vasculature with congested and tortuous retinal and choroidal vessels in fundus angiographies of the hyperhomocysteinemia animal model. In the histological study, the choroidal capillaries proliferated in the hcy-treated eyes, mimicking choroidal neovascularization. Disrupted retinal pigment epithelium (RPE), abnormal branching vascular network (BVN), and polyp-like structures were also observed in the hcy-treated eyes. Furthermore, we found that placental growth factor (PlGF), but not vascular epithelial growth factor (VEGF), was the key mediating factor of this phenomenon. Our findings suggest that hyperhomocysteinemia might cause choroidal angiogenesis.
Collapse
|
36
|
Pinna A, Zaccheddu F, Boscia F, Carru C, Solinas G. Homocysteine and risk of age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol 2018; 96:e269-e276. [PMID: 27966830 DOI: 10.1111/aos.13343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Abstract
There is still no agreement on total plasma homocysteine (tHcy) role in age-related macular degeneration (AMD), the leading cause of new blindness in industrialized countries. We performed a systematic review and meta-analysis of the published data on the correlation between tHcy and AMD. MEDLINE/PubMed and ISI Web of Sciences searches were performed according to MOOSE guidelines. Case-control studies were eligible for inclusion. Participants and controls were AMD patients and subjects without AMD. The main outcome measure was wet AMD. Homocysteine level was the main exposure variable. Data were pooled using a random-effects model. Twelve case-control studies were identified: 10 assessed wet AMD, four dry AMD, one early AMD, one late AMD, and one any AMD. As for wet AMD, there was a total of 453 cases and 514 controls. Mean tHcy was on average 1.1 μmol/l (95% confidence interval [CI] = 0.96-1.25) greater in wet AMD cases, but there was evidence of extreme between-study heterogeneity (p < 0.001, I2 = 91.8%). In a model homogenous for age, including six wet AMD studies (214 cases, 274 controls), mean tHcy was on average 0.58 μmol/l (95% CI = 0.35-0.73) greater in the case group, a not statistically significant result (p = 0.144) associated with moderate heterogeneity (I2 = 39.2%). Our meta-analysis indicates that there is some weak evidence that increased tHcy might be associated with wet AMD; however, this result should be interpreted cautiously, because of a marked between-study heterogeneity and the possible effect of publication bias. Future studies, preferably of cohort design, are necessary before any firm conclusions on the putative role of increased tHcy on AMD can be drawn.
Collapse
Affiliation(s)
- Antonio Pinna
- Department of Surgical, Microsurgical, and Medical Sciences; Ophthalmology Unit; University of Sassari; Sassari Italy
- Azienda Ospedaliero-Universitaria di Sassari; Sassari Italy
| | - Francesco Zaccheddu
- Department of Surgical, Microsurgical, and Medical Sciences; Ophthalmology Unit; University of Sassari; Sassari Italy
| | - Francesco Boscia
- Department of Surgical, Microsurgical, and Medical Sciences; Ophthalmology Unit; University of Sassari; Sassari Italy
- Azienda Ospedaliero-Universitaria di Sassari; Sassari Italy
| | - Ciriaco Carru
- Azienda Ospedaliero-Universitaria di Sassari; Sassari Italy
- Department of Biomedical Sciences; Section of Clinical Biochemistry; University of Sassari; Sassari Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences; Laboratory of Epidemiology and Biostatistics; University of Sassari; Sassari Italy
| |
Collapse
|
37
|
Kim J, Kim H, Roh H, Kwon Y. Causes of hyperhomocysteinemia and its pathological significance. Arch Pharm Res 2018; 41:372-383. [PMID: 29552692 DOI: 10.1007/s12272-018-1016-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 02/26/2018] [Indexed: 02/03/2023]
Abstract
In the last 10 years, homocysteine has been regarded as a marker of cardiovascular disease and a definite risk factor for many other diseases. Homocysteine is biosynthesized from methionine through multiple steps and then goes through one of two major metabolic pathways: remethylation and transsulfuration. Hyperhomocysteinemia is a state in which too much homocysteine is present in the body. The main cause of hyperhomocysteinemia is a dysfunction of enzymes and cofactors associated with the process of homocysteine biosynthesis. Other causes include excessive methionine intake, certain diseases and side effects of some drugs. Hyperhomocysteinemia is a trigger for many diseases, such as atherosclerosis, congestive heart failure, age-related macular degeneration, Alzheimer's disease and hearing loss. There are many studies showing a positive relationship between homocysteine level and various symptoms. We speculate that a high level of homocysteine can be the sole reason or an aggravating factor in numerous diseases for which causal links are not fully understood.
Collapse
Affiliation(s)
- Jihyun Kim
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Hyunhee Kim
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Heewon Roh
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Youngjoo Kwon
- Ewha Institute for Global Pharmacy Leadership, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
38
|
Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018; 9:12562-12590. [PMID: 29560091 PMCID: PMC5849155 DOI: 10.18632/oncotarget.24333] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/24/2018] [Indexed: 02/03/2023] Open
Abstract
To study Hyperhomocysteinemia (HHcy)-induced epigenetic modifications as potential mechanisms of blood retinal barrier (BRB) dysfunction, retinas isolated from three- week-old mice with elevated level of Homocysteine (Hcy) due to lack of the enzyme cystathionine β-synthase (cbs-/- , cbs+/- and cbs+/+ ), human retinal endothelial cells (HRECs), and human retinal pigmented epithelial cells (ARPE-19) treated with or without Hcy were evaluated for (1) histone deacetylases (HDAC), (2) DNA methylation (DNMT), and (3) miRNA analysis. Differentially expressed miRNAs in mice with HHcy were further compared with miRNA analysis of diabetic mice retinas (STZ) and miRNAs within the exosomes released from Hcy-treated RPEs. Differentially expressed miRNAs were further evaluated for predicted target genes and associated pathways using Ingenuity Pathway Analysis. HHcy significantly increased HDAC and DNMT activity in HRECs, ARPE-19, and cbs mice retinas, whereas inhibition of HDAC and DNMT decreased Hcy-induced BRB dysfunction. MiRNA profiling detected 127 miRNAs in cbs+/- and 39 miRNAs in cbs-/- mice retinas, which were significantly differentially expressed compared to cbs+/+ . MiRNA pathway analysis showed their involvement in HDAC and DNMT activation, endoplasmic reticulum (ER), and oxidative stresses, inflammation, hypoxia, and angiogenesis pathways. Hcy-induced epigenetic modifications may be involved in retinopathies associated with HHcy, such as age-related macular degeneration and diabetic retinopathy.
Collapse
|
39
|
Christen WG, Cook NR, Chiuve SE, Ridker PM, Gaziano JM. Prospective study of plasma homocysteine, its dietary determinants, and risk of age-related macular degeneration in men. Ophthalmic Epidemiol 2017; 25:79-88. [PMID: 29035128 DOI: 10.1080/09286586.2017.1362009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Cross-sectional and case-control studies generally support a direct association between elevated plasma homocysteine and age-related macular degeneration (AMD), but data from prospective studies are limited. We examined the prospective relation of plasma homocysteine level, its dietary determinants, and risk of AMD in a large cohort of apparently healthy male physicians. METHODS During a mean follow-up of 11.2 years, we identified 146 incident cases of visually significant AMD (responsible for a reduction of visual acuity to 20/30 or worse), and 146 controls matched for age, smoking status, and time of blood draw. We measured concentration of homocysteine in blood samples collected at baseline using an enzymatic assay. and we assessed dietary intake of B vitamins and related compounds betaine and choline with a food frequency questionnaire administered at baseline. RESULTS AMD was not associated with plasma level of homocysteine; the multivariable-adjusted odds ratio (OR) of AMD comparing the highest and lowest quartile of homocysteine was 1.09 (95% confidence interval [95% CI]: 0.52-2.31; p for trend = 0.99). However, AMD was inversely associated with quartile of intake of total folate (OR: 0.55; 95% CI: 0.24-1.23; p for trend = 0.08), vitamin B6 from food (OR: 0.39; 95% CI: 0.17-0.88; p for trend = 0.01), and betaine (OR: 0.53; 95% CI: 0.22-1.27; p for trend = 0.048). CONCLUSIONS These prospective data from a cohort of apparently healthy men do not support a major role for homocysteine in AMD occurrence, but do suggest a possible beneficial role for higher intake of several nutrients involved in homocysteine metabolism.
Collapse
Affiliation(s)
- William G Christen
- a The Division of Preventive Medicine , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA
| | - Nancy R Cook
- a The Division of Preventive Medicine , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,e Department of Epidemiology , Harvard School of Public Health , Boston , MA, USA
| | - Stephanie E Chiuve
- a The Division of Preventive Medicine , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,f Department of Nutrition , Harvard School of Public Health , Boston , MA, USA
| | - Paul M Ridker
- a The Division of Preventive Medicine , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,c The Center for Cardiovascular Disease Prevention , Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,d The Donald W. Reynolds Center for Cardiovascular Research , Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,e Department of Epidemiology , Harvard School of Public Health , Boston , MA, USA
| | - J Michael Gaziano
- a The Division of Preventive Medicine , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA.,b The Division of Aging , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston , MA, USA
| |
Collapse
|
40
|
Singh M, Tyagi SC. Hyperhomocysteinemia and Age-related Macular Degeneration: Role of Inflammatory Mediators and Pyroptosis; A Proposal. Med Hypotheses 2017; 105:17-21. [DOI: 10.1016/j.mehy.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/22/2017] [Indexed: 02/03/2023]
|
41
|
Cui X, Navneet S, Wang J, Roon P, Chen W, Xian M, Smith SB. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice. Invest Ophthalmol Vis Sci 2017; 58:1954-1963. [PMID: 28384716 PMCID: PMC5381329 DOI: 10.1167/iovs.16-21247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 02/03/2023] Open
Abstract
Purpose Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Methods Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Results Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Conclusions Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.
Collapse
Affiliation(s)
- Xuezhi Cui
- Department of Cellular Biology and Anatomy, The Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Soumya Navneet
- Department of Cellular Biology and Anatomy, The Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Jing Wang
- Department of Cellular Biology and Anatomy, The Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Penny Roon
- Department of Cellular Biology and Anatomy, The Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, Washington, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, United States
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, The Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
42
|
Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget 2017; 7:8532-45. [PMID: 26885895 PMCID: PMC4890985 DOI: 10.18632/oncotarget.7384] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/30/2016] [Indexed: 02/03/2023] Open
Abstract
The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-β-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE-photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features.
Collapse
|
43
|
B-vitamins are potentially a cost-effective population health strategy to tackle dementia: Too good to be true? ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:156-161. [PMID: 29067302 PMCID: PMC5651357 DOI: 10.1016/j.trci.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction To respond to the threat of dementia to public health and the economy, we need to prioritize research resources on strategies that would be the most effective. In relation to the prevention of dementia, this article considers whether lowering plasma homocysteine by B-vitamin supplementation is one of the top priority and cost-effective treatments. Method A decision model was constructed to calculate the lifetime costs and quality-adjusted life years (QALYs) of providing B-vitamin treatment to people in the United Kingdom over 60 years with high levels (>13 μmol/L) of plasma homocysteine, which was compared to the lifetime costs and outcomes of not providing them with the treatment. Results Treatment with B-vitamins will save £60,021 per QALY gained and so is highly cost-effective. Discussion We anticipate that this provocative finding will be debated by scientists, clinicians, and policy makers and eventually be tested in future clinical trials. We need to prioritize resources on strategies to prevent dementia. Treatment with B-vitamins at an early stage appears to be highly cost-effective. This provocative finding should be debated and tested.
Collapse
|
44
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
45
|
Wang XB, Qiao C, Wei L, Han YD, Cui NH, Huang ZL, Li ZH, Zheng F, Yan M. Associations of Polymorphisms in MTHFR Gene with the Risk of Age-Related Cataract in Chinese Han Population: A Genotype-Phenotype Analysis. PLoS One 2015; 10:e0145581. [PMID: 26689687 PMCID: PMC4686960 DOI: 10.1371/journal.pone.0145581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/04/2015] [Indexed: 02/03/2023] Open
Abstract
Homocysteine (Hcy) is a potential risk factor for age-related cataract (ARC). Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme for Hcy metabolism, and variants of MTHFR may affect MTHFR enzyme activity. This study mainly evaluated the associations between variants in MTHFR gene, plasma MTHFR enzyme activity, total Hcy (tHcy) levels and ARC risk in Chinese population. Four single nucleotide polymorphisms (SNPs) in MTHFR gene were genotyped using the high-resolution melting (HRM) method in 502 ARC patients (mean age, 70.2 [SD, 9.0], 46.0% male) and 890 healthy controls (mean age, 67.1 [SD, 11.1], 47.6% male). The plasma MTHFR activity, folic acid (FA), vitamins B12 and B6 levels were detected by enzyme-linked immunosorbent assays (ELISA). The plasma tHcy levels were measured by an automated enzymatic assay. After the Bonferroni correction, the minor allele T of SNP rs1801133 showed a significant association with an increased risk of overall ARC (OR = 1.26, P = 0.003). Consistent association was also found between SNP rs1801133 and cortical ARC risk (OR = 1.44, P = 0.003). Haplotype analyses revealed an adverse effect of the haplotype "C-A-T-C" (alleles in order of SNPs rs3737967, rs1801131, rs1801133 and rs9651118) on ARC risk (OR = 1.55, P = 0.003). Moreover, in a joint analysis of SNPs rs9651118 and rs1801133, subjects with two unfavorable genotypes had a 1.76-fold increased risk of ARC compared with the reference group, and a statistically significant dose-response trend (Ptrend = 0.001) was also observed. Further, in healthy controls and patients with cortical ARC, the allele T of SNP rs1801133 and the increasing number of unfavorable genotypes were significantly correlated with decreased MTHFR activity as well as increased tHcy levels. However, there was no significant association between FA, vitamins B12, B6 levels and MTHFR variants. Our data indicated that variants in MTHFR gene might individually and jointly influence susceptibility to ARC by affecting MTHFR enzyme activity and tHcy levels.
Collapse
Affiliation(s)
- Xue-bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Qiao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Wei
- Department of Ophthalmology, Zhongnan Hospital of Wuhan university, Wuhan, Hubei, China
| | - Ya-di Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning-hua Cui
- Department of Clinical Laboratory, Children's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Zhu-liang Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zu-hua Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (MY); (FZ)
| | - Ming Yan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan university, Wuhan, Hubei, China
- * E-mail: (MY); (FZ)
| |
Collapse
|