1
|
He J, Liu J, Yue Y, Wang L, Liu Z, Xi G, An L, Tian J, Wang Y. Genome Editing in Mouse Embryo Using the CRISPR/Cas12i3 System. Int J Mol Sci 2025; 26:3036. [PMID: 40243700 PMCID: PMC11988942 DOI: 10.3390/ijms26073036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
The CRISPR/Cas system is a sizable family that is currently a popular and efficient gene editing tool. Cas12i3, as a member of the Type V-I family, has the characteristics of recognizing T-rich PAM sequences and being guided by shorter crRNA and has higher gene editing efficiency than Cas9 in rice. However, as a potential tool in accelerating the breeding process, the application of Cas12i3 in mammalian embryos has not yet been reported. Our study systematically evaluated the feasibility of applying CRISPR/Cas12i3 to gene editing in mouse embryos, with the core pluripotency regulator gene Nanog as the target. We successfully constructed a Nanog loss-of-function mouse embryo model using CRISPR/Cas12i3. At the targeted Nanog locus, its editing efficiency exceeded that of the Cas9 system under matched experimental conditions; no off-target phenomenon was detected. Moreover, the Cas12i3 system exhibited no side effect on mouse embryo development and proliferation of blastocyst cells. Finally, we obtained healthy chimeric gene-edited offspring by optimizing the concentration of the Cas12i3 mixture. These results confirm the feasibility and safety of CRISPR/Cas12i3 for gene editing in mammals, which provides a reliable tool for one-step generation of gene-edited animals for applications in biology, medical research, and large livestock breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yinjuan Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.H.); (J.L.); (Y.Y.); (L.W.); (Z.L.); (G.X.); (L.A.); (J.T.)
| |
Collapse
|
2
|
Sato M, Inada E, Saitoh I, Morohoshi K, Nakamura S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BIOTECH 2024; 13:45. [PMID: 39584902 PMCID: PMC11587059 DOI: 10.3390/biotech13040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene manipulation of pre-implantation embryos, such as fertilized eggs and two-cell embryos, which can usually be achieved by the microinjection of nucleic acids, electroporation in the presence of nucleic acids, or infection with viral vectors, such as adeno-associated viruses. In contrast, GE animals can theoretically be generated by fertilizing ovulated oocytes with GE sperm. However, there are only a few reports showing the successful production of GE animals using GE sperm. Artificial insemination (AI) is an assisted reproduction technology based on the introduction of isolated sperm into the female reproductive tract, such as the uterine horn or oviductal lumen, for the in vivo fertilization of ovulated oocytes. This approach is simpler than the in vitro fertilization-based production of offspring, as the latter always requires an egg transfer to recipient females, which is labor-intensive and time-consuming. In this review, we summarize the various methods for AI reported so far, the history of sperm-mediated gene transfer, a technology to produce genetically engineered animals through in vivo fertilization with sperm carrying exogenous DNA, and finally describe the possibility of AI-mediated creation of GE animals using GE sperm.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
3
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Aerts T, Boonen A, Geenen L, Stulens A, Masin L, Pancho A, Francis A, Pepermans E, Baggerman G, Van Roy F, Wöhr M, Seuntjens E. Altered socio-affective communication and amygdala development in mice with protocadherin10-deficient interneurons. Open Biol 2024; 14:240113. [PMID: 38889770 DOI: 10.1098/rsob.240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with deficits in social interaction and communication, together with repetitive behaviours. The cell adhesion molecule protocadherin10 (PCDH10) is linked to ASD in humans. Pcdh10 is expressed in the nervous system during embryonic and early postnatal development and is important for neural circuit formation. In mice, strong expression of Pcdh10 in the ganglionic eminences and in the basolateral complex (BLC) of the amygdala was observed at mid and late embryonic stages, respectively. Both inhibitory and excitatory neurons expressed Pcdh10 in the BLC at perinatal stages and vocalization-related genes were enriched in Pcdh10-expressing neurons in adult mice. An epitope-tagged Pcdh10-HAV5 mouse line revealed endogenous interactions of PCDH10 with synaptic proteins in the young postnatal telencephalon. Nuanced socio-affective communication changes in call emission rates, acoustic features and call subtype clustering were primarily observed in heterozygous pups of a conditional knockout (cKO) with selective deletion of Pcdh10 in Gsh2-lineage interneurons. These changes were less prominent in heterozygous ubiquitous Pcdh10 KO pups, suggesting that altered anxiety levels associated with Gsh2-lineage interneuron functioning might drive the behavioural effects. Together, loss of Pcdh10 specifically in interneurons contributes to behavioural alterations in socio-affective communication with relevance to ASD.
Collapse
Affiliation(s)
- Tania Aerts
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Anneleen Boonen
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Lieve Geenen
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Anne Stulens
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Luca Masin
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Neural Circuit Development and Regeneration, KU Leuven , Leuven 3000, Belgium
| | - Anna Pancho
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
- Developmental Genetics, Department of Biomedicine, University of Basel , Basel 4058, Switzerland
| | - Annick Francis
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp , Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp , Antwerp, Belgium
- Department of Computer Science, University of Antwerp , Antwerp, Belgium
| | - Frans Van Roy
- Faculty of Science, Department of Biomedical Molecular Biology; Inflammation Research Center, VIB, Ghent University , Cancer Research Institute Ghent (CRIG) 9000, Belgium
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven , Leuven 3000, Belgium
- KU Leuven, Leuven Brain Institute , Leuven 3000, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg , Marburg 35032, Germany
- Center for Mind, Brain and Behavior, Philipps-University of Marburg , Marburg 35032, Germany
| | - Eve Seuntjens
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
- KU Leuven, Leuven Brain Institute , Leuven 3000, Belgium
- KU Leuven, Leuven Institute for Single Cell Omics , Leuven 3000, Belgium
| |
Collapse
|
5
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
6
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
7
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
9
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
10
|
Skavicus S, Heaton NS. Approaches for timeline reductions in pathogenesis studies using genetically modified mice. Microbiol Spectr 2023; 11:e0252123. [PMID: 37695101 PMCID: PMC10580824 DOI: 10.1128/spectrum.02521-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 09/12/2023] Open
Abstract
Although genetically modified mouse models have long been a powerful tool for microbiology research, the manipulation of the mouse genome is expensive, time consuming, and has historically remained the domain of dedicated animal facilities. The recent use of in vivo clustered regularly interspaced short palindromic repeats (CRISPR)-based editing technology has been reported to reduce the expertise, cost, and time required to generate novel mouse lines; it has remained unclear, however, if this new technology could meaningfully alter experimental timelines. Here, we report the optimization of an in oviduct murine genetic manipulation technique for use by microbiologists. We use this approach to generate a series of knockout mice and detail a protocol using an influenza A virus infection model to test the preliminary importance of a host factor in as short as 11 weeks (with a fully backcrossed knockout line in ~22 weeks) from initiation of the study. Broader use of this approach by the microbiology community will allow for more efficient, and rapid, definition of novel pathogenic mechanisms in vivo. IMPORTANCE Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have already begun to revolutionize biomedical science. An emerging application of this technology is in the development of genetically modified model organisms to study the mechanisms underlying infectious disease. Here, we describe a protocol using an in vivo CRISPR-based approach that can be used to test the importance of a candidate host factor for microbial pathogenesis in less than 3 months and before complete establishment of a new mouse line. Adoption of this approach by the broader microbiology community will help to decrease the resources and time required to understand how pathogens cause disease which will ultimately speed up the development of new clinical interventions and therapies.
Collapse
Affiliation(s)
- Samantha Skavicus
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
12
|
Melo-Silva CR, Knudson CJ, Tang L, Kafle S, Springer LE, Choi J, Snyder CM, Wang Y, Kim SV, Sigal LJ. Multiple and Consecutive Genome Editing Using i-GONAD and Breeding Enrichment Facilitates the Production of Genetically Modified Mice. Cells 2023; 12:1343. [PMID: 37174743 PMCID: PMC10177031 DOI: 10.3390/cells12091343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.
Collapse
Affiliation(s)
- Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jihae Choi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sangwon V. Kim
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Editing the Genome of the Golden Hamster (Mesocricetus auratus). Methods Mol Biol 2023; 2637:247-254. [PMID: 36773152 DOI: 10.1007/978-1-0716-3016-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The golden (Syrian) hamster (Mesocricetus auratus) is a small rodent belonging to the Cricetidae family. Golden hamsters have several unique characteristics that are advantageous in the study of reproductive and developmental biology: a highly stable 4-day estrous cycle, a high responsiveness to conventional superovulation methods, and a shortest gestation period (16 days) known among eutherian mammals. Besides these advantages, the technical ease of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in this species has contributed much to our understanding of the basic mechanisms of mammalian fertilization. However, the exceptionally strong in vitro developmental block of hamster embryos, especially at the two-cell stage, has hampered the production of genetically modified hamsters, which has resulted in limited use of this species for biomedical research. However, the recently developed in vivo genome editing method (improved genome editing via oviductal nucleic acid delivery, i-GONAD) has overcome this shortcoming and made production of gene-edited hamsters much easier than before. This method has the potential to provide a means of reexamining genes whose functions cannot be identified using mouse models, thus leading to the better understanding of gene functions in mammals. In this chapter, we present our procedure for editing the genome of the golden hamster using i-GONAD.
Collapse
|
15
|
Abe T, Inoue KI, Kiyonari H. Efficient CRISPR/Cas9-Assisted Knockin of Large DNA Donors by Pronuclear Microinjection During S-Phase in Mouse Zygotes. Methods Mol Biol 2023; 2637:181-194. [PMID: 36773147 DOI: 10.1007/978-1-0716-3016-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the CRISPR/Cas9-mediated gene cassette knockin (KI) strategy, a gene cassette is integrated into a target locus through a proper DNA repair pathway after the Cas9-induced double-strand DNA breaks; the activation of the DNA repair pathway is known to be correlated with the cell cycle. Recently, we have reported a new KI approach named SPRINT (S-phase pronuclear injection for targeting)-CRISPR, focusing on the correlation between the cell cycle and the KI efficiency in the mouse zygote microinjection. Our results suggest that the CRISPR-mediated KI with a homologous recombination-based donor vector during S-phase enhances the KI efficiency. For SPRINT-CRISPR, the uniformity of the zygotes in the cell cycle is achieved by in vitro fertilization, and the zygotes are cryopreserved until use. These reproductive techniques are necessary for efficient KI. Furthermore, Piezo-assisted microinjection has been successful in improving the survival rate of the injected embryos. In this chapter, we describe the protocols that focus on the zygote preparation and Piezo-assisted microinjection of the SPRINT-CRISPR method.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.
| |
Collapse
|
16
|
Vats S, Ballesteros C, Hung S, Sparapani S, Wong K, Haruna J, Li C, Authier S. An Overview of Gene Editing Modalities and Related Non-clinical Testing Considerations. Int J Toxicol 2023; 42:207-218. [PMID: 36762691 DOI: 10.1177/10915818231153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gene therapy has become an important modality for a wide range of therapeutic indications with a rapid increase in the number of therapeutic candidates being developed in this field. Understanding the molecular biology underlying the gene therapy is often critical to develop appropriate safety assessment strategies. We aimed to discuss some of the commonly used gene therapy modalities and common preclinical toxicology testing considerations when developing gene therapies. Non-viral gene delivery methods such as electroporation, microinjection, peptide nanoparticles and lipid nanoparticles are deployed as innovative molecular molecular construct which are included in the design of novel gene therapies and the associated molecular biology mechanisms have become relevant knowledge to non-clinical toxicology. Viral gene delivery methodologies including Adenovirus vectors, Adeno-Associated virus vectors and Lentivirus gene therapy vectors have also advanced considerably across numerous therapeutic areas, raising unique non-clinical toxicology and immunological considerations. General toxicology, biodistribution and tumorigenicity are the pillars of non-clinical safety testing in gene therapies. Evaluating the tumorigenicity potential of a gene editing therapy often leverages molecular pathology while some translational challenges remain. Toxicology study design is entering a new era where science-driven customized approaches and program specific considerations have become the norm.
Collapse
Affiliation(s)
- Srishti Vats
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Selly Hung
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Karen Wong
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Christian Li
- 70294Charles River Laboratories, Laval, QC, Canada
| | | |
Collapse
|
17
|
Sato M, Nakamura A, Sekiguchi M, Matsuwaki T, Miura H, Gurumurthy CB, Kakuta S, Ohtsuka M. Improved Genome Editing via Oviductal Nucleic Acids Delivery (i-GONAD): Protocol Steps and Additional Notes. Methods Mol Biol 2023; 2631:325-340. [PMID: 36995675 DOI: 10.1007/978-1-0716-2990-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) technology has made it possible to produce genome-edited (GE) animals more easily and rapidly than before. In most cases, GE mice are produced by microinjection (MI) or by in vitro electroporation (EP) of CRISPR reagents into fertilized eggs (zygotes). Both of these approaches require ex vivo handling of isolated embryos and their subsequent transfer into another set of mice (called recipient or pseudopregnant mice). Such experiments are performed by highly skilled technicians (especially for MI). We recently developed a novel genome editing method, called "GONAD (Genome-editing via Oviductal Nucleic Acids Delivery)," which can completely eliminate the ex vivo handling of embryos. We also made improvements to the GONAD method, termed "improved-GONAD (i-GONAD)." The i-GONAD method involves injection of CRISPR reagents into the oviduct of an anesthetized pregnant female using a mouthpiece-controlled glass micropipette under a dissecting microscope, followed by EP of the entire oviduct allowing the CRISPR reagents to enter into the zygotes present inside the oviduct, in situ. After the i-GONAD procedure, the mouse recovered from anesthesia is allowed to continue the pregnancy to full term to deliver its pups. The i-GONAD method does not require pseudopregnant female animals for embryo transfer, unlike the methods relying on ex vivo handling of zygotes. Therefore, the i-GONAD method can reduce the number of animals used, compared to the traditional methods. In this chapter, we describe some newer technical tips about the i-GONAD method. Additionally, even though the detailed protocols of GONAD and i-GONAD have been published elsewhere (Gurumurthy et al., Curr Protoc Hum Genet 88:15.8.1-15.8.12, 2016 Nat Protoc 14:2452-2482, 2019), we provide all the protocol steps of i-GONAD in this chapter so that the reader can find most of the information, needed for performing i-GONAD experiments, in one place.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Ayaka Nakamura
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Marie Sekiguchi
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan.
| |
Collapse
|
18
|
Madhi ZS, Shallan MA, Almaamuri AM, Alhussainy AA, AL- Salih SSS, Raheem AK, Alwan HJ, Jalil AT. Lipids and lipid derivatives for delivery of the CRISPR/Cas9 system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Tanaka M, Yokoyama K, Hayashi H, Isaki S, Kitatani K, Wang T, Kawata H, Matsuzawa H, Gurumurthy CB, Miura H, Ohtsuka M. CRISPR-KRISPR: a method to identify on-target and random insertion of donor DNAs and their characterization in knock-in mice. Genome Biol 2022; 23:228. [PMID: 36284311 PMCID: PMC9594901 DOI: 10.1186/s13059-022-02779-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/30/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Isaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Kanae Kitatani
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hisako Kawata
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideyuki Matsuzawa
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiromi Miura
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
20
|
Takahashi R, Takahashi G, Kameyama Y, Sato M, Ohtsuka M, Wada K. Gender-Difference in Hair Length as Revealed by Crispr-Based Production of Long-Haired Mice with Dysfunctional FGF5 Mutations. Int J Mol Sci 2022; 23:ijms231911855. [PMID: 36233155 PMCID: PMC9569730 DOI: 10.3390/ijms231911855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) is an important molecule required for the transition from anagen to catagen phase of the mammalian hair cycle. We previously reported that Syrian hamsters harboring a 1-bp deletion in the Fgf5 gene exhibit excessive hair growth in males. Herein, we generated Fgf5 mutant mice using genome editing via oviductal nucleic acid delivery (GONAD)/improved GONAD (i-GONAD), an in vivo genome editing system used to target early embryos present in the oviductal lumen, to study gender differences in hair length in mutant mice. The two lines (Fgf5go-malc), one with a 2-bp deletion (c.552_553del) and the other with a 1-bp insertion (c.552_553insA) in exon 3 of Fgf5, were successfully established. Each mutation was predicted to disrupt a part of the FGF domain through frameshift mutation (p.Glu184ValfsX128 or p.Glu184ArgfsX128). Fgf5go-malc1 mice had heterogeneously distributed longer hairs than wild-type mice (C57BL/6J). Notably, this change was more evident in males than in females (p < 0.0001). Immunohistochemical analysis revealed the presence of FGF5 protein in the dermal papilla and outer root sheath of the hair follicles from C57BL/6J and Fgf5go-malc1 mice. Histological analysis revealed that the prolonged anagen phase might be the cause of accelerated hair growth in Fgf5go-malc1 mice.
Collapse
Affiliation(s)
- Ryo Takahashi
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Gou Takahashi
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuichi Kameyama
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
| | - Kenta Wada
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
- Correspondence: ; Tel.: +81-152-48-3827
| |
Collapse
|
21
|
Takabayashi S, Iijima K, Tsujimura M, Aoshima T, Takagi H, Aoto K, Sato M. Successful i-GONAD in Mice at Early Zygote Stage through In Vivo Electroporation Three Min after Intraoviductal Instillation of CRISPR-Ribonucleoprotein. Int J Mol Sci 2022; 23:ijms231810678. [PMID: 36142589 PMCID: PMC9506528 DOI: 10.3390/ijms231810678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Improved genome editing via oviductal nucleic acids delivery (i-GONAD) is a new technology enabling in situ genome editing of mammalian zygotes exiting the oviductal lumen, which is now available in mice, rats, and hamsters. In this method, CRISPR/Cas9 genome-editing reagents are delivered directly to the oviducts of pregnant animals (corresponding to late zygote stage). After intraoviductal instillation, electric shock to the entire oviduct was provided with a specialized electroporation (EP) device to drive the genome editing reagents into the zygotes present in the oviductal lumen. i-GONAD toward early zygotes has been recognized as difficult, because they are tightly surrounded by a cumulus cell layer, which often hampers effective transfer of nucleic acids to zygotes. However, in vivo EP three min after intraoviductal instillation of the genome-editing reagents enabled genome editing of early zygotes with an efficiency of 70%, which was in contrast with the rate of 18% when in vivo EP was performed immediately after intraoviductal instillation at Day 0.5 of pregnancy (corresponding to 13:00–13:30 p.m. on the day when vaginal plug was recognized after natural mating). We also found that addition of hyaluronidase, an enzyme capable of removing cumulus cells from a zygote, slightly enhanced the efficiency of genome editing in early zygotes. These findings suggest that cumulus cells surrounding a zygote can be a barrier for efficient generation of genome-edited mouse embryos and indicate that a three-minute interval before in vivo EP is effective for achieving i-GONAD-mediated genome editing at the early zygote stage. These results are particularly beneficial for researchers who want to perform genome editing experiments targeting early zygotes.
Collapse
Affiliation(s)
- Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-53-435-2001
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masumi Tsujimura
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takuya Aoshima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hisayoshi Takagi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
22
|
Imai Y, Tanave A, Matsuyama M, Koide T. Efficient genome editing in wild strains of mice using the i-GONAD method. Sci Rep 2022; 12:13821. [PMID: 35970947 PMCID: PMC9378668 DOI: 10.1038/s41598-022-17776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Wild mouse strains have been used for many research studies, because of the high level of inter-strain genetic and phenotypic variations in them, in addition to the characteristic phenotype maintained from wild mice. However, since application of the current genetic engineering method on wild strains is not easy, there are limited studies that have attempted to apply gene modification techniques in wild strains. Recently, i-GONAD, a new method for genome editing that does not involve any ex vivo manipulation of unfertilized or fertilized eggs has been reported. We applied i-GONAD method for genome editing on a series of wild strains and showed that genome editing is efficiently possible using this method. We successfully made genetically engineered mice in seven out of the nine wild strains. Moreover, we believe that it is still possible to apply milder conditions and improve the efficiencies for the remaining two strains. These results will open avenues for studying the genetic basis of various phenotypes that are characteristic to wild strains. Furthermore, applying i-GONAD will be also useful for other mouse resources in which genetic manipulation is difficult using the method of microinjection into fertilized eggs.
Collapse
Affiliation(s)
- Yuji Imai
- grid.288127.60000 0004 0466 9350Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Akira Tanave
- grid.508743.dLaboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, 565-0871 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, Okayama, 701-0202 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan.
| |
Collapse
|
23
|
Sanchez-Baltasar R, Garcia-Torralba A, Nieto-Romero V, Page A, Molinos-Vicente A, López-Manzaneda S, Ojeda-Pérez I, Ramirez A, Navarro M, Segovia JC, García-Bravo M. Efficient and Fast Generation of Relevant Disease Mouse Models by In Vitro and In Vivo Gene Editing of Zygotes. CRISPR J 2022; 5:422-434. [PMID: 35686982 PMCID: PMC9233508 DOI: 10.1089/crispr.2022.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene (Rasa1). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.
Collapse
Affiliation(s)
- Raquel Sanchez-Baltasar
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Aida Garcia-Torralba
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Virginia Nieto-Romero
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angustias Page
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Sergio López-Manzaneda
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angel Ramirez
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - Manuel Navarro
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - José Carlos Segovia
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
24
|
3R measures in facilities for the production of genetically modified rodents. Lab Anim (NY) 2022; 51:162-177. [PMID: 35641635 DOI: 10.1038/s41684-022-00978-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Sociocultural changes in the human-animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm-benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.
Collapse
|
25
|
Direct Injection of Recombinant AAV-Containing Solution into the Oviductal Lumen of Pregnant Mice Caused In Situ Infection of Both Preimplantation Embryos and Oviductal Epithelium. Int J Mol Sci 2022; 23:ijms23094897. [PMID: 35563284 PMCID: PMC9105285 DOI: 10.3390/ijms23094897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector is an efficient viral-based gene delivery tool used with many types of cells and tissues, including neuronal cells and muscles. AAV serotype 6 (AAV-6), one of numerous AAV serotypes, was recently found to efficiently transduce mouse preimplantation embryos. Furthermore, through coupling with a clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system—a modern genome editing technology—AAV-6 has been shown to effectively create a mutation at a target locus, which relies on isolation of zygotes, in vitro viral infection, and transplantation of the infected embryos to recipient females. Unfortunately, this procedure, termed “ex vivo handling of embryos”, requires considerable investment of capital, time, and effort. Direct transduction of preimplantation embryos through the introduction of AAV-6 into the oviductal lumen of pregnant females would be an ideal approach. In this study, we injected various types of recombinant AAV vectors (namely, rAAV-CAG-EGFP-1, -2, -5, and -6, each carrying an enhanced green fluorescent protein [EGFP] cDNA whose expression is under the influence of a cytomegalovirus enhancer + chicken β-actin promoter) into the ampulla region of oviducts in pregnant female mice at Day 0.7 of pregnancy (corresponding to the late 1-cell stage), and EGFP-derived green fluorescence was assessed in the respective morulae. The highest levels of fluorescence were observed in rAAV-CAG-EGFP-6. The oviductal epithelium was distinctly fluorescent. The fluorescence in embryos peaked at the morula stage. Our results indicate that intra-oviductal injection of AAV-6 vectors is the most effective method for transducing zona pellucida-enclosed preimplantation embryos in situ. AAV-6 vectors could be a useful tool in the genetic manipulation of early embryos, as well as oviductal epithelial cells.
Collapse
|
26
|
Hasegawa A, Mochida K, Nakamura A, Miyagasako R, Ohtsuka M, Hatakeyama M, Ogura A. Use of anti-inhibin monoclonal antibody for increasing the litter size of mouse strains and its application to i-GONAD. Biol Reprod 2022; 107:605-618. [PMID: 35368067 PMCID: PMC9382380 DOI: 10.1093/biolre/ioac068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
The litter size of mouse strains is determined by the number of oocytes naturally ovulated. Many attempts have been made to increase litter sizes by conventional superovulation regimens (e.g., using equine or human gonadotropins, eCG/hCG but had limited success because of unexpected decreases in the numbers of embryos surviving to term. Here, we examined whether rat-derived anti-inhibin monoclonal antibodies (AIMAs) could be used for this purpose. When C57BL/6 female mice were treated with an AIMA and mated, the number of healthy offspring per mouse increased by 1.4-fold (11.9 vs. 8.6 in controls). By contrast, treatment with eCG/hCG or anti-inhibin serum resulted in fewer offspring than in nontreated controls. The overall efficiency of production based on all females treated (including nonpregnant ones) was improved 2.4 times with AIMA compared with nontreated controls. The AIMA treatment was also effective in ICR mice, increasing the litter size from 15.3 to 21.2 pups. We then applied this technique to an in vivo genome-editing method (improved genome-editing via oviductal nucleic acid delivery, i-GONAD) to produce C57BL/6 mice deficient for tyrosinase. The mean litter size following i-GONAD increased from 4.8 to 7.3 after the AIMA treatment and genetic modifications were confirmed in 80/88 (91%) of the offspring. Thus, AIMA treatment is a promising method for increasing the litter size of mice and may be applied for the easy proliferation of mouse colonies as well as in vivo genetic manipulation, especially when the mouse strains are sensitive to handling.
Collapse
Affiliation(s)
- Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Ayaka Nakamura
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Rico Miyagasako
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa Japan
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa Japan
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | | | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
27
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
28
|
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021; 8:760140. [PMID: 34805315 PMCID: PMC8602679 DOI: 10.3389/fcvm.2021.760140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the vital role of genetic factors in human diseases have been widely recognized by scholars with the deepening of life science research, accompanied by the rapid development of gene-editing technology. In early years, scientists used homologous recombination technology to establish gene knock-out and gene knock-in animal models, and then appeared the second-generation gene-editing technology zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) that relied on nucleic acid binding proteins and endonucleases and the third-generation gene-editing technology that functioned through protein-nucleic acids complexes-CRISPR/Cas9 system. This holds another promise for refractory diseases and genetic diseases. Cardiovascular disease (CVD) has always been the focus of clinical and basic research because of its high incidence and high disability rate, which seriously affects the long-term survival and quality of life of patients. Because some inherited cardiovascular diseases do not respond well to drug and surgical treatment, researchers are trying to use rapidly developing genetic techniques to develop initial attempts. However, significant obstacles to clinical application of gene therapy still exists, such as insufficient understanding of the nature of cardiovascular disease, limitations of genetic technology, or ethical concerns. This review mainly introduces the types and mechanisms of gene-editing techniques, ethical concerns of gene therapy, the application of gene therapy in atherosclerosis and inheritable cardiovascular diseases, in-stent restenosis, and delivering systems.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Aoshima T, Kobayashi Y, Takagi H, Iijima K, Sato M, Takabayashi S. Modification of improved-genome editing via oviductal nucleic acids delivery (i-GONAD)-mediated knock-in in rats. BMC Biotechnol 2021; 21:63. [PMID: 34724929 PMCID: PMC8561937 DOI: 10.1186/s12896-021-00723-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Improved genome-editing via oviductal nucleic acids delivery (i-GONAD) is a new technology that facilitates in situ genome-editing of mammalian zygotes exiting the oviductal lumen. The i-GONAD technology has been developed for use in mice, rats, and hamsters; however, oligonucleotide (ODN)-based knock-in (KI) is more inefficient in rats than mice. To improve the efficiency of i-GONAD in rats we examined KI efficiency using three guide RNAs (gRNA), crRNA1, crRNA2 and crRNA3. These gRNAs recognize different portions of the target locus, but also overlap each other in the target locus. We also examined the effects of commercially available KI -enhancing drugs (including SCR7, L755,507, RS-1, and HDR enhancer) on i-GONAD-mediated KI efficiency. Results The KI efficiency in rat fetuses generated after i-GONAD with crRNA2 and single-stranded ODN was significantly higher (24%) than crRNA1 (5%; p < 0.05) or crRNA3 (0%; p < 0.01). The KI efficiency of i-GONAD with triple gRNAs was 11%. These findings suggest that KI efficiency largely depends on the type of gRNA used. Furthermore, the KI efficiency drugs, SCR7, L755,507 and HDR enhancer, all of which are known to enhance KI efficiency, increased KI efficiency using the i-GONAD with crRNA1 protocol. In contrast, only L755,507 (15 μM) increased KI efficiency using the i-GONAD with crRNA2 protocol. None of them were significantly different. Conclusions We attempted to improve the KI efficiency of i-GONAD in rats. We demonstrated that the choice of gRNA is important for determining KI efficiency and insertion and deletion rates. Some drugs (e.g. SCR7, L755,507 and HDR enhancer) that are known to increase KI efficiency in culture cells were found to be effective in i-GONAD in rats, but their effects were limited. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00723-5.
Collapse
Affiliation(s)
- Takuya Aoshima
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yukari Kobayashi
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hisayoshi Takagi
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| | - Shuji Takabayashi
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
30
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
31
|
Teng K, Ford MJ, Harwalkar K, Li Y, Pacis AS, Farnell D, Yamanaka N, Wang YC, Badescu D, Ton Nu TN, Ragoussis J, Huntsman DG, Arseneau J, Yamanaka Y. Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of In Vivo Fallopian Tube Electroporation and CRISPR-Cas9-Mediated Genome Editing. Cancer Res 2021; 81:5147-5160. [PMID: 34301761 PMCID: PMC9397628 DOI: 10.1158/0008-5472.can-20-1518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.
Collapse
Affiliation(s)
- Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - YuQi Li
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics, McGill University, Montreal, Canada
| | - David Farnell
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Yu-Chang Wang
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Tuyet Nhung Ton Nu
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
- Department of Bioengineering, McGill University, Montreal, Canada
| | - David G Huntsman
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada.
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
32
|
Namba M, Kobayashi T, Koyano T, Kohno M, Ohtsuka M, Matsuyama M. GONAD: A new method for germline genome editing in mice and rats. Dev Growth Differ 2021; 63:439-447. [PMID: 34432885 PMCID: PMC11520964 DOI: 10.1111/dgd.12746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Recent advances in the CRISPR/Cas9 system have demonstrated it to be an efficient gene-editing technology for various organisms. Laboratory mice and rats are widely used as common models of human diseases; however, the current standard method to create genome-engineered animals is laborious and involves three major steps: isolation of zygotes from females, ex vivo micromanipulation of zygotes, and implantation into pseudopregnant females. To circumvent this, we recently developed a novel method named Genome-editing via Oviductal Nucleic Acids Delivery (GONAD). This method does not require the ex vivo handling of embryos; instead, it can execute gene editing with just one step, via the delivery of a genome-editing mixture into embryos in the oviduct, by electroporation. Here, we present a further improvement of GONAD that is easily applicable to both mice and rats. It is a rapid, low-cost, and ethical approach fulfilling the 3R principles of animal experimentation: Reduction, Replacement, and Refinement. This method has been reconstructed and renamed as "improved GONAD (i-GONAD)" for mice, and "rat improved GONAD (rGONAD)" for rats.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Tomoe Kobayashi
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Takayuki Koyano
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Mayumi Kohno
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Masato Ohtsuka
- Department of Molecular Life ScienceDivision of Basic Medical Science and Molecular MedicineTokai University School of MedicineIseharaJapan
- The Institute of Medical SciencesTokai UniversityIseharaJapan
| | - Makoto Matsuyama
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| |
Collapse
|
33
|
Iwata S, Sasaki T, Nagahara M, Iwamoto T. An efficient i-GONAD method for creating and maintaining lethal mutant mice using an inversion balancer identified from the C3H/HeJJcl strain. G3 (BETHESDA, MD.) 2021; 11:6291665. [PMID: 34849815 PMCID: PMC8496231 DOI: 10.1093/g3journal/jkab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
As the efficiency of the clustered regularly interspaced short palindromic repeats/Cas system is extremely high, creation and maintenance of homozygous lethal mutants are often difficult. Here, we present an efficient in vivo electroporation method called improved genome editing via oviductal nucleic acid delivery (i-GONAD), wherein one of two alleles in the lethal gene was selectively edited in the presence of a non-targeted B6.C3H-In(6)1J inversion identified from the C3H/HeJJcl strain. This method did not require isolation, culture, transfer, or other in vitro handling of mouse embryos. The edited lethal genes were stably maintained in heterozygotes, as recombination is strongly suppressed within this inversion interval. Using this strategy, we successfully generated the first Tprkb null knockout strain with an embryonic lethal mutation and showed that B6.C3H-In(6)1J can efficiently suppress recombination. As B6.C3H-In(6)1J was tagged with a gene encoding the visible coat color marker, Mitf, the Tprkb mutation could be visually recognized. We listed the stock balancer strains currently available as public bioresources to create these lethal gene knockouts. This method will allow for more efficient experiments for further analysis of lethal mutants.
Collapse
Affiliation(s)
- Satoru Iwata
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Takahisa Sasaki
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Miki Nagahara
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Takashi Iwamoto
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
34
|
Yamagata M, Sanes JR. CRISPR-mediated Labeling of Cells in Chick Embryos Based on Selectively Expressed Genes. Bio Protoc 2021; 11:e4105. [PMID: 34458399 PMCID: PMC8376491 DOI: 10.21769/bioprotoc.4105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
The abilities to mark and manipulate specific cell types are essential for an increasing number of functional, structural, molecular, and developmental analyses in model organisms. In a few species, this can be accomplished by germline transgenesis; in other species, other methods are needed to selectively label somatic cells based on the genes that they express. Here, we describe a method for CRISPR-based somatic integration of reporters or Cre recombinase into specific genes in the chick genome, followed by visualization of cells in the retina and midbrain. Loci are chosen based on an RNA-seq-based cell atlas. Reporters can be soluble to visualize the morphology of individual cells or appended to the encoded protein to assess subcellular localization. We call the method eCHIKIN for electroporation- and CRISPR-mediated Homology-instructed Knock-IN.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| |
Collapse
|
35
|
Miura H, Imafuku J, Kurosaki A, Sato M, Ma Y, Zhang G, Mizutani A, Kamimura K, Gurumurthy CB, Liu D, Ohtsuka M. Novel reporter mouse models useful for evaluating in vivo gene editing and for optimization of methods of delivering genome editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:325-336. [PMID: 33850636 PMCID: PMC8020343 DOI: 10.1016/j.omtn.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
The clustered regularly interspersed palindromic repeats (CRISPR) system is a powerful genome-editing tool to modify genomes, virtually in any species. The CRISPR tool has now been utilized in many areas of medical research, including gene therapy. Although several proof-of-concept studies show the feasibility of in vivo gene therapy applications for correcting disease-causing mutations, and new and improved tools are constantly being developed, there are not many choices of suitable reporter models to evaluate genome editor tools and their delivery methods. Here, we developed and validated reporter mouse models containing a single copy of disrupted EGFP (ΔEGFP) via frameshift mutations. We tested several delivery methods for validation of the reporters, and we demonstrated their utility to assess both non-homologous end-joining (NHEJ) and via homology-directed repair (HDR) processes in embryos and in somatic tissues. With the use of the reporters, we also show that hydrodynamic delivery of ribonucleoprotein (RNP) with Streptococcus pyogenes (Sp)Cas9 protein mixed with synthetic guide RNA (gRNA) elicits better genome-editing efficiencies than the plasmid vector-based system in mouse liver. The reporters can also be used for assessing HDR efficiencies of the Acidaminococcus sp. (As)Cas12a nuclease. The results suggest that the ΔEGFP mouse models serve as valuable tools for evaluation of in vivo genome editing.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Jurai Imafuku
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Aki Kurosaki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Akiko Mizutani
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata, JAPAN
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Miura K, Ogura A, Kobatake K, Honda H, Kaminuma O. Progress of genome editing technology and developmental biology useful for radiation research. JOURNAL OF RADIATION RESEARCH 2021; 62:i53-i63. [PMID: 33978171 PMCID: PMC8114227 DOI: 10.1093/jrr/rraa127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Following the development of genome editing technology, it has become more feasible to create genetically modified animals such as knockout (KO), knock-in, and point-mutated animals. The genome-edited animals are useful to investigate the roles of various functional genes in many fields of biological science including radiation research. Nevertheless, some researchers may experience difficulty in generating genome-edited animals, probably due to the requirement for equipment and techniques for embryo manipulation and handling. Furthermore, after obtaining F0 generation, genome-edited animals generally need to be expanded and maintained for analyzing the target gene function. To investigate genes essential for normal birth and growth, the generation of conditional KO (cKO) animals in which a tissue- or stage-specific gene mutation can be introduced is often required. Here, we describe the basic principle and application of genome editing technology including zinc-finger nuclease, transcription-activator-like effector nuclease, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas) systems. Recently advanced developmental biology methods have enabled application of the technology, especially CRISPR/Cas, to zygotes, leading to the prompt production of genome-edited animals. For pre-implantation embryos, genome editing via oviductal nucleic acid delivery has been developed as an embryo manipulation- or handling-free method. Examining the gene function at F0 generation is becoming possible by employing triple-target CRISPR technology. This technology, in combination with a blastocyst complementation method enables investigation of even birth- and growth-responsible genes without establishing cKO strains. We hope that this review is helpful for understanding and expanding genome editing-related technology and for progressing radiation research.
Collapse
Affiliation(s)
- Kento Miura
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohei Kobatake
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Department of Urology, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
37
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
38
|
Nakano H, Kawai S, Ooki Y, Chiba T, Ishii C, Nozawa T, Utsuki H, Umemura M, Takahashi S, Takahashi Y. Functional validation of epitope-tagged ATF5 knock-in mice generated by improved genome editing of oviductal nucleic acid delivery (i-GONAD). Cell Tissue Res 2021; 385:239-249. [PMID: 33825962 DOI: 10.1007/s00441-021-03450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
Activating transcription factor 5 (ATF5) is a stress-responsive transcription factor that belongs to the cAMP response element-binding protein (CREB)/ATF family, and is essential for the differentiation and survival of sensory neurons in murine olfactory organs. However, the study of associated proteins and target genes for ATF5 has been hampered due to the limited availability of immunoprecipitation-grade ATF5 antibodies. To overcome this issue, we generated hemagglutinin (HA)-tag knock-in mice for ATF5 using CRISPR/Cas9-mediated genome editing with one-step electroporation in oviducts (i-GONAD). ATF5-HA fusion proteins were detected in the nuclei of immature and some mature olfactory and vomeronasal sensory neurons in the main olfactory epithelium and vomeronasal organ, respectively, as endogenous ATF5 proteins were expressed, and some ATF5-HA proteins were found to be phosphorylated. Chromatin immunoprecipitation (ChIP) experiments revealed that ATF5-HA bound to the CCAAT/enhancer-binding protein (C/EBP)-ATF response element site in the promotor region of receptor transporting protein 1 (Rtp1), a chaperone gene responsible for proper olfactory receptor expression. These knock-in mice may be used to examine the expression, localization, and protein-protein/-DNA interactions of endogenous ATF5 and, ultimately, the function of ATF5 in vivo.
Collapse
Affiliation(s)
- Haruo Nakano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Shiori Kawai
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yusaku Ooki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiharu Ishii
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takumi Nozawa
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hisako Utsuki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shigeru Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
39
|
Gurumurthy CB, Saunders TL, Ohtsuka M. Designing and generating a mouse model: frequently asked questions. J Biomed Res 2021; 35:76-90. [PMID: 33797414 PMCID: PMC8038528 DOI: 10.7555/jbr.35.20200197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetically engineered mouse (GEM) models are commonly used in biomedical research. Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff. Because of these reasons, most research institutes set up centralized core facilities where custom GEMs are created for research groups. Researchers, on the other hand, when they begin thinking about generating GEMs for their research, several questions arise in their minds. For example, what type of model(s) would be best useful for my research, how do I design them, what are the latest technologies and tools available for developing my model(s), and finally how to breed GEMs in my research. As there are several considerations and options in mouse designs, and as it is an expensive and time-consuming endeavor, careful planning upfront can ensure the highest chance of success. In this article, we provide brief answers to several frequently asked questions that arise when researchers begin thinking about generating mouse model(s) for their work.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Thomas L Saunders
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
40
|
Faber NR, McFarlane GR, Gaynor RC, Pocrnic I, Whitelaw CBA, Gorjanc G. Novel combination of CRISPR-based gene drives eliminates resistance and localises spread. Sci Rep 2021; 11:3719. [PMID: 33664305 PMCID: PMC7933345 DOI: 10.1038/s41598-021-83239-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Invasive species are among the major driving forces behind biodiversity loss. Gene drive technology may offer a humane, efficient and cost-effective method of control. For safe and effective deployment it is vital that a gene drive is both self-limiting and can overcome evolutionary resistance. We present HD-ClvR in this modelling study, a novel combination of CRISPR-based gene drives that eliminates resistance and localises spread. As a case study, we model HD-ClvR in the grey squirrel (Sciurus carolinensis), which is an invasive pest in the UK and responsible for both biodiversity and economic losses. HD-ClvR combats resistance allele formation by combining a homing gene drive with a cleave-and-rescue gene drive. The inclusion of a self-limiting daisyfield gene drive allows for controllable localisation based on animal supplementation. We use both randomly mating and spatial models to simulate this strategy. Our findings show that HD-ClvR could effectively control a targeted grey squirrel population, with little risk to other populations. HD-ClvR offers an efficient, self-limiting and controllable gene drive for managing invasive pests.
Collapse
Affiliation(s)
- Nicky R Faber
- Highlander Lab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Gus R McFarlane
- Whitelaw Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - R Chris Gaynor
- AlphaGenes Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Ivan Pocrnic
- Highlander Lab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - C Bruce A Whitelaw
- Whitelaw Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregor Gorjanc
- Highlander Lab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
41
|
Desaulniers AT, Cederberg RA, Carreiro EP, Gurumurthy CB, White BR. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues. J Biomed Res 2020; 35:163-173. [PMID: 33797416 PMCID: PMC8038527 DOI: 10.7555/jbr.34.20200111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since genetic engineering of pigs can benefit both biomedicine and agriculture, selecting a suitable gene promoter is critically important. The cytomegalovirus (CMV) promoter, which can robustly drive ubiquitous transgene expression, is commonly used at present, yet recent reports suggest tissue-specific activity in the pig. The objective of this study was to quantify ZsGreen1 protein (in lieu of CMV promoter activity) in tissues from pigs harboring a CMV-ZsGreen1 transgene with a single integration site. Tissue samples (n=35) were collected from neonatal hemizygous (n=3) and homozygous (n=3) piglets and ZsGreen1 abundance was determined via immunoblotting. ZsGreen1 was detected in all tissues, except hypothalamus, kidney cortex and oviduct. The expression patterns of homozygous and hemizygous piglets were similar (P>0.05). However, quantification revealed that ZsGreen1 protein levels were tissue-specific. Within neural/endocrine tissues, ZsGreen1 abundance was highest in the anterior pituitary gland, intermediate in the cerebellum and lowest in the cerebrum, spinal cord and posterior pituitary (P<0.05). In the digestive system, ZsGreen1 was more abundant in the salivary gland than esophagus, stomach, pancreas, duodenum, jejunum, ileum, spleen, colon, gallbladder and liver (P<0.05). Interestingly, ZsGreen1 amounts also differed within an organ (i.e., the right ventricle had 3-fold higher levels than the other heart chambers; P<0.05). These results provide useful information for the use of the CMV promoter to drive transgene expression in the pig. Moreover, this swine model represents a novel resource of ZsGreen1-labeled organs and a valuable tool to advance genome editing research.
Collapse
Affiliation(s)
- Amy T Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Rebecca A Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Elizabeth P Carreiro
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA
| | - Brett R White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| |
Collapse
|
42
|
Generation of mouse conditional knockout alleles in one step using the i-GONAD method. Genome Res 2020; 31:121-130. [PMID: 33328166 PMCID: PMC7849380 DOI: 10.1101/gr.265439.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially– and temporally–controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis. The current undertaking involves labor-intensive embryonic stem (ES) cell–based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formidable technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene function studies using novel murine models.
Collapse
|
43
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
44
|
Zhang C, Ren Z, Gong Z. Transgenic Expression and Genome Editing by Electroporation of Zebrafish Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:644-650. [PMID: 32748174 DOI: 10.1007/s10126-020-09985-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 05/22/2023]
Abstract
Microinjection is predominantly used to produce genetically modified fish. However, there are certain difficulties involved in some fish species. In this study, we tested an alternative method to produce genetically modified zebrafish by delivering DNA and other materials into embryos by electroporation. We optimized the electroporation conditions of a square wave electroporation system that work efficiently for the introduction of plasmid DNA, recombinant Cas9 nuclease and synthetic dual guide RNAs. Transgenic expression was observed in a wide range of tissues, which is comparable with those obtained by microinjection. We further determined that efficient gene delivery can be achieved during the cleavage stage. This study describes detailed electroporation parameters for gene delivery with high efficiency and low toxicity, providing a novel method to generate transgenic lines and genome editing.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, Singapore, 117558, Singapore
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, Singapore, 117558, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
45
|
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. NANO TODAY 2020; 34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Chen S, Sun S, Moonen D, Lee C, Lee AYF, Schaffer DV, He L. CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor Infection. Cell Rep 2020; 27:3780-3789.e4. [PMID: 31242412 DOI: 10.1016/j.celrep.2019.05.103] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/01/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Genetically engineered mouse models harboring large sequence insertions or modifications are critical for a wide range of applications including endogenous gene tagging, conditional knockout, site-specific transgene insertion, and gene replacement; however, existing methods to generate such animals remain laborious and costly. To address this, we developed an approach called CRISPR-READI (CRISPR RNP electroporation and AAV donor infection), combining adeno-associated virus (AAV)-mediated HDR donor delivery with Cas9/sgRNA RNP electroporation to engineer large site-specific modifications in the mouse genome with high efficiency and throughput. We successfully targeted a 774 bp fluorescent reporter, a 2.1 kb CreERT2 driver, and a 3.3 kb expression cassette into endogenous loci in both embryos and live mice. CRISPR-READI is applicable to most widely used knockin schemes requiring donor lengths within the 4.9 kb AAV packaging capacity. Altogether, CRISPR-READI is an efficient, high-throughput, microinjection-free approach for sophisticated mouse genome engineering with potential applications in other mammalian species.
Collapse
Affiliation(s)
- Sean Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sabrina Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Dewi Moonen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Clancy Lee
- Department of Environmental Science and Policy Management, University of California, Berkeley, Berkeley, CA, USA
| | - Angus Yiu-Fai Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Lin He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
47
|
Kaneko T, Tanaka S. Improvement of genome editing by electroporation using embryos artificially removed cumulus cells in the oviducts. Biochem Biophys Res Commun 2020; 527:1039-1042. [PMID: 32439162 DOI: 10.1016/j.bbrc.2020.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Many genome-edited animals have been produced using the CRISPR/Cas system. Genome-edited strains were produced by introducing nucleases into pronuclear stage embryos. Recently, a new electroporation technique (TAKE: Technique for Animal Knockout system by Electroporation) was developed for the production of genome-edited animals by introducing nucleases into intact embryos using electroporation instead of the microinjection method. Furthermore, this method, which can introduce nucleases into intact embryos, enables genome editing of mouse embryos in the oviducts. However, the present protocol required improvements for low litter size and restriction of operation time. In this study, the influence on the development and genome editing of mouse embryos in the oviducts by electroporation and operation time was examined. The genome-editing rate was higher in the embryos electroporated at 16:00-17:00 (PM) (54%) on the following day of natural mating compared to that of embryos at 10:00-11:00 (AM) (27%). The embryos at AM formed a complex with cumulus cells, and cumulus cells were freed from embryos by treatment with hyalronidase before electroporation. The results showed that the genome-editing rate was significantly increased in the embryos treated with hyalronidase at AM, because the cumulus cells surrounding the embryos interfered with the introduction of nucleases into embryos. This study demonstrated that it was possible to adjust the operation time for the introduction of nucleases into embryos in the oviducts by treatment with hyalronidase before electroporation. However, litter size and development of embryos after electroporation was quite low in all experiments (5-7) compared with the control without operation (11).
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Shungo Tanaka
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| |
Collapse
|
48
|
Kobayashi Y, Aoshima T, Ito R, Shinmura R, Ohtsuka M, Akasaka E, Sato M, Takabayashi S. Modification of i-GONAD Suitable for Production of Genome-Edited C57BL/6 Inbred Mouse Strain. Cells 2020; 9:cells9040957. [PMID: 32295056 PMCID: PMC7226992 DOI: 10.3390/cells9040957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Improved genome editing via oviductal nucleic acid delivery (i-GONAD) is a novel method for producing genome-edited mice in the absence of ex vivo handling of zygotes. i-GONAD involves the intraoviductal injection of clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoproteins via the oviductal wall of pregnant females at 0.7 days post-coitum, followed by in vivo electroporation (EP). Unlike outbred Institute of Cancer Research (ICR) and hybrid mouse strains, genome editing of the most widely used C57BL/6J (B6) strain with i-GONAD has been considered difficult but, recently, setting a constant current of 100 mA upon EP enabled successful i-GONAD in this strain. Unfortunately, the most widely used electroporators employ a constant voltage, and thus we explored conditions allowing the generation of a 100 mA current using two electroporators: NEPA21 (Nepa Gene Co., Ltd.) and GEB15 (BEX Co., Ltd.). When the current and resistance were set to 40 V and 350–400 Ω, respectively, the current was fixed to 100 mA. Another problem in using B6 mice for i-GONAD is the difficulty in obtaining pregnant B6 females consistently because estrous females often fail to be found. A single intraperitoneal injection of low-dose pregnant mare’s serum gonadotrophin (PMSG) led to synchronization of the estrous cycle of these mice. Consequently, approximately 51% of B6 females had plugs upon mating with males 2 days after PMSG administration, which contrasts with the case (≈26%) when B6 females were subjected to natural mating. i-GONAD performed on PMSG-treated pregnant B6 females under conditions of average resistance of 367 Ω and average voltage of 116 mA resulted in the production of pregnant females at a rate of 56% (5/9 mice), from which 23 fetuses were successfully delivered. Nine (39%) of these fetuses exhibited successful genome editing at the target locus.
Collapse
Affiliation(s)
- Yukari Kobayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (Y.K.); (T.A.); (R.I.); (R.S.)
| | - Takuya Aoshima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (Y.K.); (T.A.); (R.I.); (R.S.)
| | - Ryota Ito
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (Y.K.); (T.A.); (R.I.); (R.S.)
| | - Ryota Shinmura
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (Y.K.); (T.A.); (R.I.); (R.S.)
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan;
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Eri Akasaka
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
- Correspondence: (M.S.); (S.T.); Tel.: +81-99-275-5246 (M.S.); +81-53-435-2001 (S.T.)
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (Y.K.); (T.A.); (R.I.); (R.S.)
- Correspondence: (M.S.); (S.T.); Tel.: +81-99-275-5246 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
49
|
Sato M, Takabayashi S, Akasaka E, Nakamura S. Recent Advances and Future Perspectives of In Vivo Targeted Delivery of Genome-Editing Reagents to Germ Cells, Embryos, and Fetuses in Mice. Cells 2020; 9:cells9040799. [PMID: 32225003 PMCID: PMC7226049 DOI: 10.3390/cells9040799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) systems that occur in nature as microbial adaptive immune systems are considered an important tool in assessing the function of genes of interest in various biological systems. Thus, development of efficient and simple methods to produce genome-edited (GE) animals would accelerate research in this field. The CRISPR/Cas9 system was initially employed in early embryos, utilizing classical gene delivery methods such as microinjection or electroporation, which required ex vivo handling of zygotes before transfer to recipients. Recently, novel in vivo methods such as genome editing via oviductal nucleic acid delivery (GONAD), improved GONAD (i-GONAD), or transplacental gene delivery for acquiring genome-edited fetuses (TPGD-GEF), which facilitate easy embryo manipulation, have been established. Studies utilizing these techniques employed pregnant female mice for direct introduction of the genome-editing components into the oviduct or were dependent on delivery via tail-vein injection. In mice, embryogenesis occurs within the oviducts and the uterus, which often hampers the genetic manipulation of embryos, especially those at early postimplantation stages (days 6 to 8), owing to a thick surrounding layer of tissue called decidua. In this review, we have surveyed the recent achievements in the production of GE mice and have outlined the advantages and disadvantages of the process. We have also referred to the past achievements in gene delivery to early postimplantation stage embryos and germ cells such as primordial germ cells and spermatogonial stem cells, which will benefit relevant research.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
- Correspondence: ; Tel.: +81-99-275-5246
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan;
| | - Eri Akasaka
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| |
Collapse
|
50
|
Fu B, Ma H, Liu D. Extracellular Vesicles Function as Bioactive Molecular Transmitters in the Mammalian Oviduct: An Inspiration for Optimizing in Vitro Culture Systems and Improving Delivery of Exogenous Nucleic Acids during Preimplantation Embryonic Development. Int J Mol Sci 2020; 21:ijms21062189. [PMID: 32235756 PMCID: PMC7139358 DOI: 10.3390/ijms21062189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Two technologies, in vitro culture and exogenous gene introduction, constitute cornerstones of producing transgenic animals. Although in vitro embryo production techniques can bypass the oviduct during early development, such embryos are inferior to their naturally produced counterparts. In addition, preimplantation embryos are resistant to the uptake of exogenous genetic material. These factors restrict the production of transgenic animals. The discovery of extracellular vesicles (EVs) was a milestone in the study of intercellular signal communication. EVs in the oviduct, known as oviductosomes (OVS), are versatile delivery tools during maternal–embryo communication. In this review, we discuss the important roles of OVS in these interactions and the feasibility of using them as tools for transferring exogenous nucleic acids during early development. We hypothesize that further accurate characterization of OVS cargoes and functions will open new horizons for research on maternal–embryo interactions and enhance the production of transgenic animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
- Correspondence: ; Tel.: +86-138-4512-0192
| |
Collapse
|