1
|
Kim KS, Lee R, Park I, Hwang SH, Kim Y, Jang JW, Kim HS, Choi SM, Kim SJ, Cho HJ, Cho IH, Kim JH, Kim DG, Nah SY. Gintonin Binds to Reduced LPA4 Receptor Subtype in Human Cortical Neurons in Alzheimer's Disease Brains. Biomolecules 2025; 15:179. [PMID: 40001482 PMCID: PMC11853258 DOI: 10.3390/biom15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Ginseng, a traditional herbal medicine with a long history of use, is known to support human health, particularly by influencing brain function. Recent studies have identified gintonin, a lysophosphatidic acid (LPA) receptor ligand derived from ginseng, as a key bioactive. However, the specific LPA receptor subtypes targeted by gintonin in the human brain to exert its anti-Alzheimer's (AD) effects remain unclear. This study aimed to elucidate the LPA receptor subtype targeted by gintonin in the human cortex. Using a fluorescent gintonin conjugate, we investigated receptor binding in cortical samples from healthy individuals (n = 4) and AD patients (n = 4). Our results demonstrated that fluorescent gintonin selectively binds to human cortical neurons rather than glial cells and that gintonin-binding sites are co-localized with the LPA4 receptor subtype. Furthermore, the expression of LPA4 receptors was significantly reduced in the cortical neurons of AD patients. These results suggest that the LPA4 receptor may serve as a novel histopathological marker for AD and represent a promising therapeutic target for gintonin-based prevention and treatment strategies.
Collapse
Affiliation(s)
- Kyu-Sung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea;
- Neuroimmunology Laboratory, Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Inyeong Park
- Neuroimmunology Laboratory, Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea;
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea; (Y.K.), (J.-W.J.)
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea; (Y.K.), (J.-W.J.)
| | - Hyung-Seok Kim
- Department of Neurosurgery, Chonnam National University Medical School, Research Institute of Medical Sciences, Gwangju 61469, Republic of Korea;
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Jebong-ro, Gwangju 61469, Republic of Korea;
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea;
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea
| | - Hwa Jin Cho
- Busan & Gyeongnam Reference Laboratory, Department of Pathology, Seegene Medical Foundation, Busan 48792, Republic of Korea;
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea;
| | - Do-Geun Kim
- Neuroimmunology Laboratory, Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Nishikiori N, Umetsu A, Ogawa T, Furuhashi M, Ohguro H. Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts. Life (Basel) 2024; 14:770. [PMID: 38929752 PMCID: PMC11204428 DOI: 10.3390/life14060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. METHODS To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. RESULTS LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. CONCLUSION The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| |
Collapse
|
3
|
Dai P, Ding M, Yu J, Gao Y, Wang M, Ling J, Dong S, Zhang X, Zeng X, Sun X. The Male Reproductive Toxicity Caused by 2-Naphthylamine Was Related to Testicular Immunity Disorders. TOXICS 2024; 12:342. [PMID: 38787121 PMCID: PMC11126000 DOI: 10.3390/toxics12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
2-naphthylamine (NAP) was classified as a group I carcinogen associated with bladder cancer. The daily exposure is mostly from cigarette and E-cigarette smoke. NAP can lead to testicular atrophy and interstitial tissue hyperplasia; however, the outcomes of NAP treatment on spermatogenesis and the associated mechanisms have not been reported. The study aimed to investigate the effect of NAP on spermatogenesis and sperm physiologic functions after being persistently exposed to NAP at 5, 20, and 40 mg/kg for 35 days. We found that sperm motility, progressive motility, sperm average path velocity, and straight-line velocity declined remarkably in the NAP (40 mg/kg) treated group, and the sperm deformation rate rose upon NAP administration. The testis immunity- and lipid metabolism-associated processes were enriched from RNA-sequence profiling. Plvap, Ccr7, Foxn1, Trim29, Sirpb1c, Cfd, and Lpar4 involved in testis immunity and Pnliprp1 that inhibit triglyceride and cholesterol absorption were confirmed to rise dramatically in the NAP-exposed group. The increased total cholesterol and CD68 levels were observed in the testis from the NAP-exposed group. Gpx5, serving as an antioxidant in sperm plasma, and Semg1, which contributes to sperm progressive motility, were both down-regulated. We concluded that the short-term exposure to NAP caused reproductive toxicity, primarily due to the inflammatory abnormality in the testis.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Yuan Gao
- Experimental Animal Center, Nantong University, Nantong 226001, China;
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Jie Ling
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.D.); (J.Y.); (M.W.); (J.L.); (S.D.); (X.Z.)
| | - Xiaoli Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Lee JW, Lee CS, Son H, Lee J, Kang M, Chai J, Cho HJ, Kim HS. SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp Mol Med 2023; 55:1424-1436. [PMID: 37394586 PMCID: PMC10394006 DOI: 10.1038/s12276-023-01025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
Lysophosphatidic acid receptor 4 (LPAR4) exhibits transient expression at the cardiac progenitor stage during pluripotent stem cell (PSC)-derived cardiac differentiation. Using RNA sequencing, promoter analyses, and a loss-of-function study in human PSCs, we discovered that SRY-box transcription factor 17 (SOX17) is an essential upstream factor of LPAR4 during cardiac differentiation. We conducted mouse embryo analyses to further verify our human PSC in vitro findings and confirmed the transient and sequential expression of SOX17 and LPAR4 during in vivo cardiac development. In an adult bone marrow transplantation model using LPAR4 promoter-driven GFP cells, we observed two LPAR4+ cell types in the heart following myocardial infarction (MI). Cardiac differentiation potential was shown in heart-resident LPAR4+ cells, which are SOX17+, but not bone marrow-derived infiltrated LPAR4+ cells. Furthermore, we tested various strategies to enhance cardiac repair through the regulation of downstream signals of LPAR4. During the early stages following MI, the downstream inhibition of LPAR4 by a p38 mitogen-activated protein kinase (p38 MAPK) blocker improved cardiac function and reduced fibrotic scarring compared to that observed following LPAR4 stimulation. These findings improve our understanding of heart development and suggest novel therapeutic strategies that enhance repair and regeneration after injury by modulating LPAR4 signaling.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
6
|
Wang H, Li M, St Onge CM, Fuss B, Zhang Y. Elucidating the binding mechanism of LPA species and analogs in an LPA 4 receptor homology model. J Mol Graph Model 2022; 116:108274. [PMID: 35868118 DOI: 10.1016/j.jmgm.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid receptor 4 (LPA4) has emerged as a potential therapeutic target for the treatment of a variety of diseases, including cancer and obesity-induced diabetes, but its structure remains to be revealed. In the present work, a homology model of LPA4 was built for studying the binding mechanism of LPA species and analogs. Then five selected LPA species and analogs with structural variations in their phosphate groups, substitutions on the glycerol backbone, and fatty acyl chains were docked into the LPA4 model, followed by molecular dynamics simulations and energy analyses. The computational results revealed that the aliphatic residues located at the vertical cleft of LPA4 may form a hydrophobic environment for the fatty acyl moiety of LPA species and their analogs. Meanwhile, the positively charged residues in the central cavity of LPA4 may form ionic interactions with the negatively charged hydrophilic head group of LPA species and their analogs. In addition, it was noted that a different binding mode of the hydrophilic head group in each species with the central cavity of the LPA4 might lead to a special rearrangement of the fatty acyl moiety. Taken together, these results may facilitate understanding of the activation mechanism of LPA4 and help design selective ligands to modulate its function for therapeutic purposes.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
7
|
Role of Lysophospholipid Metabolism in Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13143434. [PMID: 34298649 PMCID: PMC8305981 DOI: 10.3390/cancers13143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary In this review, I discuss our recent finding that lysophospholipid metabolism is essential for the maintenance of chronic myelogenous leukemia (CML) stem cells. Lysophospholipids have only one fatty acid chain and so are more hydrophilic than phospholipids, allowing them to act as lipid second messengers. We demonstrated that the stem cell quiescence and TKI resistance displayed by CML stem cells in vivo are sustained by the Gdpd3 enzyme involved in lysophospholipid metabolism. At the mechanistic level, Gdpd3 function allows lysophospholipid metabolism to suppress the AKT/mTORC1-mediated cell growth pathway while activating the stemness factors FOXO and β-catenin. Our results thus link lysophospholipid metabolism to CML stemness, and may thereby open up new therapeutic avenues to overcome CML relapse post-TKI therapy. Abstract It is well known that mature chronic myelogenous leukemia (CML) cells proliferate in response to oncogenic BCR–ABL1-dependent signaling, but how CML stem cells are able to survive in an oncogene-independent manner and cause disease relapse has long been elusive. Here, I put into the context of the broader literature our recent finding that lysophospholipid metabolism is essential for the maintenance of CML stem cells. I describe the fundamentals of lysophospholipid metabolism and discuss how one of its key enzymes, Glycerophosphodiester Phosphodiesterase Domain Containing 3 (Gdpd3), is responsible for maintaining the unique characteristics of CML stem cells. I also explore how this knowledge may be exploited to devise novel therapies for CML patients.
Collapse
|
8
|
Tigyi G, Lin KH, Jang IH, Lee SC. Revisiting the role of lysophosphatidic acid in stem cell biology. Exp Biol Med (Maywood) 2021; 246:1802-1809. [PMID: 34038224 DOI: 10.1177/15353702211019283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stem cells possess unique biological characteristics such as the ability to self-renew and to undergo multilineage differentiation into specialized cells. Whereas embryonic stem cells (ESC) can differentiate into all cell types of the body, somatic stem cells (SSC) are a population of stem cells located in distinct niches throughout the body that differentiate into the specific cell types of the tissue in which they reside in. SSC function mainly to restore cells as part of normal tissue homeostasis or to replenish cells that are damaged due to injury. Cancer stem-like cells (CSC) are said to be analogous to SSC in this manner where tumor growth and progression as well as metastasis are fueled by a small population of CSC that reside within the corresponding tumor. Moreover, emerging evidence indicates that CSC are inherently resistant to chemo- and radiotherapy that are often the cause of cancer relapse. Hence, major research efforts have been directed at identifying CSC populations in different cancer types and understanding their biology. Many factors are thought to regulate and maintain cell stemness, including bioactive lysophospholipids such as lysophosphatidic acid (LPA). In this review, we discuss some of the newly discovered functions of LPA not only in the regulation of CSC but also normal SSC, the similarities in these regulatory functions, and how these discoveries can pave way to the development of novel therapies in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| | - Il Ho Jang
- Department of Oral Biochemistry, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea.,Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan 50612, Republic of Korea
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Lin KH, Chiang JC, Chen WM, Ho YH, Yao CL, Lee H. Transcriptional regulation of lysophosphatidic acid receptors 2 and 3 regulates myeloid commitment of hematopoietic stem cells. Am J Physiol Cell Physiol 2021; 320:C509-C519. [PMID: 33406026 DOI: 10.1152/ajpcell.00506.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled lysophosphatidic acid receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis of human hematopoietic stem cells (HSCs) and zebrafish using molecular and pharmacological approaches. Our results show that treatment with lysophosphatidic acid receptor 2 (LPA2) agonist suppressed erythropoiesis, whereas activation of LPA3 by 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observations remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3 in K562 leukemia cells. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 genes were regulated by these GATA factors in HEK293T cells. Mutation of GATA-binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPAR genes was verified in K562 cells using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3 expression, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
11
|
Chiang JC, Chen WM, Lin KH, Hsia K, Ho YH, Lin YC, Shen TL, Lu JH, Chen SK, Yao CL, Chen BPC, Lee H. Lysophosphatidic acid receptors 2 and 3 regulate erythropoiesis at different hematopoietic stages. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158818. [PMID: 33035680 DOI: 10.1016/j.bbalip.2020.158818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis, the complex developmental process that forms blood components and replenishes the blood system, involves multiple intracellular and extracellular mechanisms. We previously demonstrated that lysophosphatidic acid (LPA), a lipid growth factor, has opposing regulatory effects on erythrocyte differentiation through activation of LPA receptors 2 and 3; yet the mechanisms underlying this process remain unclear. In this study, LPA2 is observed that highly expressed in common myeloid progenitors (CMP) in murine myeloid cells, whereas the expression of LPA3 displaces in megakaryocyte-erythroid progenitors (MEP) of later stage of myeloid differentiation. Therefore, we hypothesized that the switching expression of LPA2 and LPA3 determine the hematic homeostasis of mammalian megakaryocytic-erythroid lineage. In vitro colony-forming unit assays of murine progenitors reveal that LPA2 agonist GRI reduces the erythroblast differentiation potential of CMP. In contrast, LPA3 agonist OMPT increases the production of erythrocytes from megakaryocyte-erythrocyte progenitor cells (MEP). In addition, treatment with GRI reduces the erythroid, CMP, and MEP populations in mice, indicating that LPA2 predominantly inhibits myeloid differentiation at an early stage. In contrast, activation of LPA3 increases the production of terminally differentiated erythroid cells through activation of erythropoietic transcriptional factor. We also demonstrate that the LPA3 signaling is essential for restoration of phenylhydrazine (PHZ)-induced acute hemolytic anemia in mice and correlates to erythropoiesis impairment of Hutchinson-Gilford progeria Symptom (HGPS) premature aging expressed K562 model. Our results reveal the distinct roles of LPA2 and LPA3 at different stages of hematopoiesis in vivo, providing potentiated therapeutic strategies of anemia treatment.
Collapse
Affiliation(s)
- Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Min Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kai Hsia
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Yueh-Chien Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, Medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2020; 149:95-114. [PMID: 33017574 DOI: 10.1016/j.yjmcc.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood. APPROACH AND RESULTS We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3Δ) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3fl/fl); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3Δ mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis. CONCLUSION ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.
Collapse
|
13
|
The lysophospholipase D enzyme Gdpd3 is required to maintain chronic myelogenous leukaemia stem cells. Nat Commun 2020; 11:4681. [PMID: 32943626 PMCID: PMC7499193 DOI: 10.1038/s41467-020-18491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Although advanced lipidomics technology facilitates quantitation of intracellular lipid components, little is known about the regulation of lipid metabolism in cancer cells. Here, we show that disruption of the Gdpd3 gene encoding a lysophospholipase D enzyme significantly decreased self-renewal capacity in murine chronic myelogenous leukaemia (CML) stem cells in vivo. Sophisticated lipidomics analyses revealed that Gdpd3 deficiency reduced levels of certain lysophosphatidic acids (LPAs) and lipid mediators in CML cells. Loss of Gdpd3 also activated AKT/mTORC1 signalling and cell cycle progression while suppressing Foxo3a/β-catenin interaction within CML stem cell nuclei. Strikingly, CML stem cells carrying a hypomorphic mutation of Lgr4/Gpr48, which encodes a leucine-rich repeat (LRR)-containing G-protein coupled receptor (GPCR) acting downstream of Gdpd3, displayed inadequate disease-initiating capacity in vivo. Our data showing that lysophospholipid metabolism is required for CML stem cell maintenance in vivo establish a new, biologically significant mechanism of cancer recurrence that is independent of oncogene addiction. How lipid metabolism can affect cancer recurrence is still unclear. Here, the authors show that the lysophospholipase D Gdpd3 maintains self-renewal capacity of CML stem cells by regulating the quiescence, and AKT/mTORC1 and Foxo3a/β-catenin signalling in an oncogene-independent manner.
Collapse
|
14
|
Lin KH, Chiang JC, Ho YH, Yao CL, Lee H. Lysophosphatidic Acid and Hematopoiesis: From Microenvironmental Effects to Intracellular Signaling. Int J Mol Sci 2020; 21:ijms21062015. [PMID: 32188052 PMCID: PMC7139687 DOI: 10.3390/ijms21062015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vertebrate hematopoiesis is a complex physiological process that is tightly regulated by intracellular signaling and extracellular microenvironment. In recent decades, breakthroughs in lineage-tracing technologies and lipidomics have revealed the existence of numerous lipid molecules in hematopoietic microenvironment. Lysophosphatidic acid (LPA), a bioactive phospholipid molecule, is one of the identified lipids that participates in hematopoiesis. LPA exhibits various physiological functions through activation of G-protein-coupled receptors. The functions of these LPARs have been widely studied in stem cells, while the roles of LPARs in hematopoietic stem cells have rarely been examined. Nonetheless, mounting evidence supports the importance of the LPA-LPAR axis in hematopoiesis. In this article, we have reviewed regulation of hematopoiesis in general and focused on the microenvironmental and intracellular effects of the LPA in hematopoiesis. Discoveries in these areas may be beneficial to our understanding of blood-related disorders, especially in the context of prevention and therapy for anemia.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Angiogenesis Research Center, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +8862-3366-2499; Fax: +8862-2363-6837
| |
Collapse
|
15
|
M'Hiri I, Diaguarachchige De Silva KH, Duncan RE. Relative expression and regulation by short-term fasting of lysophosphatidic acid receptors and autotaxin in white and brown adipose tissue depots. Lipids 2020; 55:279-284. [PMID: 32069377 DOI: 10.1002/lipd.12224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/08/2022]
Abstract
Lysophosphatidic acid (lysoPtdOH) levels have previously been reported to decrease in rodents with short-term fasting. We investigated whether a 16 h fast would change expression of autotaxin, the predominant phospholipase D responsible for adipose-derived lysoPtdOH synthesis, or any of the lysophosphatidic acid receptors (1-6) in four white adipose tissue (WAT) depots and interscapular brown adipose tissue (BAT) in male C57Bl/6J mice fed ad libitum, or fasted for 16 h. Aside from small inductions of Lpar1 in epididymal WAT and Lpar2 in epididymal and inguinal WAT, no significant changes were observed in expression of the Lpar family members, or autotaxin in perirenal, retroperitoneal, epididymal, or inguinal WAT or BAT with fasting. Comparison of the relative expression of Lpar1-6 in various depots showed that Lpar6 was the predominant Lpar in both WAT and BAT, and suggests that further work on the adipose-specific role of Lpar6 is warranted.
Collapse
Affiliation(s)
- Iman M'Hiri
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, ON, Canada
| | | | - Robin E Duncan
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, ON, Canada
| |
Collapse
|
16
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Yang L, Kraemer M, Fang XF, Angel PM, Drake RR, Morris AJ, Smyth SS. LPA receptor 4 deficiency attenuates experimental atherosclerosis. J Lipid Res 2019; 60:972-980. [PMID: 30796085 PMCID: PMC6495174 DOI: 10.1194/jlr.m091066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The widely expressed lysophosphatidic acid (LPA) selective receptor 4 (LPAR4) contributes to vascular development in mice and zebrafish. LPAR4 regulates endothelial permeability, lymphocyte migration, and hematopoiesis, which could contribute to atherosclerosis. We investigated the role of LPAR4 in experimental atherosclerosis elicited by adeno-associated virus expressing PCSK9 to lower LDL receptor levels. After 20 weeks on a Western diet, cholesterol levels and lipoprotein distribution were similar in WT male and Lpar4Y/- mice (P = 0.94). The atherosclerotic lesion area in the proximal aorta and arch was ∼25% smaller in Lpar4Y/- mice (P = 0.009), and less atherosclerosis was detected in Lpar4Y/- mice at any given plasma cholesterol. Neutral lipid accumulation in aortic root sections occupied ∼40% less area in Lpar4Y/- mice (P = 0.001), and CD68 expression was ∼25% lower (P = 0.045). No difference in α-smooth muscle actin staining was observed. Bone marrow-derived macrophages isolated from Lpar4Y/- mice displayed significantly increased upregulation of the M2 marker Arg1 in response to LPA compared with WT cells. In aortic root sections from Lpar4Y/- mice, heightened M2 "repair" macrophage marker expression was detected by CD206 staining (P = 0.03). These results suggest that LPAR4 may regulate the recruitment of specific sets of macrophages or their phenotypic switching in a manner that could influence the development of atherosclerosis.
Collapse
Affiliation(s)
- Liping Yang
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Maria Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Xianjun Frank Fang
- Department of Biochemistry and Molecular Biology VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511.
| |
Collapse
|
18
|
Yanagida K, Igarashi H, Yasuda D, Kobayashi D, Ohto-Nakanishi T, Akahoshi N, Sekiba A, Toyoda T, Ishijima T, Nakai Y, Shojima N, Kubota N, Abe K, Kadowaki T, Ishii S, Shimizu T. The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity. JCI Insight 2018; 3:97293. [PMID: 30568036 DOI: 10.1172/jci.insight.97293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
White adipose tissue (WAT) can dynamically expand and remodel through adipocyte hypertrophy and hyperplasia. The relative contribution of these 2 mechanisms to WAT expansion is a critical determinant of WAT function and dysfunction in obesity. However, little is known about the signaling systems that determine the mechanisms of WAT expansion. Here, we show that the GPCR LPA4 selectively activates Gα12/13 proteins in adipocytes and limits continuous remodeling and healthy expansion of WAT. LPA4-KO mice showed enhanced expression of mitochondrial and adipogenesis genes and reduced levels of inhibitory phosphorylation of PPARγ in WAT, along with increased production of adiponectin. Furthermore, LPA4-KO mice showed metabolically healthy obese phenotypes in a diet-induced obesity model, with continuous WAT expansion, as well as protection from WAT inflammation, hepatosteatosis, and insulin resistance. These findings unravel a potentially new signaling system that underlies WAT plasticity and expandability, providing a promising therapeutic approach for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidemitsu Igarashi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daiki Kobayashi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takayo Ohto-Nakanishi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsushi Sekiba
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsudoi Toyoda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Tomoko Ishijima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Yuji Nakai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, and
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, and
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, and
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Lidgerwood GE, Pitson SM, Bonder C, Pébay A. Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Prog Lipid Res 2018; 72:42-54. [PMID: 30196008 DOI: 10.1016/j.plipres.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Stem cells are unique in their ability to self-renew and differentiate into various cell types. Because of these features, stem cells are key to the formation of organisms and play fundamental roles in tissue regeneration and repair. Mechanisms controlling their fate are thus fundamental to the development and homeostasis of tissues and organs. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids that play a wide range of roles in multiple cell types, during developmental and pathophysiological events. Considerable evidence now demonstrates the potent roles of LPA and S1P in the biology of pluripotent and adult stem cells, from maintenance to repair. Here we review their roles for each main category of stem cells and explore how those effects impact development and physiopathology.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
20
|
Lin KH, Li MW, Chang YC, Lin YN, Ho YH, Weng WC, Huang CJ, Chang BE, Yao CL, Lee H. Activation of Lysophosphatidic Acid Receptor 3 Inhibits Megakaryopoiesis in Human Hematopoietic Stem Cells and Zebrafish. Stem Cells Dev 2018; 27:216-224. [DOI: 10.1089/scd.2017.0190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Wei Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Chi Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Nung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Chun Weng
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chang-Jen Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Bei-En Chang
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. Nature 2017; 548:356-360. [DOI: 10.1038/nature23448] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/28/2017] [Indexed: 01/27/2023]
|