1
|
Tuieng RJ, Disney C, Cartmell SH, Kirwan CC, Eckersley A, Newham E, Gupta HS, Hoyland JA, Lee PD, Sherratt MJ. Impact of therapeutic X-ray exposure on collagen I and associated proteins. Acta Biomater 2025; 197:294-311. [PMID: 40058620 DOI: 10.1016/j.actbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
Biological tissues are exposed to X-rays in medical applications (such as diagnosis and radiotherapy) and in research studies (for example microcomputed X-ray tomography: microCT). Radiotherapy may deliver doses up to 50Gy to both tumour and healthy tissues, resulting in undesirable clinical side effects which can compromise quality of life. Whilst cellular responses to X-rays are relatively well-characterised, X-ray-induced structural damage to the extracellular matrix (ECM) is poorly understood. This study tests the hypotheses that ECM proteins and ECM-rich tissues (purified collagen I and rat tail tendons respectively) are structurally compromised by exposure to X-ray doses used in breast radiotherapy. Protein gel electrophoresis demonstrated that breast radiotherapy equivalent doses can induce fragmentation of the constituent α chains in solubilised purified collagen I. However, assembly into fibrils, either in vitro or in vivo, prevented X-ray-induced fragmentation but not structural changes (as characterised by LC-MS/MS and peptide location fingerprinting: PLF). In subsequent experiments exposure to higher (synchrotron) X-ray doses induced substantial fragmentation of solubilised and fibrillar (chicken tendon) collagen I. LC-MS/MS and PLF analysis of synchrotron-irradiated tendon identified structure-associated changes in collagens I, VI, XII, proteoglycans including aggrecan, decorin, and fibromodulin, and the elastic fibre component fibulin-1. Thus, exposure to radiotherapy X-rays can affect the structure of key tissue ECM components, although additional studies will be required to understand dose dependent effects. STATEMENT OF SIGNIFICANCE: Biological systems are routinely exposed to X-rays during medical treatments (radiotherapy) and in imaging studies (microCT). Whilst the impact of ionising radiation on cells is well characterised, the interactions between X-rays and the extracellular matrix are not. Here, we show that relatively low dose breast radiotherapy X-rays are sufficient to affect the structure of collagen I in both its solubilised and fibrillar forms. Although the impact of intermediate X-ray doses on extracellular proteins was not determined, the high dose exposures which are achievable using a synchrotron source had an even greater effect on the structure of collagen I molecules and, in tendon, on the structures of many accessory extracellular matrix proteins, The unwanted side effects of radiotherapy may therefore be due to not only cellular damage but also damage to the surrounding matrix.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK; Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415
| | - Catherine Disney
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, M13 9PL, Manchester, UK
| | - Cliona C Kirwan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oglesby Cancer Research Building, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK; The Nightingale Breast Cancer Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, M23 9LT, Manchester, UK
| | - Alexander Eckersley
- Manchester Cell-Matrix Centre, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Elis Newham
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK; Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Himadri S Gupta
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Zhang H, Yang M, Kim SH, Li IT. Integrin force loading rate in mechanobiology: From model to molecular measurement. QRB DISCOVERY 2025; 6:e9. [PMID: 40160979 PMCID: PMC11950791 DOI: 10.1017/qrd.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025] Open
Abstract
Integrins are critical transmembrane receptors that connect the extracellular matrix (ECM) to the intracellular cytoskeleton, playing a central role in mechanotransduction - the process by which cells convert mechanical stimuli into biochemical signals. The dynamic assembly and disassembly of integrin-mediated adhesions enable cells to adapt continuously to changing mechanical cues, regulating essential processes such as adhesion, migration, and proliferation. In this review, we explore the molecular clutch model as a framework for understanding the dynamics of integrin - ECM interactions, emphasizing the critical importance of force loading rate. We discuss how force loading rate bridges internal actomyosin-generated forces and ECM mechanical properties like stiffness and ligand density, determining whether sufficient force is transmitted to mechanosensitive proteins such as talin. This force transmission leads to talin unfolding and activation of downstream signalling pathways, ultimately influencing cellular responses. We also examine recent advances in single-molecule DNA tension sensors that have enabled direct measurements of integrin loading rates, refining the range to approximately 0.5-4 pN/s. These findings deepen our understanding of force-mediated mechanotransduction and underscore the need for improved sensor designs to overcome current limitations.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Seong Ho Kim
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T.S. Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
4
|
Lei KF, Bai KC, Pai PC. Study of cell migration trajectory on two-dimensional continuous stiffness gradient surface edited by grayscale photopolymerization. Talanta 2025; 281:126899. [PMID: 39298803 DOI: 10.1016/j.talanta.2024.126899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
In native tissues, cells encounter a diverse range of stiffness, which can significantly affect their behavior and function. The ability of cells to sense and respond to these mechanical cues is essential for various physiological processes, including cell migration. Cell migration is a complex process influenced by multiple factors, with substrate stiffness emerging as a critical determinant. This study developed a technique to edit the stiffness of polyacrylamide (PAA) hydrogel substrates by adjusting the grayscale level of a photomask during photopolymerization. By analyzing cell morphologies on the hydrogel, we confirmed the development of a single PAA hydrogel substrate with continuous stiffness gradients. This method was used to explore the correlation between substrate stiffness and cell migration dynamics. The study found that cells typically migrated from softer to stiffer surfaces. When the cells initially located on stiffer surfaces, they were able to travel longer distances. Additionally, a continuous 2D stiffness gradient surface was fabricated to explore how cells migrate on smoother versus steeper stiffness gradients. The results showed that cells tended to migrate more readily on smoother stiffness gradient surfaces compared to steeper ones. This study provides valuable insights into cell migration dynamics on substrates with varying stiffness gradients. The results underscore the importance of the mechanical environment in cancer cell migration and offer promising directions for developing interventions to prevent cancer spread.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Kuo-Cheng Bai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
5
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Zheng Y, Wang D, Beeghly G, Fischbach C, Shattuck MD, O'Hern CS. Computational modeling of the physical features that influence breast cancer invasion into adipose tissue. APL Bioeng 2024; 8:036104. [PMID: 38966325 PMCID: PMC11223776 DOI: 10.1063/5.0209019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on both biochemical signaling and the mechanical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue using discrete element method simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At vs the activity and strength of the cohesion between cancer cells, as well as the mechanical properties of the adipocytes and extracellular matrix in which adipocytes are embedded. We show that the degree of invasion collapses onto a master curve as a function of the dimensionless energy scale Ec , which grows linearly with the cancer cell velocity persistence time and fluctuations, is inversely proportional to the system pressure, and is offset by the cancer cell cohesive energy. WhenE c > 1 , cancer cells will invade the adipose tissue, whereas forE c < 1 , cancer cells and adipocytes remain de-mixed. We also show that At decreases when the adipocytes are constrained by the ECM by an amount that depends on the spatial heterogeneity of the adipose tissue.
Collapse
Affiliation(s)
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Garrett Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mark D. Shattuck
- Benjamin Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
| | | |
Collapse
|
7
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
9
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key mediator of cell traction force generation in hyaluronic acid-rich extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563860. [PMID: 37961689 PMCID: PMC10634813 DOI: 10.1101/2023.10.24.563860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via integrin cell surface adhesion receptors. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface adhesion receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
|
10
|
Khalil AA, Smits D, Haughton PD, Koorman T, Jansen KA, Verhagen MP, van der Net M, van Zwieten K, Enserink L, Jansen L, El-Gammal AG, Visser D, Pasolli M, Tak M, Westland D, van Diest PJ, Moelans CB, Roukens MG, Tavares S, Fortier AM, Park M, Fodde R, Gloerich M, Zwartkruis FJT, Derksen PW, de Rooij J. A YAP-centered mechanotransduction loop drives collective breast cancer cell invasion. Nat Commun 2024; 15:4866. [PMID: 38849373 PMCID: PMC11161601 DOI: 10.1038/s41467-024-49230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Daan Smits
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin A Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mirjam van der Net
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty van Zwieten
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Jansen
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Abdelrahman G El-Gammal
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan Visser
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Milena Pasolli
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max Tak
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Denise Westland
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Guy Roukens
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anne-Marie Fortier
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Morag Park
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Wb Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Johan de Rooij
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
12
|
Nerger BA, Nelson CM. Bioprinting Cell-Laden Hydrogels for Studies of Epithelial Tissue Morphogenesis. Methods Mol Biol 2024; 2805:113-124. [PMID: 39008177 DOI: 10.1007/978-1-0716-3854-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Light-driven biological actuators to probe the rheology of 3D microtissues. Nat Commun 2023; 14:717. [PMID: 36759504 PMCID: PMC9911700 DOI: 10.1038/s41467-023-36371-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The mechanical properties of biological tissues are key to their physical integrity and function. Although external loading or biochemical treatments allow the estimation of these properties globally, it remains difficult to assess how such external stimuli compare with cell-generated contractions. Here we engineer microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induce local contractions within microtissues, while monitoring microtissue stress and strain. We investigate the regulation of these local contractions and their spatio-temporal distribution. We demonstrate the potential of our technique for quantifying tissue elasticity and strain propagation, before examining the possibility of using light to create and map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to guide the formation of tissues while non-destructively charting their rheology in real time, using their own constituting cells as internal actuators.
Collapse
|
15
|
Smits D, Khalil AA. Multimodal Techniques to Study Tumor Growth, Basement Membrane Breaching, and Invasion in 3D Matrices. Methods Mol Biol 2023; 2608:281-303. [PMID: 36653714 DOI: 10.1007/978-1-0716-2887-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer-derived organoids and three-dimensional (3D) extracellular matrix (ECM) are taking center stage as in vitro models to study neoplastic cell behavior, since they recapitulate the heterogeneous cellular composition of tumors and their extracellular environment. In combination with imaging and molecular/biochemical techniques, 3D organoid models have contributed substantially to our knowledge about the cellular and molecular mechanisms that regulate the growth of tumors and invasion into the surrounding tissue. We here outline a set of protocols that describe culturing of cancer-derived organoids in 3D matrices and various strategies that allow modeling of tumor growth, tumor cell penetration into basement membranes, and invasion into Collagen I-rich ECM. Furthermore, we specify protocols for subsequent handling of organoids cultured in 3D ECM for confocal microscopy and analysis of gene expression at the protein and mRNA level. Although we here use breast cancer-derived organoids, these protocols can be directly applied or adapted for organoids derived from other cancer types or healthy tissues. Thus, in addition to investigating cell behavior of multiple cancer types, the combination of protocols described here may be used to study processes such as cell differentiation and migration during homeostasis and normal development.
Collapse
Affiliation(s)
- Daan Smits
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Cell Biology, Radboudumc, Nijmegen, The Netherlands
| | - Antoine A Khalil
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Morales IA, Boghdady CM, Campbell BE, Moraes C. Integrating mechanical sensor readouts into organ-on-a-chip platforms. Front Bioeng Biotechnol 2022; 10:1060895. [PMID: 36588933 PMCID: PMC9800895 DOI: 10.3389/fbioe.2022.1060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Organs-on-a-chip have emerged as next-generation tissue engineered models to accurately capture realistic human tissue behaviour, thereby addressing many of the challenges associated with using animal models in research. Mechanical features of the culture environment have emerged as being critically important in designing organs-on-a-chip, as they play important roles in both stimulating realistic tissue formation and function, as well as capturing integrative elements of homeostasis, tissue function, and tissue degeneration in response to external insult and injury. Despite the demonstrated impact of incorporating mechanical cues in these models, strategies to measure these mechanical tissue features in microfluidically-compatible formats directly on-chip are relatively limited. In this review, we first describe general microfluidically-compatible Organs-on-a-chip sensing strategies, and categorize these advances based on the specific advantages of incorporating them on-chip. We then consider foundational and recent advances in mechanical analysis techniques spanning cellular to tissue length scales; and discuss their integration into Organs-on-a-chips for more effective drug screening, disease modeling, and characterization of biological dynamics.
Collapse
Affiliation(s)
| | | | | | - Christopher Moraes
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada,Department of Chemical Engineering, McGill University, Montreal, QC, Canada,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada,*Correspondence: Christopher Moraes,
| |
Collapse
|
18
|
Panchenko AY, Tchaicheeyan O, Berinskii IE, Lesman A. Does the Extracellular Matrix Support Cell-Cell Communication by Elastic Wave Packets? ACS Biomater Sci Eng 2022; 8:5155-5170. [PMID: 36346743 DOI: 10.1021/acsbiomaterials.2c01049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix (ECM) is a fibrous network supporting biological cells and provides them a medium for interaction. Cells modify the ECM by applying traction forces, and these forces can propagate to long ranges and establish a mechanism of mechanical communication between neighboring cells. Previous studies have mainly focused on analysis of static force transmission across the ECM. In this study, we explore the plausibility of dynamic mechanical interaction, expressed as vibrations or abrupt fluctuations, giving rise to elastic waves propagating along ECM fibers. We use a numerical mass-spring model to simulate the longitudinal and transversal waves propagating along a single ECM fiber and across a 2D random fiber network. The elastic waves are induced by an active contracting cell (signaler) and received by a passive neighboring cell (receiver). We show that dynamic wave propagation may amplify the signal at the receiver end and support up to an order of magnitude stronger mechanical cues and longer-ranged communication relative to static transmission. Also, we report an optimal impulse duration corresponding to the most effective transmission, as well as extreme fast impulses, in which the waves are encaged around the active cell and do not reach the neighboring cell, possibly due to the Anderson localization effect. Finally, we also demonstrate that extracellular fluid viscosity reduces, but still allows, dynamic propagation along embedded ECM fibers. Our results motivate future biological experiments in mechanobiology to investigate, on the one hand, the mechanosensitivity of cells to dynamic forces traveling and guided by the ECM and, on the other hand, the impact of ECM architecture and remodeling on dynamic force transmission and its spectral filtering, dispersion, and decay.
Collapse
Affiliation(s)
- Artem Y Panchenko
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Igor E Berinskii
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
19
|
Bahr JC, Li XY, Feinberg TY, Jiang L, Weiss SJ. Divergent regulation of basement membrane trafficking by human macrophages and cancer cells. Nat Commun 2022; 13:6409. [PMID: 36302921 PMCID: PMC9613642 DOI: 10.1038/s41467-022-34087-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.
Collapse
Affiliation(s)
- Julian C Bahr
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Yan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tamar Y Feinberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Long Jiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen J Weiss
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Bhargava A, Sandoval Castellanos AM, Shah S, Ning K. An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus 2022; 12:20220040. [PMID: 35992771 PMCID: PMC9372641 DOI: 10.1098/rsfs.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques.
Collapse
Affiliation(s)
- Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ana M. Sandoval Castellanos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Sonali Shah
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
21
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Mierke CT, Hayn A, Fischer T. PINCH1 Promotes Fibroblast Migration in Extracellular Matrices and Influences Their Mechanophenotype. Front Cell Dev Biol 2022; 10:869563. [PMID: 35652097 PMCID: PMC9149598 DOI: 10.3389/fcell.2022.869563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cell migration performs a critical function in numerous physiological processes, including tissue homeostasis or wound healing after tissue injury, as well as pathological processes that include malignant progression of cancer. The efficiency of cell migration and invasion appears to be based on the mechano-phenotype of the cytoskeleton. The properties of the cytoskeleton depend on internal cytoskeletal and external environmental factors. A reason for this are connections between the cell and its local matrix microenvironment, which are established by cell-matrix adhesion receptors. Upon activation, focal adhesion proteins such as PINCH1 are recruited to sites where focal adhesions form. PINCH1 specifically couples through interactions with ILK, which binds to cell matrix receptors and the actomyosin cytoskeleton. However, the role of PINCH1 in cell mechanics regulating cellular motility in 3D collagen matrices is still unclear. PINCH1 is thought to facilitate 3D motility by regulating cellular mechanical properties, such as stiffness. In this study, PINCH1 wild-type and knock-out cells were examined for their ability to migrate in dense extracellular 3D matrices. Indeed, PINCH1 wild-type cells migrated more numerously and deeper in 3D matrices, compared to knock-out cells. Moreover, cellular deformability was determined, e.g., elastic modulus (stiffness). PINCH1 knock-out cells are more deformable (compliable) than PINCH1 wild-type cells. Migration of both PINCH1−/− cells and PINCH1fl/fl cells was decreased by Latrunculin A inhibition of actin polymerization, suggesting that actin cytoskeletal differences are not responsible for the discrepancy in invasiveness of the two cell types. However, the mechanical phenotype of PINCH1−/− cells may be reflected by Latrunculin A treatment of PINCH1fl/fl cells, as they exhibit resembling deformability to untreated PINCH1−/− cells. Moreover, an apparent mismatch exists between the elongation of the long axis and the contraction of the short axis between PINCH1fl/fl cells and PINCH1−/− cells following Latrunculin A treatment. There is evidence of this indicating a shift in the proxy values for Poisson’s ratio in PINCH1−/− cells compared with PINCH1fl/fl cells. This is probably attributable to modifications in cytoskeletal architecture. The non-muscle myosin II inhibitor Blebbistatin also reduced the cell invasiveness in 3D extracellular matrices but instead caused a stiffening of the cells. Finally, PINCH1 is apparently essential for providing cellular mechanical stiffness through the actin cytoskeleton, which regulates 3D motility.
Collapse
|
23
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
24
|
Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front Oncol 2021; 11:782766. [PMID: 34917509 PMCID: PMC8669727 DOI: 10.3389/fonc.2021.782766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Laura Rodriguez de la Fuente
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia
| | - Thomas J Grundy
- Life Sciences, Inventia Life Science Pty Ltd, Alexandria, NSW, Australia
| | - Guocheng Fang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
25
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
26
|
Katsuno-Kambe H, Teo JL, Ju RJ, Hudson J, Stehbens SJ, Yap AS. Collagen polarization promotes epithelial elongation by stimulating locoregional cell proliferation. eLife 2021; 10:e67915. [PMID: 34661524 PMCID: PMC8550756 DOI: 10.7554/elife.67915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here, we focus on understanding cellular mechanisms for elongation using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this locoregional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles that were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the extracellular matrix, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry breaking and elongation. This required β1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating locoregional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.
Collapse
Affiliation(s)
- Hiroko Katsuno-Kambe
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Jessica L Teo
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Robert J Ju
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - James Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Samantha J Stehbens
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| |
Collapse
|
27
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Su CY, Burchett A, Dunworth M, Choi JS, Ewald AJ, Ahn EH, Kim DH. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment. Biomaterials 2021; 275:120922. [PMID: 34126408 DOI: 10.1016/j.biomaterials.2021.120922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Prior to cancer cell invasion, the structure of the extracellular matrix (ECM) surrounding the tumor is remodeled, such that circumferentially oriented matrix fibers become radially aligned. This predisposed radially aligned matrix structure serves as a critical regulator of cancer invasion. However, a biomimetic 3D model recapitulating a tumor's behavioral response to these ECM structures is not yet available. In this study, we have developed a phase-specific, force-guided method to establish a 3D dual topographical tumor model in which each tumor spheroid/organoid is surrounded by radially aligned collagen I fibers on one side and circumferentially oriented fibers on the opposite side. A coaxial rotating cylinder system was employed to construct the dual fiber topography and to pre-seed tumor spheroids/organoids within a single device. This system enables the application of different force mechanisms in the nucleation and elongation phases of collagen fiber polymerization to guide fiber alignment. In the nucleation phase, fiber alignment is enhanced by a horizontal laminar Couette flow driven by the inner cylinder rotation. In the elongation phase, fiber growth is guided by a vertical gravitational force to form a large aligned collagen matrix gel (35 × 25 × 0.5 mm) embedded with >1000 tumor spheroids. The fibers above each tumor spheroid are radially aligned along the direction of gravitational force in contrast to the circumferentially oriented fibers beneath each tumor spheroid/organoid, where the presence of the tumor interferes with the gravity-induced fiber alignment. After tumor invasion, there are more disseminated multicellular clusters on the radially aligned side, compared to the side of the tumor spheroid/organoid facing circumferentially oriented fibers. These results indicate that our 3D dual topographical model recapitulates the preference of tumors to invade and disseminate along radially aligned fibers. We anticipate that this 3D dual topographical model will have broad utility to those studying collective tumor invasion and that it has the potential to identify cancer invasion-targeted therapeutic agents.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alice Burchett
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Matthew Dunworth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jong Seob Choi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew J Ewald
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
29
|
Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat Commun 2021; 12:2759. [PMID: 33980857 PMCID: PMC8115695 DOI: 10.1038/s41467-021-22988-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation. Mammary organoid growth from single primary human cells rely on distinct morphogenetic processes. Here, the authors observe by live cell imaging the importance of the plastic mechanical response of the extracellular matrix and cell migration for the underlying arborized structure formation process.
Collapse
|
30
|
Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomater 2021; 126:326-338. [PMID: 33737201 DOI: 10.1016/j.actbio.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In the last decade, cellular forces in three-dimensional hydrogels that mimic the extracellular matrix have been calculated by means of Traction Force Microscopy (TFM). However, characterizing the accuracy limits of a traction recovery method is critical to avoid obscuring physiological information due to traction recovery errors. So far, 3D TFM algorithms have only been validated using simplified cell geometries, bypassing image processing steps or arbitrarily simulating focal adhesions. Moreover, it is still uncertain which of the two common traction recovery methods, i.e., forward and inverse, is more robust against the inherent challenges of 3D TFM. In this work, we established an advanced in silico validation framework that is applicable to any 3D TFM experimental setup and that can be used to correctly couple the experimental and computational aspects of 3D TFM. Advancements relate to the simultaneous incorporation of complex cell geometries, simulation of microscopy images of varying bead densities and different focal adhesion sizes and distributions. By measuring the traction recovery error with respect to ground truth solutions, we found that while highest traction recovery errors occur for cases with sparse and small focal adhesions, our implementation of the inverse method improves two-fold the accuracy with respect to the forward method (average error of 23% vs. 50%). This advantage was further supported by recovering cellular tractions around angiogenic sprouts in an in vitro model of angiogenesis. The inverse method recovered higher traction peaks and a clearer pulling pattern at the sprout protrusion tips than the forward method. STATEMENT OF SIGNIFICANCE: Biomaterial performance is often studied by quantifying cell-matrix mechanical interactions by means of Traction Force Microscopy (TFM). However, 3D TFM algorithms are often validated in simplified scenarios, which do not allow to fully assess errors that could obscure physiological information. Here, we established an advanced in silico validation framework that mimics real TFM experimental conditions and that characterizes the expected errors of a 3D TFM workflow. We apply this framework to demonstrate the enhanced accuracy of a novel inverse traction recovery method that is illustrated in the context of an in vitro model of sprouting angiogenesis. Together, our study shows the importance of a proper traction recovery method to minimise errors and the need for an advanced framework to assess those errors.
Collapse
|
31
|
Saber MM, Karimiavargani M, Uzawa T, Hettiarachchi N, Hamada M, Ito Y, Saitou N. Possible roles for the hominoid-specific DSCR4 gene in human cells. Genes Genet Syst 2021; 96:1-11. [PMID: 33762515 DOI: 10.1266/ggs.20-00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Down syndrome in humans is caused by trisomy of chromosome 21. DSCR4 (Down syndrome critical region 4) is a de novo-originated protein-coding gene present only in human chromosome 21 and its homologous chromosomes in apes. Despite being located in a medically critical genomic region and an abundance of evidence indicating its functionality, the roles of DSCR4 in human cells are unknown. We used a bioinformatic approach to infer the biological importance and cellular roles of this gene. Our analysis indicates that DSCR4 is likely involved in the regulation of interconnected biological pathways related to cell migration, coagulation and the immune system. We also showed that these predicted biological functions are consistent with tissue-specific expression of DSCR4 in migratory immune system leukocyte cells and neural crest cells (NCCs) that shape facial morphology in the human embryo. The immune system and NCCs are known to be affected in Down syndrome individuals, who suffer from DSCR4 misregulation, which further supports our findings. Providing evidence for the critical roles of DSCR4 in human cells, our findings establish the basis for further experimental investigations that will be necessary to confirm the roles of DSCR4 in the etiology of Down syndrome.
Collapse
Affiliation(s)
- Morteza M Saber
- Population Genetics Laboratory, National Institute of Genetics.,Department of Biological Sciences, Graduate School of Science, University of Tokyo.,Nano Medical Engineering Laboratory, RIKEN.,Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University
| | - Marziyeh Karimiavargani
- Nano Medical Engineering Laboratory, RIKEN.,Graduate School of Science and Engineering, Saitama University
| | | | | | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics.,Department of Biological Sciences, Graduate School of Science, University of Tokyo.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies.,Faculty of Medicine, University of the Ryukyus
| |
Collapse
|
32
|
Dwivedi N, Das S, Bellare J, Majumder A. Viscoelastic substrate decouples cellular traction force from other related phenotypes. Biochem Biophys Res Commun 2021; 543:38-44. [PMID: 33508771 DOI: 10.1016/j.bbrc.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Survival and maintenance of normal physiological functions depends on continuous interaction of cells with its microenvironment. Cells sense the mechanical properties of underlying substrate by applying force and modulate their behaviour in response to the resistance offered by the substrate. Most of the studies addressing cell-substrate mechanical interactions have been carried out using elastic substrates. Since tissues within our body are viscoelastic in nature, here we explore the effect of substrate's viscoelasticity on various properties of mesenchymal stem cells. Here, we used two sets of polyacrylamide substrates having similar storage modulus (G' = 1.1-1.6 kPa) but different loss modulus (G" = 45 Pa and 300 Pa). We report that human mesenchymal stem cells spread more but apply less force on the viscoelastic substrate (substrate with higher loss modulus). We further investigated the effect of substrate viscoelasticity on the expression of other contractility-associated proteins such as focal adhesion (FA) proteins (Vinculin, Paxillin, Talin), cytoskeletal proteins (actin, mysion, intermediate filaments, and microtubules) and mechano-sensor protein Yes-Associated Protein (YAP). Our results show that substrate viscoelasticity decouples cellular traction from other known traction related phenotypes.
Collapse
Affiliation(s)
- Nehal Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India.
| |
Collapse
|
33
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the Biologist. Cell 2021; 184:18-32. [PMID: 33417859 DOI: 10.1016/j.cell.2020.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Building tissues from scratch to explore entirely new cell configurations could revolutionize fundamental understanding in biology. Bioprinting is an emerging technology to do this. Although typically applied to engineer tissues for therapeutic tissue repair or drug screening, there are many opportunities for bioprinting within biology, such as for exploring cellular crosstalk or cellular morphogenesis. The overall goals of this Primer are to provide an overview of bioprinting with the biologist in mind, outline the steps in extrusion bioprinting (the most widely used and accessible technology), and discuss alternative bioprinting technologies and future opportunities for bioprinting in biology.
Collapse
Affiliation(s)
- Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
36
|
Induced Pluripotency: A Powerful Tool for In Vitro Modeling. Int J Mol Sci 2020; 21:ijms21238910. [PMID: 33255453 PMCID: PMC7727808 DOI: 10.3390/ijms21238910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.
Collapse
|
37
|
Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Shapeti A, Roeffaers M, Van Oosterwyck H. Actomyosin-dependent invasion of endothelial sprouts in collagen. Cytoskeleton (Hoboken) 2020; 77:261-276. [PMID: 32588525 DOI: 10.1002/cm.21624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
During sprouting angiogenesis-the growth of blood vessels from the existing vasculature-endothelial cells (ECs) adopt an elongated invasive form and exert forces at cell-cell and cell-matrix interaction sites. These cell shape changes and cellular tractions require extensive reorganizations of the actomyosin network. However, the respective roles of actin and myosin for endothelial sprouting are not fully elucidated. In this study, we further investigate these roles by treating 2D-migrating and 3D-sprouting ECs with chemical compounds targeting either myosin or actin. These treatments affected the endothelial cytoskeleton drastically and reduced the invasive response in a compound-specific manner; pointing toward a tight control of the actin and myosin activity during sprouting. Clusters in the data further illustrate that endothelial sprout morphology is sensitive to the in vitro model mechanical microenvironment and directs future research toward mechanical substrate guidance as a strategy for promoting engineered tissue vascularization. In summary, our results add to a growing corpus of research highlighting a key role of the cytoskeleton for sprouting angiogenesis.
Collapse
Affiliation(s)
- Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorge Barrasa-Fano
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Apeksha Shapeti
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061452. [PMID: 32503141 PMCID: PMC7352870 DOI: 10.3390/cancers12061452] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.
Collapse
|
39
|
Reciprocal integrin/integrin antagonism through kindlin-2 and Rho GTPases regulates cell cohesion and collective migration. Matrix Biol 2020; 93:60-78. [PMID: 32450218 DOI: 10.1016/j.matbio.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Collective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding β1 and β3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells. Reciprocal β1/β3 antagonism controls RhoA activity in a kindlin-2-dependent manner, balancing cell spreading, contractility, and intercellular adhesion. In this way, reciprocal β1/β3 antagonism controls cell cohesion and cellular plasticity to switch between extreme and opposing states, including epithelial versus mesenchymal-like phenotypes and collective versus individual cell migration. We propose that integrin/integrin antagonism is a universal mechanism to effectuate social cellular interactions, important for tissue morphogenesis, endothelial barrier function, trophoblast invasion, and sprouting angiogenesis.
Collapse
|
40
|
Kim SK, Jang SD, Kim H, Chung S, Park JK, Kuh HJ. Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers (Basel) 2020; 12:cancers12051305. [PMID: 32455681 PMCID: PMC7281339 DOI: 10.3390/cancers12051305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Invasive cancer cell migration is a key feature of metastatic human pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms remain poorly understood. Here, we investigated modes of cancer cell invasion using two pancreatic cancer cell lines with differential epithelial–mesenchymal status, PANC-1 and BxPC-3, under 3D culture conditions. Multicellular tumor spheroids (TSs) were grown in a collagen matrix co-cultured with pancreatic stellate cells (PSCs) using microchannel chips. PANC-1 cells showed individual migration from TSs via invadopodium formation. BxPC-3 cells showed plasticity between collective and individual migration in either mesenchymal mode, with filopodium-like protrusions, or blebby amoeboid mode. These two cell lines showed significantly different patterns of extracellular matrix (ECM) remodeling, with MMP-dependent degradation in a limited area of ECM around invadopodia for PANC-1 cells, or MMP-independent extensive deformation of ECM for BxPC-3 cells. Cancer cell migration out of the collagen channel significantly increased by PSCs and directional cancer cell migration was mediated by fibronectin deposited by PSCs. Our results highlight the phenotypic heterogeneity and plasticity of PDAC cell migration and ECM remodeling under 3D culture conditions. This 3D co-culture model of pancreatic cancer cells and PSCs offers a useful tool for studying cancer cell migration and ECM remodeling to identify and develop potential molecular targets and anti-cancer agents against human PDAC.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - So Dam Jang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - Hyunho Kim
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Korea;
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
41
|
Kaytanlı B, Khankhel AH, Cohen N, Valentine MT. Rapid analysis of cell-generated forces within a multicellular aggregate using microsphere-based traction force microscopy. SOFT MATTER 2020; 16:4192-4199. [PMID: 32286589 DOI: 10.1039/c9sm02377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a new approach to measuring cell-generated forces from the deformations of elastic microspheres embedded within multicellular aggregates. By directly fitting the measured sensor deformation to an analytical model based on experimental observations and invoking linear elasticity, we dramatically reduce the computational complexity of the problem, and directly obtain the full 3D mapping of surface stresses. Our approach imparts extraordinary computational efficiency, allowing tractions to be estimated within minutes and enabling rapid analysis of microsphere-based traction force microscopy data.
Collapse
Affiliation(s)
- Buğra Kaytanlı
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
42
|
Natan S, Koren Y, Shelah O, Goren S, Lesman A. Long-range mechanical coupling of cells in 3D fibrin gels. Mol Biol Cell 2020; 31:1474-1485. [PMID: 32374653 PMCID: PMC7359573 DOI: 10.1091/mbc.e20-01-0079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
When seeded in fibrous gels, pairs of cells or cell aggregates can induce bands of deformed gel, extending to surprisingly long distances in the intercellular medium. The formation of bands has been previously shown and studied in collagen systems. In this study, we strive to further our understanding of this fundamental mechanical mechanism in fibrin, a key element in wound healing and angiogenesis processes. We embedded fibroblast cells in 3D fibrin gels, and monitored band formation by real-time confocal microscopy. Quantitative dynamic analysis of band formation revealed a gradual increase in fiber density and alignment between pairs of cells. Such intercellular bands extended into a large-scale network of mechanically connected cells, in which the connected cells exhibited a more spread morphology than the isolated cells. Moreover, computational modeling demonstrated that the direction of cell-induced force triggering band formation can be applied in a wide range of angles relative to a neighboring cell. Our findings indicate that long-range mechanical coupling between cells is an important mechanism in regulating multicellular processes in reconstituted fibrin gels. As such, it should motivate exploration of this mechanism in studies in vivo, in wound healing or angiogenesis, in which fibrin is contracted by fibroblast cells.
Collapse
Affiliation(s)
- Sari Natan
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoni Koren
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ortal Shelah
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Goren
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
43
|
Mechanophenotyping of 3D multicellular clusters using displacement arrays of rendered tractions. Proc Natl Acad Sci U S A 2020; 117:5655-5663. [PMID: 32123100 DOI: 10.1073/pnas.1918296117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.
Collapse
|
44
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Lam KH, Kivanany PB, Grose K, Yonet-Tanyeri N, Alsmadi N, Varner VD, Petroll WM, Schmidtke DW. A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior. Biomed Microdevices 2019; 21:99. [PMID: 31741114 PMCID: PMC7228026 DOI: 10.1007/s10544-019-0436-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.
Collapse
Affiliation(s)
- Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Pouriska B Kivanany
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Kyle Grose
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nihan Yonet-Tanyeri
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA.
| |
Collapse
|
46
|
Le Borgne-Rochet M, Angevin L, Bazellières E, Ordas L, Comunale F, Denisov EV, Tashireva LA, Perelmuter VM, Bièche I, Vacher S, Plutoni C, Seveno M, Bodin S, Gauthier-Rouvière C. P-cadherin-induced decorin secretion is required for collagen fiber alignment and directional collective cell migration. J Cell Sci 2019; 132:jcs.233189. [PMID: 31604795 DOI: 10.1242/jcs.233189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of β1 integrin and of the β-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.
Collapse
Affiliation(s)
- Maïlys Le Borgne-Rochet
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Lucie Angevin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Elsa Bazellières
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, Cedex 09, France
| | - Laura Ordas
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Franck Comunale
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia.,Tomsk State University, 634050 Tomsk, Russia
| | - Lubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Martial Seveno
- BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, 34094 Montpellier, France
| | - Stéphane Bodin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Cécile Gauthier-Rouvière
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| |
Collapse
|
47
|
Mann A, Sopher RS, Goren S, Shelah O, Tchaicheeyan O, Lesman A. Force chains in cell-cell mechanical communication. J R Soc Interface 2019; 16:20190348. [PMID: 31662075 DOI: 10.1098/rsif.2019.0348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Force chains (FCs) are a key determinant of the micromechanical properties and behaviour of heterogeneous materials, such as granular systems. However, less is known about FCs in fibrous materials, such as the networks composing the extracellular matrix (ECM) of biological systems. Using a finite-element computational model, we simulated the contraction of a single cell and two nearby cells embedded in two-dimensional fibrous elastic networks and analysed the tensile FCs that developed in the ECM. The role of ECM nonlinear elasticity on FC formation was evaluated by considering linear and nonlinear, i.e. exhibiting 'buckling' and/or 'strain-stiffening', stress-strain curves. The effect of the degree of cell contraction and network coordination value was assessed. We found that nonlinear elasticity of the ECM fibres influenced the structure of the FCs, facilitating the transition towards more distinct chains that were less branched and more radially oriented than the chains formed in linear elastic networks. When two neighbouring cells contract, a larger number of FCs bridged between the cells in nonlinear networks, and these chains had a larger effective rigidity than the chains that did not reach a neighbouring cell. These results suggest that FCs function as a route for mechanical communication between distant cells and highlight the contribution of ECM fibre nonlinear elasticity to the formation of FCs.
Collapse
Affiliation(s)
- Amots Mann
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ran S Sopher
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Goren
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Shelah
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Rauff A, LaBelle SA, Strobel HA, Hoying JB, Weiss JA. Imaging the Dynamic Interaction Between Sprouting Microvessels and the Extracellular Matrix. Front Physiol 2019; 10:1011. [PMID: 31507428 PMCID: PMC6713949 DOI: 10.3389/fphys.2019.01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Thorough understanding of growth and evolution of tissue vasculature is fundamental to many fields of medicine including cancer therapy, wound healing, and tissue engineering. Angiogenesis, the growth of new vessels from existing ones, is dynamically influenced by a variety of environmental factors, including mechanical and biophysical factors, chemotactic factors, proteolysis, and interaction with stromal cells. Yet, dynamic interactions between neovessels and their environment are difficult to study with traditional fixed time imaging techniques. Advancements in imaging technologies permit time-series and volumetric imaging, affording the ability to visualize microvessel growth over 3D space and time. Time-lapse imaging has led to more informative investigations of angiogenesis. The environmental factors implicated in angiogenesis span a wide range of signals. Neovessels advance through stromal matrices by forming attachments and pulling and pushing on their microenvironment, reorganizing matrix fibers, and inducing large deformations of the surrounding stroma. Concurrently, neovessels secrete proteolytic enzymes to degrade their basement membrane, create space for new vessels to grow, and release matrix-bound cytokines. Growing neovessels also respond to a host of soluble and matrix-bound growth factors, and display preferential growth along a cytokine gradient. Lastly, stromal cells such as macrophages and mesenchymal stem cells (MSCs) interact directly with neovessels and their surrounding matrix to facilitate sprouting, vessel fusion, and tissue remodeling. This review highlights how time-lapse imaging techniques advanced our understanding of the interaction of blood vessels with their environment during sprouting angiogenesis. The technology provides means to characterize the evolution of microvessel behavior, providing new insights and holding great promise for further research on the process of angiogenesis.
Collapse
Affiliation(s)
- Adam Rauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Steven A. LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Hannah A. Strobel
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - James B. Hoying
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
49
|
Yoon C, Choi C, Stapleton S, Mirabella T, Howes C, Dong L, King J, Yang J, Oberai A, Eyckmans J, Chen CS. Myosin IIA-mediated forces regulate multicellular integrity during vascular sprouting. Mol Biol Cell 2019; 30:1974-1984. [PMID: 31318321 PMCID: PMC6727772 DOI: 10.1091/mbc.e19-02-0076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenic sprouting is a critical process involved in vascular network formation within tissues. During sprouting, tip cells and ensuing stalk cells migrate collectively into the extracellular matrix while preserving cell–cell junctions, forming patent structures that support blood flow. Although several signaling pathways have been identified as controlling sprouting, it remains unclear to what extent this process is mechanoregulated. To address this question, we investigated the role of cellular contractility in sprout morphogenesis, using a biomimetic model of angiogenesis. Three-dimensional maps of mechanical deformations generated by sprouts revealed that mainly leader cells, not stalk cells, exert contractile forces on the surrounding matrix. Surprisingly, inhibiting cellular contractility with blebbistatin did not affect the extent of cellular invasion but resulted in cell–cell dissociation primarily between tip and stalk cells. Closer examination of cell–cell junctions revealed that blebbistatin impaired adherens-junction organization, particularly between tip and stalk cells. Using CRISPR/Cas9-mediated gene editing, we further identified NMIIA as the major isoform responsible for regulating multicellularity and cell contractility during sprouting. Together, these studies reveal a critical role for NMIIA-mediated contractile forces in maintaining multicellularity during sprouting and highlight the central role of forces in regulating cell–cell adhesions during collective motility.
Collapse
Affiliation(s)
- Christine Yoon
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Colin Choi
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Sarah Stapleton
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Teodelinda Mirabella
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Caroline Howes
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Li Dong
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712
| | - Jessica King
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Jinling Yang
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Assad Oberai
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Jeroen Eyckmans
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| |
Collapse
|
50
|
Nerger BA, Brun PT, Nelson CM. Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. SOFT MATTER 2019; 15:5728-5738. [PMID: 31267114 PMCID: PMC6639139 DOI: 10.1039/c8sm02605j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Type I collagen self-assembles into three-dimensional (3D) fibrous networks. These dynamic viscoelastic materials can be remodeled in response to mechanical and chemical signals to form anisotropic networks, the structure of which influences tissue development, homeostasis, and disease progression. Conventional approaches for fabricating anisotropic networks of type I collagen are often limited to unidirectional fiber alignment over small areas. Here, we describe a new approach for engineering cell-laden networks of aligned type I collagen fibers using 3D microextrusion printing of a collagen-Matrigel ink. We demonstrate hierarchical control of 3D-printed collagen with the ability to spatially pattern collagen fiber alignment and geometry. Our data suggest that collagen alignment results from a combination of molecular crowding in the ink and shear and extensional flows present during 3D printing. We demonstrate that human breast cancer cells cultured on 3D-printed collagen constructs orient along the direction of collagen fiber alignment. We also demonstrate the ability to simultaneously bioprint epithelial cell clusters and control the alignment and geometry of collagen fibers surrounding cells in the bioink. The resulting cell-laden constructs consist of epithelial cell clusters fully embedded in aligned networks of collagen fibers. Such 3D-printed constructs can be used for studies of developmental biology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA.
| | - P-T Brun
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA.
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA. and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|