1
|
Junaid M, Lu H, Li Y, Liu Y, Din AU, Qi Z, Xiong Y, Yan J. Novel Synergistic Probiotic Intervention: Transcriptomic and Metabolomic Analysis Reveals Ameliorative Effects on Immunity, Gut Barrier, and Metabolism of Mice during Salmonella typhimurium Infection. Genes (Basel) 2024; 15:435. [PMID: 38674370 PMCID: PMC11050207 DOI: 10.3390/genes15040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.
Collapse
Affiliation(s)
- Muhammad Junaid
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yi Xiong
- Guangxi Center for Animals Disease Control and Prevention, Nanning 530004, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| |
Collapse
|
2
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
3
|
Memon FU, Yang Y, Leghari IH, Lv F, Soliman AM, Zhang W, Si H. Transcriptome Analysis Revealed Ameliorative Effects of Bacillus Based Probiotic on Immunity, Gut Barrier System, and Metabolism of Chicken under an Experimentally Induced Eimeria tenella Infection. Genes (Basel) 2021; 12:genes12040536. [PMID: 33917156 PMCID: PMC8067821 DOI: 10.3390/genes12040536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, we performed transcriptome analysis in the cecum tissues of negative control untreated non-challenged (NC), positive control untreated challenged (PC), and Bacillus subtilis (B. subtilis) fed challenged chickens (BS + ET) in order to examine the underlying potential therapeutic mechanisms of Bacillus based probiotic feeding under an experimental Eimeria tenella (E. tenella) infection. Our results for clinical parameters showed that birds in probiotic diet decreased the bloody diarrhea scores, oocyst shedding, and lesion scores compared to positive control birds. RNA-sequencing (RNA-seq) analysis revealed that in total, 2509 up-regulated and 2465 down-regulated differentially expressed genes (DEGs) were detected in the PC group versus NC group comparison. In the comparison of BS + ET group versus PC group, a total of 784 up-regulated and 493 down-regulated DEGs were found. Among them, several DEGs encoding proteins involved in immunity, gut barrier integrity, homeostasis, and metabolism were up-regulated by the treatment of probiotic. Functional analysis of DEGs also revealed that some gene ontology (GO) terms related with immunity, metabolism and cellular development were significantly affected by the exposure of probiotic. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the DEGs in the cecum of B. subtilis-fed challenged group were mainly participated in the pathways related with immunity and gut barrier integrity, included mitogen-activated protein kinase (MAPK) signaling pathway, toll-like receptor (TLR) signaling pathway, extracellular matrix (ECM)–receptor interaction, tight junction, and so on. Taken together, these results suggest that Bacillus based probiotic modulate the immunity, maintain gut homeostasis as well as barrier system and improve chicken metabolism during E. tenella infection.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Yunqiao Yang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Imdad Hussain Leghari
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Ahmed M. Soliman
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Agricultural Research Center, Biotechnology Department, Animal Health Research Institute, Giza 12618, Egypt
| | - Weiyu Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Correspondence:
| |
Collapse
|
4
|
Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI. The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med 2021; 13:10. [PMID: 33472701 PMCID: PMC7819159 DOI: 10.1186/s13073-020-00813-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field, approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be related to confounders associated with complexities in capturing an accurate representation of both diet and the gut microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications and limitations of these investigative approaches, and future considerations that may assist in accelerating applications. New investigations should consider improved collection of dietary data, further characterisation of mechanistic interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification of research methodologies, which consider the complexities of these interactions.
Collapse
Affiliation(s)
- Emily R Leeming
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Panayiotis Louca
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Cristina Menni
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Tim D Spector
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Caroline I Le Roy
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
5
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
6
|
Siriyappagouder P, Galindo-Villegas J, Dhanasiri AKS, Zhang Q, Mulero V, Kiron V, Fernandes JMO. Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Front Immunol 2020; 11:978. [PMID: 32528473 PMCID: PMC7256946 DOI: 10.3389/fimmu.2020.00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi, particularly yeasts, are known essential components of the host microbiota but their functional relevance in development of immunity and physiological processes of fish remains to be elucidated. In this study, we used a transcriptomic approach and a germ-free (GF) fish model to determine the response of newly hatched zebrafish larvae after 24 h exposure to Pseudozyma sp. when compared to conventionally-raised (CR) larvae. We observed 59 differentially expressed genes in Pseudozyma-exposed GF zebrafish larvae compared to their naïve control siblings. Surprisingly, in CR larvae, there was not a clear transcriptome difference between Pseudozyma-exposed and control larvae. Differentially expressed genes in GF larvae were involved in host metabolic pathways, mainly peroxisome proliferator-activated receptors, steroid hormone biosynthesis, drug metabolism and bile acid biosynthesis. We also observed a significant change in the transcript levels of immune-related genes, namely complement component 3a, galectin 2b, ubiquitin specific peptidase 21, and aquaporins. Nevertheless, we did not observe any significant response at the cellular level, since there were no differences between neutrophil migration or proliferation between control and yeast-exposed GF larvae. Our findings reveal that exposure to Pseudozyma sp. may affect metabolic pathways and immune-related processes in germ-free zebrafish, suggesting that commensal yeast likely play a significant part in the early development of fish larvae.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | | | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
7
|
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M, Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R, Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM, Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS, Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ, Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M, Vlamakis H, Haddad GG, Siegel D, Huttenhower C, Mazmanian SK, Evans RM, Nizet V, Knight R, Dorrestein PC. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020; 579:123-129. [PMID: 32103176 PMCID: PMC7252668 DOI: 10.1038/s41586-020-2047-9] [Citation(s) in RCA: 387] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.
Collapse
Affiliation(s)
- Robert A Quinn
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Alison Vrbanac
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Ting Fu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Kathryn A Patras
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Mitchell P Christy
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Anupriya Tripathi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Lawton K Chung
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Ryan D Welch
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Melissa Quinn
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- UCSD Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Alexander Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Ricardo da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | | | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Himel Mallick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jason Lloyd-Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robert Bussell
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Taren Thron
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew T Nelson
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Eric Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Julia M Gauglitz
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Michael J Meehan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Emily Gentry
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Timothy D Arthur
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, USA
| | - Orit Poulsen
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Brigid S Boland
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - John T Chang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - William J Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Meerana Lim
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ruchi Jain
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Marie Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Kyung E Rhee
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - David Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Dionicio Siegel
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, San Diego, CA, USA
| | - Victor Nizet
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- UCSD Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- UCSD Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Department of Engineering, University of California San Diego, San Diego, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.
- UCSD Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
9
|
Carrera-Quintanar L, Ortuño-Sahagún D, Franco-Arroyo NN, Viveros-Paredes JM, Zepeda-Morales AS, Lopez-Roa RI. The Human Microbiota and Obesity: A Literature Systematic Review of In Vivo Models and Technical Approaches. Int J Mol Sci 2018; 19:ijms19123827. [PMID: 30513674 PMCID: PMC6320813 DOI: 10.3390/ijms19123827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is a noncommunicable disease that affects a considerable part of humanity. Recently, it has been recognized that gut microbiota constitutes a fundamental factor in the triggering and development of a large number of pathologies, among which obesity is one of the most related to the processes of dysbiosis. In this review, different animal model approaches, methodologies, and genome scale metabolic databases were revisited to study the gut microbiota and its relationship with metabolic disease. As a data source, PubMed for English-language published material from 1 January 2013, to 22 August 2018, were screened. Some previous studies were included if they were considered classics or highly relevant. Studies that included innovative technical approaches or different in vivo or in vitro models for the study of the relationship between gut microbiota and obesity were selected after a 16-different-keyword exhaustive search. A clear panorama of the current available options for the study of microbiota’s influence on obesity, both for animal model election and technical approaches, is presented to the researcher. All the knowledge generated from the study of the microbiota opens the possibility of considering fecal transplantation as a relevant therapeutic alternative for obesity and other metabolic disease treatment.
Collapse
Affiliation(s)
- Lucrecia Carrera-Quintanar
- Laboratorio de Ciencias de los Alimentos, Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Universidad de Guadalajara, CUCS, Guadalajara Jalisco 45180, Mexico.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara Jalisco 45180, Mexico.
| | - Noel N Franco-Arroyo
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Juan M Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Adelaida S Zepeda-Morales
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Rocio I Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| |
Collapse
|
10
|
Macpherson AJ, Heikenwalder M, Ganal-Vonarburg SC. The Liver at the Nexus of Host-Microbial Interactions. Cell Host Microbe 2017; 20:561-571. [PMID: 27832587 DOI: 10.1016/j.chom.2016.10.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver receives blood from the intestine, from the spleen, and directly from the heart and holds a vital position in vertebrate physiology. It plays a role in intermediary metabolism, bile secretion, maintaining blood sterility, serum homeostasis, xenobiotic detoxification, and immunological activity. This article provides our perspective on the liver as a nexus in establishing and maintaining host microbial mutualism. We discuss the role of the liver not only in sanitizing the blood stream from penetrant live microbes, but also in metabolizing xenobiotics that are synthesized or modified by intestinal microbes, and how microbiota modify the signaling potential of bile acids. The combination of bile acids as hormones and the metabolic control from pervasive effects of other absorbed microbial molecules powerfully shape hepatic metabolism. In addition, intestinal microbial metabolites can be sensed by liver-resident immune cells, which may disturb liver homeostasis, leading to fibrosis and liver cancer.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephanie C Ganal-Vonarburg
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
11
|
Nagy-Szakal D, Williams BL, Mishra N, Che X, Lee B, Bateman L, Klimas NG, Komaroff AL, Levine S, Montoya JG, Peterson DL, Ramanan D, Jain K, Eddy ML, Hornig M, Lipkin WI. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. MICROBIOME 2017; 5:44. [PMID: 28441964 PMCID: PMC5405467 DOI: 10.1186/s40168-017-0261-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained persistent fatigue, commonly accompanied by cognitive dysfunction, sleeping disturbances, orthostatic intolerance, fever, lymphadenopathy, and irritable bowel syndrome (IBS). The extent to which the gastrointestinal microbiome and peripheral inflammation are associated with ME/CFS remains unclear. We pursued rigorous clinical characterization, fecal bacterial metagenomics, and plasma immune molecule analyses in 50 ME/CFS patients and 50 healthy controls frequency-matched for age, sex, race/ethnicity, geographic site, and season of sampling. RESULTS Topological analysis revealed associations between IBS co-morbidity, body mass index, fecal bacterial composition, and bacterial metabolic pathways but not plasma immune molecules. IBS co-morbidity was the strongest driving factor in the separation of topological networks based on bacterial profiles and metabolic pathways. Predictive selection models based on bacterial profiles supported findings from topological analyses indicating that ME/CFS subgroups, defined by IBS status, could be distinguished from control subjects with high predictive accuracy. Bacterial taxa predictive of ME/CFS patients with IBS were distinct from taxa associated with ME/CFS patients without IBS. Increased abundance of unclassified Alistipes and decreased Faecalibacterium emerged as the top biomarkers of ME/CFS with IBS; while increased unclassified Bacteroides abundance and decreased Bacteroides vulgatus were the top biomarkers of ME/CFS without IBS. Despite findings of differences in bacterial taxa and metabolic pathways defining ME/CFS subgroups, decreased metabolic pathways associated with unsaturated fatty acid biosynthesis and increased atrazine degradation pathways were independent of IBS co-morbidity. Increased vitamin B6 biosynthesis/salvage and pyrimidine ribonucleoside degradation were the top metabolic pathways in ME/CFS without IBS as well as in the total ME/CFS cohort. In ME/CFS subgroups, symptom severity measures including pain, fatigue, and reduced motivation were correlated with the abundance of distinct bacterial taxa and metabolic pathways. CONCLUSIONS Independent of IBS, ME/CFS is associated with dysbiosis and distinct bacterial metabolic disturbances that may influence disease severity. However, our findings indicate that dysbiotic features that are uniquely ME/CFS-associated may be masked by disturbances arising from the high prevalence of IBS co-morbidity in ME/CFS. These insights may enable more accurate diagnosis and lead to insights that inform the development of specific therapeutic strategies in ME/CFS subgroups.
Collapse
Affiliation(s)
- Dorottya Nagy-Szakal
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Brent L. Williams
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Nischay Mishra
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314 USA
- Miami VA Medical Center, Miami, FL 33125 USA
| | | | | | | | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV 89451 USA
| | | | - Komal Jain
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Meredith L. Eddy
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - Mady Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th Street 17th Floor, New York,, NY 10032 USA
| |
Collapse
|
12
|
Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2017; 57:1-24. [PMID: 28393285 PMCID: PMC5847071 DOI: 10.1007/s00394-017-1445-8] [Citation(s) in RCA: 1571] [Impact Index Per Article: 196.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Collapse
|
13
|
Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, Strauss V, Walk T, Rietjens IMCM, van Ravenzwaay B. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol 2017; 91:3439-3454. [PMID: 28337503 DOI: 10.1007/s00204-017-1949-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
The intestinal microbiota contributes to the metabolism of its host. Adequate identification of the microbiota's impact on the host plasma metabolites is lacking. As antibiotics have a profound effect on the microbial composition and hence on the mammalian-microbiota co-metabolism, we studied the effects of antibiotics on the "functionality of the microbiome"-defined as the production of metabolites absorbed by the host. This metabolomics study presents insights into the mammalian-microbiome co-metabolism of endogenous metabolites. To identify plasma metabolites related to microbiome changes due to antibiotic treatment, we have applied broad-spectrum antibiotics belonging to the class of aminoglycosides (neomycin, gentamicin), fluoroquinolones (moxifloxacin, levofloxacin) and tetracyclines (doxycycline, tetracycline). These were administered orally for 28 days to male rats including blood sampling for metabolic profiling after 7, 14 and 28 days. Fluoroquinolones and tetracyclines can be absorbed from the gut; whereas, aminoglycosides are poorly absorbed. Hippuric acid, indole-3-acetic acid and glycerol were identified as key metabolites affected by antibiotic treatment, beside changes mainly concerning amino acids and carbohydrates. Inter alia, effects on indole-3-propionic acid were found to be unique for aminoglycosides, and on 3-indoxylsulfate for tetracyclines. For each class of antibiotics, specific metabolome patterns could be established in the MetaMap®Tox data base, which contains metabolome data for more than 550 reference compounds. The results suggest that plasma-based metabolic profiling (metabolomics) could be a suitable tool to investigate the effect of antibiotics on the functionality of the microbiome and to obtain insight into the mammalian-microbiome co-metabolism.
Collapse
Affiliation(s)
- C Behr
- BASF SE, 67056, Ludwigshafen, Germany
| | - H Kamp
- BASF SE, 67056, Ludwigshafen, Germany
| | - E Fabian
- BASF SE, 67056, Ludwigshafen, Germany
| | | | - W Mellert
- BASF SE, 67056, Ludwigshafen, Germany
| | - E Peter
- Metanomics GmbH, 10589, Berlin, Germany
| | - V Strauss
- BASF SE, 67056, Ludwigshafen, Germany
| | - T Walk
- Metanomics GmbH, 10589, Berlin, Germany
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, 6700 EA, Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-Modulated Metabolites at the Interface of Host Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 198:572-580. [DOI: 10.4049/jimmunol.1601247] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
|
15
|
Mias GI, Yusufaly T, Roushangar R, Brooks LRK, Singh VV, Christou C. MathIOmica: An Integrative Platform for Dynamic Omics. Sci Rep 2016; 6:37237. [PMID: 27883025 PMCID: PMC5121649 DOI: 10.1038/srep37237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Multiple omics data are rapidly becoming available, necessitating the use of new methods to integrate different technologies and interpret the results arising from multimodal assaying. The MathIOmica package for Mathematica provides one of the first extensive introductions to the use of the Wolfram Language to tackle such problems in bioinformatics. The package particularly addresses the necessity to integrate multiple omics information arising from dynamic profiling in a personalized medicine approach. It provides multiple tools to facilitate bioinformatics analysis, including importing data, annotating datasets, tracking missing values, normalizing data, clustering and visualizing the classification of data, carrying out annotation and enumeration of ontology memberships and pathway analysis. We anticipate MathIOmica to not only help in the creation of new bioinformatics tools, but also in promoting interdisciplinary investigations, particularly from researchers in mathematical, physical science and engineering fields transitioning into genomics, bioinformatics and omics data integration.
Collapse
Affiliation(s)
- George I. Mias
- Michigan State University, Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Tahir Yusufaly
- University of Southern California, Department of Physics and Astronomy, Los Angeles, CA, 90089, USA
| | - Raeuf Roushangar
- Michigan State University, Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Lavida R. K. Brooks
- Michigan State University, Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Vikas V. Singh
- Michigan State University, Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Christina Christou
- Mercy Cancer Center, Department of Radiation Oncology, Mason City, IA 50401, USA
| |
Collapse
|
16
|
The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol 2016; 306:316-327. [DOI: 10.1016/j.ijmm.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
|
17
|
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535:85-93. [PMID: 27383983 PMCID: PMC5114849 DOI: 10.1038/nature18849] [Citation(s) in RCA: 927] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.
Collapse
Affiliation(s)
- Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, School of Medicine, Davis, California 95616, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| |
Collapse
|