1
|
Kaur G, Tiwari P, Singla S, Panghal A, Jena G. The intervention of NLRP3 inflammasome inhibitor: oridonin against azoxymethane and dextran sulfate sodium-induced colitis-associated colorectal cancer in male BALB/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03871-z. [PMID: 40035821 DOI: 10.1007/s00210-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer diagnoses. The dysregulation of the NLRP3 inflammasome is prominently linked to several types of cancers. Oridonin, a principal component of Rabdosia rubescens, exhibits inhibitory activity against NLRP3 and is well-recognized for its diverse pharmacological benefits. However, its role in an animal model of colitis-associated colorectal cancer (CACC) remains unexplored. In the present study, the effectiveness of oridonin was investigated against CACC, developed using azoxymethane (AOM), a tumour initiator, and dextran sulphate sodium (DSS), a tumour promoter, in male BALB/c mice. The two-stage murine model of inflammation-associated cancer was established by administering AOM (10 mg/kg b.w.; i.p., once) followed by DSS (2% w/v) in drinking water (3 cycles, 7 days/cycle). Over a span of 10 weeks, the dose-dependent (2.5, 5, and 10 mg/kg, b.w.; i.p.) effects of oridonin were investigated in BALB/c mice. Oridonin significantly alleviated CACC severity, as evidenced by reduced DAI scores and restored body weight. Moreover, it attenuated surrogate markers of inflammation, including myeloperoxidase, nitrite, plasma LPS, TNF-α, IL-1β, and DNA damage. Histopathological examination revealed diminished tumorigenesis and apoptotic cells, corroborated by reduced Ki-67 and TNF-α, along with increased p53 expression in the colon. Following oridonin treatment, IHC/immunofluorescence analyses demonstrated a significantly reduced expression of the components of NLRP3 inflammasome including NLRP3, ASC-1, and caspase-1. Notably, the high dose of oridonin (10 mg/kg) consistently exhibited significant protective effects against CACC by modulating various molecular targets. Present findings confirmed the potential of oridonin in the protection of colitis-associated colorectal cancer, providing valuable insights into its mechanism of action and clinical significance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Priyanka Tiwari
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Shivani Singla
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Archna Panghal
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Ahmed K, Shareef S, Faraj T, Abdulla M, Najmaldin S, Agha N, Kheder R. Chemoprotective effect of arbutin on azoxymethane-induced aberrant crypt foci in rat colon via modulation of PCNA/Bax protein. Braz J Med Biol Res 2024; 57:e13306. [PMID: 38958363 PMCID: PMC11221867 DOI: 10.1590/1414-431x2024e13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
Arbutin is utilized in traditional remedies to cure numerous syndromes because of its anti-microbial, antioxidant, and anti-inflammatory properties. This study aimed to evaluate chemopreventive effects of arbutin on azoxymethane (AOM)-induced colon aberrant crypt foci (ACF) in rats. Five groups of rats were used: normal control group (rats injected hypodermically with sterile phosphate-buffered saline once per week for two weeks) and groups 2-5, which were subcutaneously inoculated with 15 mg/kg AOM once a week for two weeks. AOM control and 5-fluorouracil (5-FU) control groups were fed 10% Tween orally daily for 8 weeks using a feeding tube. The treated groups were fed 30 and 60 mg/kg arbutin every day for 2 months. ACF from the AOM control group had aberrant nuclei in addition to multilayered cells and an absence of goblet cells. The negative control group displayed spherical cells and nuclei in basal positions. Histological examination revealed a reduced number of AFC cells from colon tissues of the 5-FU reference group. Arbutin-fed animals showed down-regulation of proliferating cell nuclear antigen (PCNA) and up-regulation of Bax protein compared to AOM control. Rats fed with arbutin displayed a significant increase of superoxide dismutase (SOD) and catalase (CAT) activities in colon tissue homogenates compared to the AOM control group. In conclusion, arbutin showed therapeutic effects against colorectal cancer, explained by its ability to significantly decrease ACF, down-regulate PCNA protein, and up-regulate Bax protein. In addition, arbutin significantly increased SOD and CAT, and decreased malondialdehyde (MDA) levels, which might be due to its anti-proliferative and antioxidant properties.
Collapse
Affiliation(s)
- K.A. Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - S.H. Shareef
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - T.A. Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - M.A. Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - S.K. Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - N.F.S. Agha
- Department of Anesthesia, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - R.K. Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| |
Collapse
|
4
|
Cao M, Fan B, Zhen T, Das A, Wang J. Ruthenium biochanin-A complex ameliorates lung carcinoma through the downregulation of the TGF-β/PPARγ/PI3K/TNF-α pathway in association with caspase-3-mediated apoptosis. Toxicol Res 2023; 39:455-475. [PMID: 37398567 PMCID: PMC10313601 DOI: 10.1007/s43188-023-00177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 07/04/2023] Open
Abstract
Lung cancer is the most often reported cancer with a terrible prognosis worldwide. Flavonoid metal complexes have exhibited potential chemotherapeutic effects with substantially low adverse effects. This study investigated the chemotherapeutic effect of the ruthenium biochanin-A complex on lung carcinoma in both in vitro and in vivo model systems. The synthesized organometallic complex was characterized via UV‒visible spectroscopy, FTIR, mass spectrometry, and scanning electron microscopy. Moreover, the DNA binding activity of the complex was determined. The in vitro chemotherapeutic assessment was performed on the A549 cell line through MTT assay, flow cytometry, and western blot analysis. An in vivo toxicity study was performed to determine the chemotherapeutic dose of the complex, and subsequently, chemotherapeutic activity was assessed in benzo-α-pyrene-induced lung cancer mouse model by evaluating the histopathology, immunohistochemistry, and TUNEL assays. The IC50 value of the complex in A549 cells was found to be 20 µM. The complex demonstrated significant apoptosis induction, enhanced caspase-3 expression and cell cycle arrest with downregulated PI3K, PPARγ, TGF-β, and TNF-α expression in A549 cells. The in vivo study suggested that ruthenium biochanin-A therapy restored the morphological architecture of lung tissue in a benzo-α-pyrene-induced lung cancer model and inhibited the expression of Bcl2. Additionally, increased apoptotic events were identified with upregulation of caspase-3 and p53 expression. In conclusion, the ruthenium biochanin-A complex successfully amelioratedlung cancer incidence in both in vitro and in vivo models through the alteration of the TGF-β/PPARγ/PI3K/TNF-α axis with the induction of the p53/caspase-3-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ming Cao
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Bo Fan
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Tianchang Zhen
- Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014 Shandong Province China
| | - Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, 124 B.L. Saha Road, Kolkata, West Bengal 700053 India
| | - Junling Wang
- Department of Respiratory and Critical Care, The First Hospital Affiliated with Shandong First Medical University, No.16766, Lixia District, Jingshi Road, Jinan, 250014 Shandong Province China
| |
Collapse
|
5
|
Transcriptomic and proteomic insights into patulin mycotoxin-induced cancer-like phenotypes in normal intestinal epithelial cells. Mol Cell Biochem 2022; 477:1405-1416. [PMID: 35150386 DOI: 10.1007/s11010-022-04387-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Patulin (PAT) is a natural contaminant of fruits (primarily apples) and their products. Significantly, high levels of contamination have been found in fruit juices all over the world. Several in vitro studies have demonstrated PAT's ability to alter intestinal structure and function. However, in real life, the probability of low dose long-term exposure to PAT to humans is significantly higher through contaminated food items. Thus, in the present study, we have exposed normal intestinal cells to non-toxic levels of PAT for 16 weeks and observed that PAT had the ability to cause cancer-like properties in normal intestinal epithelial cells after chronic exposure. Here, our results showed that chronic exposure to low doses of PAT caused enhanced proliferation, migration and invasion ability, and the capability to grow in soft agar (anchorage independence). Moreover, an in vivo study showed the appearance of colonic aberrant crypt foci (ACFs) in PAT-exposed Wistar rats, which are well, establish markers for early colon cancer. Furthermore, as these neoplastic changes are consequences of alterations at the molecular level, here, we combined next-generation RNA sequencing with liquid chromatography mass spectrometry-based proteomic analysis to investigate the possible underlying mechanisms involved in PAT-induced neoplastic changes.
Collapse
|
6
|
Ilhan N, Bektas I, Susam S, Ozercan IH. Protective effects of rosmarinic acid against azoxymethane-induced colorectal cancer in rats. J Biochem Mol Toxicol 2022; 36:e22961. [PMID: 34766714 DOI: 10.1002/jbt.22961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) incidence is increasing gradually and has been become one of the most common cancers worldwide. Hence, it is important to discover cheap, naturally occurring compounds to be effective in suppressing the devastating effect of colon-related tumors. Rosmarinic acid (RA), one of the compounds of plant origin, possesses attractive features for use as an agent for cancer prevention and treatment. This study investigated the ability of RA to prevent azoxymethane (AOM)-induced rat colon carcinogenesis by evaluating the effect of RA on tumor formation and circulatory oxidant-antioxidant status. Moreover, plasma levels of adiponectin (APN) monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) were detected by enzyme linked immunosorbent assay. The animals were divided into three groups: Control, AOM, and AOM + RA. Rats were fed a modified pellet diet (15.8% peanut oil was added to the standard diet) during the experimental period. Colon cancer was formed by applying 15 mg/kg AOM intraperitoneal once a week for 4 weeks in both the CRC group and AOM + RA group. Besides AOM, AOM + RA group received 5 mg/kg body weight RA orally every day during the study. The results showed that adenocarcinoma rates formed 87.5% of the AOM group. With treatment of RA, a reduction in the incidence of adenocarcinoma was observed in the AOM + RA group. The plasma MCP-1, IL-6, and TO levels were significantly higher, APN and TAS levels were significantly lower in the AOM group with respect to controls. In addition, there was a significant increase in TAS levels in the RA treatment group compared to the AOM group. These findings suggested that RA may be beneficial in preventing AOM-induced colon carcinogenesis formation.
Collapse
Affiliation(s)
- Nevin Ilhan
- Department of Medical Biochemistry, Medical Faculty, Firat University, Elazig, Turkey
| | - Ibrahim Bektas
- Department of Medical Biochemistry, Medical Faculty, Firat University, Elazig, Turkey
| | - Solmaz Susam
- Department of Medical Biochemistry, Medical Faculty, Adiyaman University, Adiyaman, Turkey
| | - Ibrahim H Ozercan
- Department of Medical Pathology, Medical Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
7
|
Sahebi Z, Emtyazjoo M, Mostafavi PG, Bonakdar S. Promising Chemoprevention of Colonic Aberrant Crypt Foci by Portunus segnis Muscle and Shell Extracts in Azoxymethane-Induced Colorectal Cancer in Rats. Anticancer Agents Med Chem 2021; 20:2041-2052. [PMID: 32532197 DOI: 10.2174/1871520620666200612144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE This study subjected a rat model to the extracts of muscle and shell tissues from Portunus segnis to assess their therapeutic effects on the HT-29 colon cancer cells as well as on colonic Aberrant Crypt Foci (ACF) induced by Azoxymethane (AOM). METHODS The cell line was exposed to the extracts to compare the cytotoxicity of hexane, butanol, ethyl acetate, and water extract of muscle and ethanolic extract of the shell. Male rats (n=40) were assigned into control, positive, negative, and treatment groups. The animals were injected with AOM, except the control group, and then exposed to 250 and 500mg/kg of the crude extracts. Immunohistochemical localization of Bax and Bcl-2, as well as ACF and antioxidant enzymes, were evaluated in the rat colon. RESULTS The butanolic muscle extract and ethanolic shell one demonstrated an IC50 of 9.02±0.19μg/ml and 20.23±0.27μg/ml towards the cell line, respectively. Dietary exposure inhibited the ACF formation and crypt multiplicity in the colon compared to the cancer control group. The activity of SOD and CAT increased, while that of MDA decreased. The expression of Bax and Bcl-2 increased and decreased, respectively. CONCLUSION Taken together, the results show that both extractions were suggested to be suppressive to AOMinduced colon cancer.
Collapse
Affiliation(s)
- Zahra Sahebi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Emtyazjoo
- Department of Marine Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pargol G Mostafavi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Decrypting the Molecular Mechanistic Pathways Delineating the Chemotherapeutic Potential of Ruthenium-Phloretin Complex in Colon Carcinoma Correlated with the Oxidative Status and Increased Apoptotic Events. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7690845. [PMID: 32566099 PMCID: PMC7281810 DOI: 10.1155/2020/7690845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
To explore fresh strategies in colorectal cancer (CRC) chemotherapy, we evaluated the capability of the ruthenium-phloretin complex in exterminating colon cancer by effectively addressing multiple apoptotic mechanisms on HT-29 cancer cells together with an animal model of colorectal cancer activated by 1,2-dimethylhydrazine and dextran sulfate sodium. Our current approach offers tangible evidence of the application of the ruthenium-phloretin complex in future chemotherapy. The complex triggers intrinsic apoptosis triggered by p53 and modulates the Akt/mTOR pathway along with other inflammatory biomarkers. The ruthenium-phloretin complex has been synthesized and successfully characterized by numerous spectroscopic methodologies accompanied by DPPH, FRAP, and ABTS assays assessing its antioxidant potential. Studies conducted in human cell lines revealed that the complex improved levels of p53 and caspase-3 while diminishing the activities of VEGF and mTOR, triggers apoptosis, and induces fragmentation of DNA in the HT-29 cells. Toxicity studies were conducted to identify the therapeutic doses of the novel complex in animal models. The outcomes of the in vivo report suggest that the complex was beneficial in repressing multiplicity of aberrant crypt foci as well as hyperplastic lesions and also promoted increased levels of CAT, SOD, and glutathione. In addition, the ruthenium-phloretin complex was able to control cell proliferation and boosted apoptotic outbursts in cancer cells associated with the increase in cellular response towards Bax while diminishing responses towards Bcl-2, NF-κB, and MMP-9. Our observations from the experiments deliver testament that the ruthenium-phloretin complex has the potential to act as a promising chemotherapeutic agent in colorectal cancer because it can affect the growth of ACF and hyperplastic abrasions in the colon tissues by evoking cell death.
Collapse
|
9
|
Yaman T, Uyar A, Kömüroğlu AU, Keleş ÖF, Yener Z. Chemopreventive efficacy of juniper berry oil ( Juniperus communis L.) on azoxymethane-induced colon carcinogenesis in rat. Nutr Cancer 2019; 73:133-146. [PMID: 31617778 DOI: 10.1080/01635581.2019.1673450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the chemopreventive effects of juniper berry (JB) oil on azoxymethane (AOM)-induced colon cancer in rats. Thirty-two male Wistar albino rats were allocated into four groups: Control, AOM, AOM + JB, and JB groups. Whereas the control group was fed with standard pellet feed, the AOM and AOM + JB groups were administered of AOM (15 mg/kg body weight) subcutaneously once every 2 weeks for 10 weeks. AOM + JB and JB groups additionally received JB oil (100 µl/kg) orally. At the end of the 16-week experimental period, blood and tissue samples were obtained from the rats following necropsy. The macroscopic findings showed that the application of JB oil significantly decreased adenoma and adenocarcinoma formation both numerically and dimensionally. Immunohistochemically, CEA, COX-2, and Ki-67 immune-expressions decreased, and the immune-expression of caspase-3 increased in AOM + JB treated rats. Additionally, JB oil supplementation ameliorated antioxidant defense systems and lipid peroxidation within the colon tissue of AOM + JB treated rats. These results reveal that the JB oil acted as a chemopreventive dietary agent, inhibiting cell proliferation and COX-2 expression and inducing apoptosis, resulting in a significant reduction in colon tumor formation.
Collapse
Affiliation(s)
- Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Ufuk Kömüroğlu
- Health Service Vocational School of Higher Education, Van Yuzuncu Yil University, Van, Turkey
| | - Ömer Faruk Keleş
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zabit Yener
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
10
|
Djulis ( Chenopodium Formosanum) Prevents Colon Carcinogenesis via Regulating Antioxidative and Apoptotic Pathways in Rats. Nutrients 2019; 11:nu11092168. [PMID: 31509964 PMCID: PMC6769785 DOI: 10.3390/nu11092168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/10/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Djulis is a cereal crop rich in polyphenols and dietary fiber that may have nutraceutical activity to prevent colon cancer. This study was designed to examine the preventive effect of djulis on colon carcinogenesis in rats treated with 1,2-dimethylhydrazine (DMH). Rats were fed different AIN-93G-based diets: groups N and DMH were fed AIN-93G diet and groups LD, MD, and HD were fed AIN-93G diet containing 5, 10, and 20% djulis, respectively. All rats except for group N were injected with DMH to induce colon carcinogenesis. After 10 weeks, rats were sacrificed and colon and liver tissues were collected for analysis. The results showed that djulis-treated rats had significantly lower numbers of colonic preneoplastic lesions, aberrant crypt foci (ACF), sialomucin-producing (SIM)-ACF, and mucin-depleted foci. Djulis treatment increased superoxide dismutase and catalase activities in colon and liver. Djulis also reduced p53, Bcl-2, and proliferating cell nuclear antigen expressions and increased Bax and caspase-9 expressions. Besides, phenolic compounds and flavonoids were found rich in djulis. These results demonstrate the chemopreventive effect of djulis on carcinogen-induced colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Djulis may have the potential to be developed as a valuable cereal product for chemoprevention of colon cancer.
Collapse
|
11
|
Wang Y, Bian L, Chakraborty T, Ghosh T, Chanda P, Roy S. Construing the Biochemical and Molecular Mechanism Underlying the In Vivo and In Vitro Chemotherapeutic Efficacy of Ruthenium-Baicalein Complex in Colon Cancer. Int J Biol Sci 2019; 15:1052-1071. [PMID: 31182925 PMCID: PMC6535785 DOI: 10.7150/ijbs.31143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
In pursuit of a novel approach in colon cancer therapy, we explored the ability of ruthenium baicalein complex to eradicate colon cancer by efficiently targeting various apoptotic pathways on human colon cancer cell line and on a DMH and DSS induced murine model of colorectal cancer. In this study, we provide direct proof of the chemotherapeutic potential of the ruthenium baicalein complex by activating p-53 dependent intrinsic apoptosis and modulating the AKT/mTOR and WNT/β- catenin pathways. The ruthenium baicalein complex was synthesized and its characterizations were accomplished through various spectroscopic techniques followed by assessment of antioxidant potential by DPPH, FRAP, and ABTS methods. In vitro study established that the complex increased p53 and caspase-3 expressions while down regulating VEGF and mTOR expression, induced apoptosis, and DNA fragmentation in the HT-29 cells. Acute and sub-acute toxicity study was also considered and results from in vivo study revealed that complex was effective in suppressing ACF multiplicity and hyperplastic lesions and also raised the CAT, SOD, and glutathione levels. Furthermore, the complex decreased cell proliferation and increased apoptotic events in tumor cells correlated with the upregulation of Bax and downregulation of Bcl2, WNT and β- catenin expressions. Our findings from the in vitro and in vivo study provide robust confirmation that ruthenium baicalein complex possesses a potential chemotherapeutic activity against colon cancer and is competent in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Li Bian
- Department of Radiotherapy, The Second Hospital of Jilin university, Changchun, Jilin, 130041, China
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Torsha Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Pallakhi Chanda
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| |
Collapse
|
12
|
Roy S, Sil A, Chakraborty T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol 2019; 234:4888-4909. [PMID: 30246261 DOI: 10.1002/jcp.27287] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most frequent cause of cancer in women. In the current study, transition metal ruthenium was complexed with flavonoid chrysin to evaluate the chemotherapeutic potential of this compound in Michigan Cancer Foundation-7 (MCF-7) human mammary cancer cell line and 7,12-dimethylbenz(α)anthracene-induced mammary cancer in female Sprague-Dawley rats. The characterizations of the complex were accomplished through UV-visible, NMR, IR, Mass spectra, and XRD techniques and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro studies included cell viability, cell cycle analysis, DNA fragmentation, and marker analysis by western blot analysis and found that complex treatment suppressed cell growth-induced cell cycle arrest and enhanced the induction of apoptosis in cancer cells. Moreover, complex treatment modulated signaling pathways including mTOR, VEGF, and p53 in the MCF-7 cells. Acute and subacute toxicity was performed in rats to determine the therapeutic doses. Breast cancer in rats was initiated by the administration of 7,12-dimethylbenz(α)anthracene (0.5 mg/100 g body weight) via single tail vein injection. The histopathological analysis after 24 weeks of carcinogenesis study depicted substantial repair of hyperplastic lesions. Immunohistochemical analysis revealed upregulation of Bax and p53 and downregulation of Bcl2 proteins and TUNEL assay showed an increase in apoptotic index in ruthenium-chrysin-treated groups as compared to the carcinogen control. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium-chrysin complex possesses a potential chemotherapeutic activity against breast cancer and was efficient in reducing hyperplastic lesions in the mammary tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| | - Anweshan Sil
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| | - Tania Chakraborty
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| |
Collapse
|
13
|
Ni L, Zhao H, Tao L, Li X, Zhou Z, Sun Y, Chen C, Wei D, Liu Y, Diao G. Synthesis, in vitro cytotoxicity, and structure-activity relationships (SAR) of multidentate oxidovanadium(iv) complexes as anticancer agents. Dalton Trans 2018; 47:10035-10045. [PMID: 29974097 DOI: 10.1039/c8dt01778f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidentate oxidovanadium(iv) complexes with different geometric configurations [VO(ox)(bpy)(H2O)] 1, [VO(ox)(phen)(H2O)] 2, [VO(ida)(bpy)]·2H2O 3, (phen)[VO(ida)(phen)]·4H2O 4, and (Hphen)[VO(H2O)(nta)]·2H2O 5 [ox = oxalic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, ida = iminodiacetic acid, nta = nitrilotriacetic acid] have been obtained from the reactions of oxidovanadium sulfate or vanadium pentoxide with oxalates, amino-polycarboxylates and N-heterocyclic ligands in neutral solution by the hydrothermal method, and have been fully characterized by elemental, thermogravimetric analyses and single crystal X-ray diffraction, as well as a wide range of spectroscopic techniques such as FT-IR, UV/Vis, NMR, ESI-MS. The anti-tumor properties of oxidovanadium compounds 1-5 were further evaluated in human HepG2 and SMMC-7721 hepatocellular carcinoma cell lines in vitro. The profiles of cytotoxicity, cell cycle distribution, as well as cell apoptosis upon test compound exposure, were determined by MTT and flow cytometry assays. Compound 2 exhibited a much higher anti-tumor activity than others. The IC50 values of 2 were 5.34 ± 0.034 μM and 29.07 ± 0.017 μM in SMMC-7721 and HepG2 cells after 48 h treatment, respectively. Furthermore, compound 2 could significantly arrest the cell cycle in the S and G2/M phases and further induce cell apoptosis in a dose-dependent manner. The structure-activity relationship (SAR) studies revealed that structural elements, for example, metal components, variations of coordination mode, labile water molecules, chelated ligands etc., probably exert an essential cooperative effect on the antitumor activity. In short, these findings not only provide an accessible model system to exploit V-based complexes as potential simple, safe and effective multifunctional antitumor agents, but also open up a rational approach to shed new light on the selection and optimization of ideal drug candidates.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Padmanabhan S, Waly MI, Taranikanti V, Guizani N, Ali A, Rahman MS, Al-Attabi Z, Al-Malky RN, Al-Maskari SNM, Al-Ruqaishi BRS, Dong J, Deth RC. Folate/Vitamin B12 Supplementation Combats Oxidative Stress-Associated Carcinogenesis in a Rat Model of Colon Cancer. Nutr Cancer 2018; 71:100-110. [DOI: 10.1080/01635581.2018.1513047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Smitha Padmanabhan
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mostafa I. Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Nutrition, High Institute of Public Health, Alexandria, Egypt
| | - Varna Taranikanti
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Nejib Guizani
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amanat Ali
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammad S. Rahman
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Zaher Al-Attabi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Raya N. Al-Malky
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sultan N. M. Al-Maskari
- Small Animal House, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bader R. S. Al-Ruqaishi
- Small Animal House, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jianan Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
15
|
Roy S, Chakraborty T. Deciphering the molecular mechanism and apoptosis underlying the in-vitro and in-vivo chemotherapeutic efficacy of vanadium luteolin complex in colon cancer. Cell Biochem Funct 2018; 36:116-128. [PMID: 29574863 DOI: 10.1002/cbf.3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| |
Collapse
|
16
|
Roy S, Das R, Ghosh B, Chakraborty T. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog 2018; 57:700-721. [PMID: 29442390 DOI: 10.1002/mc.22792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are the most investigated phytochemicals due to their pharmacological and therapeutic activities. Their ability to chelate with metal ions has resulted in the emergence of a new category of molecules with a broader spectrum of pharmacological activities. In this study, the ruthenium quercetin complex has been synthesized and anticancer activity has been evaluated on a well-defined model of DMH followed by DSS induced rat colon cancer and on human colon cancer cell line HT-29. The characterizations accomplished through UV-visible, NMR, IR, Mass spectra and XRD techniques, and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro study confirmed that the complex increased p53 expression, reduced VEGF and mTOR expression, apoptosis induction, and DNA fragmentation in the HT-29 cells. Acute and subacute toxicity study was also assessed and results from in vivo study revealed that complex was efficient to suppress ACF multiplicity and hyperplastic lesions and elevated the CAT, SOD, and glutathione levels. Furthermore, the complex was found to decrease cell proliferation and increased apoptotic events in tumor cells correlates upregulation of p53 and Bax and downregulation of Bcl2 expression. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium quercetin complex possesses a potential chemotherapeutic activity against colon cancer and was efficient in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Rituparna Das
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
17
|
Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig Dis Sci 2016; 61:2908-2920. [PMID: 27384052 DOI: 10.1007/s10620-016-4238-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Structural change in the gut microbiota is implicated in cancer. The beneficial modulation of the microbiota composition with probiotics and prebiotics prevents diseases. AIM We investigated the effect of oligofructose-maltodextrin-enriched Lactobacillus acidophilus, Bifidobacteria bifidum, and Bifidobacteria infantum (LBB), on the gut microbiota composition and progression of colorectal cancer. METHODS Sprague Dawley rats were acclimatized, given ampicillin (75 mg/kg), and treated as follows; GCO: normal control; GPR: LBB only; GPC: LBB+ 1,2-dimethylhydrazine dihydrochloride (DMH); and GCA: DMH only (cancer control). 16S V4 Pyrosequencing for gut microbiota analysis, tumor studies, and the expression of MUC2, ZO-1, occludin, TLR2, TLR4, caspase 3, COX-2, and β-catenin were conducted at the end of experiment. RESULTS Probiotic LBB treatment altered the gut microbiota. The relative abundance of genera Pseudomonas, Congregibacter, Clostridium, Candidactus spp., Phaeobacter, Escherichia, Helicobacter, and HTCC was decreased (P < 0.05), but the genus Lactobacillus increased (P < 0.05), in LBB treatment than in cancer control. The altered gut microbiota was associated with decreased tumor incidence (80 % in GPC vs. 100 % in GCA, P = 0.0001), tumor volume (GPC 84.23 (42.75-188.4) mm(3) vs. GCA 243 (175.5-344.5) mm(3), P < 0.0001) and tumor multiplicity/count (GPC 2.92 ± 0.26 vs. GCA 6.27 ± 0.41; P < 0.0001). The expression of MUC2, ZO-1, occludin, and TLR2 was increased, but expression of TLR4, caspase 3, Cox-2, and β-catenin was decreased by LBB treatment than in cancer control GCA (P < 0.05). CONCLUSION Administration of LBB modulates the gut microbiota and reduces colon cancer development by decreasing tumor incidence, multiplicity/count, and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apoptosis and inflammation.
Collapse
|
18
|
Ni L, Wang J, Liu C, Fan J, Sun Y, Zhou Z, Diao G. An asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and phenanthroline ligands: synthesis, characterization, structural conversion and anticancer properties. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00072j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and 1,10-phenanthroline ligands exhibited promising anticancer activity and low toxicity, suggesting potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Lubin Ni
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Juan Wang
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Chang Liu
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Jinhong Fan
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Yun Sun
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
19
|
Ibrahim IAA, Abdulla MA, Hajrezaie M, Bader A, Shahzad N, Al-Ghamdi SS, Gushash AS, Hasanpourghadi M. The gastroprotective effects of hydroalcoholic extract of Monolluma quadrangula against ethanol-induced gastric mucosal injuries in Sprague Dawley rats. Drug Des Devel Ther 2015; 10:93-105. [PMID: 26766904 PMCID: PMC4699547 DOI: 10.2147/dddt.s91247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid-Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins.
Collapse
Affiliation(s)
- Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeed S Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad S Gushash
- College of Arts and Science in Baljurashi, Albaha University, Baljurashi, Saudi Arabia
| | - Mohadeseh Hasanpourghadi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Jia L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 2015; 83:28-35. [PMID: 26690044 DOI: 10.1016/j.ejps.2015.12.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Targeted delivery of anticancer agents by functional nanoparticles is an attractive strategy to increase their therapeutic efficacy while reducing toxicity. In this work, doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) were modified with aptamer (Ap) against the epithelial cell adhesion molecule (EpCAM) for targeted delivery of DOX to colon cancer cells. These nanoparticles (Ap-MSN-DOX) were characterized by particle size, zeta potential, aptamer conjugation efficiency, drug encapsulation efficiency, and drug release properties. The in vitro cell recognition, cellular uptake, EpCAM protein inhibition efficiency, and cytotoxicity of Ap-MSN-DOX were also studied. Results demonstrated that EpCAM conjugation increased binding of Ap-MSN-DOX to EpCAM over-expressing SW620 colon cancer cells but not EpCAM-negative Ramos cells, resulting in enhanced cellular uptake and increased cytotoxicity of the DOX in SW620 cells when compared to non-Ap-modified nanoparticles (MSN-DOX). Additionally, Ap-MSN-DOX exhibited significant inhibition effects on the expression of EpCAM on SW620 cells. These results suggested that Ap-MSN-DOX has the potential for the targeted delivery of therapeutic agents into EpCAM positive colon cancer cells to improve therapeutic index while reducing side effects.
Collapse
Affiliation(s)
- Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huijuan Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hang Lin
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|