1
|
Rai AB, Codi JAK, Suchitha GP, Hemavathi KN, Dagamajalu S, Abhinand CS, Raju R, Prasad TSK. Mapping growth differentiation factor-15 (GDF15)-mediated signaling pathways in cancer: insights into its role across different cancer types. Discov Oncol 2025; 16:386. [PMID: 40128491 PMCID: PMC11933546 DOI: 10.1007/s12672-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Growth differentiation factor-15 (GDF15) is a cytokine/growth factor that belongs to the Transforming growth factor-ß (TGF-ß) protein family. The expression of GDF15 is low in most human organs under normal conditions. GDF15 is a stress-responsive cytokine primarily produced by macrophages in response to inflammatory stimuli. The altered expression of GDF15 is associated with many cancers due to the inflammation caused by the disease. GDF15 triggers the activity through its receptor Glial-derived neurotrophic factor-family receptor α-like (GFRAL) and mediates multiple downstream signaling cascades, which are involved in the progression of cancers. Considering the biological importance of GDF15 in different cancers, we applied data mining techniques to systematically compile and analyze the signaling events associated with GDF15 using NetPath criteria. This resulted in constructing a detailed GDF15-mediated signaling pathway map, enhancing our understanding of its molecular mechanisms in cancer. Furthermore, proteins linked to colorectal and breast cancer identified in our pathway map were cross-referenced with established cancer pathway databases to identify unannotated proteins, highlighting gaps in the current annotations. To investigate potential therapeutic strategies, we performed molecular docking simulations and identified Vitisifuran B as a novel inhibitor that could block the GDF15-GFRAL interaction. These findings suggest that Vitisifuran B could effectively modulate GDF15 signaling, offering a promising avenue for cancer therapeutics. This study underscores the power of computational approaches, such as data mining and molecular docking, in enhancing our understanding of GDF15 signaling in cancer and identifying potential inhibitors for therapeutic development.
Collapse
Affiliation(s)
- Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Giridhara Prema Suchitha
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Kadabagere Narayanaswamy Hemavathi
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Soukar I, Fisher RJ, Bhagavatula S, Collard M, Cole PA, Alani RM. The CoREST complex is a therapeutic vulnerability in malignant peripheral nerve sheath tumors. Sci Rep 2025; 15:10128. [PMID: 40128216 PMCID: PMC11933703 DOI: 10.1038/s41598-025-94517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma that may be seen in patients with neurofibromatosis type 1 (NF1) or occur sporadically. While surgery is the primary treatment for localized MPNST with a 61.9% overall survival rate, metastatic disease is often fatal due to resistance to systemic therapies which underscores the urgent need for effective treatments. MPNSTs frequently harbor inactivating driver mutations in the PRC2 epigenetic repressor complex suggesting epigenetic therapies may represent a specific vulnerability in these tumors. Here, we investigate the role of the LSD1-HDAC1-CoREST (LHC) repressor complex in mediating MPNST tumor growth and progression. Our findings demonstrate that the LHC small molecule inhibitor, corin, induces apoptosis and significantly inhibits proliferation in MPNST cells. Transcriptomic analysis of corin-treated MPNST cells demonstrates specific increases in genes associated with axonogenesis and neuronal differentiation as well as altered extracellular matrix; additionally, corin treatment is shown to inhibit MPNST invasion in vitro. These results underscore the critical role of the LHC complex in facilitating MPNST growth and progression and suggest that targeting the LHC complex represents a promising therapeutic approach for this aggressive malignancy.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, 609 Albany Street, J-507, Boston, MA, 02118, USA
| | - Robert J Fisher
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, 609 Albany Street, J-507, Boston, MA, 02118, USA
| | - Sanjana Bhagavatula
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, 609 Albany Street, J-507, Boston, MA, 02118, USA
| | - Marianne Collard
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, 609 Albany Street, J-507, Boston, MA, 02118, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Rhoda M Alani
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, 609 Albany Street, J-507, Boston, MA, 02118, USA.
| |
Collapse
|
3
|
Chang KS, Chen ST, Lin WY, Hsu SY, Sung HC, Lin YH, Feng TH, Hou CP, Juang HH. Growth differentiation factor 15 is a glucose-downregulated gene acting as the cross talk between stroma and cancer cells of the human bladder. Am J Physiol Cell Physiol 2025; 328:C557-C573. [PMID: 39804805 DOI: 10.1152/ajpcell.00230.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Hyperglycemia and hyperglycosuria, two primary characteristics of diabetes mellitus, may increase the risk of cancer initiation, particularly for bladder cancer. The effectiveness of metformin, a common antidiabetic agent, is determined by its ability to induce growth differentiation factor 15 (GDF15). However, the mechanism of the GDF15 in relation to glucose, which influences the tumor microenvironment in the human bladder, is not fully understood. This study explores the potential roles of GDF15 in response to glucose in the human bladder. High glucose treatment (30 mM) enhanced phosphorylation of AKT at S473 and AMP-activated protein kinase α1/2 (AMPKα1/2) at S485 to block the counteracting effect of metformin on the AMPK activity in bladder cancer and stroma [human bladder stromal fibroblast (HBdSF) and human bladder smooth muscle cell (HBdSMC)] cells compared with normal glucose treatment (5 mM). Metformin modulated the expressions of GDF15, NDRG1, Maspin, and epithelial-to-mesenchymal transition (EMT) markers to attenuate cell proliferation and invasion of bladder cancer cells. Caffeic acid phenethyl ester (CAPE), like metformin, behaves as an inducer of AMPK activity to stimulate GDF15 expression. Knockdown of GDF15 blocked the downregulation of CAPE on the contraction of HBdSMCs. Both CAPE-induced GDF15 expression and the supernatant from bladder cancer cells with overexpressing GDF15 impeded the HBdSF and HBdSMC migration, suggesting that CAPE-upregulated GDF15 blocked the cell migration. These findings reveal that high glucose treatment inhibits the counteracting effects of either metformin or CAPE on the AMPK activity and GDF15 is downregulated by glucose and induced by metformin and CAPE in both stroma and cancer cells. Furthermore, GDF15 is an antitumor gene facilitating communication between stroma and cancer cells in the human bladder.NEW & NOTEWORTHY This study investigates the counteraction of either CAPE or metformin with the AMPK activity increasing GDF15 expression in human bladder cells. The findings are the first study to indicate the secretion of GDF15 from cancer and stroma cells via autocrine or paracrine mechanisms. Our study suggests that GDF15, an antitumor gene in the human bladder induced by AMPK inducers, acts as a communication link between stroma and cancer cells in the human bladder.
Collapse
Affiliation(s)
- Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
4
|
Takaoka M, Tadross JA, Al-Hadithi ABAK, Zhao X, Villena-Gutiérrez R, Tromp J, Absar S, Au M, Harrison J, Coll AP, Marciniak SJ, Rimmington D, Oliver E, Ibáñez B, Voors AA, O’Rahilly S, Mallat Z, Goodall JC. GDF15 antagonism limits severe heart failure and prevents cardiac cachexia. Cardiovasc Res 2024; 120:2249-2260. [PMID: 39312445 PMCID: PMC11687397 DOI: 10.1093/cvr/cvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
AIMS Heart failure and associated cachexia is an unresolved and important problem. This study aimed to determine the factors that contribute to cardiac cachexia in a new model of heart failure in mice that lack the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A. METHODS AND RESULTS Mice were irradiated and reconstituted with bone marrow cells. Mice lacking functional PPP1R15A, exhibited dilated cardiomyopathy and severe weight loss following irradiation, whilst wild-type mice were unaffected. This was associated with increased expression of Gdf15 in the heart and increased levels of GDF15 in circulation. We provide evidence that the blockade of GDF15 activity prevents cachexia and slows the progression of heart failure. We also show the relevance of GDF15 to lean mass and protein intake in patients with heart failure. CONCLUSION Our data suggest that cardiac stress mediates a GDF15-dependent pathway that drives weight loss and worsens cardiac function. Blockade of GDF15 could constitute a novel therapeutic option to limit cardiac cachexia and improve clinical outcomes in patients with severe systolic heart failure.
Collapse
Affiliation(s)
- Minoru Takaoka
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John A Tadross
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
- Department of Histopathology, East Midlands & East of England Genomic Laboratory, Cambridge, UK
| | - Ali B A K Al-Hadithi
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Xiaohui Zhao
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Jasper Tromp
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore & the National University Health System, Singapore
| | - Shazia Absar
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus Au
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Harrison
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anthony P Coll
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Debra Rimmington
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Adriaan A Voors
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Stephen O’Rahilly
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM UMRS 970, Paris, France
| | - Jane C Goodall
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
5
|
Wells C, Pogribna M, Sharmah A, Paredes A, Word B, Patri AK, Lyn-Cook B, Hammons G. Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2037. [PMID: 39728572 DOI: 10.3390/nano14242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The safety of titanium dioxide (TiO2), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO2 has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO2 product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, MBD2, and URHF1 was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (BNIP3, DNAJC15, GADD45G, GDF15, INSIG1, SCARA3, and TP53) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO2 exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.
Collapse
Affiliation(s)
- Carlos Wells
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Arjun Sharmah
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Angel Paredes
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Anil K Patri
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
6
|
Jiang Y, Zheng Z, Zhu J, Zhang P, Li S, Fu Y, Wang F, Zhang Z, Chang T, Zhang M, Ruan B, Wang X. The role of GDF15 in attenuating noise-induced hidden hearing loss by alleviating oxidative stress. Cell Biol Toxicol 2024; 40:79. [PMID: 39289208 PMCID: PMC11408584 DOI: 10.1007/s10565-024-09912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Noise-induced hidden hearing loss (HHL) is a newly uncovered form of hearing impairment that causes hidden damage to the cochlea. Patients with HHL do not have significant abnormalities in their hearing thresholds, but they experience impaired speech recognition in noisy environments. However, the mechanisms underlying HHL remain unclear. In this study, we developed single-cell transcriptome profiles of the cochlea of mice with HHL, detailing changes in individual cell types. Our study revealed a transient threshold shift, reduced auditory brainstem response wave I amplitude, and decreased number of ribbon synapses in HHL mice. Our findings suggest elevated oxidative stress and GDF15 expression in cochlear hair cells of HHL mice. Notably, the upregulation of GDF15 attenuated oxidative stress and auditory impairment in the cochlea of HHL mice. This suggests that a therapeutic strategy targeting GDF15 may be efficacious against HHL.
Collapse
Affiliation(s)
- Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Zeyu Zheng
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Jing Zhu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Peng Zhang
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Shaoheng Li
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Yang Fu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Fei Wang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuoru Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tong Chang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Bai Ruan
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
7
|
Soukar I, Fisher R, Bhagavatula S, Collard M, Cole PA, Alani RM. The CoREST complex is a therapeutic vulnerability in malignant peripheral nerve sheath tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.607802. [PMID: 39229179 PMCID: PMC11370389 DOI: 10.1101/2024.08.17.607802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma that may be seen in patients with neurofibromatosis type 1 (NF1) or occur sporadically. While surgery is the primary treatment for localized MPNST with a 61.9% overall survival rate, metastatic disease is often fatal due to resistance to systemic therapies which underscores the urgent need for effective treatments. MPNSTs frequently harbor inactivating driver mutations in the PRC2 epigenetic repressor complex suggesting epigenetic therapies may represent a specific vulnerability in these tumors. Here, we investigate the role of the LSD1-HDAC1-CoREST (LHC) repressor complex in mediating MPNST tumor growth and progression. Our findings demonstrate that the LHC small molecule inhibitor, corin, induces apoptosis and significantly inhibits proliferation in MPNST cells. Transcriptomic analysis of corin-treated MPNST cells demonstrates specific increases in genes associated with axonogenesis and neuronal differentiation as well as altered extracellular matrix; additionally, corin treatment is shown to inhibit MPNST invasion in vitro. These results underscore the critical role of the LHC complex in facilitating MPNST growth and progression and suggest that targeting the LHC complex represents a promising therapeutic approach for this aggressive malignancy.
Collapse
|
8
|
Silva-Bermudez LS, Klüter H, Kzhyshkowska JG. Macrophages as a Source and Target of GDF-15. Int J Mol Sci 2024; 25:7313. [PMID: 39000420 PMCID: PMC11242731 DOI: 10.3390/ijms25137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a multifunctional cytokine that belongs to the transforming growth factor-beta (TGF-β) superfamily. GDF-15 is involved in immune tolerance and is elevated in several acute and chronic stress conditions, often correlating with disease severity and patient prognosis in cancer172 and metabolic and cardiovascular disorders. Despite these clinical associations, the molecular mechanisms orchestrating its effects remain to be elucidated. The effects of GDF-15 are pleiotropic but cell-specific and dependent on the microenvironment. While GDF-15 expression can be stimulated by inflammatory mediators, its predominant effects were reported as anti-inflammatory and pro-fibrotic. The role of GDF-15 in the macrophage system has been increasingly investigated in recent years. Macrophages produce high levels of GDF-15 during oxidative and lysosomal stress, which can lead to fibrogenesis and angiogenesis at the tissue level. At the same time, macrophages can respond to GDF-15 by switching their phenotype to a tolerogenic one. Several GDF-15-based therapies are under development, including GDF-15 analogs/mimetics and GDF-15-targeting monoclonal antibodies. In this review, we summarize the major physiological and pathological contexts in which GDF-15 interacts with macrophages. We also discuss the major challenges and future perspectives in the therapeutic translation of GDF-15.
Collapse
Affiliation(s)
- Lina Susana Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Julia G. Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Chen ST, Chang KS, Lin WY, Hsu SY, Sung HC, Lin YH, Feng TH, Hou CP, Juang HH. Activating transcription factor 3 is an antitumor gene synergizing with growth differentiation factor 15 to modulate cell growth in human bladder cancer. Biomed J 2024; 48:100756. [PMID: 38942385 PMCID: PMC12008522 DOI: 10.1016/j.bj.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The functions of activating transcription factor 3 (ATF3) within the human bladder remain unexplored. This study delves into the expressions, functions, and regulatory mechanisms of ATF3 in human bladder cancer. MATERIAL AND METHODS Gene expressions were determined by immunoblot, RT-qPCR, and reporter assays. Assays of Ki67, colony formation, Matrigel invasion, and the xenograft animal study were used to assess the cell proliferation, invasion, and tumorigenesis in vitro and in vivo. Silico analysis from TCGA database examined the correlations between GDF15 and ATF3 expressions, clinicopathologic features, and progression-free survival rates. RESULTS Silico analysis confirmed that ATF3 is an antitumor gene, and the expression positively correlates with GDF15 in bladder cancer tissues. Multivariate analysis revealed that low ATF3/GDF15 but not a single low expression of ATF3 is an independent prognostic factor for progression-free survival of bladder cancer patients. Ectopic overexpression of ATF3 downregulated cell proliferation and invasion in bladder cancer cells in vitro, while ATF3-knockdown reversed these results. Knockdown of ATF3 upregulated EMT markers to enhance cell invasion in vitro and downregulated GDF15, NDRG1, and KAI-1 to elevate tumor growth in vivo. The activation of metformin on ATF3 and GDF15 in bladder cancer cells was blocked by SB431542, a TGFβ receptor inhibitor. ATF3 positively regulated GDF15 expression in bladder cancer cells through a feedback loop. CONCLUSIONS Our results identify that ATF3 is a metformin-upregulated antitumor gene. Results of Silico analysis align with cell-based studies suggesting that low ATF3/GDF15 could be a negative prognostic marker for bladder cancer.
Collapse
Affiliation(s)
- Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Du YN, Zhao JW. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J Hepatocell Carcinoma 2024; 11:1171-1183. [PMID: 38911292 PMCID: PMC11193986 DOI: 10.2147/jhc.s471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Yi-Ning Du
- Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
11
|
Ling T, Zhang J, Ding F, Ma L. Role of growth differentiation factor 15 in cancer cachexia (Review). Oncol Lett 2023; 26:462. [PMID: 37780545 PMCID: PMC10534279 DOI: 10.3892/ol.2023.14049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-β family, is a stress-induced cytokine. Under normal circumstances, the expression of GDF15 is low in most tissues. It is highly expressed during tissue injury, inflammation, oxidative stress and cancer. GDF15 has been established as a biomarker in patients with cancer, and is associated with cancer cachexia (CC) and poor survival. CC is a multifactorial metabolic disorder characterized by severe muscle and adipose tissue atrophy, loss of appetite, anemia and bone loss. Cachexia leads to reductions in quality of life and tolerance to anticancer therapy, and results in a poor prognosis in cancer patients. Dysregulated GDF15 levels have been discovered in patients with CC and animal models, where they have been found to be involved in anorexia and weight loss. Although studies have suggested that GDF15 mediates anorexia and weight loss in CC through its neuroreceptor, glial cell-lineage neurotrophic factor family receptor α-like, the effects of GDF15 on CC and the potential regulatory mechanisms require further elucidation. In the present review, the characteristics of GDF15 and its roles and molecular mechanisms in CC are elaborated. The targeting of GDF15 as a potential therapeutic strategy for CC is also discussed.
Collapse
Affiliation(s)
- Tingting Ling
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Fuwan Ding
- Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Lanlan Ma
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
12
|
Iglesias P, Silvestre RA, Díez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine 2023; 81:419-431. [PMID: 37129758 DOI: 10.1007/s12020-023-03377-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Human growth differentiation factor 15 (GDF-15) is a widely distributed protein that has shown to play multiple roles in both physiological and pathological conditions. In healthy individuals, GDF-15 is mainly expressed in the placenta, followed by the prostate, although low levels of expression have also been detected in different organs. GDF-15 acts through a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) which signals through the rearranged during transfection (RET) tyrosine kinase receptor. The effects of GDF-15 are pleiotropic and include appetite regulation, and actions on metabolism, pregnancy, cell survival, immune response, and inflammation. GDF-15 also plays different roles in the pathophysiology of cardiovascular disease, autoimmunity, cancer-associated anorexia/cachexia, and diabetes. In recent years, several studies have reported a link between GDF-15 and the endocrine system. In this review, we up-date and summarize the relevant investigations of the relationships between GDF-15 and different endocrine conditions. We also assess the potential pathogenic role and potential therapeutic applications of GDF-15 in the field of endocrinology.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain.
| | - Ramona A Silvestre
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Physiology, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan J Díez
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| |
Collapse
|
13
|
Liao J, Gan Y, Peng M, Giri M, Yang S, Gu L, Li A, Xiao R, He C, Li Y, Bai Y, Xu L, Guo S. GDF15 alleviates the progression of benign tracheobronchial stenosis by inhibiting epithelial-mesenchymal transition and inactivating fibroblasts. Exp Cell Res 2022; 421:113410. [PMID: 36336027 DOI: 10.1016/j.yexcr.2022.113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Benign tracheobronchial stenosis (BTS) is a fatal and incurable disease. Epithelial repair and matrix reconstruction play an important role in the wound repair process. If the interstitial context is not restored and stabilized in time, it can lead to pathological fibrosis. Here we attempted to identify cytokines that are involved in promoting wound repair. Growth differentiation factor 15 (GDF15) is a cytokine secreted by tracheal epithelial cells, which is indispensable for the growth of epithelial cells and inhibits the overgrowth of fibroblasts. GDF15 can counteract transforming growth factor-β (TGFβ1) stimulation of epithelial-mesenchymal transition (EMT) in tracheal epithelial cells and inhibit fibroblast activation via the TGFβ1-SMAD2/3 pathway. In a rat model of tracheal stenosis, GDF15 supplementation alleviated the degree of tracheal stenosis. These results suggest that GDF15 prevents fibroblast hyperactivation and promotes epithelial repair in injured trachea. GDF15 may be a potential therapy to improve benign tracheobronchial stenosis.
Collapse
Affiliation(s)
- Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiling Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyu Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mohan Giri
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Sugimoto M, Suzuki R, Nozawa Y, Takagi T, Konno N, Asama H, Sato Y, Irie H, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Suzuki O, Hashimoto Y, Hikichi T, Ohira H. Clinical usefulness and acceleratory effect of macrophage inhibitory cytokine-1 on biliary tract cancer: an experimental biomarker analysis. Cancer Cell Int 2022; 22:250. [PMID: 35948981 PMCID: PMC9367137 DOI: 10.1186/s12935-022-02668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biliary tract cancer (BTC) has a poor prognosis; therefore, useful biomarkers and treatments are needed. Serum levels of macrophage inhibitory cytokine-1 (MIC-1), a member of the TGF-β superfamily, are elevated in patients with pancreaticobiliary cancers. However, the effect of MIC-1 on BTC is unknown. Therefore, we investigated the effect of MIC-1 on BTC and assessed whether MIC-1 is a biomarker of or therapeutic target for BTC. METHODS MIC-1 expression in BTC cells was determined by performing histological immunostaining, tissue microarray (TMA), western blotting, and reverse transcription PCR (RT-PCR). Cell culture experiments were performed to investigate the effect of MIC-1 on BTC cell lines (HuCCT-1 and TFK-1). The relationships between serum MIC-1 levels and either the disease state or the serum level of the apoptosis marker M30 were retrospectively verified in 118 patients with pancreaticobiliary disease (individuals with benign disease served as a control group, n = 62; BTC, n = 56). The most efficient diagnostic marker for BTC was also investigated. RESULTS MIC-1 expression was confirmed in BTC tissue specimens and was higher in BTC cells than in normal bile duct epithelial cells, as determined using TMA, western blotting and RT-PCR. In cell culture experiments, MIC-1 increased BTC cell proliferation and invasion by preventing apoptosis and inhibited the effect of gemcitabine. In serum analyses, serum MIC-1 levels showed a positive correlation with BTC progression and serum M30 levels. The ability to diagnose BTC at an early stage or at all stages was improved using the combination of MIC-1 and M30. The overall survival was significantly longer in BTC patients with serum MIC-1 < the median than in BTC patients with serum MIC-1 ≥ the median. CONCLUSIONS MIC-1 is a useful diagnostic and prognostic biomarker and might be a potential therapeutic target for BTC.
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Rei Suzuki
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshihiro Nozawa
- Department of Pathology, Shirakawa Kousei General Hospital, Shirakawa, Japan
| | - Tadayuki Takagi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Naoki Konno
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Asama
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroki Irie
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Jun Nakamura
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Mika Takasumi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Minami Hashimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Tsunetaka Kato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Ryoichiro Kobashi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Osamu Suzuki
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
15
|
Hou CP, Tsui KH, Chen ST, Chang KS, Sung HC, Hsu SY, Lin YH, Feng TH, Juang HH. The Upregulation of Caffeic Acid Phenethyl Ester on Growth Differentiation Factor 15 Inhibits Transforming Growth Factor β/Smad Signaling in Bladder Carcinoma Cells. Biomedicines 2022; 10:biomedicines10071625. [PMID: 35884930 PMCID: PMC9312961 DOI: 10.3390/biomedicines10071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is known as a TGFβ-like cytokine acting on the TGFβ receptor to modulate target genes. GDF15 is regarded as a tumor suppressor gene in the human bladder and the caffeic acid phenethyl ester (CAPE) induces GDF15 expression to inhibit the tumor growth in vitro and in vivo. However, the interactions among GDF15, CAPE, and TGFβ/Smads signaling in the human bladder carcinoma cells remain unexplored. Results revealed that TGFβ downregulated the expression of GDF15 via the activation of Smad 2/3 and Smad 1/5. Induction of GDF15 on its downstream genes, NDRG1 and maspin, is dependent on the TGFβ/Smad pathways. Moreover, TGFβ blocked the CAPE-inducing expressions of GDF15, maspin, and NDRG1. Pretreatment of TGF receptor kinase inhibitor not only blocked the activation of TGFβ but also attenuated the activation of GDF15 on the expressions of maspin and NDRG1. The CAPE treatment attenuated the activation of TGFβ on cell proliferation and invasion. Our findings indicate that TGFβ downregulated the expressions of GDF15, maspin, and NDRG1 via TGFβ/Smad signaling. Whereas, CAPE acts as an antagonist on TGFβ/Smad signaling to block the effect of TGFβ on the GDF15 expression and cell proliferation and invasion in bladder carcinoma cells.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan;
- TMU Research Center of Urology and Kindey, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kang-Shuo Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
16
|
Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Lett 2022; 536:215664. [PMID: 35351601 PMCID: PMC9088220 DOI: 10.1016/j.canlet.2022.215664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Despite technological advances in diagnostic abilities and improved treatment methods, the burden of cancers remains high, leading to significant morbidity and mortality. One primary reason is that cancer cell secretory factors modulate the tumor microenvironment, supporting tumor growth and circumvents anticancer activities of conventional therapies. Macrophage inhibitory cytokine-1 (MIC-1) is a pleiotropic cytokine elevated in various cancers. MIC-1 regulates various cancer hallmarks, including sustained proliferation, tumor-promoting inflammation, avoiding immune destruction, inducing invasion, metastasis, angiogenesis, and resisting cell death. Despite these facts, the molecular regulation and downstream signaling of MIC-1 in cancer remain elusive, partly because its receptor (GFRAL) was unknown until recently. Binding of MIC-1 to GFRAL recruits the coreceptor tyrosine kinase RET to execute its downstream signaling. So far, studies have shown that GFRAL expression is restricted to the brain stem and is responsible for MIC-1/GFRAL/RET-mediated metabolic disorders. Nevertheless, abundant levels of MIC-1 expression have been reported in all cancer types and have been proposed as a surrogate biomarker. Given the ubiquitous expression of MIC-1 in cancers, it is crucial to understand both upstream regulation and downstream MIC-1/GFRAL/RET signaling in cancer hallmark traits.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Hou CP, Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Yang PS, Chen CL, Feng TH, Juang HH. Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed J 2021; 45:763-775. [PMID: 34662721 DOI: 10.1016/j.bj.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, has beneficial effects on cancer prevention. Growth differentiation factor 15 (GDF15) is an antitumor gene of bladder cancer. Therefore, this study investigated the anti-cancer effect of CAPE on bladder carcinoma cells and related mechanisms. METHODS The expressions of GDF15, N-myc downstream-regulated gene 1 (NDRG1), and maspin, and the activations of ERK, JNK, p38, and AMPKα1/2 in human bladder cells after gene transfection or knockdown were determined by immunoblot, RT-qPCR, and reporter assays. The assays of 5-ethynyl-2'-deoxyuridine (EdU), CyQUANT cell proliferation, and Matrigel invasion, and the xenograft animal study were used to assess the cell proliferation, invasion, and tumorigenesis. RESULTS GDF15 expression in epithelial cells was negatively correlated with neoplasia in vitro. Also, GDF15 exhibits in bladder fibroblasts and smooth muscle cells. CAPE-induced expressions of NDRG1 and maspin decreased cell proliferation and invasion of bladder carcinoma cells in a GDF15-dependent manner in vitro. The xenograft animal study suggesting CAPE attenuated tumor growth in vivo. CAPE increased phosphorylation of ERK, JNK, p38, and AMPKα1/2 to modulate the GDF15 expressions. Pretreatments with ERK, JNK, or p38 inhibitors partially inhibited the CAPE effects on the inductions of GDF15, NDRG1, or maspin. Knockdown of AMPKα1/2 attenuated the CAPE-induced GDF15 expression and cell proliferation in bladder carcinoma cells. CONCLUSIONS Our findings indicate that CAPE is a promising agent for anti-tumor growth in human bladder carcinoma cells via the upregulation of GDF15.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medicine; TMU Research Center of Urology and Kindey, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 17:592-607. [PMID: 34381196 DOI: 10.1038/s41574-021-00529-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a member of the TGFβ superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Logan K Townsend
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Djordje Djordjevic
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
20
|
Jiang L, Zuo Z, Lin J, Yang C. Orthodenticle homeobox OTX1 is a potential prognostic biomarker for bladder cancer. Bioengineered 2021; 12:6559-6571. [PMID: 34559577 PMCID: PMC8806575 DOI: 10.1080/21655979.2021.1974646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bladder cancer (BC) is one of the most aggressive tumors worldwide. OTX1 (orthodenticle homeobox 1) is an important transcription factor involved in various diseases, such as cancers. The aim of this study was to further investigate the role of OTX1 in BC. In this study, differentially expressed genes (DEGs) were screened from tumor tissues and para-cancerous tissues by bioinformatics. The expression of protein and RNA was separately detected by western blotting and immunohistochemistry (IHC), and quantitative polymerase chain reaction (qPCR); cell viability and cell growth were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clone formation assays, respectively; cell motility was measured by transwell and wound healing assays; cell cycle was measured by flow cytometry. In this study, 9 DEGs were screened out, and OTX1 was employed as a candidate gene for subsequent study. Results found that OTX1 was highly expressed in BC cells and BC tissues, which was significantly associated with poor prognosis of patients. In addition, OTX1 silencing significantly reduced cell viability, and inhibited cell growth and motility, while OTX1 overexpression got opposite results. Moreover, OTX1 co-expressed genes were enriched in cell cycle-related pathways, suggesting that the role of OTX1 in BC may be related to cell cycle, which was confirmed by flow cytometry analysis. Furthermore, in vivo experiments showed that OTX1 silencing significantly inhibited tumor growth in tumor-bearing mice. Taken together, our findings suggested that OTX1 may play a promotional role in BC progression.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Zhongqiang Zuo
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Jie Lin
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Chuanfeng Yang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| |
Collapse
|
21
|
Chai M, Li X, Zhang Y, Tang Y, Shu P, Lin J, Shi K, Wang L, Huang X. A Nomogram Integrating Ferroptosis- and Immune-Related Biomarkers for Prediction of Overall Survival in Lung Adenocarcinoma. Front Genet 2021; 12:706814. [PMID: 34539740 PMCID: PMC8441018 DOI: 10.3389/fgene.2021.706814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis plays a dual role in cancer, which is known to be affected to antitumor immune responses. However, the association between ferroptosis and antitumor immune responses is uncertain in lung adenocarcinoma (LUAD). In this work, 38 ferroptosis-related genes (FRGs) and 429 immune-related genes (IRGs) were identified as being differentially expressed between tumor and normal samples. Two risk score formulas consisting of seven FRGs and four IRGs, respectively, were developed by Lasso-penalized Cox regression and verified in the GSE13213 dataset. The CIBERSORT algorithm was used to estimate the relative abundance of immune cells in tumors. The correlation between FRGs and immune cells was evaluated using the TIMER database. The results indicated that the development of ferroptosis was synergistic with that of anti-tumor immunity in LUAD. The concordance index and calibration curves showed that the performance of a nomogram that combines clinical staging and risk scores is superior to that of models using a single prognostic factor. In conclusion, ferroptosis might be synergistic with anti-tumor immunity in LUAD. The combined nomogram could reliably predict the probability of overall survival of LUAD patients. These findings may be useful for future investigation of prognostic value and therapeutic potential related to ferroptosis and tumor immunity in LUAD.
Collapse
Affiliation(s)
- Mengyu Chai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiuchun Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yemeng Tang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Pingping Shu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing Lin
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
22
|
Cheng H, Tang S, Lian X, Meng H, Gu X, Jiang J, Li X. The Differential Antitumor Activity of 5-Aza-2'-deoxycytidine in Prostate Cancer DU145, 22RV1, and LNCaP Cells. J Cancer 2021; 12:5593-5604. [PMID: 34405020 PMCID: PMC8364635 DOI: 10.7150/jca.56709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is a DNA methyltransferase-mediated epigenetic modification affecting gene expression. This process is involved in the initiation and development of malignant disease. 5-Aza-2'-deoxycytidine (5-Aza), a classic DNA methyltransferase inhibitor, possesses antitumor proliferation activity. However, whether 5-Aza induces cytotoxicity in solid tumors warrants further investigated. In this study, human prostate cancer (CaP) cells were treated with 5-Aza and subjected to cell viability and cytotoxicity analysis. Reverse transcription-polymerase chain reaction and methylation-specific polymerase chain reaction assay were utilized to test the gene expression and methylation status of the p53 and p21 gene promoters. The results showed that 5-Aza differentially inhibited spontaneous proliferation, arrested the cell cycle at S phase in DU145, at G1 phase in 22RV1 and LNCaP cells, and G2 phase in normal RWPE-1 cells, as well as induced the expression of phospho-H2A.X and tumor suppressive mammary serine protease inhibitor (maspin) in all three types of CaP cells. 5-Aza also increased p53 and p21 transcription through promoter demethylation, and decreased the expression of oncogene c-Myc in 22RV1 and LNCaP cells. Western blotting analysis showed that the poly (ADP-ribose) polymerase cleavage was detected in DU145 and 22RV1 cells. Moreover, there were no significant changes in p53, p21 and c-Myc expression in DU145 cells following treatment with 5-Aza. Thus, in responsible for its apoptotic induction and DNA damage, the mechanism of the antitumor activities of 5-Aza may involve in an increase of tumor suppressive maspin, upregulation of wild type p53-mediated p21 expression and a decrease of oncogene c-Myc level in 22RV1 and LNCaP cells, and enhancing the tumor suppressive maspin expression in DU145 cells. These results enriched our understanding of the multifaceted antitumor activity of 5-Aza, and provided the expression basis of biomarkers for its possible clinical application in prostate cancer.
Collapse
Affiliation(s)
- Huiying Cheng
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Sijie Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xueqi Lian
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit 48201, MI, USA
| | - Xiang Gu
- Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xiaohua Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd., 2800 Chuangxin Blvd., Building H4, Hefei 230088, China.,National Center for Gene Testing Technology Application & Demonstration(Hefei), 2800 Chuangxin Blvd., Building H4, Hefei 230088, China
| |
Collapse
|
23
|
Zhou B, Huang WH, Chen S, Chen W, Peng P, Zhou Y, Gu W. GDF15 serves as a coactivator to enhance KISS-1 gene transcription through interacting with Sp1. Carcinogenesis 2021; 42:294-302. [PMID: 32966555 DOI: 10.1093/carcin/bgaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
GDF15 has been recently recognized as a tumor-suppressive gene. However, the underlying mechanism by which GDF15 affects breast carcinogenesis is not well understood. Here, we showed that the inhibitory effect of GDF15 on cell proliferation was dependent on the nuclear localization of the protein. Dynamic translocation of GDF15 into the nucleus altered expression of a number of genes, including KISS-1, and resulted in inhibition of cell growth and invasive behavior. Using KISS-1 promoter-driven luciferase reporter and chromatin immunoprecipitation assays, we demonstrated that, in highly malignant breast cancer cells, GDF15 directly interacts with specific protein-1 (Sp1) at the Sp1-binding sites of the KISS-1 promoter, leading to upregulated KISS-1 expression. Our study indicates that nuclear GDF15 could serve as a transcriptional coactivator to mediate the expression of particular genes to reduce cell proliferation.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wen-He Huang
- Xiang'an Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Shaoying Chen
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weibin Chen
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Pei Peng
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yanchun Zhou
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei Gu
- Department of Pathophysiology and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, China
- Guangdong Provincial Lab for Breast Cancer Diagnosis & Treatment, Shantou, China
| |
Collapse
|
24
|
GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch 2020; 472:1535-1546. [PMID: 32936319 DOI: 10.1007/s00424-020-02459-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a peptide hormone, and a divergent member of the transforming growth factor beta (TGFβ) superfamily. In normal physiology, GDF15 is expressed in multiple tissues at a low concentration. GDF15 is overexpressed during and following many pathological conditions such as tissue injury and inflammation in order to play a protective role. However, GDF15 appears to promote tumour growth in the later stages of malignant cancer. The recently identified endogenous receptor for GDF15, GDNF family receptor a-like (GFRAL), has allowed elucidation of a physiological pathway in which GDF15 regulates energy homeostasis and body weight, primarily via appetite suppression. The anorectic effect of GDF15 provides some therapeutic potential in management of cancer-related anorexia/cachexia and obesity. Despite the identification of GFRAL as a GDF15 receptor, there appears to be other signalling mechanisms utilized by GDF15 that further increase the possibility of development of therapeutic treatments, should these pathways be fully characterized. In this review, GDF15 function in both physiological and pathological conditions in various tissues will be discussed.
Collapse
|
25
|
Cheng S, Jiang Z, Xiao J, Guo H, Wang Z, Wang Y. The prognostic value of six survival-related genes in bladder cancer. Cell Death Discov 2020; 6:58. [PMID: 32695477 PMCID: PMC7359373 DOI: 10.1038/s41420-020-00295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to identify genes that are differentially expressed in paracancerous tissue and to determine the potential predictive value of selected gene panel. Gene transcriptome data of bladder tissue was downloaded from UCSC Xena browser and NCBI GEO repository, including GTEx (the Genotype-Tissue Expression project) data, TCGA (The Cancer Genome Atlas) data, and GEO (Gene Expression Omnibus) data. Differentially Expressed Genes (DEGs) analysis was performed to identify tumor-DEGs candidate genes, using the intersection of tumor-paracancerous DEGs genes and paracancerous-normal DEGs genes. The survival-related genes were screened by Kaplan-Meier (KM) survival analysis and univariable Cox regression with the cutoff criteria of KM < 0.05 and cox p-value < 0.05. The risk model was developed using Lasso regression. The clinical data were analyzed by univariate and multivariate Cox regression analysis. Gene Ontology (GO) and KEGG enrichment analysis were performed in the DEGs genes between the high-risk and low-risk subgroups. We identified six survival-related genes, EMP1, TPM1, NRP2, FGFR1, CAVIN1, and LATS2, found in the DEG analyses of both, tumor-paracancerous and paracancerous-normal differentially expressed data sets. Then, the patients were classified into two clusters, which can be distinguished by specific clinical characteristics. A three-gene risk prediction model (EMP1, FGFR1, and CAVIN1) was constructed in patients within cluster 1. The model was applied to categorize cluster 1 patients into high-risk and low-risk subgroups. The prognostic risk score was considered as an independent prognostic factor. The six identified survival-related genes can be used in molecular characterization of a specific subtype of bladder cancer. This subtype had distinct clinical features of T (topography), N (lymph node), stage, grade, and survival status, compared to the other subtype of bladder cancer. Among the six identified survival-related genes, three-genes, EMP1, FGFR1, and CAVIN1, were identified as potential independent prognostic markers for the specific bladder cancer subtype with clinical features described.
Collapse
Affiliation(s)
- Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
26
|
Pogribna M, Koonce NA, Mathew A, Word B, Patri AK, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology 2020; 14:534-553. [PMID: 32031460 DOI: 10.1080/17435390.2020.1723730] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Nanoscale titanium dioxide (TiO2) is manufactured in wide scale, with a range of applications in consumer products. Significant toxicity of TiO2 nanoparticles has, however, been recognized, suggesting considerable risk to human health. To evaluate fully their toxicity, assessment of the epigenetic action of these nanoparticles is critical. However, only few studies are available examining capability of nanoparticles to alter epigenetic integrity. In the present study, the effect of TiO2 nanoparticles exposure on DNA methylation, a major epigenetic mechanism, was investigated in in vitro cellular model systems. A panel of cells relevant to portals of human exposure (Caco-2 (colorectal), HepG2 (liver), NL20 (lung), and A-431 (skin)) was exposed to TiO2 nanoparticles to assess effects on global methylation, gene-specific methylation, and expression levels of DNA methyltransferases, MBD2, and UHRF1. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Degree of promoter methylation across a defined panel of genes was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNMT1, DNMT3a, DNMT3b, MBD2, and URHF1 was quantified by qRT-PCR. Decrease in global DNA methylation in cell lines Caco-2, HepG2, and A-431 exposed to TiO2 nanoparticles was shown. Across four cell lines, eight genes (CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, and BNIP3) were identified in which promotors were methylated after exposure. Altered expression of these genes is associated with disease etiology. The results also revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a, DNMT3b, MBD2, and UHRF1) in TiO2 exposed cells, which was cell type dependent. Findings from this study clearly demonstrate the impact of TiO2 nanoparticles exposure on DNA methylation in multiple cell types, supporting potential involvement of this epigenetic mechanism in the toxicity of TiO2 nanoparticles. Hence for complete assessment of potential risk from nanoparticle exposure, epigenetic studies are critical.
Collapse
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Nathan A Koonce
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Ammu Mathew
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Anil K Patri
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
27
|
Lin YH, Tsui KH, Chang KS, Hou CP, Feng TH, Juang HH. Maspin is a PTEN-Upregulated and p53-Upregulated Tumor Suppressor Gene and Acts as an HDAC1 Inhibitor in Human Bladder Cancer. Cancers (Basel) 2019; 12:cancers12010010. [PMID: 31861435 PMCID: PMC7016534 DOI: 10.3390/cancers12010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Maspin is a member of the clade B serine protease inhibitor superfamily and exhibits diverse regulatory effects in various types of solid tumors. We compared the expressions of maspin and determined its potential biological functions and regulatory mechanisms in bladder carcinoma cells in vitro and in vivo. The results of RT-qPCR indicated that maspin expressed significantly lower levels in the bladder cancer tissues than in the paired normal tissues. The immunohistochemical assays of human bladder tissue arrays revealed similar results. Maspin-knockdown enhanced cell invasion whereas the overexpression of maspin resulted in the opposite process taking place. Knockdown of maspin also enhanced tumorigenesis in vivo and downregulated protein levels of acetyl-histone H3. Moreover, in bladder carcinoma cells, maspin modulated HDAC1 target genes, including cyclin D1, p21, MMP9, and vimentin. Treatment with MK2206, which is an Akt inhibitor, upregulated maspin expression, whereas PTEN-knockdown or PTEN activity inhibitor (VO-OHpic) treatments demonstrated reverse results. The ectopic overexpression of p53 or camptothecin treatment induced maspin expression. Our study indicated that maspin is a PTEN-upregulated and p53-upregulated gene that blocks cell growth in vitro and in vivo, and may act as an HDAC1 inhibitor in bladder carcinoma cells. We consider that maspin is a potential tumor suppressor gene in bladder cancer.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
28
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
29
|
Antioxidation and Antiapoptosis Characteristics of Heme Oxygenase-1 Enhance Tumorigenesis of Human Prostate Carcinoma Cells. Transl Oncol 2019; 13:102-112. [PMID: 31810001 PMCID: PMC6909070 DOI: 10.1016/j.tranon.2019.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo. Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.
Collapse
|
30
|
Sottnik JL, Mallaredy V, Chauca-Diaz A, Ritterson Lew C, Owens C, Dancik GM, Pagliarani S, Lucchiari S, Moggio M, Ripolone M, Comi GP, Frierson HF, Clouthier D, Theodorescu D. Elucidating the role of Agl in bladder carcinogenesis by generation and characterization of genetically engineered mice. Carcinogenesis 2019; 40:194-201. [PMID: 30403777 DOI: 10.1093/carcin/bgy139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Vandana Mallaredy
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Ritterson Lew
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT, USA
| | - Serena Pagliarani
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, University of Milan, and Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Dan Theodorescu
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
31
|
Transgelin, a p53 and PTEN-Upregulated Gene, Inhibits the Cell Proliferation and Invasion of Human Bladder Carcinoma Cells in Vitro and in Vivo. Int J Mol Sci 2019; 20:ijms20194946. [PMID: 31591355 PMCID: PMC6801752 DOI: 10.3390/ijms20194946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.
Collapse
|
32
|
Richter B, Uray T, Krychtiuk KA, Schriefl C, Lenz M, Nürnberger A, Kastl SP, Wojta J, Heinz G, Schwameis M, Speidl WS. Growth differentiation factor-15 predicts poor survival after cardiac arrest. Resuscitation 2019; 143:22-28. [PMID: 31394153 DOI: 10.1016/j.resuscitation.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Early prognostication in post-cardiac arrest (CA) patients remains challenging and biomarkers have evolved as helpful tools in risk assessment. The stress-response cytokine growth differentiation factor-15 (GDF-15) is dramatically up-regulated during various kinds of tissue injury and predicts outcome in many pathological conditions. We aimed to assess the predictive value of circulating GDF-15 in post-CA patients. METHODS This prospective observational study included 128 consecutive patients (median age 60.3 years, 75.8% male) with return of spontaneous circulation after in- or out-of-hospital CA who were treated at a tertiary university hospital. GDF-15 serum levels were determined at admission. RESULTS A total of 52 patients (40.6%) died during the 6-month follow-up. Median GDF-15 levels were significantly lower in survivors (1601 ng/L (interquartile range: 1114-2983 ng/L) than in non-survivors (3172 ng/L (1927-8340 ng/L); p < 0.001). GDF-15 levels were also significantly lower in patients with favourable neurological 6-month outcome (cerebral performance category (CPC) 1-2) than in those with poor neurological outcome (CPC 3-5; p < 0.001). GDF-15 significantly predicted 6-month mortality in univariate Cox regression analysis (hazard ratio (HR) per 1-standard deviation increase 1.76 [95% confidence interval (CI) 1.35-2.31; p < 0.001] and remained significant after multivariable adjustment (HR 1.57 [95% CI 1.19-2.07; p = 0.001]). Subgroup analysis revealed that the association between GDF-15 and 6-month outcome was present both in patients with in- and out-of-hospital CA. CONCLUSIONS GDF-15 predicts poor survival and neurological outcome in post-CA patients. GDF-15 may reflect the extent of hypoxic injury to the brain and other organs and might help to improve early risk stratification after CA.
Collapse
Affiliation(s)
- Bernhard Richter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Uray
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christoph Schriefl
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Stefan P Kastl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Gottfried Heinz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Michael Schwameis
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria.
| | - Walter S Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. Curr Pharm Des 2019; 25:654-662. [PMID: 30947652 DOI: 10.2174/1381612825666190402101143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Various pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.
Collapse
Affiliation(s)
- Lei Fang
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Fengzhou Li
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Chundong Gu
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
34
|
Tsui KH, Hou CP, Chang KS, Lin YH, Feng TH, Chen CC, Shin YS, Juang HH. Metallothionein 3 Is a Hypoxia-Upregulated Oncogene Enhancing Cell Invasion and Tumorigenesis in Human Bladder Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20040980. [PMID: 30813460 PMCID: PMC6413184 DOI: 10.3390/ijms20040980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins have been viewed as modulators in a number of biological regulations regarding cancerous development; however, the function of metallothionein 3 (MT3) in bladder cancer is unexplored. We determined the regulatory mechanisms and potential function of MT3 in bladder carcinoma cells. Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-qPCR) assays revealed that TSGH-8301 cells expressed more MT3 levels than RT-4, HT1376, and T24 cells. Immunoblot and RT-qPCR assays showed that arsenic (AS₂O₃) treatments enhanced the gene expression of MT3. Hypoxia induced HIF-1α, HIF-2α, and MT3 expression; furthermore, HIF-2α-knockdown attenuated hypoxic activation on MT3 expression. Ectopic overexpression of MT3 increased cell proliferation, invasion, and tumorigenesis significantly in T24 and HT1376 cells in vitro and in vivo; however, MT3-knockdown in TSGH-8301 cells had the reverse effect. Moreover, knockdown of MT3 enhanced arsenic-induced apoptosis determined by the Annexin V-FITC apoptosis assay. MT3-overexpression downregulated the gene expressions of N-myc downstream regulated gene 1 (NDRG1), N-myc downstream regulated gene 2 (NDRG2), and the mammary serine protease inhibitor (MASPIN) in HT1376 and T24 cells, whereas MT3-knockdown in TSGH-8301 cells had the opposite effect. The experiments indicated that MT3 is an arsenic- and hypoxia-upregulated oncogene that promotes cell growth and invasion of bladder carcinoma cells via downregulation of NDRG1, NDRG2, and MASPIN expressions.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Chiu-Chun Chen
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Yi-Syuan Shin
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
35
|
Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol Ther 2019; 198:46-58. [PMID: 30790643 DOI: 10.1016/j.pharmthera.2019.02.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Growth Differentiation Factor 15 (GDF15), also known as NSAID activated gene-1 (NAG-1), is associated with a large number of biological processes and diseases, including cancer and obesity. GDF15 is synthesized as pro-GDF15, is dimerized, and is cleaved and secreted into the circulation as a mature dimer GDF15. Both the intracellular GDF15 and the circulating mature GDF15 are implicated in biological processes, such as energy homeostasis and body weight regulation. Although there have been many studies on GDF15, GFRAL, a member of the glial-derived neurotropic factor receptor α family, has only been recently identified as a receptor for mature GDF15. In this review, we focused on cancer and energy homeostasis along with obesity and body weight, and the effect of the identification of the GDF15 receptor in these investigations. In addition, the therapeutic potential of GDF15 as a pharmacological agent in obesity and other metabolic diseases was discussed.
Collapse
Affiliation(s)
- Seung Joon Baek
- Bldg 81 Rm 413, Laboratory of Signal Transduction, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea..
| | - Thomas Eling
- Scientist Emeritus, NIEHS/NIH, 111 TW Alexander Dr. Bldg. 101 F-095, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
36
|
Monteiro-Reis S, Lobo J, Henrique R, Jerónimo C. Epigenetic Mechanisms Influencing Epithelial to Mesenchymal Transition in Bladder Cancer. Int J Mol Sci 2019; 20:E297. [PMID: 30642115 PMCID: PMC6358899 DOI: 10.3390/ijms20020297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022] Open
Abstract
Bladder cancer is one of the most incident neoplasms worldwide, and its treatment remains a significant challenge, since the mechanisms underlying disease progression are still poorly understood. The epithelial to mesenchymal transition (EMT) has been proven to play an important role in the tumorigenic process, particularly in cancer cell invasiveness and metastatic potential. Several studies have reported the importance of epigenetic mechanisms and enzymes, which orchestrate them in several features of cancer cells and, specifically, in EMT. In this paper, we discuss the epigenetic enzymes, protein-coding and non-coding genes, and mechanisms altered in the EMT process occurring in bladder cancer cells, as well as its implications, which allows for improved understanding of bladder cancer biology and for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Sara Monteiro-Reis
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| |
Collapse
|
37
|
NDRG3 overexpression is associated with a poor prognosis in patients with hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180907. [PMID: 30413609 PMCID: PMC6435526 DOI: 10.1042/bsr20180907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
N-myc downstream-regulated gene 3 (NDRG3), an important member of the NDRG family, is involved in cell proliferation, differentiation, and other biological processes. The present study analyzed NDRG3 expression in hepatocellular carcinoma (HCC) and explored the relationship between expression of NDRG3 in HCC patients and their clinicopathological characteristics. We performed quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis and immunohistochemistry (IHC) analyses on HCC tissues to elucidate NDRG3 expression characteristics in HCC patients. Kaplan-Meier survival curve and Cox regression analyses were used to evaluate the prognoses of 102 patients with HCC. The results revealed that compared with non-tumor tissues, HCC tissues showed significantly higher NDRG3 expression. In addition, our analyses showed that NDRG3 expression was statistically associated with tumor size (P=0.048) and pathological grade (P=0.001). Survival analysis and Kaplan-Meier curves revealed that NDRG3 expression is an independent prognostic indicator for disease-free survival (P=0.002) and overall survival (P=0.005) in HCC patients. The data indicate that NDRG3 expression may be considered as a oncogenic biomarker and a novel predictor for HCC prognosis.
Collapse
|
38
|
Luo X, Hou N, Chen X, Xu Z, Xu J, Wang L, Yang S, Liu S, Xu L, Chen Y, Xiong L, Wang J, Fan W, Xu J. High expression of NDRG3 associates with unfavorable overall survival in non-small cell lung cancer. Cancer Biomark 2018; 21:461-469. [PMID: 29171988 DOI: 10.3233/cbm-170711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE N-myc downstream-regulated gene 3 (NDRG3) is one of the important members of the NDRG family which crucially take part in cell proliferation, differentiation and other biological processes. METHODS In this present study, western-blotting analysis was performed to evaluate NDRG3 expression in NSCLC cell lines. One-step quantitative reverse transcription-polymerase chain reaction (qPCR) with 16 fresh-frozen NSCLC samples and immunohistochemistry (IHC) analysis in 100 NSCLC cases were conducted to explore the relationship between NDRG3 expression and the clinicopathological characteristics of NSCLC. RESULTS NDRG3 expression levels were statistically higher in NSCLC cell lines and tissue samples, compared with that of in non-cancerous cell line and tissue samples (p< 0.05). The IHC data demonstrated that the NDRG3 expression was significantly correlated with pathological grade (p= 0.038), N (p= 0.020) and TNM stage (p= 0.002). Survival analysis and Kaplan-Meier curve indicated that NDRG3 expression (p= 0.002) and T (p= 0.047) were independently associated with the unfavorable overall survival of patients with NSCLC. CONCLUSIONS The data implied that NDRG3 expression may be identified as a new predictor in NSCLC prognosis.
Collapse
Affiliation(s)
- Xianyuan Luo
- Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China.,Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Nan Hou
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China.,Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Internal Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Xiaohua Chen
- Department of Internal Medicine, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu, China
| | - Zhiping Xu
- Department of Internal Medicine, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu, China
| | - Juqing Xu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Lin Wang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Shu Yang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Suyao Liu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Xiong
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Weifei Fan
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Jiaren Xu
- Geriatric Lung Cancer Research Laboratory, Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China.,Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Kim YI, Shin HW, Chun YS, Park JW. CST3 and GDF15 ameliorate renal fibrosis by inhibiting fibroblast growth and activation. Biochem Biophys Res Commun 2018; 500:288-295. [DOI: 10.1016/j.bbrc.2018.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
|
40
|
Kim YI, Shin HW, Chun YS, Cho CH, Koh J, Chung DH, Park JW. Epithelial cell-derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis. Cell Death Dis 2018; 9:506. [PMID: 29724997 PMCID: PMC5938700 DOI: 10.1038/s41419-018-0530-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
While wound healing is completed, the epithelium functions to normalize the interstitial context by eliminating fibroblasts excited during matrix reconstruction. If not, tissues undergo pathologic fibrosis. Pulmonary fibrosis is a fatal and hardly curable disorder. We here tried to identify epithelium-derived cytokines capable of ameliorating pulmonary fibrosis. Human lung fibroblasts were inactivated in epithelial cell-conditioned media. Cystatin C (CST3) and growth differentiation factor 15 (GDF15) were found to be enriched in the conditioned media and to inhibit the growth and activation of lung fibroblasts by inactivating the TGF–Smad pathway. In mouse and human lungs with interstitial fibrosis, CST3 and GDF15 expressions were markedly reduced, and the restoration of these cytokines alleviated the fibrotic changes in mouse lungs. These results suggest that CST3 and GDF15 are bona fide regulators to prevent excessive proliferation and activation of fibroblasts in injured lungs. These cytokines could be potential therapeutics for ameliorating interstitial lung fibrosis.
Collapse
Affiliation(s)
- Young-Im Kim
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea. .,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Tsui KH, Chiang KC, Lin YH, Chang KS, Feng TH, Juang HH. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells. Cancer Med 2017; 7:184-195. [PMID: 29239139 PMCID: PMC5773943 DOI: 10.1002/cam4.1263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Although widely deemed as a tumor suppressor gene, the role of B-cell translocation gene 2 (BTG2) in bladder cancer is still inconclusive. We investigated the role and regulatory mechanism of BTG2 in bladder cancer. BTG2 expression in human bladder tissues was determined by RT-qPCR and immunoblotting assays. Expressions of BTG2 and PTEN in bladder carcinoma cells were determined by immunoblotting, RT-qPCR, or reporter assays. The 3 H-thymidine incorporation assay, flow cytometry, and the xenograft animal model were used to determine the cell growth. BTG2 expression was lower in human bladder cancer tissues than normal bladder tissues. Highly differentiated bladder cancer cells, RT4, expressed higher BTG2 than the less-differentiated bladder cancer cells, HT1376 and T24. Overexpression of BTG2 in T24 cells inhibited cell growth in vitro and in vivo. Camptothecin and doxorubicin treatments in RT-4 cells or transient overexpression of p53 into p53-mutant HT1376 cells induced p53 and BTG2 expression. Further reporter assays with site-mutation of p53 response element from GGGAAAGTCC to GGAGTCC within BTG2 promoter area showed that p53-induced BTG2 gene expression was dependent on the p53 response element. Ectopic PTEN overexpression in T24 cells blocked the Akt signal pathway which attenuated cell growth via upregualtion of BTG2 gene expression, while reverse effect was found in PTEN-knockdown RT-4 cells. PTEN activity inhibitor (VO-OHpic) treatment decreased BTG2 expression in RT-4 and PTEN-overexpressed T24 cells. Our results suggested that BTG2 functioned as a bladder cancer tumor suppressor gene, and was induced by p53 and PTEN. Modulation of BTG2 expression seems a promising way to treat human bladder cancer.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebrafish center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
42
|
Jiang L, Zhang W, Li W, Ling C, Jiang M. Anti-inflammatory drug, leflunomide and its metabolite teriflunomide inhibit NSCLC proliferation in vivo and in vitro. Toxicol Lett 2017; 282:154-165. [PMID: 29050931 DOI: 10.1016/j.toxlet.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023]
Abstract
Lung cancer causes more than 150000 deaths annually in the United States alone, of which non-small cell lung cancer (NSCLC) accounts for 80%. Our studies demonstrated that NSCLC cells were sensitive to leflunomide and its metabolite teriflunomide, a FDA approved drug, which was a well-known immunomodulatory drug for relapsing multiple sclerosis (MS). In the present studies, we found first time that they displayed anti-tumor activity of NSCLC in vitro and in vivo. Potent anti-cancer effects in NSCLC in vitro, including inhibiting NSCLC cells viability, arresting cell cycle at the G0/G1 phase, inducing cell apoptosis, delaying and suppressing NSCLC cells colony-forming ability and cell motility, could be achieved with this agent. Meanwhile, we provided evidence that these effects were applicable in vivo by using H460 cells xenograft model in nude mice. In addition, to comprehensively clarify the mechanisms of teriflunomide in NSCLC, we explored a genome-wide transcriptomic analysis, and found that teriflunomide was involved in multiple signaling pathways and cellular processes, such as cell cycle, apoptosis, MAPK and p53 signaling pathway. Taken together, the results of our studies provided insights into a novel anti-cancer effect of leflunomide and teriflunomide on NSCLC and might open new therapeutic avenues for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liyang Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, 215131, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chunhua Ling
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
43
|
Teng MS, Hsu LA, Juan SH, Lin WC, Lee MC, Su CW, Wu S, Ko YL. A GDF15 3' UTR variant, rs1054564, results in allele-specific translational repression of GDF15 by hsa-miR-1233-3p. PLoS One 2017; 12:e0183187. [PMID: 28806401 PMCID: PMC5555568 DOI: 10.1371/journal.pone.0183187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a strong predictor of cardiovascular events and mortality in individuals with or without cardiovascular diseases. Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) target sites, also known as miRSNPs, are known to enhance or weaken miRNA-mRNA interactions and have been linked to diseases such as cardiovascular disease and cancer. In this study, we aimed to elucidate the functional significance of the miRSNP rs1054564 in regulating GDF15 levels. Two rs1054564-containing binding sites for hsa-miR-873-5p and hsa-miR-1233-3p were identified in the 3′ untranslated region (UTR) of the GDF15 transcript using bioinformatics tools. Their activities were further characterized by in vitro reporter assays. Bioinformatics prediction suggested that miRNA binding sites harboring the rs1054564-G allele had lower free energies than those with the C allele and therefore were better targets with higher affinities for both hsa-miR-873-5p and hsa-miR-1233-3p. Reporter assays showed that luciferase activity was significantly decreased by rs1054564-G-containing 3′ UTRs for both miRNAs (P < 0.05) and was restored by miRNA inhibitors. Comparing the fold suppression of the two miRNAs, only that of hsa-miR-1233-3p showed significant changes between the rs1054564-G- and C-containing 3′ UTRs (P = 0.034). In addition, western blots showed that transfection of both miRNA mimics significantly decreased endogenous GDF15 expression in a melanoma cell line (P < 0.05). Taken together, our findings demonstrate that GDF15 is a target of hsa-miR-873-5p and hsa-miR-1233-3p and that the rs1054564-C allele partially abolishes hsa-miR-1233-3p-mediated translational suppression of GDF15. These results suggest that rs1054564 confers allele-specific translational repression of GDF15 via hsa-miR-1233-3p. Our work thus provides biological insight into the previously reported clinical association between rs1054564 and plasma GDF15 levels.
Collapse
Affiliation(s)
- Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Lin
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Wen Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
- * E-mail: (SW); (YLK)
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine and Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail: (SW); (YLK)
| |
Collapse
|
44
|
NSAID-activated gene 1 and its implications for mucosal integrity and intervention beyond NSAIDs. Pharmacol Res 2017; 121:122-128. [PMID: 28455268 DOI: 10.1016/j.phrs.2017.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
|
45
|
Chung LC, Chiang KC, Feng TH, Chang KS, Chuang ST, Chen YJ, Tsui KH, Lee JC, Juang HH. Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo. Mol Nutr Food Res 2017; 61. [PMID: 28181403 DOI: 10.1002/mnfr.201600842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, is considered as a new anti-cancer agent. Oral squamous cell carcinoma (OSCC) is the most common oral cancer with unsatisfying survival. N-myc downstream regulated family genes (NDRGs) involve in numerous physiological processes. We investigated the anti-cancer effect of CAPE on OSCC and related mechanisms. METHODS AND RESULTS Cell proliferation assay, western blot, gene transfection and knockdown, and reporter assay were applied. We showed that CAPE attenuated OSCC cell proliferation and invasion in vitro, and safely and effectively inhibited OSCC cell growth in a xenograft animal model. CAPE treatment induced NDRG1, but not NDRG2 and NDRG3, expression in OSCC cells as determined by western blot, RT-qPCR, and reporter assay. The 5'-deletion assay demonstrated that CAPE increased NDRG1 promoter activity depending on the region of -128 to +46 of the 5'-flanking of NDRG1 gene. NDRG1 gene knockdown attenuated CAPE anti-growth effect on OSCC cells. CAPE activated mitogen-activated protein kinase (MAPK) signaling pathway. The extracellular signal regulated kinase (ERK) inhibitor (PD0325901) and ERK1 knockdown blocked CAPE-induced NDRG1 expression in OSCC cells. CONCLUSION CAPE activated MAPK signaling pathway and increased NDRG1 expression through phosphorylation of ERK1/2 to repress OSCC cells growth.
Collapse
Affiliation(s)
- Li-Chuan Chung
- Department of General Education Center, Mackay Medicine, Nursing and Management College, New Taipei City, Taiwan
| | - Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jehn-Chuan Lee
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
46
|
Li YL, Chang JT, Lee LY, Fan KH, Lu YC, Li YC, Chiang CH, You GR, Chen HY, Cheng AJ. GDF15 contributes to radioresistance and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species via a SMAD-associated signaling pathway. Oncotarget 2017; 8:1508-1528. [PMID: 27903972 PMCID: PMC5352073 DOI: 10.18632/oncotarget.13649] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy is an integral part for the treatment of head and neck cancer (HNC), while radioresistance is a major cause leads to treatment failure. GDF15, a member of the TGF-β superfamily, is hypothesized to participate in various types of homeostasis. However, the potential role of this molecule in regulation of radiosensitivity remains unclear. In this study, we demonstrated that GDF15 contributed to radioresistance of HNC, as determined by both gain- and lost-of-functional experiments. These results were achieved by the induction of mitochondrial membrane potential and suppression of intracellular reactive oxygen species (ROS). We further showed that GDF15 facilitated the conversion of cancer stemness, as assessed by the promotion of CD44+ and ALDH1+ cell populations and spheroid cell formation. At molecular level, GDF15 conferred to these cellular functions was through phosphorylated SMAD1 proteins to elite downstream signaling molecules. These cellular results were further confirmed in a tumor xenograft mouse study. Taken together, our results demonstrated that GDF15 contributed to radioresistance and cancer stemness by regulating cellular ROS levels via a SMAD-associated signaling pathway. GDF15 may serve as a prediction marker of radioresistance and a therapeutic target for the development of radio-sensitizing agents for the treatment of refractory HNC.
Collapse
Affiliation(s)
- Yan-Liang Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chen Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chang-Hsu Chiang
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Ying Chen
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
47
|
Chiang KC, Yeh TS, Wu RC, Pang JHS, Cheng CT, Wang SY, Juang HH, Yeh CN. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci Rep 2016; 6:36138. [PMID: 27782193 PMCID: PMC5080596 DOI: 10.1038/srep36138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating disease due to resistance to traditional chemotherapies and radiotherapies. New therapeutic strategies against CCA are urgently needed. This study investigated the role of lipocalin-2 (LCN2) in human cholangiocarcinoma as a potential therapeutic target and diagnostic marker. So far, the role of LCN2 in cancer is still controversial and studies regarding the role of LCN2 in CCA are limited. LCN2 knockdown inhibited CCA cell growth in vitro and in vivo through induction of cell cycle arrest at G0/G1 phases and decreased metastatic potential due to repression of epithelial-mesenchymal transition (EMT). Overexpression of LCN2 in CCA cells increased cell metastatic potential. We showed for the first time that the N-myc downstream regulated gene 1 (NDRG1) and NDRG2, known as tumor suppressor genes, are negatively regulated by LCN2 in CCA cells. LCN2 concentration in bile was higher in patients with CCA than that in patients with gallstones, with a cutoff value of 20.08 ng/ml making this a potential diagnostic marker. Higher LCN2 expression was associated with worse survival in patients with CCA. LCN2 is a promising target for CCA treatment and bile LCN2 level is a potential diagnostic marker for CCA.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, R.O.C.,Director of Zebrafish center of Keelung Chang Gung Memorial Hospital, Taiwan, R.O.C
| | - Ta-Sen Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Ren-Chin Wu
- Department of Pathology and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Chi-Tung Cheng
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Shang-Yu Wang
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan Taoyuan, Taiwan, 333, R.O.C.,Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Chun-Nan Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| |
Collapse
|
48
|
Ma J, Liu S, Zhang W, Zhang F, Wang S, Wu L, Yan R, Wu L, Wang C, Zha Z, Sun J. High expression of NDRG3 associates with positive lymph node metastasis and unfavourable overall survival in laryngeal squamous cell carcinoma. Pathology 2016; 48:691-696. [PMID: 27780595 DOI: 10.1016/j.pathol.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/30/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
Abstract
N-myc downstream-regulated gene 3 (NDRG3), which belongs to the NDRG family, is believed to play important roles in human cancer. In this present study, one-step quantitative reverse transcription-polymerase chain reaction (qPCR) and western blotting tests with 10 fresh-frozen laryngeal squamous cell carcinoma (LSCC) samples and immunohistochemistry (IHC) analysis in 109 LSCC cases were performed to investigate the relationship between NDRG3 expression and the clinicopathological characteristics of LSCC. Results demonstrated that NDRG3 mRNA and protein expression levels were statistically higher in LSCC tissues than that in non-cancerous tissues (all p<0.05). IHC data showed that the NDRG3 protein expression was remarkably correlated with lymph node metastasis (p=0.043). Univariate and multivariate survival analysis implied that high NDRG3 expression (p=0.004), lymph node metastasis (p=0.044) and TNM stage (p=0.020) were independently associated with the unfavourable overall survival of patients with LSCC. The above findings suggested that NDRG3 may be identified as a novel biomarker predicting the prognosis of LSCC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Anhui Medical University Affiliated Anhui Provincial Hospital, Hefei, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wei Zhang
- Department of Pathology, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Fan Zhang
- Department of Pathology, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Sufen Wang
- Department of Pathology, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lifeng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhihong Zha
- Department of Otolaryngology-Head and Neck Surgery, Yiji Shan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, Anhui Medical University Affiliated Anhui Provincial Hospital, Hefei, China.
| |
Collapse
|
49
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
50
|
Lee JC, Chiang KC, Feng TH, Chen YJ, Chuang ST, Tsui KH, Chung LC, Juang HH. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo. Int J Mol Sci 2016; 17:ijms17091435. [PMID: 27589737 PMCID: PMC5037714 DOI: 10.3390/ijms17091435] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/16/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG) family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin) gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO), and deferasirox) all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.
Collapse
Affiliation(s)
- Jehn-Chuan Lee
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 105, Taiwan.
- School of Medicine, Mackay Medical College, New Taipei City 207, Taiwan.
| | - Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital and University, Keelung 204, Taiwan.
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Yu-Jen Chen
- Department of Radiation On Cology, Mackay Memorial Hospital, Taipei 105, Taiwan.
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan.
| | - Li-Chuan Chung
- Department of General Education Center, Mackay Medicine, Nursing and Management College, New Taipei City 207, Taiwan.
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan.
| |
Collapse
|