1
|
Ajmeriya S, Kashyap N, Gul A, Ahirwar A, Singh S, Tripathi S, Dhar R, Nayak NR, Karmakar S. Aberrant expression of solute carrier family transporters in placentas associated with pregnancy complications. Placenta 2025; 159:9-19. [PMID: 39602836 DOI: 10.1016/j.placenta.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Solute carrier family transporters (SLCs), crucial for nutrient and trace element uptake in the placenta, play a significant role in fetal growth and development. Their dysregulation is associated with various pregnancy disorders. However, a comprehensive understanding of their role and regulation in placental function and pregnancy complications is still a largely unexplored area, making this study novel and significant. METHODS We performed a rigorous meta-analysis of publicly available NCBI GEO microarray and RNA-Seq datasets followed by bioinformatics analysis of differentially expressed SLCs in PE and IUGR. The identified SLCs were then validated using qPCR on PE placental samples, ensuring the reliability and validity of the findings. RESULTS Bioinformatics analysis of preeclampsia (PE) and Intrauterine Growth restriction (IUGR) datasets revealed significant associations between specific SLC transporters with disease pathology, identified by studying differentially expressed SLCs. Subsequent validation using qPCR on placental samples confirmed considerable downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3, highlighting their dysregulation in the pathogenesis of PE and IUGR. DISCUSSION The significant downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3 observed by bioinformatics analyses and validated by qPCR indicates atypical expression of these SLCs in gestational disorders. Our findings underscore the potential contribution of multiple SLC gene families to the development of placental pathologies associated with diverse pregnancy complications.
Collapse
Affiliation(s)
- Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anamta Gul
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ashok Ahirwar
- Department of Laboratory Medicine, AIl India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, 110029, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, University of Missouri, Kansas City, USA
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
2
|
Jin H, Wang X, Li L, Rui C, Gan H, Wang Q, Tao F, Zhu Y. Integrated proteomic and transcriptomic landscape of human placenta in small for gestational age infants. iScience 2024; 27:111423. [PMID: 39687015 PMCID: PMC11648249 DOI: 10.1016/j.isci.2024.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Small for gestational age (SGA) infants affected by placental insufficiency are exposed to the risk of stillbirth and long-term complications. Based on RNA-seq and mass spectrometry, we identified dysregulated RNAs and proteins from the comparisons of SGA placental tissues and controls. We revealed two SGA-relevant co-expression modules (SRMs) that also significantly distinguished SGA from controls. Then we performed an integrated analysis of transcriptomic and proteomic profiles to trace their links to SGA as well as their significant correlations. For the core functional molecules we screened, we revealed their potential upstream regulators and validated them experimentally in an independent cohort. Overall, we pointed out insights into different molecular pathways for the pathological mechanisms of SGA and indicated potential target molecules that may be drivers of placental aberrations in the SGA infants.
Collapse
Affiliation(s)
- Heyue Jin
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xianyan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lingyu Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yumin Zhu
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
3
|
Couture C, Caron M, St-Onge P, Brien ME, Sinnett D, Dal Soglio D, Girard S. Identification of divergent placental profiles in clinically distinct pregnancy complications revealed by the transcriptome. Placenta 2024; 154:184-192. [PMID: 39042974 DOI: 10.1016/j.placenta.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Pregnancy complications, including preeclampsia (PE), preterm birth (PTB), and intra-uterine growth restriction (IUGR) have individually been associated with inflammation but the combined comparative analysis of their placental profiles at the transcriptomic and histological levels is lacking. METHODS Bulk RNA-sequencing of human placental biopsies from uncomplicated term pregnancies (CTL) and pregnancies complicated with early-onset (EO), and late-onset (LO) PE, as well as PTB and term IUGR were used to characterize individual molecular profiles. We also applied immune-cell-specific cellular deconvolution to address local immune cell compositions and analyzed placental lesions by histology to further characterize these complications. RESULTS Transcriptome analysis revealed that clinically distinct complications differentiated themselves in unique ways compared to CTLs. Only TMEM136 was commonly modulated. Compared to CTLs, we found that PTB and IUGR were the most distinct, with LOPE being the least distinct. PTB and IUGR revealed differently enhanced inflammatory pathways, where PTB had general inflammatory responses and IUGR had immune cell activation. This inflammation was reflected in the histological profile for PTB only, whereas structural lesions were elevated in all complications. Placental lesions additionally had corresponding enhancement in inflammatory and structural biological processes. We observed that having co-complications, particularly for PTB with or without IUGR, impacted placental transcriptomes. Lastly, cellular deconvolution uncovered shared immune features among the complications. DISCUSSION Overall, we provide evidence that these pregnancy complications are not only distinct in their clinical manifestations but also in their placental profiles, which could be leveraged to understand their underlying mechanisms and could offer therapeutic targets.
Collapse
Affiliation(s)
- Camille Couture
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada; Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Maxime Caron
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Daniel Sinnett
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| | - Dorothée Dal Soglio
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada; Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Khatun M, Modhukur V, Piltonen TT, Tapanainen JS, Salumets A. Stanniocalcin Protein Expression in Female Reproductive Organs: Literature Review and Public Cancer Database Analysis. Endocrinology 2024; 165:bqae110. [PMID: 39186548 PMCID: PMC11398916 DOI: 10.1210/endocr/bqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
Stanniocalcin (STC) 1 and 2 serve as antihyperglycemic polypeptide hormones with critical roles in regulating calcium and phosphate homeostasis. They additionally function as paracrine and/or autocrine factors involved in numerous physiological processes, including female reproduction. STC1 and STC2 contribute to the pathophysiology of several diseases, including female infertility- and pregnancy-associated conditions, and even tumorigenesis of reproductive organs. This comprehensive review highlights the dynamic expression patterns and potential dysregulation of STC1 and STC2, restricted to female fertility, and infertility- and pregnancy-associated diseases and conditions, such as endometriosis, polycystic ovary syndrome (PCOS), abnormal uterine bleeding, uterine polyps, and pregnancy complications, like impaired decidualization, preeclampsia, and preterm labor. Furthermore, the review elucidates the role of dysregulated STC in the progression of cancers of the reproductive system, including endometrial, cervical, and ovarian cancers. Additionally, the review evaluates the expression patterns and prognostic significance of STC in gynecological cancers by utilizing existing public datasets from The Cancer Genome Atlas to help decipher the multifaceted roles of these pleiotropic hormones in disease progression. Understanding the intricate mechanisms by which STC proteins influence all these reviewed conditions could lead to the development of targeted diagnostic and therapeutic strategies in the context of female reproductive health and oncology.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of Fribourg and University of Fribourg, 79085 Fribourg, Switzerland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14152 Huddinge, Stockholm, Sweden
| |
Collapse
|
5
|
Paquette A, Ahuna K, Hwang YM, Pearl J, Liao H, Shannon P, Kadam L, Lapehn S, Bucher M, Roper R, Funk C, MacDonald J, Bammler T, Baloni P, Brockway H, Mason WA, Bush N, Lewinn KZ, Karr CJ, Stamatoyannopoulos J, Muglia LJ, Jones H, Sadovsky Y, Myatt L, Sathyanarayana S, Price ND. A genome scale transcriptional regulatory model of the human placenta. SCIENCE ADVANCES 2024; 10:eadf3411. [PMID: 38941464 PMCID: PMC11212735 DOI: 10.1126/sciadv.adf3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
Collapse
Affiliation(s)
- Alison Paquette
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kylia Ahuna
- Oregon Health and Sciences University, Portland, OR, USA
| | | | | | - Hanna Liao
- University of Washington, Seattle, WA, USA
| | | | - Leena Kadam
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Matthew Bucher
- Oregon Health and Sciences University, Portland, OR, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Heather Brockway
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - W. Alex Mason
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z. Lewinn
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, USA
- Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yoel Sadovsky
- Magee Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Myatt
- Oregon Health and Sciences University, Portland, OR, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York City, NY, USA
| |
Collapse
|
6
|
Gonzalez TL, Wertheimer S, Flowers AE, Wang Y, Santiskulvong C, Clark EL, Jefferies CA, Lawrenson K, Chan JL, Joshi NV, Zhu Y, Tseng HR, Karumanchi SA, Williams III J, Pisarska MD. High-throughput mRNA-seq atlas of human placenta shows vast transcriptome remodeling from first to third trimester†. Biol Reprod 2024; 110:936-949. [PMID: 38271627 PMCID: PMC11094392 DOI: 10.1093/biolre/ioae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
The placenta, composed of chorionic villi, changes dramatically across gestation. Understanding differences in ongoing pregnancies are essential to identify the role of chorionic villi at specific times in gestation and develop biomarkers and prognostic indicators of maternal-fetal health. The normative mRNA profile is established using next-generation sequencing of 124 first trimester and 43 third trimester human placentas from ongoing healthy pregnancies. Stably expressed genes (SEGs) not different between trimesters and with low variability are identified. Differential expression analysis of first versus third trimester adjusted for fetal sex is performed, followed by a subanalysis with 23 matched pregnancies to control for subject variability using the same genetic and environmental background. Placenta expresses 14,979 polyadenylated genes above sequencing noise (transcripts per million > 0.66), with 10.7% SEGs across gestation. Differentially expressed genes (DEGs) account for 86.7% of genes in the full cohort [false discovery rate (FDR) < 0.05]. Fold changes highly correlate between the full cohort and subanalysis (Pearson = 0.98). At stricter thresholds (FDR < 0.001, fold change > 1.5), there remains 50.1% DEGs (3353 upregulated in first and 4155 upregulated in third trimester). This is the largest mRNA atlas of healthy human placenta across gestation, controlling for genetic and environmental factors, demonstrating substantial changes from first to third trimester in chorionic villi. Specific differences and SEGs may be used to understand the specific role of the chorionic villi throughout gestation and develop first trimester biomarkers of placental health that transpire across gestation, which can be used for future development of biomarkers for maternal-fetal health.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sahar Wertheimer
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amy E Flowers
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Kao Autoimmune Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women’s Cancer Research Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - John Williams III
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Xie N, Wang F, Chen D, Zhou J, Xu J, Qu F. Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome. PLoS One 2024; 19:e0300461. [PMID: 38512862 PMCID: PMC10956758 DOI: 10.1371/journal.pone.0300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.
Collapse
Affiliation(s)
- Ningning Xie
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqing Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Owen DM, Kwon M, Huang X, Nagari A, Nandu T, Kraus WL. Genome-wide identification of transcriptional enhancers during human placental development and association with function, differentiation, and disease†. Biol Reprod 2023; 109:965-981. [PMID: 37694817 PMCID: PMC10724456 DOI: 10.1093/biolre/ioad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/07/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection. Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that control this process remain largely unknown. We hypothesized that mapping sites of transcriptional enhancer activity and associated changes in gene expression across gestation in human placenta tissue would identify genomic loci and predicted transcription factor activity related to critical placenta functions. We used a suite of genomic assays [i.e., RNA-sequencing (RNA-seq), Precision run-on-sequencing (PRO-seq), and Chromatin immunoprecipitation-sequencing (ChIP-seq)] and computational pipelines to identify a set of >20 000 enhancers that are active at various time points in gestation. Changes in the activity of these enhancers correlate with changes in gene expression. In addition, some of these enhancers encode risk for adverse pregnancy outcomes. We further show that integrating enhancer activity, transcription factor motif analysis, and transcription factor expression can identify distinct sets of transcription factors predicted to be more active either in early pregnancy or at term. Knockdown of selected identified transcription factors in a trophoblast stem cell culture model altered the expression of key placental marker genes. These observations provide a framework for future mechanistic studies of individual enhancer-transcription factor-target gene interactions and have the potential to inform genetic risk prediction for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- David M Owen
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of General Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minjung Kwon
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Luo F, Liu F, Guo Y, Xu W, Li Y, Yi J, Fournier T, Degrelle S, Zitouni H, Hernandez I, Liu X, Huang Y, Yue J. Single-cell profiling reveals immune disturbances landscape and HLA-F-mediated immune tolerance at the maternal-fetal interface in preeclampsia. Front Immunol 2023; 14:1234577. [PMID: 37854606 PMCID: PMC10579943 DOI: 10.3389/fimmu.2023.1234577] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Background Preeclampsia is a pregnancy-specific disorder that always causes maternal and fetal serious adverse outcome. Disturbances in maternal immune tolerance to embryo at the maternal-fetal interface (MFI) may be associated with preeclampsia onset. Recent studies have revealed the reduced expression pattern of HLA-F at the MFI in preeclampsia, while the mechanism of it mediating maternal fetal immune tolerance has not been revealed. Methods Single-cell RNA sequencing on placental decidua was performed to reveal the immune disturbances landscape at the MFI in preeclampsia. Human Jar cells and NK-92MI cells were employed to study the role of HLA-F in trophoblasts and lymphocyte. Results A total of 101,250 cells were classified into 22 cell clusters. Disease-related IGFBP1+SPP1+ extracellular villus trophoblast (EVT) was identified in the preeclamptic placental decidua, accompanied by newly discovered immune cellular dysfunction such as reduced ribosomal functions of NK populations and abnormal expression of antigen-presenting molecules in most cell clusters. Certain genes that are characteristic of the intermediate stage of myeloid or EVT cell differentiation were found to have unexplored but important functions in the pathogenesis of preeclampsia; specifically, we detected enhanced cell cross-talk between IGFBP1+SPP1+ EVT2 or SPP1+M1 cells and their receptor cell populations at the MFI of PE patients compared to controls. With respect to HLA-F, mIF staining confirmed its reduced expression in PE samples compared to controls. Over-expression of HLA-F in Jar cells promoted cell proliferation, invasion, and migration while under-expression had the opposite effect. In NK-92MI cells, over-expression of HLA-F increased the secretion of immunoregulation cytokines such as CSF1 and CCL22, and promoted adaptive NKG2C+NK cell transformation. Conclusions We revealed the immune disturbance landscape at the MFI in preeclampsia. Our findings regarding cellular heterogeneity and immune cellular dysfunction, as revealed by scRNA-seq, and the function of HLA-F in cells provide new perspectives for further investigation of their roles in the pathogenesis of preeclampsia, and then provide potential new therapeutic target.
Collapse
Affiliation(s)
- Fangyuan Luo
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Fulin Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yingzhe Guo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Jun Yi
- Department of Obstetrics and Gynecology Nursing, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Thierry Fournier
- Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre & Postnatal Microbiota, Université Paris Cité, Paris, France
| | | | - Hedia Zitouni
- Laboratory of Human Genome and Multi-factorial Diseases, Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Isabelle Hernandez
- Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre & Postnatal Microbiota, Université Paris Cité, Paris, France
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Jun Yue
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Jeong DS, Lee JY, Kim MH, Oh JH. Regulation of sexually dimorphic placental adaptation in LPS exposure-induced intrauterine growth restriction. Mol Med 2023; 29:114. [PMID: 37718409 PMCID: PMC10506314 DOI: 10.1186/s10020-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/15/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sexual dimorphism in placental physiology affects the functionality of placental adaptation during adverse pregnancy. Defects of placental function compromise fetal programming, affecting the offspring's adult life. However, studies focusing on the relationship between sex-specific placental adaptation and consequent fetal maldevelopment under sub-optimal uterus milieu are still elusive. METHODS Here, we investigated the effects of maternal lipopolysaccharide (LPS) exposure between placental sex. Pregnant ICR mice received intraperitoneal injection of phosphate-buffered saline or 100, 200, and 400 µg/kg LPS on the gestational day (GD) 15.5. To determine whether prenatal maternal LPS exposure resulted in complicated pregnancy outcomes, survival rate of embryos was calculated and the growth of embryos and placentas was examined. To elucidate global transcriptomic changes occurring in the placenta, total RNA-sequencing (RNA-seq) was performed in female and male placentas. RESULTS LPS administration induced placental inflammation in both sexes at GD 17.5. Prenatal infection resulted in growth retardation in both sexes of embryos, and especially more prevalently in male. Impaired placental development was observed in a sex-specific manner. LPS 400 µg/kg reduced the percentage area of the labyrinth in females and junctional zone in males, respectively. RNA-sequencing revealed widespread sexually dimorphic transcriptional changes in placenta. In particular, representative changes were involved in biological processes such as trophoblast differentiation, nutrient/ion transporter, pregnancy, and immune system. CONCLUSIONS Our results present the sexually dimorphic responses of placental physiology in intrauterine growth restriction model and provide tentative relationship further to be elucidated between sex-biased placental functional change and long-term effects on the offspring's later life.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Yeon Lee
- Vivozon, Inc, Kolon Digital Tower3, 49, Achasan-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji Hoon Oh
- Department of Biological Sciences, Keimyung University College of Natural Sciences, Daegu, 42601, Republic of Korea.
| |
Collapse
|
11
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, Fioravantti V, Antolín E, Ramos-Álvarez MP, Bartha JL. Decreased Fatty Acid Oxidation Gene Expression in Pre-Eclampsia According to the Onset and Presence of Intrauterine Growth Restriction. Nutrients 2023; 15:3877. [PMID: 37764661 PMCID: PMC10536348 DOI: 10.3390/nu15183877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) is lower in placentas with pre-eclampsia. The aim of our study was to compare the placental mRNA expression of FAO enzymes in healthy pregnancies vs. different subgroups of pre-eclampsia according to the severity, time of onset, and the presence of intrauterine growth restriction (IUGR). By using real-time qPCR, we measured the mRNA levels of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), medium-chain acyl-CoA dehydrogenase (MCAD), and carnitine palmitoyltransferases 1A and 2 (CPT1A, CPT2) on the maternal side (anchoring villi in the basal decidua) and on the fetal side (chorionic plate) of the placenta (n = 56). When compared to the controls, LCHAD, MCAD, and CPT2 mRNA had decreased in all pre-eclampsia subgroups globally and on the fetal side. On the maternal side, LCHAD mRNA was also lower in all pre-eclampsia subgroups; however, MCAD and CPT2 mRNA were only reduced in severe and early-onset disease, as well as CPT2 in IUGR (p < 0.05). There were no differences in CPT1A mRNA expression. We conclude that the FAO enzymes mRNA in the placenta was lower in pre-eclampsia, with higher reductions observed in severe, early-onset, and IUGR cases and more striking reductions on the fetal side.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | | | - Eugenia Antolín
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - María P. Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Boadilla del Monte, Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - José L. Bartha
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| |
Collapse
|
12
|
Bhalla N, Franzén L, Scheynius A, Papadogiannakis N, Hansson SR, Lager S, Ståhl PL. Spatial transcriptomics of human placentas reveal distinct RNA patterns associated with morphology and preeclampsia. Placenta 2023; 139:213-216. [PMID: 37481829 DOI: 10.1016/j.placenta.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/26/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Spatial transcriptomics (ST) maps RNA level patterns within a tissue. This technology has not been previously applied to human placental tissue. We demonstrate analysis of human placental samples with ST. Unsupervised clustering revealed that distinct RNA patterns were found corresponding to different morphological structures. Additionally, when focusing upon terminal villi and hemoglobin associated structures, RNA levels differed between placentas from full term healthy pregnancies and those complicated by preeclampsia. The results from this study can provide a benchmark for future ST studies in placenta.
Collapse
Affiliation(s)
- Nayanika Bhalla
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Franzén
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
S C, G G, LA S, W N, P M, L A, A W, V F, P W, D G, T BT. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta. ENVIRONMENT INTERNATIONAL 2023; 177:108015. [PMID: 37315489 DOI: 10.1016/j.envint.2023.108015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The growing nanoparticulate pollution (e.g. engineered nanoparticles (NPs) or nanoplastics) has been shown to pose potential threats to human health. In particular, sensitive populations such as pregnant women and their unborn children need to be protected from harmful environmental exposures. However, developmental toxicity from prenatal exposure to pollution particles is not yet well studied despite evidence of particle accumulation in human placenta. Our study aimed to investigate how copper oxide NPs (CuO NPs; 10-20 nm) and polystyrene nanoplastics (PS NPs; 70 nm) impact on gene expression in ex vivo perfused human placental tissue. Whole genome microarray analysis revealed changes in global gene expression profile after 6 h of perfusion with sub-cytotoxic concentrations of CuO (10 µg/mL) and PS NPs (25 µg/mL). Pathway and gene ontology enrichment analysis of the differentially expressed genes suggested that CuO and PS NPs trigger distinct cellular response in placental tissue. While CuO NPs induced pathways related to angiogenesis, protein misfolding and heat shock responses, PS NPs affected the expression of genes related to inflammation and iron homeostasis. The observed effects on protein misfolding, cytokine signaling, and hormones were corroborated by western blot (accumulation of polyubiquitinated proteins) or qPCR analysis. Overall, the results of the present study revealed extensive and material-specific interference of CuO and PS NPs with placental gene expression from a single short-term exposure which deserves increasing attention. In addition, the placenta, which is often neglected in developmental toxicity studies, should be a key focus in the future safety assessment of NPs in pregnancy.
Collapse
Affiliation(s)
- Chortarea S
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Gupta G
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Saarimäki LA
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Netkueakul W
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Manser P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Aengenheister L
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Wichser A
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials, Science and Technology, Dübendorf, Switzerland
| | - Fortino V
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Wick P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Greco D
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Buerki-Thurnherr T
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| |
Collapse
|
14
|
Gonzalez TL, Wertheimer S, Flowers AE, Wang Y, Santiskulvong C, Clark EL, Jefferies CA, Lawrenson K, Chan JL, Joshi NV, Zhu Y, Tseng HR, Karumanchi SA, Williams J, Pisarska MD. High-throughput mRNA-seq atlas of human placenta shows vast transcriptome remodeling from first to third trimester. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543972. [PMID: 37333287 PMCID: PMC10274746 DOI: 10.1101/2023.06.06.543972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background The placenta, composed of chorionic villi, changes dramatically across gestation. Understanding differences in ongoing pregnancies are essential to identify the role of chorionic villi at specific times in gestation and develop biomarkers and prognostic indicators of maternal- fetal health. Methods The normative mRNA profile is established using next-generation sequencing of 124 first trimester and 43 third trimester human placentas from ongoing healthy pregnancies. Stably expressed genes not different between trimesters and with low variability are identified. Differential expression analysis of first versus third trimester adjusted for fetal sex is performed, followed by a subanalysis with 23 matched pregnancies to control for subject variability using the same genetic and environmental background. Results Placenta expresses 14,979 mRNAs above sequencing noise (TPM>0.66), with 1,545 stably expressed genes across gestation. Differentially expressed genes account for 86.7% of genes in the full cohort (FDR<0.05). Fold changes highly correlate between the full cohort and subanalysis (Pearson = 0.98). At stricter thresholds (FDR<0.001, fold change>1.5), there are 6,941 differentially expressed protein coding genes (3,206 upregulated in first and 3,735 upregulated in third trimester). Conclusion This is the largest mRNA atlas of healthy human placenta across gestation, controlling for genetic and environmental factors, demonstrating substantial changes from first to third trimester in chorionic villi. Specific differences and stably expressed genes may be used to understand the specific role of the chorionic villi throughout gestation and develop first trimester biomarkers of placental health that transpire across gestation, which can be used for future development of biomarkers in maternal-fetal disease.
Collapse
|
15
|
Hellwege JN, Stallings SC, Piekos JA, Jasper EA, Aronoff DM, Edwards TL, Velez Edwards DR. Association of genetically-predicted placental gene expression with adult blood pressure traits. J Hypertens 2023; 41:1024-1032. [PMID: 37016918 PMCID: PMC10287061 DOI: 10.1097/hjh.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Blood pressure is a complex, polygenic trait, and the need to identify prehypertensive risks and new gene targets for blood pressure control therapies or prevention continues. We hypothesize a developmental origins model of blood pressure traits through the life course where the placenta is a conduit mediating genomic and nongenomic transmission of disease risk. Genetic control of placental gene expression has recently been described through expression quantitative trait loci (eQTL) studies which have identified associations with childhood phenotypes. METHODS We conducted a transcriptome-wide gene expression analysis estimating the predicted gene expression of placental tissue in adult individuals with genome-wide association study (GWAS) blood pressure summary statistics. We constructed predicted expression models of 15 154 genes from reference placenta eQTL data and investigated whether genetically-predicted gene expression in placental tissue is associated with blood pressure traits using published GWAS summary statistics. Functional annotation of significant genes was generated using FUMA. RESULTS We identified 18, 9, and 21 genes where predicted expression in placenta was significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP), respectively. There were 14 gene-tissue associations (13 unique genes) significant only in placenta. CONCLUSIONS In this meta-analysis using S-PrediXcan and GWAS summary statistics, the predicted expression in placenta of 48 genes was statistically significantly associated with blood pressure traits. Notable findings included the association of FGFR1 expression with increased SBP and PP. This evidence of gene expression variation in placenta preceding the onset of adult blood pressure phenotypes is an example of extreme preclinical biological changes which may benefit from intervention.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Sarah C Stallings
- Department of Medicine, Division of Genetic Medicine
- Vanderbilt Genetics Institute
| | - Jacqueline A Piekos
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - Elizabeth A Jasper
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Todd L Edwards
- Vanderbilt Genetics Institute
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Hesson AM, Langen ES, Plazyo O, Gudjonsson JE, Ganesh SK. Placental transcriptome analysis of hypertensive pregnancies identifies distinct gene expression profiles of preeclampsia superimposed on chronic hypertension. BMC Med Genomics 2023; 16:91. [PMID: 37131171 PMCID: PMC10152005 DOI: 10.1186/s12920-023-01522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The pathogenesis of preeclampsia superimposed on chronic hypertension (SI) is poorly understood relative to preeclampsia (PreE) occurring in pregnant people without chronic hypertension. Placental transcriptomes in pregnancies complicated by PreE and SI have not been previously compared. METHODS We identified pregnant people in the University of Michigan Biorepository for Understanding Maternal and Pediatric Health with hypertensive disorders affecting singleton, euploid gestations (N = 36) along with non-hypertensive control subjects (N = 12). Subjects were grouped as: (1) normotensive (N = 12), (2) chronic hypertensive (N = 13), (3) preterm PreE with severe features (N = 5), (4) term PreE with severe features (N = 11), (5) preterm SI (N = 3), or (6) term SI (N = 4). Bulk RNA sequencing of paraffin-embedded placental tissue was performed. The primary analysis assessed differential gene expression relative to normotensive and chronic hypertensive placentas, where Wald adjusted P values < 0.05 were considered significant. Unsupervised clustering analyses and correlation analyses were performed between conditions of interest, and a gene ontology was constructed. RESULTS Comparing samples from pregnant people with hypertensive diseases to non-hypertensive controls, there were 2290 differentially expressed genes. The log2-fold changes in genes differentially expressed in chronic hypertension correlated better with term (R = 0.59) and preterm (R = 0.63) PreE with severe features than with term (R = 0.21) and preterm (R = 0.22) SI. A relatively poor correlation was observed between preterm SI and preterm PreE with severe features (0.20) as well as term SI and term PreE with severe features (0.31). The majority of significant genes were downregulated in term and preterm SI versus normotensive controls (92.1%, N = 128). Conversely, most term and preterm PreE with severe features genes were upregulated compared to the normotensive group (91.8%, N = 97). Many of the upregulated genes in PreE with the lowest adjusted P values are known markers of abnormal placentation (e.g., PAAPA, KISS1, CLIC3), while the downregulated genes with the greatest adjusted P values in SI have fewer known pregnancy-specific functions. CONCLUSIONS We identified unique placental transcriptional profiles in clinically relevant subgroups of individuals with hypertension in pregnancy. Preeclampsia superimposed on chronic hypertension was molecularly distinct from preeclampsia in individuals without chronic hypertension, and chronic hypertension without preeclampsia, suggesting that preeclampsia superimposed on hypertension may represent a distinct entity.
Collapse
Affiliation(s)
- Ashley M Hesson
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, 1500 East Medical Center Dr., Ann Arbor, MI, 48109, USA.
| | - Elizabeth S Langen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, 1500 East Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Olesya Plazyo
- Departments of Dermatology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Johann E Gudjonsson
- Departments of Dermatology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Department of Human Genetics, University of Michigan, MSRB III / Room 7220A, 1150 West Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Horii M, To C, Morey R, Jacobs MB, Li Y, Nelson KK, Meads M, Siegel BA, Pizzo D, Adami R, Zhang-Rutledge K, Lamale-Smith L, Laurent LC, Parast MM. Histopathologic and Transcriptomic Profiling Identifies Novel Trophoblast Defects in Patients With Preeclampsia and Maternal Vascular Malperfusion. Mod Pathol 2023; 36:100035. [PMID: 36853788 PMCID: PMC10081686 DOI: 10.1016/j.modpat.2022.100035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Preeclampsia (PE) is a heterogeneous disease for which the current clinical classification system is based on the presence or absence of specific clinical features. PE-associated placentas also show heterogeneous findings on pathologic examination, suggesting that further subclassification is possible. We combined clinical, pathologic, immunohistochemical, and transcriptomic profiling of placentas to develop integrated signatures for multiple subclasses of PE. In total, 303 PE and 1388 nonhypertensive control placentas were included. We found that maternal vascular malperfusion (MVM) in the placenta was associated with preterm PE with severe features and with small-for-gestational-age neonates. Interestingly, PE placentas with either MVM or no histologic pattern of injury showed a linear decrease in proliferative (p63+) cytotrophoblast per villous area with increasing gestational age, similar to placentas obtained from the nonhypertensive patient cohort; however, PE placentas with fetal vascular malperfusion or villitis of unknown etiology lost this phenotype. This is mainly because of cases of fetal vascular malperfusion in placentas of patients with preterm PE and villitis of unknown etiology in placentas of patients with term PE, which are associated with a decrease or increase, respectively, in the cytotrophoblast per villous area. Finally, a transcriptomic analysis identified pathways associated with hypoxia, inflammation, and reduced cell proliferation in PE-MVM placentas and further subclassified this group into extravillous trophoblast-high and extravillous trophoblast-low PE, confirmed using an immunohistochemical analysis of trophoblast lineage-specific markers. Our findings suggest that within specific histopathologic patterns of placental injury, PE can be subclassified based on specific cellular and molecular defects, allowing the identification of pathways that may be targeted for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Cuong To
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Robert Morey
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Marni B Jacobs
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Katharine K Nelson
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Brent A Siegel
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Rebecca Adami
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Kathy Zhang-Rutledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Leah Lamale-Smith
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
18
|
Olney KC, Plaisier SB, Phung TN, Silasi M, Perley L, O'Bryan J, Ramirez L, Kliman HJ, Wilson MA. Sex differences in early and term placenta are conserved in adult tissues. Biol Sex Differ 2022; 13:74. [PMID: 36550527 PMCID: PMC9773522 DOI: 10.1186/s13293-022-00470-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pregnancy complications vary based on the fetus's genetic sex, which may, in part, be modulated by the placenta. Furthermore, developmental differences early in life can have lifelong health outcomes. Yet, sex differences in gene expression within the placenta at different timepoints throughout pregnancy and comparisons to adult tissues remains poorly characterized. METHODS Here, we collect and characterize sex differences in gene expression in term placentas (≥ 36.6 weeks; 23 male XY and 27 female XX). These are compared with sex differences in previously collected first trimester placenta samples and 42 non-reproductive adult tissues from GTEx. RESULTS We identify 268 and 53 sex-differentially expressed genes in the uncomplicated late first trimester and term placentas, respectively. Of the 53 sex-differentially expressed genes observed in the term placentas, 31 are also sex-differentially expressed genes in the late first trimester placentas. Furthermore, sex differences in gene expression in term placentas are highly correlated with sex differences in the late first trimester placentas. We found that sex-differential gene expression in the term placenta is significantly correlated with sex differences in gene expression in 42 non-reproductive adult tissues (correlation coefficient ranged from 0.892 to 0.957), with the highest correlation in brain tissues. Sex differences in gene expression were largely driven by gene expression on the sex chromosomes. We further show that some gametologous genes (genes with functional copies on X and Y) will have different inferred sex differences if the X-linked gene expression in females is compared to the sum of the X-linked and Y-linked gene expression in males. CONCLUSIONS We find that sex differences in gene expression are conserved in late first trimester and term placentas and that these sex differences are conserved in adult tissues. We demonstrate that there are sex differences associated with innate immune response in late first trimester placentas but there is no significant difference in gene expression of innate immune genes between sexes in healthy full-term placentas. Finally, sex differences are predominantly driven by expression from sex-linked genes.
Collapse
Affiliation(s)
- Kimberly C Olney
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Seema B Plaisier
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Tanya N Phung
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Michelle Silasi
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO, 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lucia Ramirez
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA.
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85282, USA.
| |
Collapse
|
19
|
Kedziora SM, Obermayer B, Sugulle M, Herse F, Kräker K, Haase N, Langmia IM, Müller DN, Staff AC, Beule D, Dechend R. Placental Transcriptome Profiling in Subtypes of Diabetic Pregnancies Is Strongly Confounded by Fetal Sex. Int J Mol Sci 2022; 23:ijms232315388. [PMID: 36499721 PMCID: PMC9740420 DOI: 10.3390/ijms232315388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The placenta is a temporary organ with a unique structure and function to ensure healthy fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction, preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment and the adaptive spatio-temporal consequences to elevated glucose or insulin are largely unknown (2). We aimed to identify gene expression signatures related to the diabetic placental pathology of placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather than clinical diagnosis. Association of the principal components with a full set of clinical patient data identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic disease. Our results support the notion of placenta as a sexual dimorphic organ.
Collapse
Affiliation(s)
- Sarah M. Kedziora
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Florian Herse
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Kristin Kräker
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Immaculate M. Langmia
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Dominik N. Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Dieter Beule
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
- HELIOS Clinic, Department of Cardiology and Nephrology, 13125 Berlin, Germany
- Correspondence: ; Tel.: +49-30-4505-40301
| |
Collapse
|
20
|
Siargkas A, Tsakiridis I, Grammenos P, Apostolopoulou A, Giouleka S, Mamopoulos A, Athanasiadis A, Dagklis T. The impact of lateral placenta on preeclampsia and small for gestational age neonates: a systematic review and meta-analysis. J Perinat Med 2022; 51:468-476. [PMID: 36174088 DOI: 10.1515/jpm-2022-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We conducted a systematic review and meta-analysis to quantitatively summarize the present data on the association of prenatally identified lateral placenta in singleton pregnancies with small for gestational age (SGA) neonates, preeclampsia and other perinatal outcomes. METHODS From inception to November 2021, we searched PubMed/Medline, Scopus and The Cochrane Library for papers comparing the risk of SGA and preeclampsia, as well as other perinatal outcomes in singleton pregnancies with a prenatally identified lateral placenta to those with non-lateral placentas. The revised Newcastle-Ottawa Scale was used to evaluate the quality of eligible papers. The I2 test was employed to evaluate the heterogeneity of outcomes among the studies. To investigate the possibility of publication bias, funnel plots were constructed. Prospero RN: CRD42021251590. RESULTS The search yielded 5,420 articles, of which 16 were chosen, comprising of 15 cohort studies and one case control study with a total of 4,947 cases of lateral and 96,035 of non-lateral placenta (controls) reported. SGA neonates were more likely to be delivered in cases with a lateral placenta (OR: 1.74; 95% CI: 1.54-1.96; p<0.00001; I2=47%). Likewise, placental laterality was linked to a higher risk of fetal growth restriction (OR: 2.18; 95% CI: 1.54-3.06; p<0.00001; I2=0%), hypertensive disorders of pregnancy (OR: 2.39; 95% CI: 1.65-3.51; p=0.0001; I2=80%), preeclampsia (OR: 2.92; 95% CI: 1.92-4.44; p<0.0001; I2=82%) and preterm delivery (OR: 1.65; 95% CI: 1.46-1.87; p<0.00001; I2=0%). CONCLUSIONS The prenatal diagnosis of a lateral placenta appears to be associated with a higher incidence of preeclampsia, fetal growth restriction, preterm delivery and SGA. This may prove useful in screening for these conditions at the second trimester anomaly scan.
Collapse
Affiliation(s)
- Antonios Siargkas
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tsakiridis
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Grammenos
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Apostolopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sonia Giouleka
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Mamopoulos
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Athanasiadis
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Themistoklis Dagklis
- Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
22
|
Zhao D, Liu Y, Jia S, He Y, Wei X, Liu D, Ma W, Luo W, Gu H, Yuan Z. Influence of maternal obesity on the multi-omics profiles of the maternal body, gestational tissue, and offspring. Biomed Pharmacother 2022; 151:113103. [PMID: 35605294 DOI: 10.1016/j.biopha.2022.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epidemiological studies show that obesity during pregnancy affects more than half of the pregnancies in the developed countries and is associated with obstetric problems and poor outcomes. Obesity tends to increase the incidence of complications. Furthermore, the resulting offspring are also adversely affected. However, the molecular mechanisms of obesity leading to poor pregnancy outcomes remain unclear. Omics methods are used for genetic diagnosis and marker discovery. The aim of this review was to summarize the maternal and fetal pathophysiological alterations induced by gestational obesity,identified using multi-omics detection techniques, and to generalize the biological functions and potential mechanisms of the differentially expressed molecules.
Collapse
Affiliation(s)
- Duan Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
23
|
Wang Y, Tang Y, Yang X, Xu J, Chen Y, Xu J, Hu S, Yi P. Immune Dysfunction Mediated by the ceRNA Regulatory Network in Human Placenta Tissue of Intrahepatic Cholestasis Pregnancy. Front Immunol 2022; 13:883971. [PMID: 35812382 PMCID: PMC9263217 DOI: 10.3389/fimmu.2022.883971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-related intrahepatic cholestasis (ICP) is a serious complication with adverse perinatal outcomes of preterm labor, fetal distress, or stillbirth. As a result, it is important to investigate and identify the potential critical pathogenic mechanisms of ICP. First, we collected the placental tissues from the ICP with placental weight and fetal birth weight loss for the whole transcriptome sequencing. Then we analyzed the differentially expressed (DE) circRNAs (DEcircRNAs) by SRPBM, DElncRNAs by FRKM, DEmiRNAs by TPM, and DEmRNAs by TPM and RSEM. Based on differential expression of term pregnancy placental tissues from pregnancies impacted by ICP (n=7) as compared to gestational aged matched control tissues (n=5), the circ/lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks were constructed. The ceRNA regulatory networks covered 3,714 events, including 21 DEmiRNAs, 36 DEcircRNAs, 146 DElncRNAs, and 169 DEmRNAs. According to the functional analysis, ICP complications were linked to the immune system, signal transduction, endocrine system, cell growth and death, and transport and catabolism. Further evidence suggested that the expression of immune-related genes KLRD1, BRAF, and NFATC4 might have a potential ceRNA mechanism by individual lncRNA sponging miR372-3p, miR-371a-3p, miR-7851-3p, and miR-449a to control downstream the level of TNF-α, IFN-γ, and IL-10, thereby regulating the pathophysiology of ICP. Furthermore, our results were validated by the qRT-PCR, western blotting and ELISA assays. In conclusion, this study is the first to evaluate placental ceRNA networks in pregnancies affected by ICP, showing alterations in immune regulatory networks which may impact fetal and placental growth. Overall our these data suggest that the ceRNA regulatory network may refine biomarker predictions for developing novel therapeutic approaches in ICP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Xu
- *Correspondence: Ping Yi, ; Shan Hu, ; Jing Xu,
| | - Shan Hu
- *Correspondence: Ping Yi, ; Shan Hu, ; Jing Xu,
| | - Ping Yi
- *Correspondence: Ping Yi, ; Shan Hu, ; Jing Xu,
| |
Collapse
|
24
|
Zhang S, Guo G. Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res 2022; 45:1334-1344. [PMID: 35697768 DOI: 10.1038/s41440-022-00934-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Emerging evidence has shown that circular RNAs (circRNAs) play vital roles in the progression of diverse human diseases. However, the functions of circRNAs in preeclampsia (PE) are largely unknown. In this study, we aimed to explore the functions of the circRNA furin, paired basic amino acid cleaving enzyme (circ_FURIN) in PE development. qRT-PCR and western blot analyses were conducted to determine the levels of circ_FURIN, miR-34a-5p and transcription factor AP-2 alpha (TFAP2A). A Cell Counting Kit-8 (CCK-8) assay and a 5'-ethynyl-2'-deoxyuridine (EdU) incorporation assay were utilized to evaluate the cell proliferation ability. Transwell assays were adopted to estimate cell migration and invasion. A dual-luciferase reporter assay and an RNA pulldown assay were utilized to analyze the relationships among circ_FURIN, miR-34a-5p and TFAP2A. It was found that circ_FURIN was downregulated in PE placental tissues and hypoxia-treated placental trophoblast cells. Overexpression of circ_FURIN promoted trophoblast cell proliferation, migration and invasion under hypoxic conditions. Circ_FURIN functioned as the sponge for miR-34a-5p. MiR-34a-5p overexpression abrogated the effects of circ_FURIN on the proliferation, migration and invasion of trophoblast cells under hypoxic conditions. In addition, TFAP2A was demonstrated to be the target gene of miR-34a-5p. TFAP2A silencing ameliorated the promotive effects of miR-34a-5p inhibition on trophoblast cell proliferation, migration and invasion under hypoxic conditions. In conclusion, circ_FURIN enhanced trophoblast cell proliferation, migration and invasion under hypoxic conditions by elevating TFAP2A expression through sponging miR-34a-5p.
Collapse
Affiliation(s)
- Shuqing Zhang
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China.
| | - Guoxia Guo
- Department of Obstetrics, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
25
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
26
|
Arthurs AL, Jankovic-Karasoulos T, Smith MD, Roberts CT. Circular RNAs in Pregnancy and the Placenta. Int J Mol Sci 2022; 23:ijms23094551. [PMID: 35562943 PMCID: PMC9100345 DOI: 10.3390/ijms23094551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.
Collapse
|
27
|
Chatterjee S, Zeng X, Ouidir M, Tesfaye M, Zhang C, Tekola-Ayele F. Sex-specific placental gene expression signatures of small for gestational age at birth. Placenta 2022; 121:82-90. [PMID: 35303517 PMCID: PMC9010378 DOI: 10.1016/j.placenta.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Small for gestational age at birth (SGA), often a consequence of placental dysfunction, is a risk factor for neonatal morbidity and later life cardiometabolic diseases. There are sex differences in placental gene expression and fetal growth. Here, we investigated sex-specific associations between gene expression in human placenta measured using RNA sequencing and SGA status using data from ethnic diverse pregnant women in the NICHD Fetal Growth Studies cohort (n = 74). METHODS Gene expression measures were obtained using RNA-Sequencing and differential gene expression between SGA (birthweight <10th percentile) and appropriate for gestational age (AGA: ≥10th and <90th percentile) was tested separately in males (12 SGA and 27 AGA) and females (9 SGA and 26 AGA) using a weighted mean of log ratios method with adjustment for mode of delivery and ethnicity. RESULTS At 5% false discovery rate (FDR), we identified 40 differentially expressed genes (DEGs) related to SGA status among males (95% up- and 5% down-regulated) and 314 DEGs among females (32.5% up- and 67.5% down-regulated). Seven female-specific DEGs overlapped with known imprinted genes (AXL, CYP24A1, GPR1, PLAGL1, CMTM1, DLX5, LY6D). The DEGs in males were significantly enriched for immune response and inflammation signaling pathways whereas the DEGs in females were enriched for organ development signaling pathways (FDR<0.05). Sex-combined analysis identified no additional DEGs, rather 98% of the sex-specific DEGs were no longer significant and the remaining 2% were attenuated. DISCUSSION This study revealed sex-specific human placental gene expression changes and molecular pathways associated with SGA and underscored that unravelling the pathogenesis of SGA warrants consideration of fetal sex as a biological variable. TRIAL REGISTRATION https://www. CLINICALTRIALS gov, Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Xuehuo Zeng
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
28
|
Abbara A, Al-Memar M, Phylactou M, Daniels E, Patel B, Eng PC, Nadir R, Izzi-Engbeaya C, Clarke SA, Mills EG, Hunjan T, Pacuszka E, Yang L, Bech P, Tan T, Comninos AN, Kelsey TW, Kyriacou C, Fourie H, Bourne T, Dhillo WS. Changes in Circulating Kisspeptin Levels During Each Trimester in Women With Antenatal Complications. J Clin Endocrinol Metab 2022; 107:e71-e83. [PMID: 34427658 PMCID: PMC8684464 DOI: 10.1210/clinem/dgab617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Antenatal complications such as hypertensive disorders of pregnancy (HDP), fetal growth restriction (FGR), gestational diabetes (GDM), and preterm birth (PTB) are associated with placental dysfunction. Kisspeptin has emerged as a putative marker of placental function, but limited data exist describing circulating kisspeptin levels across all 3 trimesters in women with antenatal complications. OBJECTIVE We aimed to assess whether kisspeptin levels are altered in women with antenatal complications. METHODS Women with antenatal complications (n = 105) and those with uncomplicated pregnancies (n = 265) underwent serial ultrasound scans and blood sampling at the Early Pregnancy Assessment Unit at Hammersmith Hospital, UK, at least once during each trimester (March 2014 to March 2017). The women with antenatal complications (HDP [n = 32], FGR [n = 17], GDM [n = 35], PTB [n = 11], and multiple complications [n=10]) provided 373 blood samples and the controls provided 930 samples. Differences in circulating kisspeptin levels were assessed. RESULTS Third-trimester kisspeptin levels were higher than controls in HDP but lower in FGR. The odds of HDP adjusted for gestational age, maternal age, ethnicity, BMI, smoking, and parity were increased by 30% (95% CI, 16%-47%; P < 0.0001), and of FGR were reduced by 28% (95% CI, 4-46%; P = 0.025), for every 1 nmol/L increase in plasma kisspeptin. Multiple of gestation-specific median values of kisspeptin were higher in pregnancies affected by PTB (P = 0.014) and lower in those with GDM (P = 0.020), but not significantly on multivariable analysis. CONCLUSION We delineate changes in circulating kisspeptin levels at different trimesters and evaluate the potential of kisspeptin as a biomarker for antenatal complications.
Collapse
Affiliation(s)
- Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Maya Al-Memar
- Tommy’s National Centre for Miscarriage Research, Queen Charlotte’s and Chelsea Hospital, Imperial College London, Du Cane Road, London, UK
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Elisabeth Daniels
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Bijal Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Pei C Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Rans Nadir
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Tia Hunjan
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Ewa Pacuszka
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| | - Tom W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Christopher Kyriacou
- Tommy’s National Centre for Miscarriage Research, Queen Charlotte’s and Chelsea Hospital, Imperial College London, Du Cane Road, London, UK
| | - Hanine Fourie
- Tommy’s National Centre for Miscarriage Research, Queen Charlotte’s and Chelsea Hospital, Imperial College London, Du Cane Road, London, UK
| | - Tom Bourne
- Tommy’s National Centre for Miscarriage Research, Queen Charlotte’s and Chelsea Hospital, Imperial College London, Du Cane Road, London, UK
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12, UK
| |
Collapse
|
29
|
Inno R, Kikas T, Lillepea K, Laan M. Coordinated Expressional Landscape of the Human Placental miRNome and Transcriptome. Front Cell Dev Biol 2021; 9:697947. [PMID: 34368147 PMCID: PMC8334369 DOI: 10.3389/fcell.2021.697947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Placenta is a unique organ that serves its own function, and contributes to maternal gestational adaptation and fetal development. Coordination of its transcriptome to satisfy all the maternal-fetal needs across gestation is not fully understood. MicroRNAs are powerful transcriptome modulators capable to adjust rapidly the expression level and dynamics of large gene sets. This MiR-Seq based study presents a multi-omics investigation of the human placental miRNome and its synergy with the transcriptome. The analysis included 52 placentas representing three trimesters of normal pregnancy, and term cases of late-onset preeclampsia (LO-PE), gestational diabetes and affected fetal growth. Gestational-age dependent differential expression (FDR < 0.05) was detected for 319 of 417 tested miRNAs (76.5%). A shared list of target genes of dynamic miRNAs suggested their coordinated action. The most abundant miR-143-3p revealed as a marker for pregnancy progression. The data suggested critical, but distinct roles of placenta-specific imprinted C19MC and C14MC miRNA clusters. Paternally encoded primate-specific C19MC was highly transcribed during first trimester, potentially fine-tuning the early placental transcriptome in dosage-sensitive manner. Maternally encoded eutherian C14MC showed high expression until term, underlining its key contribution across gestation. A major shift in placental miRNome (16% miRNAs) was observed in LO-PE, but not in other term pregnancy complications. Notably, 13/38 upregulated miRNAs were transcribed from C19MC and only one from C14MC, whereas 11/28 downregulated miRNAs represented C14MC and none C19MC. miR-210-3p, miR-512-5p, miR-32-5p, miR-19a-3p, miR-590-3p, miR-379-5p were differentially expressed in LO-PE and cases of small-for-gestational-age newborns, supporting a shared etiology. Expression correlation analysis with the RNA-Seq data (16,567 genes) of the same samples clustered PE-linked miRNAs into five groups. Large notable clusters of miRNA–gene pairs showing directly and inversely correlated expression dynamics suggested potential functional relationships in both scenarios. The first genome-wide study of placental miR-eQTLs identified 66 placental SNVs associated with the expression of neighboring miRNAs, including PE-linked miRNAs miR-30a-5p, miR-210-3p, miR-490-3p and miR-518-5p. This study provided a rich catalog of miRNAs for further in-depth investigations of their individual and joint effect on placental transcriptome. Several highlighted miRNAs may serve as potential biomarkers for pregnancy monitoring and targets to prevent or treat gestational disorders.
Collapse
Affiliation(s)
- Rain Inno
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Triin Kikas
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Lillepea
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
31
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS, Charnock-Jones DS. The RNA landscape of the human placenta in health and disease. Nat Commun 2021; 12:2639. [PMID: 33976128 PMCID: PMC8113443 DOI: 10.1038/s41467-021-22695-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( https://www.obgyn.cam.ac.uk/placentome/ ).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Functional Genomics, GlaxoSmithKline Limited, Stevenage, Hertfordshire, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pieter-Jan Volders
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Ruano CSM, Apicella C, Jacques S, Gascoin G, Gaspar C, Miralles F, Méhats C, Vaiman D. Alternative splicing in normal and pathological human placentas is correlated to genetic variants. Hum Genet 2021; 140:827-848. [PMID: 33433680 PMCID: PMC8052246 DOI: 10.1007/s00439-020-02248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Two major obstetric diseases, preeclampsia (PE), a pregnancy-induced endothelial dysfunction leading to hypertension and proteinuria, and intra-uterine growth-restriction (IUGR), a failure of the fetus to acquire its normal growth, are generally triggered by placental dysfunction. Many studies have evaluated gene expression deregulations in these diseases, but none has tackled systematically the role of alternative splicing. In the present study, we show that alternative splicing is an essential feature of placental diseases, affecting 1060 and 1409 genes in PE vs controls and IUGR vs controls, respectively, many of those involved in placental function. While in IUGR placentas, alternative splicing affects genes specifically related to pregnancy, in preeclamptic placentas, it impacts a mix of genes related to pregnancy and brain diseases. Also, alternative splicing variations can be detected at the individual level as sharp splicing differences between different placentas. We correlate these variations with genetic variants to define splicing Quantitative Trait Loci (sQTL) in the subset of the 48 genes the most strongly alternatively spliced in placental diseases. We show that alternative splicing is at least partly piloted by genetic variants located either in cis (52 QTL identified) or in trans (52 QTL identified). In particular, we found four chromosomal regions that impact the splicing of genes in the placenta. The present work provides a new vision of placental gene expression regulation that warrants further studies.
Collapse
Affiliation(s)
- Camino S M Ruano
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Clara Apicella
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Géraldine Gascoin
- Unité Mixte de Recherche MITOVASC, Équipe Mitolab, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
- Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Francisco Miralles
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Céline Méhats
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
34
|
Zhang B, Kim MY, Elliot G, Zhou Y, Zhao G, Li D, Lowdon RF, Gormley M, Kapidzic M, Robinson JF, McMaster MT, Hong C, Mazor T, Hamilton E, Sears RL, Pehrsson EC, Marra MA, Jones SJM, Bilenky M, Hirst M, Wang T, Costello JF, Fisher SJ. Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell 2021; 56:1238-1252.e5. [PMID: 33891899 DOI: 10.1016/j.devcel.2021.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The human placenta and its specialized cytotrophoblasts rapidly develop, have a compressed lifespan, govern pregnancy outcomes, and program the offspring's health. Understanding the molecular underpinnings of these behaviors informs development and disease. Profiling the extraembryonic epigenome and transcriptome during the 2nd and 3rd trimesters revealed H3K9 trimethylation overlapping deeply DNA hypomethylated domains with reduced gene expression and compartment-specific patterns that illuminated their functions. Cytotrophoblast DNA methylation increased, and several key histone modifications decreased across the genome as pregnancy advanced. Cytotrophoblasts from severe preeclampsia had substantially increased H3K27 acetylation globally and at genes that are normally downregulated at term but upregulated in this syndrome. In addition, some cases had an immature pattern of H3K27ac peaks, and others showed evidence of accelerated aging, suggesting subtype-specific alterations in severe preeclampsia. Thus, the cytotrophoblast epigenome dramatically reprograms during pregnancy, placental disease is associated with failures in this process, and H3K27 hyperacetylation is a feature of severe preeclampsia.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - M Yvonne Kim
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - GiNell Elliot
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Yan Zhou
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Guangfeng Zhao
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Daofeng Li
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Rebecca F Lowdon
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Matthew Gormley
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mirhan Kapidzic
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Joshua F Robinson
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Michael T McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94122, USA
| | - Chibo Hong
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Tali Mazor
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Emily Hamilton
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Renee L Sears
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Erica C Pehrsson
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Marco A Marra
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Misha Bilenky
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Martin Hirst
- Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, 675 West 10th Aven, Vancouver, BC V5Z 1L3, Canada
| | - Ting Wang
- Department of Genetics Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63108, USA.
| | - Joseph F Costello
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA.
| | - Susan J Fisher
- Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94115, USA; Division of Maternal-Fetal Medicine, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94122, USA.
| |
Collapse
|
35
|
Current knowledge on genetic variants shaping placental transcriptome and their link to gestational and postnatal health. Placenta 2021; 116:2-11. [PMID: 33663810 DOI: 10.1016/j.placenta.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Despite the indispensable role of the placenta in the successful course of pregnancy, regulation of its dynamic transcriptome is still underexplored. The purpose of this literature review was to give an overview and draw attention to the contribution of genetic variation in shaping the human placental gene expression. Studies of placental transcriptome shaped by chromosomal variants are limited and may be confounded by cellular mosaicism and somatic genomic rearrangements. Even in relatively simple cases, such as aneuploidies, the placental transcriptome appears to differ from the assumed systematically increased transcript levels of the involved chromosomes. Single nucleotide variants modulating placental gene expression referred to as expression quantitative trait loci (eQTLs) have been analyzed only in ten candidate gene and three genome-wide association studies (GWAS). The latter identified 417 confident placental eGenes, supported by at least two independent studies. Functional profiling of eGenes highlighted biological pathways important in pregnancy, such as immune response or transmembrane transport activity. A fraction of placental eQTLs (1-3%) co-localize with GWAS loci for adult disorders (metabolic, immunological, neurological), suggesting a co-contributory role of the placenta in the developmental programming of health. Some placental eQTLs have been identified as risk factors for adverse pregnancy outcomes, such as rs4769613 (C > T), located near the FLT1 gene and confidently associated with preeclampsia. More studies are needed to map genetic variants shaping gene expression in different placental cell types across three trimesters in normal and complicated gestations and to clarify to what extent these heritable factors contribute to maternal and offspring disease risks.
Collapse
|
36
|
M Dave K, Kaur L, Randhir KN, Mehendale SS, Sundrani DP, Chandak GR, Joshi SR. Placental growth factor and Fms related tyrosine kinase-1 are hypomethylated in preeclampsia placentae. Epigenomics 2021; 13:257-269. [PMID: 33471580 DOI: 10.2217/epi-2020-0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aims to examine the DNA methylation (DNAm) and expression patterns of genes associated with placental angiogenesis in preeclampsia. Materials & methods: DNAm and expression were examined in normotensive (n = 100) and preeclampsia (n = 100) women using pyrosequencing and quantitative real-time PCR respectively. Results: Hypomethylation at several CpGs was observed in PlGF and FLT-1 in women with preeclampsia compared to normotensive controls. PlGF expression was lower in women with preeclampsia while FLT-1 expression was comparable. DNAm at various CpGs was negatively correlated with expression in both the genes and were associated with maternal blood pressure and birth outcomes. Conclusion: DNAm and expression of angiogenic factors in placentae are differentially regulated in preeclampsia and influence birth outcomes.
Collapse
Affiliation(s)
- Kinjal M Dave
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Lovejeet Kaur
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Karuna N Randhir
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Savita S Mehendale
- Department of Gynecology & Obstetrics, Bharati Vidyapeeth Medical College & Hospital, Pune 411043, India
| | - Deepali P Sundrani
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Sadhana R Joshi
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| |
Collapse
|
37
|
The bivariate NRIP1/ZEB2 RNA marker permits non-invasive presymptomatic screening of pre-eclampsia. Sci Rep 2020; 10:21857. [PMID: 33318568 PMCID: PMC7736279 DOI: 10.1038/s41598-020-79008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Using genome-wide transcriptome analysis by RNA sequencing of first trimester plasma RNA, we tested whether the identification of pregnancies at risk of developing pre-eclampsia with or without preterm birth or growth restriction is possible between weeks 9–14, prior to the appearance of clinical symptoms. We implemented a metaheuristic approach in the self-learning SVM algorithm for differential gene expression analysis of normal pregnancies (n = 108), affected pregnancies (n = 34) and non-pregnant controls (n = 19). Presymptomatic candidate markers for affected pregnancies were validated by RT-qPCR in first trimester samples (n = 34) from an independent cohort. PRKG1 was significantly downregulated in a subset of pregnancies with birth weights below the 10thpercentile as shared symptom. The NRIP1/ZEB2 ratio was found to be upregulated in pregnancies with pre-eclampsia or trisomy 21. Complementary quantitative analysis of both the linear and circular forms of NRIP1 permitted discrimination between pre-eclampsia and trisomy 21. Pre-eclamptic pregnancies showed an increase in linear NRIP1 compared to circular NRIP1, while trisomy 21 pregnancies did not.
Collapse
|
38
|
Influence of labor on direct and indirect determinants of placental 11beta-hydroxysteroid dehydrogenase activity. Arch Gynecol Obstet 2020; 303:401-408. [PMID: 32880710 PMCID: PMC7858211 DOI: 10.1007/s00404-020-05755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/21/2020] [Indexed: 12/01/2022]
Abstract
Purpose Labor is a complex process involving multiple para-, auto- and endocrine cascades. The interaction of cortisol, corticotropin-releasing hormone (CRH) and progesterone is essential. The action of cortisol on the human feto-placental unit is regulated by 11beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2/HSD11B2) that converts cortisol into inactive cortisone. The majority of studies on the assessment of placental 11β-HSD2 function determined indirect activity parameters. It remains elusive if indirect measurements correlate with enzymatic function and if these parameters are affected by potential confounders (e.g., mode of delivery). Thus, we compared determinants of indirect 11β-HSD2 tissue activity with its direct enzymatic turnover rate in placental samples from spontaneous births and cesarean (C)-sections. Methods Using LC–MS/MS, we determined CRH, cortisol, cortisone, progesterone and 17-hydroxy(OH)-progesterone in human term placentas (spontaneous birth vs. C-section, n = 5 each) and measured the enzymatic glucocorticoid conversion rates in placental microsomes. Expression of HSD11B1, 2 and CRH was determined via qRT-PCR in the same samples. Results Cortisol–cortisone ratio correlated with direct microsomal enzymatic turnover. While this observation seemed independent of sampling site, a strong influence of mode of delivery on tissue steroids was observed. The mRNA expression of HSD11B2 correlated with indirect and direct cortisol turnover rates in C-section placentas only. In contrast to C-sections, CRH, cortisol and cortisone levels were significantly increased in placental samples following spontaneous birth. Conclusion Labor involves a series of complex hormonal processes including activation of placental CRH and glucocorticoid metabolism. This has to be taken into account when selecting human cohorts for comparative analysis of placental steroids. Electronic supplementary material The online version of this article (10.1007/s00404-020-05755-4) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Kikas T, Inno R, Ratnik K, Rull K, Laan M. C-allele of rs4769613 Near FLT1 Represents a High-Confidence Placental Risk Factor for Preeclampsia. Hypertension 2020; 76:884-891. [PMID: 32755415 DOI: 10.1161/hypertensionaha.120.15346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The variant rs4769613 T/C within the enhancer element near FLT1, an acknowledged gene in preeclampsia, was previously identified as a risk factor for preeclampsia in the genome-wide association study (GWAS) targeting placental genotypes. We aimed to test the robustness of this association in 2 Estonian cohorts. Both placental sample sets HAPPY PREGNANCY (Development of novel non-invasive biomarkers for fertility and healthy pregnancy; preeclampsia, n=44 versus nonpreeclampsia, n=1724) and REPROMETA (REPROgrammed fetal and/or maternal METAbolism; 52/277) exhibited suggestive association between rs4769613[C] variant and preeclampsia (logistic regression adjusted for gestational age and fetal sex, nominal P<0.05). Meta-analysis across 2 samples (96/2001) replicated the genome-wide association study outcome (Bonferroni corrected P=4×10-3; odds ratio, 1.75 [95% CI, 1.23-2.49]). No association was detected with gestational diabetes mellitus, preterm birth, and newborn parameters. Also, neither maternal nor paternal rs4769613 genotypes predisposed to preeclampsia. The exact role of placental rs4769613 genotype in the preeclampsia pathogenesis is to be clarified as no effect was detected on maternal baseline serum sFlt-1 (soluble fms-related receptor tyrosine kinase 1) levels. However, when placental FLT1 gene expression and maternal serum sFlt-1 measurements were stratified by placental rs4769613 genotypes, significantly higher transcript and biomarker levels were detected in preeclampsia versus nonpreeclampsia cases in the CC- and CT- (Student t test, P≤0.02), but not in the TT-genotype subgroup. We suggest that rs4769613 represents a conditional expression Quantitative Trait Locus, whereby only the enhancer with the C-allele reacts to promote the FLT1 expression in unfavorable placental conditions. The study highlighted that the placental FLT1 rs4769613 C-allele is a preeclampsia-specific risk factor. It may contribute to early identification of high-risk women, for example, when genotyped in the cffDNA available in maternal blood plasma.
Collapse
Affiliation(s)
- Triin Kikas
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Rain Inno
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Kaspar Ratnik
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- SYNLAB Estonia OÜ, Tallinn, Estonia (K. Ratnik)
| | - Kristiina Rull
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynaecology (K. Rull), University of Tartu, Tartu, Estonia
- Women's Clinic, Tartu University Hospital, Tartu, Estonia (K. Rull)
| | - Maris Laan
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
LaBella AL, Abraham A, Pichkar Y, Fong SL, Zhang G, Muglia LJ, Abbot P, Rokas A, Capra JA. Accounting for diverse evolutionary forces reveals mosaic patterns of selection on human preterm birth loci. Nat Commun 2020; 11:3731. [PMID: 32709900 PMCID: PMC7382462 DOI: 10.1038/s41467-020-17258-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/19/2020] [Indexed: 02/02/2023] Open
Abstract
Currently, there is no comprehensive framework to evaluate the evolutionary forces acting on genomic regions associated with human complex traits and contextualize the relationship between evolution and molecular function. Here, we develop an approach to test for signatures of diverse evolutionary forces on trait-associated genomic regions. We apply our method to regions associated with spontaneous preterm birth (sPTB), a complex disorder of global health concern. We find that sPTB-associated regions harbor diverse evolutionary signatures including conservation, excess population differentiation, accelerated evolution, and balanced polymorphism. Furthermore, we integrate evolutionary context with molecular evidence to hypothesize how these regions contribute to sPTB risk. Finally, we observe enrichment in signatures of diverse evolutionary forces in sPTB-associated regions compared to genomic background. By quantifying multiple evolutionary forces acting on sPTB-associated regions, our approach improves understanding of both functional roles and the mosaic of evolutionary forces acting on loci. Our work provides a blueprint for investigating evolutionary pressures on complex traits.
Collapse
Affiliation(s)
- Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Yakov Pichkar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Departments of Biomedical Informatics and Computer Science, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
41
|
Senner CE, Chrysanthou S, Burge S, Lin HY, Branco MR, Hemberger M. TET1 and 5-Hydroxymethylation Preserve the Stem Cell State of Mouse Trophoblast. Stem Cell Reports 2020; 15:1301-1316. [PMID: 32442533 PMCID: PMC7724466 DOI: 10.1016/j.stemcr.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The ten-eleven translocation factor TET1 and its conferred epigenetic modification 5-hydroxymethylcytosine (5hmC) have important roles in maintaining the pluripotent state of embryonic stem cells (ESCs). We previously showed that TET1 is also essential to maintain the stem cell state of trophoblast stem cells (TSCs). Here, we establish an integrated panel of absolute 5hmC levels, genome-wide DNA methylation and hydroxymethylation patterns, transcriptomes, and TET1 chromatin occupancy in TSCs and differentiated trophoblast cells. We show that the combined presence of 5-methylcytosine (5mC) and 5hmC correlates with transcriptional activity of associated genes. Hypoxia can slow down the global loss of 5hmC that occurs upon differentiation of TSCs. Notably, unlike in ESCs and epiblast cells, most TET1-bound regions overlap with active chromatin marks and TFAP2C binding sites and demarcate putative trophoblast enhancer regions. These chromatin modification and occupancy patterns are highly informative to identify novel candidate regulators of the TSC state. 5hmC to 5mC ratios correlate with gene activity in TS cells TS cell differentiation-associated loss of 5hmC is slowed down in hypoxia TET1 binding in TS cells forms long-range interactions with key trophoblast genes Intergenic TET1 binding sites in TS cells demarcate putative trophoblast enhancers
Collapse
Affiliation(s)
- Claire E Senner
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - Stephanie Chrysanthou
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah Burge
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miguel R Branco
- Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
42
|
Medina-Bastidas D, Guzmán-Huerta M, Borboa-Olivares H, Ruiz-Cruz C, Parra-Hernández S, Flores-Pliego A, Salido-Guadarrama I, Camargo-Marín L, Arambula-Meraz E, Estrada-Gutierrez G. Placental Microarray Profiling Reveals Common mRNA and lncRNA Expression Patterns in Preeclampsia and Intrauterine Growth Restriction. Int J Mol Sci 2020; 21:ijms21103597. [PMID: 32443673 PMCID: PMC7279523 DOI: 10.3390/ijms21103597] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are major contributors to perinatal morbidity and mortality. These pregnancy disorders are associated with placental dysfunction and share similar pathophysiological features. The aim of this study was to compare the placental gene expression profiles including mRNA and lncRNAs from pregnant women from four study groups: PE, IUGR, PE-IUGR, and normal pregnancy (NP). Gene expression microarray analysis was performed on placental tissue obtained at delivery and results were validated using RTq-PCR. Differential gene expression analysis revealed that the largest transcript variation was observed in the IUGR samples compared to NP (n = 461; 314 mRNAs: 252 up-regulated and 62 down-regulated; 133 lncRNAs: 36 up-regulated and 98 down-regulated). We also detected a group of differentially expressed transcripts shared between the PE and IUGR samples compared to NP (n = 39), including 9 lncRNAs with a high correlation degree (p < 0.05). Functional enrichment of these shared transcripts showed that cytokine signaling pathways, protein modification, and regulation of JAK-STAT cascade are over-represented in both placental ischemic diseases. These findings contribute to the molecular characterization of placental ischemia showing common epigenetic regulation implicated in the pathophysiology of PE and IUGR.
Collapse
Affiliation(s)
- Diana Medina-Bastidas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Mario Guzmán-Huerta
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Hector Borboa-Olivares
- Subdirección de Investigación en Intervenciones Comunitarias, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - César Ruiz-Cruz
- Hospital de Ginecología y Obstetricia No. 4, Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico City 01090, Mexico;
| | - Sandra Parra-Hernández
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Arturo Flores-Pliego
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Ivan Salido-Guadarrama
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Lisbeth Camargo-Marín
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Eliakym Arambula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico;
| | | |
Collapse
|
43
|
Kochhar P, Manikandan C, Ravikumar G, Dwarkanath P, Sheela CN, George S, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of leptin: fetal sex-independent relation with human placental growth. Eur J Clin Nutr 2020; 74:1603-1612. [PMID: 32382074 DOI: 10.1038/s41430-020-0649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Leptin (LEP) is a vital placental hormone that is known to affect different aspects of placental function and fetal development. The present study aimed to determine the association of placental LEP transcript abundance with maternal, placental, and newborn parameters. SUBJECTS/METHODS In this retrospective case-control study, placental samples (n = 105) were collected from small (SGA) and appropriate (AGA) for gestational age full-term singleton pregnancies (n = 44 SGA and n = 61 AGA). Placental transcript abundance of LEP was assessed by real-time quantitative PCR after normalization to a reference gene panel. LEP methylation was measured using a quantitative MethyLight assay in a subset of samples (n = 54). RESULTS Placental LEP transcript abundance was negatively and significantly associated with placental weight (β = -3.883, P = 0.015). This association continued to be significant in the SGA group (β = -10.332, P = 0.001), both in female (β = -15.423, P = 0.021) and male births (β = -10.029, P = 0.007). LEP transcript abundance was not associated with LEP methylation levels (Spearman's ρ = 0.148, P = 0.287). CONCLUSION We conclude that placental upregulation of LEP is an integral and fetal sex-independent component of placental growth restriction, which can be potentially targeted through maternal dietary modifications to improve fetoplacental growth.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C Manikandan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,School of Biosciences and Technology; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C N Sheela
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - S George
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.
| |
Collapse
|
44
|
A Review of Candidate Genes and Pathways in Preeclampsia-An Integrated Bioinformatical Analysis. BIOLOGY 2020; 9:biology9040062. [PMID: 32230784 PMCID: PMC7235730 DOI: 10.3390/biology9040062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
: Preeclampsia is a pregnancy-specific disorder characterized by the presence of hypertension with the onset of either proteinuria, maternal organ or uteroplacental dysfunction. Preeclampsia is one of the leading causes of maternal and fetal mortality and morbidity worldwide. However, the etiopathologies of preeclampsia are not fully understood. Many studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in preeclampsia. An electronic search was performed through 2019 through PubMed, Scopus, Ovid-Medline, and Gene Expression Omnibus where the following MeSH (Medical Subject Heading) terms were used and they had been specified as the primary focus of the articles: Gene, placenta, preeclampsia, and pregnancy in the title or abstract. We also found additional MeSH terms through Cochrane Library: Transcript, sequencing, and profiling. From 687 studies retrieved from the search, only original publications that had performed high throughput sequencing of human placental tissues that reported on differentially expressed genes in pregnancies with preeclampsia were included. Two reviewers independently scrutinized the titles and abstracts before examining the eligibility of studies that met the inclusion criteria. For each study, study design, sample size, sampling type, and method for gene analysis and gene were identified. The genes listed were further analyzed with the DAVID, STRING and Cytoscape MCODE. Three original research articles involving preeclampsia comprising the datasets in gene expression were included. By combining three studies together, 250 differentially expressed genes were produced at a significance setting of p < 0.05. We identified candidate genes: LEP, NRIP1, SASH1, and ZADHHC8P1. Through GO analysis, we found extracellular matrix organization as the highly significant enriched ontology in a group of upregulated genes and immune process in downregulated genes. Studies on a genetic level have the potential to provide new insights into the regulation and to widen the basis for identification of changes in the mechanism of preeclampsia. Integrated bioinformatics could identify differentially expressed genes which could be candidate genes and potential pathways in preeclampsia that may improve our understanding of the cause and underlying molecular mechanisms that could be used as potential biomarkers for risk stratification and treatment.
Collapse
|
45
|
O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Miller YD, Pelzer ES. Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants. Genes (Basel) 2020; 11:genes11010080. [PMID: 31936801 PMCID: PMC7017208 DOI: 10.3390/genes11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Small-for-gestational-age (SGA) infants are fetuses that have not reached their genetically programmed growth potential. Low birth weight predisposes these infants to an increased risk of developing cardiovascular, metabolic and neurodevelopmental conditions in later life. However, our understanding of how this pathology occurs is currently incomplete. Previous research has focused on understanding the transcriptome, epigenome and bacterial signatures separately. However, we hypothesise that interactions between moderators of gene expression are critical to understanding fetal growth restriction. Through a review of the current literature, we identify that there is evidence of modulated expression/methylation of the placental genome and the presence of bacterial DNA in the placental tissue of SGA infants. We also identify that despite limited evidence of the interactions between the above results, there are promising suggestions of a relationship between bacterial signatures and placental function. This review aims to summarise the current literature concerning fetal growth from multiple avenues and propose a novel relationship between the placental transcriptome, methylome and bacterial signature that, if characterised, may be able to improve our current understanding of the placental response to stress and the aetiology of growth restriction.
Collapse
Affiliation(s)
- Jessica L. O’Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
- Correspondence:
| | - Vicki L. Clifton
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
| | - Adam Ewing
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Yvette D. Miller
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia;
| | - Elise S. Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
| |
Collapse
|
46
|
Perschbacher KJ, Deng G, Sandgren JA, Walsh JW, Witcher PC, Sapouckey SA, Owens CE, Zhang SY, Scroggins SM, Pearson NA, Devor EJ, Sebag JA, Pierce GL, Fisher RA, Kwitek AE, Santillan DA, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Reduced mRNA Expression of RGS2 (Regulator of G Protein Signaling-2) in the Placenta Is Associated With Human Preeclampsia and Sufficient to Cause Features of the Disorder in Mice. Hypertension 2019; 75:569-579. [PMID: 31865781 DOI: 10.1161/hypertensionaha.119.14056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cascade-specific termination of G protein signaling is catalyzed by the RGS (regulator of G protein signaling) family members, including RGS2. Angiotensin, vasopressin, and endothelin are implicated in preeclampsia, and RGS2 is known to inhibit G protein cascades activated by these hormones. Mutations in RGS2 are associated with human hypertension and increased risk of developing preeclampsia and its sequelae. RGS family members are known to influence maternal vascular function, but the role of RGS2 within the placenta has not been explored. Here, we hypothesized that reduced expression of RGS2 within the placenta represents a risk factor for the development of preeclampsia. Although cAMP/CREB signaling was enriched in placentas from human pregnancies affected by preeclampsia compared with clinically matched controls and RGS2 is known to be a CREB-responsive gene, RGS2 mRNA was reduced in placentas from pregnancies affected by preeclampsia. Experimentally reducing Rgs2 expression within the feto-placental unit was sufficient to induce preeclampsia-like phenotypes in pregnant wild-type C57BL/6J mice. Stimulation of RGS2 transcription within immortalized human HTR8/SVneo trophoblasts by cAMP/CREB signaling was discovered to be dependent on the activity of histone deacetylase activity, and more specifically, HDAC9 (histone deacetylase-9), and HDAC9 expression was reduced in placentas from human pregnancies affected by preeclampsia. We conclude that reduced expression of RGS2 within the placenta may mechanistically contribute to preeclampsia. More generally, this work identifies RGS2 as an HDAC9-dependent CREB-responsive gene, which may contribute to reduced RGS2 expression in placenta during preeclampsia.
Collapse
Affiliation(s)
- Katherine J Perschbacher
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Guorui Deng
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Jeremy A Sandgren
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - John W Walsh
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Phillip C Witcher
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Sarah A Sapouckey
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Caitlyn E Owens
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Shao Yang Zhang
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Sabrina M Scroggins
- Department of Obstetrics and Gynecology (S.M.S., E.J.D., D.A.S., M.K.S.), University of Iowa, Iowa City
| | - Nicole A Pearson
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Eric J Devor
- Department of Obstetrics and Gynecology (S.M.S., E.J.D., D.A.S., M.K.S.), University of Iowa, Iowa City
| | - Julien A Sebag
- Department of Physiology (J.A.S.), University of Iowa, Iowa City
| | - Gary L Pierce
- Department of Health and Human Physiology (G.L.P.), University of Iowa, Iowa City.,Abboud Cardiovascular Research Center (G.L.P., D.A.S., M.K.S.), University of Iowa, Iowa City
| | - Rory A Fisher
- From the Department of Pharmacology (K.J.P., G.D., J.A.S., J.W.W., P.C.W., S.A.S., C.E.O., S.Y.Z., N.A.P., R.A.F.), University of Iowa, Iowa City
| | - Anne E Kwitek
- Department of Physiology (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Department of Medicine (A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Donna A Santillan
- Department of Obstetrics and Gynecology (S.M.S., E.J.D., D.A.S., M.K.S.), University of Iowa, Iowa City.,Abboud Cardiovascular Research Center (G.L.P., D.A.S., M.K.S.), University of Iowa, Iowa City
| | | | - Curt D Sigmund
- Department of Physiology (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Mark K Santillan
- Department of Obstetrics and Gynecology (S.M.S., E.J.D., D.A.S., M.K.S.), University of Iowa, Iowa City.,Abboud Cardiovascular Research Center (G.L.P., D.A.S., M.K.S.), University of Iowa, Iowa City
| | - Justin L Grobe
- Department of Physiology (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Department of Biomedical Engineering (J.L.G.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
47
|
Taniguchi K, Kawai T, Kitawaki J, Tomikawa J, Nakabayashi K, Okamura K, Sago H, Hata K. Epitranscriptomic profiling in human placenta: N6-methyladenosine modification at the 5'-untranslated region is related to fetal growth and preeclampsia. FASEB J 2019; 34:494-512. [PMID: 31914637 PMCID: PMC7027905 DOI: 10.1096/fj.201900619rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 01/27/2023]
Abstract
Intracellular mRNA levels are not always proportional to their respective protein levels, especially in the placenta. This discrepancy may be attributed to various factors including post‐transcriptional regulation, such as mRNA methylation (N6‐methyladenosine: m6A). Here, we conducted a comprehensive m6A analysis of human placental tissue from neonates with various birth weights to clarify the involvement of m6A in placental biology. The augmented m6A levels at the 5′‐untranslated region (UTR) in mRNAs of small‐for‐date placenta samples were dominant compared to reduction of m6A levels, whereas a decrease in m6A in the vicinity of stop codons was common in heavy‐for‐date placenta samples. Notably, most of these genes showed similar expression levels between the different birth weight categories. In particular, preeclampsia placenta samples showed consistently upregulated SMPD1 protein levels and increased m6A at 5′‐UTR but did not show increased mRNA levels. Mutagenesis of adenosines at 5′‐UTR of SMPD1 mRNAs actually decreased protein levels in luciferase assay. Collectively, our findings suggest that m6A both at the 5′‐UTR and in the vicinity of stop codon in placental mRNA may play important roles in fetal growth and disease.
Collapse
Affiliation(s)
- Kosuke Taniguchi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
48
|
Deepak V, Sahu MB, Yu J, Jones JW, Kane MA, Taylor RN, Badell ML, Sidell N, Rajakumar A. Retinoic Acid Is a Negative Regulator of sFLT1 Expression in Decidual Stromal Cells, and Its Levels Are Reduced in Preeclamptic Decidua. Hypertension 2019; 73:1104-1111. [PMID: 30879360 DOI: 10.1161/hypertensionaha.118.12564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
sFLT1 (soluble VEGF [vascular endothelial growth factor] receptor-1) levels are increased in preeclampsia-a pathological condition of pregnancy. The mechanism of sFLT1 overexpression by gestational tissues, particularly the decidua, remains unknown. Mass spectrometry measurement of the active retinoid metabolite, all-trans retinoic acid (RA), showed significantly lower levels of RA in preeclamptic versus normotensive decidua. In this study, we investigated the involvement of RA in regulating decidual sFLT1 expression. When decidual stromal cells (DSCs) isolated from the decidua basalis of normotensive and preeclampsia placentas were treated with BMS493-a pan-RAR (RA nuclear receptor) antagonist-upregulation of sFLT1 expression was observed. Conversely, treatment with RA resulted in downregulation of sFLT1 in normotensive DSCs and preeclampsia DSCs. Unlike treatment with cAMP, which induces decidualization while downregulating sFLT1, RA treatment did not alter DSC expression of prolactin-a marker of decidualization-or FOXO1 (forkhead box protein 01)-a transcription factor required for prolactin upregulation. TFAP2A (transcription factor AP-2-alpha [activating enhancer-binding protein 2 alpha]), a different transcription factor was upregulated in normotensive DSCs but not in preeclampsia DSCs after RA treatment. Collectively, our data show that RA suppresses sFLT1 expression in DSCs independently of cellular decidualization. These findings suggest that reduced decidual RA levels may contribute to preeclampsia pathogenesis by allowing sFLT1 accumulation at the maternal-fetal interface.
Collapse
Affiliation(s)
- Venkataraman Deepak
- From the Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA (V.D., M.B.S., M.L.B., N.S., A.R.)
| | - Margaret B Sahu
- From the Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA (V.D., M.B.S., M.L.B., N.S., A.R.)
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore (J.Y., J.W.J., M.A.K.)
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore (J.Y., J.W.J., M.A.K.)
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore (J.Y., J.W.J., M.A.K.)
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City (R.N.T.)
| | - Martina L Badell
- From the Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA (V.D., M.B.S., M.L.B., N.S., A.R.)
| | - Neil Sidell
- From the Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA (V.D., M.B.S., M.L.B., N.S., A.R.)
| | - Augustine Rajakumar
- From the Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA (V.D., M.B.S., M.L.B., N.S., A.R.)
| |
Collapse
|
49
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 458] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Pilvar D, Reiman M, Pilvar A, Laan M. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy. Clin Epigenetics 2019; 11:94. [PMID: 31242935 PMCID: PMC6595585 DOI: 10.1186/s13148-019-0692-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Genomic imprinting, mediated by parent-of-origin-specific epigenetic silencing, adjusts the gene expression dosage in mammals. We aimed to clarify parental allelic expression in the human placenta for 396 claimed candidate imprinted genes and to assess the evidence for the proposed enrichment of imprinted expression in the placenta. The study utilized RNA-Seq-based transcriptome and genotyping data from 54 parental-placental samples representing the three trimesters of gestation, and term cases of preeclampsia, gestational diabetes, and fetal growth disturbances. Results Almost half of the targeted genes (n = 179; 45%) were either not transcribed or showed limited expression in the human placenta. After filtering for the presence of common exonic SNPs, adequacy of sequencing reads and informative families, 91 genes were retained (43 loci form Geneimprint database; 48 recently proposed genes). Only 11/91 genes (12.1%) showed confident signals of imprinting (binomial test, Bonferroni corrected P < 0.05; > 90% transcripts originating from one parental allele). The confirmed imprinted genes exhibit enriched placental expression (PHLDA2, H19, IGF2, MEST, ZFAT, PLAGL1, AIM1) or are transcribed additionally only in the adrenal gland (MEG3, RTL1, PEG10, DLK1). Parental monoallelic expression showed extreme stability across gestation and in term pregnancy complications. A distinct group of additional 14 genes exhibited a statistically significant bias in parental allelic proportions defined as having 65–90% of reads from one parental allele (e.g., KLHDC10, NLRP2, RHOBTB3, DNMT1). Molecular mechanisms behind biased parental expression are still to be clarified. However, 66 of 91 (72.5%) analyzed candidate imprinted genes showed no signals of deviation from biallelic expression. Conclusions As placental tissue is not included in The Genotype-Tissue Expression (GTEx) project, the study contributed to fill the gap in the knowledge concerning parental allelic expression. A catalog of parental allelic proportions and gene expression of analyzed loci across human gestation and in term pregnancy complications is provided as additional files. The study outcome suggested that true imprinting in the human placenta is restricted to well-characterized loci. High expression of imprinted genes during mid-pregnancy supports their critical role in developmental programming. Consistent with the data on other GTEx tissues, the number of human imprinted genes appears to be overestimated. Electronic supplementary material The online version of this article (10.1186/s13148-019-0692-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Pilvar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Mario Reiman
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Arno Pilvar
- Veeuss OÜ, Jaama tn 185-49, 50705, Tartu, Tartu, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia.
| |
Collapse
|