1
|
Arafeh-Dalmau N, Villaseñor-Derbez JC, Schoeman DS, Mora-Soto A, Bell TW, Butler CL, Costa M, Dunga LV, Houskeeper HF, Lagger C, Pantano C, Del Pozo DL, Sink KJ, Sletten J, Vincent T, Micheli F, Cavanaugh KC. Global floating kelp forests have limited protection despite intensifying marine heatwave threats. Nat Commun 2025; 16:3173. [PMID: 40180911 PMCID: PMC11968876 DOI: 10.1038/s41467-025-58054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Kelp forests are one of the earth's most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081-2100) compared to contemporary (2001-2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.
Collapse
Affiliation(s)
- Nur Arafeh-Dalmau
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA.
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA.
- Centre for Biodiversity Conservation, School of the Environment, University of Queensland, St. Lucia, QLD, Australia.
- MasKelp Foundation, Monterey, California, USA.
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland.
| | - Juan Carlos Villaseñor-Derbez
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Department of Environmental Science and Policy, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL, USA
- Frost Institute of Data Science & Computing, University of Miami, Miami, FL, USA
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Alejandra Mora-Soto
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Claire L Butler
- Institute of Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Maycira Costa
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Loyiso V Dunga
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- University of Cape Town, Cape Town, South Africa
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Henry F Houskeeper
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Cristian Lagger
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | | | | | - Kerry J Sink
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Jennifer Sletten
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Timothe Vincent
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Gilmour ME, Pollock K, Adams J, Block BA, Caselle JE, Filous A, Friedlander AM, Game ET, Hazen EL, Hill M, Holmes ND, Lafferty KD, Maxwell SM, McCauley DJ, Schallert R, Shaffer SA, Wolff NH, Wegmann A. Multi-Species Telemetry Quantifies Current and Future Efficacy of a Remote Marine Protected Area. GLOBAL CHANGE BIOLOGY 2025; 31:e70138. [PMID: 40231377 PMCID: PMC11997735 DOI: 10.1111/gcb.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/16/2025]
Abstract
Large-scale marine protected areas (LSMPAs; > 1000 km2) provide important refuge for large mobile species, but most do not encompass species' ranges. To better understand current and future LSMPA value, we concurrently tracked nine species (seabirds, cetaceans, pelagic fishes, manta rays, reef sharks) at Palmyra Atoll and Kingman Reef (PKMPA) in the U.S. Pacific Islands Heritage Marine National Monument. PKMPA and the U.S. Exclusive Economic Zone encompassed 39% and 54% of species movements (n = 83; tracking duration range: 0.5-350 days), respectively. Species distribution models indicated 73% of PKMPA contained highly suitable habitat. Under two projected future scenarios (SSP 1-2.6, "Sustainability"; SSP 3-7.0, "Rocky Road"), strong sea surface temperature gradients initially could cause abrupt oceanic change resulting in predicted habitat loss in 2040-2050, followed by an equilibrium response and regained habitat by 2090-2100. Current and future suitable habitats were available adjacent to PKMPA, suggesting that increased MPA size could enhance protection. Our three-tiered approach combining animal tracking with publicly available remote sensing data and future projected environmental scenarios could be used to design, study, and monitor protected areas throughout the world. Holistic approaches that encompass diverse species and habitat use can enhance assessments of protected area designs. Animal telemetry and remote sensing may be helpful for ascertaining the extent to which other MPAs protect large mobile species in the future.
Collapse
Affiliation(s)
- Morgan E. Gilmour
- U.S. Geological SurveyWestern Ecological Research Center, Santa Cruz Field StationSanta CruzCaliforniaUSA
- Earth Science DivisionNational Aeronautics and Space Administration, Ames Research CenterMoffett FieldCaliforniaUSA
| | | | - Josh Adams
- U.S. Geological SurveyWestern Ecological Research Center, Santa Cruz Field StationSanta CruzCaliforniaUSA
| | - Barbara A. Block
- Department of OceansStanford UniversityPacific GroveCaliforniaUSA
| | - Jennifer E. Caselle
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | | | - Alan M. Friedlander
- Pristine SeasNational Geographic SocietyWashington, DCUSA
- Hawaiʻi Institute of Marine BiologyUniversity of HawaiʻiHawaiiUSA
| | | | - Elliott L. Hazen
- Ecosystem Science DivisionSouthwest Fisheries Science Center, National Oceanic and Atmospheric AdministrationMontereyCaliforniaUSA
| | - Marie Hill
- Pacific Islands Fisheries Science CenterNational Oceanic and Atmospheric AdministrationHonoluluHawaiiUSA
| | | | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center, Santa Barbara Field Station c/o Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Sara M. Maxwell
- School of Interdisciplinary Arts and SciencesUniversity of WashingtonBothellWAUSA
| | - Douglas J. McCauley
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Robert Schallert
- Department of OceansStanford UniversityPacific GroveCaliforniaUSA
| | - Scott A. Shaffer
- Department of Biological SciencesSan Jose State UniversitySan JoseCaliforniaUSA
| | | | | |
Collapse
|
3
|
Smith JG, Lopazanski C, Free CM, Brun J, Anderson C, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Gill DA, Hamilton SL, Kaschner K, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Malone D, Marraffini ML, Parsons-Field A, Spiecker B, Yeager M, Nickols KJ, Caselle JE. Conservation benefits of a large marine protected area network that spans multiple ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14435. [PMID: 39786314 DOI: 10.1111/cobi.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025]
Abstract
Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance. Using a meta-analytic framework, we evaluated the ability of MPAs to conserve fish biomass, richness, and diversity. At the scale of the network and for 3 of 4 regions, the biomass of species targeted by fishing was positively associated with the level of regulatory protection and was greater inside no-take MPAs, whereas species not targeted by fishing had similar biomass in MPAs and areas open to fishing. In contrast, species richness and diversity were not as strongly enhanced by MPA protection. The key features of conservation effectiveness included MPA age, preimplementation fisheries pressure, and habitat diversity. Important drivers of MPA effectiveness for single MPAs were consistent across MPAs in the network, spanning regions and ecosystems. With international targets aimed at protecting 30% of the world's oceans by 2030, MPA design and assessment frameworks should consider conservation performance at multiple ecologically relevant scales, from individual MPAs to MPA networks.
Collapse
Grants
- R/MPA-43 California Sea Grant, University of California, San Diego
- R/MPA-44 California Sea Grant, University of California, San Diego
- R/MPA-45 California Sea Grant, University of California, San Diego
- R/MPA-46 California Sea Grant, University of California, San Diego
- R/MPA-48 California Sea Grant, University of California, San Diego
- #C0302700 California Ocean Protection Council
- #C0752003 California Ocean Protection Council
- #C0752005 California Ocean Protection Council
- David and Lucile Packard Foundation
- P1970018 California Department of Fish and Wildlife
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Cori Lopazanski
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- Research Data Services, Library, University of California Santa Barbara, Santa Barbara, California, USA
| | - Clarissa Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - David A Gill
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Daniel Malone
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Michelle L Marraffini
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Avrey Parsons-Field
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Barbara Spiecker
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Mallarie Yeager
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
- Habitat Conservation Division, Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
4
|
Young MA, Critchell K, Sams MA. Using predictive models to identify kelp refuges in marine protected areas for management prioritization. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3084. [PMID: 39831801 DOI: 10.1002/eap.3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa. These observations were collected across three scuba sampling programs that extend from 1998 to 2019. We then associated those observations with habitat and environmental variables including depth, seafloor structure, wave climate, currents, temperature, and population connectivity in generalized additive mixed-effects models and used these models to develop predictive maps of kelp cover across the Victorian marine protected areas (MPAs). These models were also used to project kelp coverage into the future by replacing wave climate and temperature with future projections (2090, Representative Concentration Pathways [RCPs] 4.5 and 8.5). Once the spatial predictions were compiled, we calculated percent cover change from 1998 to 2019, stability over the same period, and future predicted change in percent cover (2019-2090) to understand the dynamics for each species across the MPAs. We also used the current percentage cover, stability, and future percentage cover to develop a ranking system for classifying the maps into very unlikely refugia, unlikely refugia, neutral, potential refugia, and likely refugia. A management framework was then developed to use those refugia ranking values to inform management actions, and we applied this framework across three case studies: one at the scale of the MPA network and two at the scale of individual MPAs, one where management decisions were the same for both species, and one where the actions were species-specific. This study shows how species distribution models, both contemporary and with future projections, can help to identify potential refugia areas that can be used to prioritize management decisions and future-proof restoration actions.
Collapse
Affiliation(s)
- Mary A Young
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Warrnambool, Victoria, Australia
| | - Kay Critchell
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Queenscliff Campus, Queenscliff, Victoria, Australia
| | - Michael A Sams
- Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Kumagai JA, Goodman MC, Villaseñor‐Derbez JC, Schoeman DS, Cavanuagh KC, Bell TW, Micheli F, De Leo G, Arafeh‐Dalmau N. Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17620. [PMID: 39663647 PMCID: PMC11635138 DOI: 10.1111/gcb.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014-2016 marine heatwave regime that occurred in the region. We also leverage a 22-year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three-level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators-lobster and sheephead-are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate-adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region-specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate-change impacts given their local ecological contexts, and what additional measures may be needed.
Collapse
Affiliation(s)
- Joy A. Kumagai
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Maurice C. Goodman
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Juan Carlos Villaseñor‐Derbez
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiCoral GablesFloridaUSA
- Frost Institute for Data Science & ComputingUniversity of MiamiCoral GablesFloridaUSA
| | - David S. Schoeman
- Ocean Futures Research Cluster, School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- Centre for African Conservation Ecology, Department of ZoologyNelson Mandela UniversityGqeberhaSouth Africa
| | - Kyle C. Cavanuagh
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Tom W. Bell
- Department of Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Fiorenza Micheli
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Stanford Center for Ocean SolutionsStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Giulio De Leo
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Nur Arafeh‐Dalmau
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Centre for Biodiversity Conservation, School of the EnvironmentUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Marraffini ML, Hamilton SL, Marin Jarrin JR, Ladd M, Koval G, Madden JR, Mangino I, Parker LM, Emery KA, Terhaar K, Hubbard DM, Miller RJ, Dugan JE. Evaluating the influence of marine protected areas on surf zone fish. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14296. [PMID: 38770838 PMCID: PMC11588989 DOI: 10.1111/cobi.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Marine protected areas (MPAs) globally serve conservation and fisheries management goals, generating positive effects in some marine ecosystems. Surf zones and sandy beaches, critical ecotones bridging land and sea, play a pivotal role in the life cycles of numerous fish species and serve as prime areas for subsistence and recreational fishing. Despite their significance, these areas remain understudied when evaluating the effects of MPAs. We compared surf zone fish assemblages inside and outside MPAs across 3 bioregions in California (USA). Using seines and baited remote underwater videos (BRUVs), we found differences in surf zone fish inside and outside MPAs in one region. Inside south region MPAs, we observed higher abundance (Tukey's honest significant difference [HSD] = 0.83, p = 0.0001) and richness (HSD = 0.22, p = 0.0001) in BRUVs and greater biomass (HSD = 0.32, p = 0.0002) in seine surveys compared with reference sites. Selected live-bearing, fished taxa were positively affected by MPAs. Elasmobranchs displayed greater abundance in BRUV surveys and higher biomass in seine surveys inside south region MPAs (HSD = 0.35, p = 0.0003 and HSD = 0.23, p = 0.008, respectively). Although we observed no overall MPA signal for Embiotocidae, abundances of juvenile and large adult barred surfperch (Amphistichus argenteus), the most abundant fished species, were higher inside MPAs (K-S test D = 0.19, p < 0.0001). Influence of habitat characteristics on MPA performance indicated surf zone width was positively associated with fish abundance and biomass but negatively associated with richness. The south region had the largest positive effect size on all MPA performance metrics. Our findings underscored the variability in species richness and composition across regions and survey methods that significantly affected differences observed inside and outside MPAs. A comprehensive assessment of MPA performance should consider specific taxa, their distribution, and the effects of habitat factors and geography.
Collapse
Affiliation(s)
- M. L. Marraffini
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - S. L. Hamilton
- Moss Landing Marine LaboratoriesSan Jose State UniversityMoss LandingCaliforniaUSA
| | - J. R. Marin Jarrin
- Department of Fisheries BiologyCalifornia State Polytechnic University, HumboldtArcataCaliforniaUSA
| | - M. Ladd
- Southeast Fisheries Science CenterNOAA‐National Marine Fisheries ServiceMiamiFloridaUSA
| | - G. Koval
- Moss Landing Marine LaboratoriesSan Jose State UniversityMoss LandingCaliforniaUSA
| | - J. R. Madden
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - I. Mangino
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - L. M. Parker
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Moss Landing Marine LaboratoriesSan Jose State UniversityMoss LandingCaliforniaUSA
| | - K. A. Emery
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of GeographyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - K. Terhaar
- Department of Fisheries BiologyCalifornia State Polytechnic University, HumboldtArcataCaliforniaUSA
| | - D. M. Hubbard
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - R. J. Miller
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - J. E. Dugan
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
7
|
Srednick G, Swearer SE. Effects of protection and temperature variation on temporal stability in a marine reserve network. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14220. [PMID: 37937466 DOI: 10.1111/cobi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Understanding the drivers of ecosystem stability has been a key focus of modern ecology as the impacts of the Anthropocene become more prevalent and extreme. Marine protected areas (MPAs) are tools used globally to promote biodiversity and mediate anthropogenic impacts. However, assessing the stability of natural ecosystems and responses to management actions is inherently challenging due to the complex dynamics of communities with many interdependent taxa. Using a 12-year time series of subtidal community structure in an MPA network in the Channel Islands (United States), we estimated species interaction strength (competition and predation), prey species synchrony, and temporal stability in trophic networks, as well as temporal variation in sea surface temperature to explore the causal drivers of temporal stability at community and metacommunity scales. At the community scale, only trophic networks in MPAs at Santa Rosa Island showed greater temporal stability than reference sites, likely driven by reduced prey synchrony. Across islands, competition was sometimes greater and predation always greater in MPAs compared with reference sites. Increases in interaction strength resulted in lower temporal stability of trophic networks. Although MPAs reduced prey synchrony at the metacommunity scale, reductions were insufficient to stabilize trophic networks. In contrast, temporal variation in sea surface temperature had strong positive direct effects on stability at the regional scale and indirect effects at the local scale through reductions in species interaction strength. Although MPAs can be effective management strategies for protecting certain species or locations, our findings for this MPA network suggest that temperature variation has a stronger influence on metacommunity temporal stability by mediating species interactions and promoting a mosaic of spatiotemporal variation in community structure of trophic networks. By capturing the full spectrum of environmental variation in network planning, MPAs will have the greatest capacity to promote ecosystem stability in response to climate change.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
9
|
Talbot E, Jontila JBS, Gonzales BJ, Dolorosa RG, Jose ED, Sajorne R, Sailley S, Kay S, Queirós AM. Incorporating climate-readiness into fisheries management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170684. [PMID: 38320704 DOI: 10.1016/j.scitotenv.2024.170684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tropical oceans are among the first places to exhibit climate change signals, affecting the habitat distribution and abundance of marine fish. These changes to stocks, and subsequent impacts on fisheries production, may have considerable implications for coastal communities dependent on fisheries for food security and livelihoods. Understanding the impacts of climate change on tropical marine fisheries is therefore an important step towards developing sustainable, climate-ready fisheries management measures. We apply an established method of spatial meta-analysis to assess species distribution modelling datasets for key species targeted by the Philippines capture fisheries. We analysed datasets under two global emissions scenarios (RCP4.5 and RCP8.5) and varying degrees of fishing pressure to quantify potential climate vulnerability of the target community. We found widespread responses to climate change in pelagic species in particular, with abundances projected to decline across much of the case study area, highlighting the challenges of maintaining food security in the face of a rapidly changing climate. We argue that sustainable fisheries management in the Philippines in the face of climate change can only be achieved through management strategies that allow for the mitigation of, and adaptation to, pressures already locked into the climate system for the near term. Our analysis may support this, providing fisheries managers with the means to identify potential climate change hotspots, bright spots and refugia, thereby supporting the development of climate-ready management plans.
Collapse
Affiliation(s)
- Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom.
| | - Jean-Beth S Jontila
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Benjamin J Gonzales
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Roger G Dolorosa
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Edgar D Jose
- College of Arts and Sciences, North Eastern Mindanao State University, Lianga, Surigao Del Sur, Philippines
| | - Recca Sajorne
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Sevrine Sailley
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Susan Kay
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ana M Queirós
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
10
|
Lenihan HS, Reed DC, Vigo M, Leiphardt C, Hofmiester JKK, Gallagher JP, Voss C, Moore P, Miller RJ. Regional differences in fishing behavior determine whether a marine reserve network enhances fishery yield. Sci Rep 2024; 14:1242. [PMID: 38216603 PMCID: PMC10786943 DOI: 10.1038/s41598-024-51525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
A network of marine reserves can enhance yield in depleted fisheries by protecting populations, particularly large, old spawners that supply larvae for interspersed fishing grounds. The ability of marine reserves to enhance sustainable fisheries is much less evident. We report empirical evidence of a marine reserve network improving yield regionally for a sustainable spiny lobster fishery, apparently through the spillover of adult lobsters and behavioral adaptation by the fishing fleet. Results of a Before-After, Control-Impact analysis found catch, effort, and Catch-Per-Unit Effort increased after the establishment of marine reserves in the northern region of the fishery where fishers responded by fishing intensively at reserve borders, but declined in the southern region where they vacated once productive fishing grounds. The adaptation of the northern region of the fishery may have been aided by a history of collaboration between fishers, scientists, and managers, highlighting the value of collaborative research and education programs for preparing fisheries to operate productively within a seascape that includes a large marine reserve network.
Collapse
Affiliation(s)
- Hunter S Lenihan
- Marine Science Institute, University of California, Santa Barbara, CA, USA.
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Maria Vigo
- Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Callie Leiphardt
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Jordan P Gallagher
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Chris Voss
- California Lobster and Trap Fishermen's Association, San Marcos, USA
| | - Peyton Moore
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
11
|
Bauer J, Segovia-Rendón J, Lorda J, Abadía-Cardoso A, Malpica-Cruz L, Alvarado-Graef P, Searcy-Bernal R, Vázquez-Vera L, Beas-Luna R. Short-term effects of community-based marine reserves on green abalone, as revealed by population studies. Sci Rep 2024; 14:955. [PMID: 38200041 PMCID: PMC10781752 DOI: 10.1038/s41598-023-50316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Marine reserves (MRs) are implemented worldwide to protect, restore, and manage marine ecosystems and species. However, it is important to document the positive effects those marine reserves have on slow-growth, temperate invertebrates such as abalone. Abalone, Haliotis spp., are marine gastropods of high economic value extracted worldwide for decades, which has led to fisheries-driven population decreases. In this work, we focused on a case study and assessed the short-term (1-2 years) effects of marine reserves established and managed by a local fishing cooperative at Guadalupe Island, Mexico. We evaluated the population status of green abalone, H. fulgens, by conducting (1) an assessment of the green abalone population around Guadalupe Island through subtidal monitoring and (2) an evaluation of the effect of two recently established marine reserves on population parameters such as the increase in density (individuals·m2), biomass, number of aggregated abalone, egg production, and proportion of individuals bigger than 150 mm (minimum harvest size) compared to fished areas. To assess the population around Guadalupe Island, we surveyed 11,160 m2 during 2020 and 2021. We recorded 2327 green abalones with a mean ± SE shell length of 135.978 ± 0.83 mm and a mean density of 0.21 ± 0.02 individuals·m2. All variables were statistically higher at the MRs except for shell length in 2021. In this work, we report for the first time the green abalone population status at Guadalupe Island and a positive short-term biological response to community-based marine reserves. This study suggests that a network of MRs combined with good management could help abalone populations in the short term in Guadalupe Island, potentially leading to more sustainable fishing practices and social-ecological resilience.
Collapse
Affiliation(s)
- Jeremie Bauer
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
- Departamento de Biotecnología Marina, Centro de Investigación y Estudios Superiores de Ensenada, Carretera Ensenada-Tijuana 3918, 22860, Ensenada, Baja California, Mexico
| | - Jaime Segovia-Rendón
- Proyectos y Servicios Marinos (PROSEMAR), Colinas de Ensenada 209, 22760, Ensenada, Baja California, Mexico
| | - Julio Lorda
- Facultad de Ciencias, UABC, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
- Tijuana River National Estuarine Research Reserve, 301 Caspian Way, Imperial Beach, CA, 91932, USA
| | - Alicia Abadía-Cardoso
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
| | - Luis Malpica-Cruz
- Instituto de Investigaciones Oceanológicas, UABC, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
- ECOCIMATI, A.C., Av. Del Puerto 2270 Colonia Hidalgo, 22880, Ensenada, Baja California, Mexico
| | - Patricia Alvarado-Graef
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
| | - Ricardo Searcy-Bernal
- Instituto de Investigaciones Oceanológicas, UABC, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico
| | - Leonardo Vázquez-Vera
- Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur KM 5.5, 23080, La Paz, Baja California Sur, Mexico
| | - Rodrigo Beas-Luna
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
12
|
Smith JG, Free CM, Lopazanski C, Brun J, Anderson CR, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Hamilton SL, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Nickols KJ, Caselle JE. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5634-5651. [PMID: 37439293 DOI: 10.1111/gcb.16862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Cori Lopazanski
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Clarissa R Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
13
|
Ziegler SL, Johnson JM, Brooks RO, Johnston EM, Mohay JL, Ruttenberg BI, Starr RM, Waltz GT, Wendt DE, Hamilton SL. Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities. Sci Rep 2023; 13:1405. [PMID: 36697490 PMCID: PMC9876911 DOI: 10.1038/s41598-023-28507-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.
Collapse
Affiliation(s)
- Shelby L Ziegler
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA. .,Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.
| | - Jasmin M Johnson
- Department of Marine Science, California State University Monterey Bay, Seaside, CA, 93955, USA
| | - Rachel O Brooks
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Erin M Johnston
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Jacklyn L Mohay
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Benjamin I Ruttenberg
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| | - Grant T Waltz
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dean E Wendt
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, 95039, USA
| |
Collapse
|
14
|
Eger AM, Marzinelli EM, Christie H, Fagerli CW, Fujita D, Gonzalez AP, Hong SW, Kim JH, Lee LC, McHugh TA, Nishihara GN, Tatsumi M, Steinberg PD, Vergés A. Global kelp forest restoration: past lessons, present status, and future directions. Biol Rev Camb Philos Soc 2022; 97:1449-1475. [PMID: 35255531 PMCID: PMC9543053 DOI: 10.1111/brv.12850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.
Collapse
Affiliation(s)
- Aaron M. Eger
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
| | - Ezequiel M. Marzinelli
- The University of Sydney, School of Life and Environmental SciencesSydneyNSW2006Australia
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Hartvig Christie
- Norwegian Institute for Water ResearchØkernveien 94Oslo0579Norway
| | | | - Daisuke Fujita
- University of Tokyo Marine Science and Technology, School of Marine Bioresources, Applied PhycologyKonan, Minato‐kuTokyo108‐8477Japan
| | - Alejandra P. Gonzalez
- Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileLas Palmeras 3425, ÑuñoaSantiagoChile
| | - Seok Woo Hong
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Jeong Ha Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Lynn C. Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site60 Second Beach Road, SkidegateHaida GwaiiBCV0T 1S1Canada
- Canada & School of Environmental Sciences, University of Victoria3800 Finnerty RoadVictoriaBCV8P 5C2Canada
| | - Tristin Anoush McHugh
- Reef Check Foundation, Long Marine Laboratory115 McAllister RoadSanta CruzCA95060U.S.A.
- Present address:
The Nature Conservancy830 S StreetSacramentoCA95811U.S.A.
| | - Gregory N. Nishihara
- Organization for Marine Science and TechnologyInstitute for East China Sea Research, Nagasaki University1551‐7 Taira‐machiNagasaki City851‐2213Japan
| | - Masayuki Tatsumi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTAS7004Australia
| | - Peter D. Steinberg
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| |
Collapse
|
15
|
Reid M, Collins ML, Hall SRJ, Mason E, McGee G, Frid A. Protecting our coast for everyone's future: Indigenous and scientific knowledge support marine spatial protections proposed by Central Coast First Nations in Pacific Canada. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Mike Reid
- Heiltsuk Integrated Resource Management Department Haíłzaqv Nation Wágḷísḷa British Columbia Canada
| | | | | | - Ernest Mason
- Kitasoo Xai'xais Fisheries Kitasoo Xai'xais Nation Klemtu British Columbia Canada
| | - Gord McGee
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| | - Alejandro Frid
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| |
Collapse
|
16
|
Lenihan HS, Fitzgerald SP, Reed DC, Hofmeister JKK, Stier AC. Increasing spillover enhances southern California spiny lobster catch along marine reserve borders. Ecosphere 2022. [DOI: 10.1002/ecs2.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hunter S. Lenihan
- Bren School of Environmental Science and Management University of California Santa Barbara California USA
| | - Sean P. Fitzgerald
- Bren School of Environmental Science and Management University of California Santa Barbara California USA
- Florida Fish and Wildlife Conservation Commission Tallahassee Florida USA
| | - Daniel C. Reed
- Marine Science Institute University of California Santa Barbara California USA
| | | | - Adrian C. Stier
- Marine Science Institute University of California Santa Barbara California USA
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara California USA
| |
Collapse
|
17
|
Gilmour M, Adams J, Block B, Caselle J, Friedlander A, Game E, Hazen E, Holmes N, Lafferty K, Maxwell S, McCauley D, Oleson E, Pollock K, Shaffer S, Wolff N, Wegmann A. Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Salvetat J, Bez N, Habasque J, Lebourges-Dhaussy A, Lopes C, Roudaut G, Simier M, Travassos P, Vargas G, Bertrand A. Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework. Sci Rep 2022; 12:8787. [PMID: 35610249 PMCID: PMC9130204 DOI: 10.1038/s41598-022-12409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Tropical marine ecosystems are highly biodiverse and provide resources for small-scale fisheries and tourism. However, precise information on fish spatial distribution is lacking, which limits our ability to reconcile exploitation and conservation. We combined acoustics to video observations to provide a comprehensive description of fish distribution in a typical tropical environment, the Fernando de Noronha Archipelago (FNA) off Northeast Brazil. We identified and classified all acoustic echoes into ten fish assemblage and two triggerfish species. This opened up the possibility to relate the different spatial patterns to a series of environmental factors and the level of protection. We provide the first biomass estimation of the black triggerfish Melichthys niger, a key tropical player. By comparing the effects of euphotic and mesophotic reefs we show that more than the depth, the most important feature is the topography with the shelf-break as the most important hotspot. We also complete the portrait of the island mass effect revealing a clear spatial dissymmetry regarding fish distribution. Indeed, while primary productivity is higher downstream, fish concentrate upstream. The comprehensive fish distribution provided by our approach is directly usable to implement scientific-grounded Marine Spatial Planning.
Collapse
Affiliation(s)
- Julie Salvetat
- Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil. .,MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Sète, France. .,Institut de Recherche pour le Développement, Sète, France.
| | - Nicolas Bez
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Sète, France.,Institut de Recherche pour le Développement, Sète, France
| | | | | | - Cristiano Lopes
- Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | | | - Monique Simier
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Sète, France.,Institut de Recherche pour le Développement, Sète, France
| | - Paulo Travassos
- Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Gary Vargas
- Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Arnaud Bertrand
- Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.,MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Sète, France.,Institut de Recherche pour le Développement, Sète, France.,Laboratório de Oceanografia Física Estuarina e Costeira, Depto. Oceanografia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
19
|
Williams C, Rees S, Sheehan EV, Ashley M, Davies W. Rewilding the Sea? A Rapid, Low Cost Model for Valuing the Ecosystem Service Benefits of Kelp Forest Recovery Based on Existing Valuations and Benefit Transfers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.642775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kelp forests and seagrasses are important carbon sinks that are declining globally. Rewilding the sea, through restoring these crucial habitats, their related biodiversity and ecosystem contributions, is a movement and concept, gathering pace in the United Kingdom and globally. Yet understanding of the economic costs and benefits for setting areas of the sea aside—and removing some human impacts from them—is not well understood. The potential benefits and distributional impacts on marine users and wider society is critical to make evidence based decisions. Ensuring that areas of the sea recover, and that the impacts (both positive and negative) are understood, requires targeted research to help guide decisions to optimize the opportunity of recovery, while minimizing any negative impacts on sea users and coastal communities. We approach the problem from an ecosystem services perspective, looking at the opportunity of restoring a kelp bed in Sussex by removing fishing activity from areas historically covered in kelp. Development of an ecosystem services valuation model showed restoring kelp to its highest mapped past extent (96% greater, recorded in 1987) would deliver a range of benefits valued at over £ 3.5 million GBP. The application of an ecosystem services approach enabled the full range of benefits from habitat restoration to be assessed. The results and the gaps identified in site specific data and values for this area, have broader implications in fisheries management and natural resource management tools for restoring marine habitats and ecosystems in the United Kingdom.
Collapse
|
20
|
Gaiser EE, Kominoski JS, McKnight DM, Bahlai CA, Cheng C, Record S, Wollheim WM, Christianson KR, Downs MR, Hawman PA, Holbrook SJ, Kumar A, Mishra DR, Molotch NP, Primack RB, Rassweiler A, Schmitt RJ, Sutter LA. Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance. Ecosphere 2022; 13:e4019. [PMID: 35573027 PMCID: PMC9087370 DOI: 10.1002/ecs2.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022] Open
Abstract
The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.
Collapse
Affiliation(s)
- Evelyn E. Gaiser
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - John S. Kominoski
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - Diane M. McKnight
- Institute of Arctic and Alpine Research and Environmental Studies ProgramUniversity of ColoradoBoulderColoradoUSA
| | | | - Chingwen Cheng
- The Design SchoolArizona State UniversityTempeArizonaUSA
| | - Sydne Record
- Department of BiologyBryn Mawr CollegeBryn MawrPennsylvaniaUSA
| | - Wilfred M. Wollheim
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | | | - Martha R. Downs
- National Center for Ecological Analysis and SynthesisUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Peter A. Hawman
- Department of GeographyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sally J. Holbrook
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Abhishek Kumar
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | | | - Noah P. Molotch
- Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderColoradoUSA
| | | | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Russell J. Schmitt
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Lori A. Sutter
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
21
|
Hopf JK, Caselle JE, White JW. Recruitment variability and sampling design interact to influence the detectability of protected area effects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2511. [PMID: 34870882 DOI: 10.1002/eap.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Correctly identifying the effects of a human impact on a system is a persistent challenge in ecology, driven partly by the variable nature of natural systems. This is particularly true in many marine fishery species, which frequently experience large temporal fluctuations in recruitment that produce interannual variations in populations. This variability complicates efforts to maintain stocks at management targets or detect the effects of rebuilding efforts. We address this challenge in the context of no-take marine reserves by exploring how variable larval recruitment could interact with the timing of reserve establishment and choice of sampling design to affect population dynamics and the detectability of reserve effects. To predict population changes in the years following a no-take reserve implementation, we first tested for periodicity in larval recruitment in an important U.S. Pacific coast recreational fishery species (kelp bass, Paralabrax clathratus) and then included that pattern in a population model. We also used this model to determine the detectability of population increases under alternative sampling approaches and minimum age sampled. Kelp bass larval recruitment in the Channel Islands, California, peaked every about six (major) and about two (minor) years. Our model showed that establishing a reserve during a peak or trough enhanced or delayed, respectively, the post-reserve population increases. However, establishing a reserve during a recruitment peak could obscure a failing reserve, that is, a reserve that is unable to secure longer-term metapopulation persistence. Recruitment peaks and troughs also interacted with sampling design to affect the detectability of reserve effects. Designs that compared inside-outside were the most robust to variable recruitment, but failed to capture whether the reserve has improved metapopulation growth. Designs that included a time element (e.g., before-after) are more suited to assessing reserve effectiveness, but were sensitive to recruitment variation and detectability can change year-to-year. Notably, detectability did not always increase monotonically with reserve age; the optimal time for detectability depended on the minimum age of organisms sampled and was greatest when the cohort of a major recruitment peak first appeared in the sampling. We encourage managers to account for variable recruitment when planning monitoring and assessment programs.
Collapse
Affiliation(s)
- Jess K Hopf
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - J Wilson White
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| |
Collapse
|
22
|
Ovando D, Caselle JE, Costello C, Deschenes O, Gaines SD, Hilborn R, Liu O. Assessing the population-level conservation effects of marine protected areas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1861-1870. [PMID: 34190357 PMCID: PMC9290450 DOI: 10.1111/cobi.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Marine protected areas (MPAs) cover 3-7% of the world's ocean, and international organizations call for 30% coverage by 2030. Although numerous studies show that MPAs produce conservation benefits inside their borders, many MPAs are also justified on the grounds that they confer conservation benefits to the connected populations that span beyond their borders. A network of MPAs covering roughly 20% of the Channel Islands National Marine Sanctuary was established in 2003, with a goal of providing regional conservation and fishery benefits. We used a spatially explicit bioeconomic simulation model and a Bayesian difference-in-difference regression to examine the conditions under which MPAs can provide population-level conservation benefits inside and outside their borders and to assess evidence of those benefits in the Channel Islands. As of 2017, we estimated that biomass densities of targeted fin-fish had a median value 81% higher (90% credible interval: 23-148) inside the Channel Island MPAs than outside. However, we found no clear effect of these MPAs on mean total biomass densities at the population level: estimated median effect was -7% (90% credible interval: -31 to 23) from 2015 to 2017. Our simulation model showed that effect sizes of MPAs of <30% were likely to be difficult to detect (even when they were present); smaller effect sizes (which are likely to be common) were even harder to detect. Clearly, communicating expectations and uncertainties around MPAs is critical to ensuring that MPAs are effective. We provide a novel assessment of the population-level effects of a large MPA network across many different species of targeted fin-fish, and our results offer guidance for communities charged with monitoring and adapting MPAs.
Collapse
Affiliation(s)
- Daniel Ovando
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Jennifer E. Caselle
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Christopher Costello
- Environmental Market Solutions LabUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Bren School of Environmental Science and ManagementUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Olivier Deschenes
- Environmental Market Solutions LabUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of EconomicsUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Steven D. Gaines
- Environmental Market Solutions LabUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Bren School of Environmental Science and ManagementUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Ray Hilborn
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Owen Liu
- Bren School of Environmental Science and ManagementUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
23
|
Gold Z, Curd EE, Goodwin KD, Choi ES, Frable BW, Thompson AR, Walker HJ, Burton RS, Kacev D, Martz LD, Barber PH. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol Ecol Resour 2021; 21:2546-2564. [PMID: 34235858 DOI: 10.1111/1755-0998.13450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness hinges on the quality of reference sequence databases and classification parameters employed. Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of California Current Large Marine Ecosystem fishes to determine best practices for metabarcoding. Specifically, we use a taxonomy cross-validation by identity framework to compare classification performance between a global database comprised of all available sequences and a curated database that only includes sequences of fishes from the California Current Large Marine Ecosystem. We demonstrate that the regional database provides higher assignment accuracy than the comprehensive global database. We also document a tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, highlighting the importance of parameter selection for taxonomic classification. Furthermore, we compared assignment accuracy with and without the inclusion of additionally generated reference sequences. To this end, we sequenced tissue from 597 species using the MiFish 12S primers, adding 252 species to GenBank's existing 550 California Current Large Marine Ecosystem fish sequences. We then compared species and reads identified from seawater environmental DNA samples using global databases with and without our generated references, and the regional database. The addition of new references allowed for the identification of 16 additional native taxa representing 17.0% of total reads from eDNA samples, including species with vast ecological and economic value. Together these results demonstrate the importance of comprehensive and curated reference databases for effective metabarcoding and the need for locus-specific validation efforts.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Emily E Curd
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Kelly D Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Stationed at Southwest Fisheries Science Center, La Jolla, California, USA
| | - Emma S Choi
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Benjamin W Frable
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Andrew R Thompson
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - Harold J Walker
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ronald S Burton
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Dovi Kacev
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lucas D Martz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Paul H Barber
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Assis J, Fragkopoulou E, Serrão EA, Horta E Costa B, Gandra M, Abecasis D. Weak biodiversity connectivity in the European network of no-take marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145664. [PMID: 33940752 DOI: 10.1016/j.scitotenv.2021.145664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The need for international cooperation in marine resource management and conservation has been reflected in the increasing number of agreements aiming for effective and well-connected networks of Marine Protected Areas (MPAs). However, the extent to which individual MPAs are connected remains mostly unknown. Here, we use a biophysical model tuned with empirical data on species dispersal ecology to predict connectivity of a vast spectrum of biodiversity in the European network of marine reserves (i.e., no-take MPAs). Our results highlight the correlation between empirical propagule duration data and connectivity potential and show weak network connectivity and strong isolation for major ecological groups, resulting from the lack of direct connectivity corridors between reserves over vast regions. The particularly high isolation predicted for ecosystem structuring species (e.g., corals, sponges, macroalgae and seagrass) might potentially undermine biodiversity conservation efforts if local retention is insufficient and unmanaged populations are at risk. Isolation might also be problematic for populations' persistence in the light of climate change and expected species range shifts. Our findings provide novel insights for management directives, highlighting the location of regions requiring additional marine reserves to function as stepping-stone connectivity corridors.
Collapse
Affiliation(s)
- J Assis
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - E Fragkopoulou
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - E A Serrão
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - B Horta E Costa
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - M Gandra
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - D Abecasis
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
25
|
Mehta RS, Dale KE, Higgins BA. Marine Protection Induces Morphological Variation in the California Moray, Gymnothorax mordax. Integr Comp Biol 2021; 60:522-534. [PMID: 32497193 DOI: 10.1093/icb/icaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of marine protected areas (MPAs) on the general health and conservation of species, habitats, and community interactions is of great interest to researchers, managers, and recreationalists. However, the ecological and behavioral diversity of vertebrate predators of southern California kelp forests limits our ability to make general conclusions about MPA effectiveness across a variety of species. Identifying and studying species with extreme feeding habits or prey-capture strategies may offer greater insight into predator-prey relationships and reveal the trophic importance of an animal in the larger community. Moray eels (family Muraenidae) have been shown to have morphological and behavioral adaptations that allow them to consume large prey whole, identifying them as important predators. From 2015 to 2018, we studied the health and feeding behavior of a long-lived, elusive, and benthic kelp forest predator, the California moray eel (Gymnothorax mordax). We trapped eels inside and outside of Blue Cavern Onshore State Marine Conservation Area, an MPA on the northwest side of Santa Catalina Island, CA which prohibits the take of any species. Over 4 years, we captured 1736 eels. Overall, we found that morays were longer, older, heavier, had higher body condition, and were found in greater abundance within the MPA. Although fish comprised the majority of their summer diet, morays outside of the MPA were consuming a more diverse set of fish, while kelp bass comprised more than half of the diet for morays inhabiting the MPA. Additionally, we found that morays within the MPA had larger relative vertical gape distances (VGDs) and narrower heads. Our recapture data support the high site fidelity of morays, indicating that their diet and morphology are influenced by their local community. While the majority of morays are thriving in the MPA, as suggested by their robust sizes and longevity, high abundance appears to result in higher frequencies of cannibalism, the presence of an undescribed disease, and lower growth rates. Our results suggest that the MPA affects the life history of morays and may select for an alternative feeding strategy in which eels develop larger VGDs, smaller adductor muscles, and a specialized diet which is presumably influenced by the local environment. In addition, observations of cannibalistic behavior and species-specific disease provide us with important insight into natural factors that may still regulate populations removed from anthropogenic disturbances such as fishing.
Collapse
Affiliation(s)
- Rita S Mehta
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Katherine E Dale
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Benjamin A Higgins
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
26
|
Rassweiler A, Okamoto DK, Reed DC, Kushner DJ, Schroeder DM, Lafferty KD. Improving the ability of a BACI design to detect impacts within a kelp-forest community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02304. [PMID: 33587791 DOI: 10.1002/eap.2304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Distinguishing between human impacts and natural variation in abundance remains difficult because most species exhibit complex patterns of variation in space and time. When ecological monitoring data are available, a before-after-control-impact (BACI) analysis can control natural spatial and temporal variation to better identify an impact and estimate its magnitude. However, populations with limited distributions and confounding spatial-temporal dynamics can violate core assumptions of BACI-type designs. In this study, we assessed how such properties affect the potential to identify impacts. Specifically, we quantified the conditions under which BACI analyses correctly (or incorrectly) identified simulated anthropogenic impacts in a spatially and temporally replicated data set of fish, macroalgal, and invertebrate species found on nearshore subtidal reefs in southern California, USA. We found BACI failed to assess very localized impacts, and had low power but high precision when assessing region-wide impacts. Power was highest for severe impacts of moderate spatial scale, and impacts were most easily detected in species with stable, widely distributed populations. Serial autocorrelation in the data greatly inflated false impact detection rates, and could be partly controlled for statistically, while spatial synchrony in dynamics had no consistent effect on power or false detection rates. Unfortunately, species that offer high power to detect real impacts were also more likely to detect impacts where none had occurred. However, considering power and false detection rates together can identify promising indicator species, and collectively analyzing data for similar species improved the net ability to assess impacts. These insights set expectations for the sizes and severities of impacts that BACI analyses can detect in real systems, point to the importance of serial autocorrelation (but not of spatial synchrony), and indicate how to choose the species, and groups of species, that can best identify impacts.
Collapse
Affiliation(s)
- Andrew Rassweiler
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Daniel K Okamoto
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - David J Kushner
- Channel Islands National Park, Ventura, California, 93001, USA
| | - Donna M Schroeder
- Bureau of Ocean Energy Management, Pacific OCS Region, 760 Paseo Camarillo, Camarillo, California, 93010, USA
| | - Kevin D Lafferty
- U.S. Geological Survey, Western Ecological Research Center, Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| |
Collapse
|
27
|
Boulanger E, Loiseau N, Valentini A, Arnal V, Boissery P, Dejean T, Deter J, Guellati N, Holon F, Juhel JB, Lenfant P, Manel S, Mouillot D. Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proc Biol Sci 2021; 288:20210112. [PMID: 33906403 PMCID: PMC8080007 DOI: 10.1098/rspb.2021.0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Although we are currently experiencing worldwide biodiversity loss, local species richness does not always decline under anthropogenic pressure. This conservation paradox may also apply in protected areas but has not yet received conclusive evidence in marine ecosystems. Here, we survey fish assemblages in six Mediterranean no-take reserves and their adjacent fishing grounds using environmental DNA (eDNA) while controlling for environmental conditions. We detect less fish species in marine reserves than in nearby fished areas. The paradoxical gradient in species richness is accompanied by a marked change in fish species composition under different managements. This dissimilarity is mainly driven by species that are often overlooked by classical visual surveys but detected with eDNA: cryptobenthic, pelagic, and rare fishes. These results do not negate the importance of reserves in protecting biodiversity but shed new light on how under-represented species groups can positively react to fishing pressure and how conservation efforts can shape regional biodiversity patterns.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Véronique Arnal
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre Boissery
- Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, Marseille, France
| | | | | | - Nacim Guellati
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Knott NA, Williams J, Harasti D, Malcolm HA, Coleman MA, Kelaher BP, Rees MJ, Schultz A, Jordan A. A coherent, representative, and bioregional marine reserve network shows consistent change in rocky reef fish assemblages. Ecosphere 2021. [DOI: 10.1002/ecs2.3447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- N. A. Knott
- Fisheries Research NSW Department of Primary Industries Huskisson New South Wales2540Australia
| | - J. Williams
- New South Wales Department of Primary Industries Port Stephens Fisheries Institute Taylors Beach Road Taylors Beach New South Wales2316Australia
| | - D. Harasti
- New South Wales Department of Primary Industries Port Stephens Fisheries Institute Taylors Beach Road Taylors Beach New South Wales2316Australia
| | - H. A. Malcolm
- Fisheries Research NSW Department of Primary Industries Coffs Harbour New South Wales2800Australia
| | - M. A. Coleman
- Fisheries Research NSW Department of Primary Industries Coffs Harbour New South Wales2800Australia
| | - B. P. Kelaher
- National Marine Science Centre and Marine Ecology Research Centre Southern Cross University Coffs Harbour New South Wales2450Australia
| | - M. J. Rees
- Fisheries Research NSW Department of Primary Industries Huskisson New South Wales2540Australia
| | - A. Schultz
- Fisheries Research NSW Department of Primary Industries Coffs Harbour New South Wales2800Australia
| | - A. Jordan
- New South Wales Department of Primary Industries Port Stephens Fisheries Institute Taylors Beach Road Taylors Beach New South Wales2316Australia
| |
Collapse
|
29
|
Sala E, Mayorga J, Bradley D, Cabral RB, Atwood TB, Auber A, Cheung W, Costello C, Ferretti F, Friedlander AM, Gaines SD, Garilao C, Goodell W, Halpern BS, Hinson A, Kaschner K, Kesner-Reyes K, Leprieur F, McGowan J, Morgan LE, Mouillot D, Palacios-Abrantes J, Possingham HP, Rechberger KD, Worm B, Lubchenco J. Protecting the global ocean for biodiversity, food and climate. Nature 2021; 592:397-402. [PMID: 33731930 DOI: 10.1038/s41586-021-03371-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.
Collapse
Affiliation(s)
- Enric Sala
- Pristine Seas, National Geographic Society, Washington, DC, USA.
| | - Juan Mayorga
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Darcy Bradley
- Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Reniel B Cabral
- Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Trisha B Atwood
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, USA
| | - Arnaud Auber
- IFREMER, Unité Halieutique de Manche et Mer du Nord, Boulogne-sur-Mer, France
| | - William Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Costello
- Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Francesco Ferretti
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan M Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Steven D Gaines
- Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Whitney Goodell
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis (NCEAS), University of California, Santa Barbara, CA, USA
| | - Audra Hinson
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, USA
| | - Kristin Kaschner
- Evolutionary Biology and Ecology Laboratory, Albert Ludwigs University, Freiburg, Germany
| | | | | | | | | | | | - Juliano Palacios-Abrantes
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh P Possingham
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, Brisbane, Queensland, Australia
| | | | - Boris Worm
- Ocean Frontiers Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
30
|
Gold Z, Sprague J, Kushner DJ, Zerecero Marin E, Barber PH. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One 2021; 16:e0238557. [PMID: 33626067 PMCID: PMC7904164 DOI: 10.1371/journal.pone.0238557] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
Monitoring of marine protected areas (MPAs) is critical for marine ecosystem management, yet current protocols rely on SCUBA-based visual surveys that are costly and time consuming, limiting their scope and effectiveness. Environmental DNA (eDNA) metabarcoding is a promising alternative for marine ecosystem monitoring, but more direct comparisons to visual surveys are needed to understand the strengths and limitations of each approach. This study compares fish communities inside and outside the Scorpion State Marine Reserve off Santa Cruz Island, CA using eDNA metabarcoding and underwater visual census surveys. Results from eDNA captured 76% (19/25) of fish species and 95% (19/20) of fish genera observed during pairwise underwater visual census. Species missed by eDNA were due to the inability of MiFish 12S barcodes to differentiate species of rockfishes (Sebastes, n = 4) or low site occupancy rates of crevice-dwelling Lythrypnus gobies. However, eDNA detected an additional 23 fish species not recorded in paired visual surveys, but previously reported from prior visual surveys, highlighting the sensitivity of eDNA. Significant variation in eDNA signatures by location (50 m) and site (~1000 m) demonstrates the sensitivity of eDNA to address key questions such as community composition inside and outside MPAs. Results demonstrate the utility of eDNA metabarcoding for monitoring marine ecosystems, providing an important complementary tool to visual methods.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Joshua Sprague
- Channel Islands National Park Service, Ventura, California, United States of America
| | - David J. Kushner
- Channel Islands National Park Service, Ventura, California, United States of America
| | - Erick Zerecero Marin
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
31
|
Lenihan HS, Gallagher JP, Peters JR, Stier AC, Hofmeister JKK, Reed DC. Evidence that spillover from Marine Protected Areas benefits the spiny lobster (Panulirus interruptus) fishery in southern California. Sci Rep 2021; 11:2663. [PMID: 33514853 PMCID: PMC7846765 DOI: 10.1038/s41598-021-82371-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery.
Collapse
Affiliation(s)
- Hunter S. Lenihan
- grid.133342.40000 0004 1936 9676Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Jordan P. Gallagher
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Joseph R. Peters
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | - Adrian C. Stier
- grid.133342.40000 0004 1936 9676Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93116 USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| | | | - Daniel C. Reed
- grid.133342.40000 0004 1936 9676Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93116 USA
| |
Collapse
|
32
|
Perkins NR, Prall M, Chakraborty A, White JW, Baskett ML, Morgan SG. Quantifying the statistical power of monitoring programs for marine protected areas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2215. [PMID: 32767487 DOI: 10.1002/eap.2215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Marine Protected Areas (MPAs) are increasingly established globally as a spatial management tool to aid in conservation and fisheries management objectives. Assessing whether MPAs are having the desired effects on populations requires effective monitoring programs. A cornerstone of an effective monitoring program is an assessment of the statistical power of sampling designs to detect changes when they occur. We present a novel approach to power assessment that combines spatial point process models, integral projection models (IPMs) and sampling simulations to assess the power of different sample designs across a network of MPAs. We focus on the use of remotely operated vehicle (ROV) video cameras as the sampling method, though the results could be extended to other sampling methods. We use empirical data from baseline surveys of an example indicator fish species across three MPAs in California, USA as a case study. Spatial models simulated time series of spatial distributions across sites that accounted for the effects of environmental covariates, while IPMs simulated expected trends over time in abundances and sizes of fish. We tested the power of different levels of sampling effort (i.e., the number of 500-m ROV transects) and temporal replication (every 1-3 yr) to detect expected post-MPA changes in fish abundance and biomass. We found that changes in biomass are detectable earlier than changes in abundance. We also found that detectability of MPA effects was higher in sites with higher initial densities. Increasing the sampling effort had a greater effect than increasing sampling frequency on the time taken to achieve high power. High power was best achieved by combining data from multiple sites. Our approach provides a powerful tool to explore the interaction between sampling effort, spatial distributions, population dynamics, and metrics for detecting change in previously fished populations.
Collapse
Affiliation(s)
- Nicholas R Perkins
- Coastal and Marine Sciences Institute, University of California, Davis, California, 95616, USA
- California Department of Fish and Wildlife, Marine Region, Eureka, California, 95501, USA
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, 7053, Australia
| | - Michael Prall
- California Department of Fish and Wildlife, Marine Region, Eureka, California, 95501, USA
| | - Avishek Chakraborty
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| | - Marissa L Baskett
- Department of Environmental Science & Policy, University of California, Davis, California, 95616, USA
| | - Steven G Morgan
- Department of Environmental Science & Policy, University of California, Davis, California, 95616, USA
| |
Collapse
|
33
|
Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci Rep 2020; 10:21081. [PMID: 33273514 PMCID: PMC7712829 DOI: 10.1038/s41598-020-77885-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Acute climate events like marine heatwaves have the potential to temporarily or permanently alter community structure with effects on biodiversity and ecosystem services. We aimed to quantify the magnitude and consistency of climate driven community shifts inside and outside Marine Protected Areas before and after a marine heatwave using a kelp forest fish community dataset in southern California, USA. Abundance, biomass, diversity and recruitment of warm-water affinity species during the marine heatwave were significantly greater compared with prior years yet cool-water affinity species did not show commensurate declines. Fish communities inside MPAs were not buffered from these community shifts. This result is likely because the particular species most responsible for the community response to environmental drivers, were not fisheries targets. Resource managers working to preserve biodiversity in a changing climate will need to consider additional management tools and strategies in combination with protected areas to mitigate the effect of warming on marine communities.
Collapse
|
34
|
White JW, Yamane MT, Nickols KJ, Caselle JE. Analysis of fish population size distributions confirms cessation of fishing in marine protected areas. Conserv Lett 2020. [DOI: 10.1111/conl.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Mark T. Yamane
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
- Department of Marine Science Eckerd College St. Petersburg Florida USA
| | - Kerry J. Nickols
- Department of Biology California State University Northridge California USA
| | - Jennifer E. Caselle
- Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|
35
|
Beas-Luna R, Micheli F, Woodson CB, Carr M, Malone D, Torre J, Boch C, Caselle JE, Edwards M, Freiwald J, Hamilton SL, Hernandez A, Konar B, Kroeker KJ, Lorda J, Montaño-Moctezuma G, Torres-Moye G. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. GLOBAL CHANGE BIOLOGY 2020; 26:6457-6473. [PMID: 32902090 DOI: 10.1111/gcb.15273] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.
Collapse
Affiliation(s)
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - C Brock Woodson
- College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Carr
- University of California, Santa Cruz, CA, USA
| | - Dan Malone
- University of California, Santa Cruz, CA, USA
| | - Jorge Torre
- Comunidad y Biodiversidad A.C., La Paz, Mexico
| | - Charles Boch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Southwest Fisheries Science Center, NOAA, San Diego, CA, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Jan Freiwald
- University of California, Santa Cruz, CA, USA
- Reef Check California, Marina del Rey, CA, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | | | | | | | - Julio Lorda
- Universidad Autónoma de Baja California, Ensenada, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, CA, USA
| | | | | |
Collapse
|
36
|
Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, Visconti P, Woodley S, Kingston N, Lewis E, Maron M, Strassburg BBN, Wenger A, Jonas HD, Venter O, Watson JEM. Area-based conservation in the twenty-first century. Nature 2020; 586:217-227. [PMID: 33028996 DOI: 10.1038/s41586-020-2773-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/20/2020] [Indexed: 11/09/2022]
Abstract
Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.
Collapse
Affiliation(s)
- Sean L Maxwell
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia.
| | - Victor Cazalis
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Nigel Dudley
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia.,Equilibrium Research, Bristol, UK
| | - Michael Hoffmann
- Conservation and Policy, Zoological Society of London, London, UK
| | - Ana S L Rodrigues
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - Piero Visconti
- Institute of Zoology, Zoological Society of London, London, UK.,Centre for Biodiversity and Environment Research, University College London, London, UK.,International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Stephen Woodley
- World Commission on Protected Areas, International Union for Conservation of Nature, Gland, Switzerland
| | - Naomi Kingston
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Edward Lewis
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Martine Maron
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Bernardo B N Strassburg
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifícia Universidade Católica, Rio de Janeiro, Brazil.,International Institute for Sustainability, Rio de Janeiro, Brazil.,Programa de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amelia Wenger
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia.,Global Marine Program, Wildlife Conservation Society, New York, NY, USA
| | - Harry D Jonas
- World Commission on Protected Areas, International Union for Conservation of Nature, Gland, Switzerland.,Future Law, Kota Kinabalu, Malaysia
| | - Oscar Venter
- Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia.,Global Conservation Program, Wildlife Conservation Society, New York, NY, USA
| |
Collapse
|
37
|
McGreer M, Frid A, Blaine T, Hankewich S, Mason E, Reid M, Kobluk H. Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes. PeerJ 2020; 8:e9825. [PMID: 32913682 PMCID: PMC7456528 DOI: 10.7717/peerj.9825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/05/2020] [Indexed: 12/02/2022] Open
Abstract
For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of these management tools may vary interspecifically and spatially. Using visual survey data collected on the Central Coast of British Columbia, for 12 species of exploited rockfish we found that body size responses to spatial fishery closures depended on interspecific variation in growth parameter k (the rate at which the asymptotic body size is approached) and on location. For two closures, relative body sizes were larger at protected than at adjacent fished sites, and these differences were greater for species with lower k values. Reduced fishery mortality likely drove these results, as an unfished species did not respond to spatial protection. For three closures, however, body sizes did not differ between protected and adjacent fished sites, and for another closure species with higher k values were larger at fished than at protected sites while species with lower k values had similar sizes in both treatments. Variation in the age of closures is unlikely to have influenced results, as most data were collected when closures were 13 to 15-years-old. Rather, the lack of larger fish inside four of six spatial fishery closures potentially reflects a combination of smaller size of the area protected, poor fisher compliance, and lower oceanographic productivity. Interspecific differences in movement behavior did not affect body size responses to spatial protection. To improve understanding, additional research should be conducted at deeper depths encompassing the distribution of older, larger fish. Our study—which was conceptualized and executed by an alliance of Indigenous peoples seeking to restore rockfishes—illustrates how life history and behavioral theory provide a useful lens for framing and interpreting species differences in responses to spatial protection.
Collapse
Affiliation(s)
- Madeleine McGreer
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada
| | - Alejandro Frid
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada.,School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Tristan Blaine
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada
| | | | - Ernest Mason
- Kitasoo/Xai'xais Fisheries, Klemtu, British Columbia, Canada
| | - Mike Reid
- Heiltsuk Integrated Resource Management Department, Bella Bella, British Columbia, Canada
| | - Hannah Kobluk
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada
| |
Collapse
|
38
|
Campos L, Ortiz M, Rodríguez-Zaragoza FA, Oses R. Macrobenthic community establishment on artificial reefs with Macrocystis pyrifera over barren-ground and soft-bottom habitats. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Eisaguirre JH, Eisaguirre JM, Davis K, Carlson PM, Gaines SD, Caselle JE. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 2020; 101:e02993. [PMID: 32002994 PMCID: PMC7317486 DOI: 10.1002/ecy.2993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 11/07/2022]
Abstract
Ecosystems are changing at alarming rates because of climate change and a wide variety of other anthropogenic stressors. These stressors have the potential to cause phase shifts to less productive ecosystems. A major challenge for ecologists is to identify ecosystem attributes that enhance resilience and can buffer systems from shifts to less desirable alternative states. In this study, we used the Northern Channel Islands, California, as a model kelp forest ecosystem that had been perturbed from the loss of an important sea star predator due to a sea star wasting disease. To determine the mechanisms that prevent phase shifts from productive kelp forests to less productive urchin barrens, we compared pre- and postdisease predator assemblages as predictors of purple urchin densities. We found that prior to the onset of the disease outbreak, the sunflower sea star exerted strong predation pressures and was able to suppress purple urchin populations effectively. After the disease outbreak, which functionally extirpated the sunflower star, we found that the ecosystem response-urchin and algal abundances-depended on the abundance and/or size of remaining predator species. Inside Marine Protected Areas (MPAs), the large numbers and sizes of other urchin predators suppressed purple urchin populations resulting in kelp and understory algal growth. Outside of the MPAs, where these alternative urchin predators are fished, less abundant, and smaller, urchin populations grew dramatically in the absence of sunflower stars resulting in less kelp at these locations. Our results demonstrate that protected trophic redundancy inside MPAs creates a net of stability that could limit kelp forest ecosystem phase shifts to less desirable, alternative states when perturbed. This highlights the importance of harboring diversity and managing predator guilds.
Collapse
Affiliation(s)
- Jacob H. Eisaguirre
- Department of Environmental StudiesUniversity of CaliforniaSanta BarbaraCalifornia93106USA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCalifornia93106USA
| | - Joseph M. Eisaguirre
- Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksAlaska99775USA
- Department of Mathematics & StatisticsUniversity of Alaska FairbanksFairbanksAlaska99775USA
| | - Kathryn Davis
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCalifornia93106USA
| | - Peter M. Carlson
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCalifornia93106USA
| | - Steven D. Gaines
- Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCalifornia93106USA
| | - Jennifer E. Caselle
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCalifornia93106USA
| |
Collapse
|
40
|
Easter EE, Adreani MS, Hamilton SL, Steele MA, Pang S, White JW. Influence of protogynous sex change on recovery of fish populations within marine protected areas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02070. [PMID: 31903628 DOI: 10.1002/eap.2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Marine protected areas (MPAs) are increasingly implemented as a conservation tool worldwide. In many cases, they are managed adaptively: the abundance of target species is monitored, and observations are compared to some model-based expectation for the trajectory of population recovery to ensure that the MPA is achieving its goals. Most previous analyses of the transient (short-term) response of populations to the cessation of fishing inside MPAs have dealt only with gonochore (fixed-sex) species. However, many important fishery species are protogynous hermaphrodites (female-to-male sex-changing). Because size-selective harvest will predominantly target males in these species, harvesting not only reduces abundance but also skews the sex ratio toward females. Thus the response to MPA implementation will involve changes in both survival and sex ratio, and ultimately reproductive output. We used an age-structured model of a generic sex-changing fish population to compare transient population dynamics after MPA implementation to those of an otherwise similar gonochore population and examine how different features of sex-changing life history affect those dynamics. We examined both demographically open (most larval recruitment comes from outside the MPA) and demographically closed (most larval recruitment is locally produced) dynamics. Under both scenarios, population recovery of protogynous species takes longer when fishing was more intense pre-MPA (as in gonochores), but also depends heavily on the mating function, the degree to which the sex ratio affects reproduction. If few males are needed and reproduction is not affected by a highly female-biased sex ratio, then population recovery is much faster; if males are a limiting resource, then increases in abundance after MPA implementation are much slower than for gonochores. Unfortunately, the mating function is largely unknown for fishes. In general, we expect that most protogynous species with haremic mating systems will be in the first category (few males needed), though there is at least one example of a fish species (though not a sex-changing species) for which males are limiting. Thus a better understanding of the importance of male fish to population dynamics is needed for the adaptive management of MPAs.
Collapse
Affiliation(s)
- E E Easter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
| | - M S Adreani
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S L Hamilton
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - M A Steele
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S Pang
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - J W White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
41
|
Davis KJ, Vianna GMS, Meeuwig JJ, Meekan MG, Pannell DJ. Estimating the economic benefits and costs of highly‐protected marine protected areas. Ecosphere 2019. [DOI: 10.1002/ecs2.2879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Katrina J. Davis
- Centre for Environmental Economics and Policy UWA School of Agriculture and Environment The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Gabriel M. S. Vianna
- Australian Institute of Marine Science UWA Oceans Institute 35 Stirling Highway Crawley Western Australia 6009 Australia
- School of Biological Sciences The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Jessica J. Meeuwig
- School of Biological Sciences The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Mark G. Meekan
- Australian Institute of Marine Science UWA Oceans Institute 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - David J. Pannell
- Centre for Environmental Economics and Policy UWA School of Agriculture and Environment The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| |
Collapse
|
42
|
Kaplan KA, Yamane L, Botsford LW, Baskett ML, Hastings A, Worden S, White JW. Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01949. [PMID: 31188493 PMCID: PMC9285580 DOI: 10.1002/eap.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 05/19/2023]
Abstract
Adaptive management of marine protected areas (MPAs) requires developing methods to evaluate whether monitoring data indicate that they are performing as expected. Modeling the expected responses of targeted species to an MPA network, with a clear timeline for those expectations, can aid in the development of a monitoring program that efficiently evaluates expectations over appropriate time frames. Here, we describe the expected trajectories in abundance and biomass following MPA implementation for populations of 19 nearshore fishery species in California. To capture the process of filling in the age structure truncated by fishing, we used age-structured population models with stochastic larval recruitment to predict responses to MPA implementation. We implemented both demographically open (high larval immigration) and closed (high self-recruitment) populations to model the range of possible trajectories as they depend on recruitment dynamics. From these simulations, we quantified the time scales over which anticipated increases in abundance and biomass inside MPAs would become statistically detectable. Predicted population biomass responses range from little change, for species with low fishing rates, to increasing by a factor of nearly seven, for species with high fishing rates before MPA establishment. Increases in biomass following MPA implementation are usually greater in both magnitude and statistical detectability than increases in abundance. For most species, increases in abundance would not begin to become detectable for at least 10 years after implementation. Overall, these results inform potential indicator metrics (biomass), potential indicator species (those with a high fishing : natural mortality ratio), and time frame (>10 yr) for MPA monitoring assessment as part of the adaptive management process.
Collapse
Affiliation(s)
- Katherine A. Kaplan
- Department of Evolution and Ecology, Coastal and Marine Sciences InstituteUniversity of California DavisOne Shields AvenueDavisCalifornia95616USA
- California Department of Fish and WildlifeMarine Region350 Harbor BoulevardBelmontCalifornia94002USA
| | - Lauren Yamane
- Department of Evolution and Ecology, Coastal and Marine Sciences InstituteUniversity of California DavisOne Shields AvenueDavisCalifornia95616USA
- California Department of Fish and WildlifeMarine Region350 Harbor BoulevardBelmontCalifornia94002USA
| | - Louis W. Botsford
- Department of WildlifeFish and Conservation BiologyUniversity of California DavisOne Shields AvenueDavisCalifornia95616USA
| | - Marissa L. Baskett
- Department of Environmental Science and PolicyUniversity of California DavisOne Shields AvenueDavisCalifornia95616USA
| | - Alan Hastings
- Department of Environmental Science and PolicyUniversity of California DavisOne Shields AvenueDavisCalifornia95616USA
| | - Sara Worden
- California Department of Fish and WildlifeMarine Region350 Harbor BoulevardBelmontCalifornia94002USA
| | - J. Wilson White
- Department of Fisheries and WildlifeCoastal Oregon Marine Experiment StationOregon State UniversityNewportOregon97365USA
| |
Collapse
|
43
|
Abstract
Food security remains a principal challenge in the developing tropics where communities rely heavily on marine-based protein. While some improvements in fisheries management have been made in these regions, a large fraction of coastal fisheries remain unmanaged, mismanaged, or use only crude input controls. These quasi-open-access conditions often lead to severe overfishing, depleted stocks, and compromised food security. A possible fishery management approach in these institution-poor settings is to implement fully protected marine protected areas (MPAs). Although the primary push for MPAs has been to solve the conservation problems that arise from mismanagement, MPAs can also benefit fisheries beyond their borders. The literature has not completely characterized how to design MPAs under diverse ecological and economic conditions when food security is the objective. We integrated four key biological and economic variables (i.e., fish population growth rate, fish mobility, fish price, and fishing cost) as well as an important aspect of reserve design (MPA size) into a general model and determined their combined influence on food security when MPAs are implemented in an open-access setting. We explicitly modeled open-access conditions that account for the behavioral response of fishers to the MPA; this approach is distinct from much of the literature that focuses on assumptions of “scorched earth” (i.e., severe over-fishing), optimized management, or an arbitrarily defined fishing mortality outside the MPA’s boundaries. We found that the MPA size that optimizes catch depends strongly on economic variables. Large MPAs optimize catch for species heavily harvested for their high value and/or low harvesting cost, while small MPAs or no closure are best for species lightly harvested for their low value and high harvesting cost. Contrary to previous theoretical expectations, both high and low mobility species are expected to experience conservation benefits from protection, although, as shown previously, greater conservation benefits are expected for low mobility species. Food security benefits from MPAs can be obtained from species of any mobility. Results deliver both qualitative insights and quantitative guidance for designing MPAs for food security in open-access fisheries.
Collapse
|
44
|
Miller M, Steele C, Horn D, Hanna C. Marine Debris Trends: 30 Years of Change on Ventura County and Channel Island Beaches. WEST N AM NATURALIST 2018. [DOI: 10.3398/064.078.0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Clare Steele
- California State University Channel Islands, Camarillo, CA
| | | | - Cause Hanna
- Santa Rosa Island Research Station, California State University Channel Islands, Camarillo, CA
| |
Collapse
|
45
|
First quantification of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea. PLoS One 2018; 13:e0195167. [PMID: 29596484 PMCID: PMC5875861 DOI: 10.1371/journal.pone.0195167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan’s marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring can be based.
Collapse
|
46
|
Egerton JP, Johnson AF, Turner J, LeVay L, Mascareñas-Osorio I, Aburto-Oropeza O. Hydroacoustics as a tool to examine the effects of Marine Protected Areas and habitat type on marine fish communities. Sci Rep 2018; 8:47. [PMID: 29335421 PMCID: PMC5768732 DOI: 10.1038/s41598-017-18353-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Hydroacoustic technologies are widely used in fisheries research but few studies have used them to examine the effects of Marine Protected Areas (MPAs). We evaluate the efficacy of hydroacoustics to examine the effects of closure to fishing and habitat type on fish populations in the Cabo Pulmo National Park (CPNP), Mexico, and compare these methods to Underwater Visual Censuses (UVC). Fish density, biomass and size were all significantly higher inside the CPNP (299%, 144% and 52% respectively) than outside in non-MPA control areas. These values were much higher when only accounting for the reefs within the CPNP (4715%, 6970% and 97% respectively) highlighting the importance of both habitat complexity and protection from fishing for fish populations. Acoustic estimates of fish biomass over reef-specific sites did not differ significantly from those estimated using UVC data, although acoustic densities were less due to higher numbers of small fish recorded by UVC. There is thus considerable merit in nesting UVC surveys, also providing species information, within hydroacoustic surveys. This study is a valuable starting point in demonstrating the utility of hydroacoustics to assess the effects of coastal MPAs on fish populations, something that has been underutilised in MPA design, formation and management.
Collapse
Affiliation(s)
- J P Egerton
- School of Ocean Sciences, Bangor University, Menai Bridge, Wales, UK.
| | - A F Johnson
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, United States of America
| | - J Turner
- School of Ocean Sciences, Bangor University, Menai Bridge, Wales, UK
| | - L LeVay
- School of Ocean Sciences, Bangor University, Menai Bridge, Wales, UK
| | | | - O Aburto-Oropeza
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, United States of America
| |
Collapse
|
47
|
Lamy T, Reed DC, Rassweiler A, Siegel DA, Kui L, Bell TW, Simons RD, Miller RJ. Scale-specific drivers of kelp forest communities. Oecologia 2018; 186:217-233. [PMID: 29101467 DOI: 10.1007/s00442-017-3994-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/25/2017] [Indexed: 12/01/2022]
Abstract
Identifying spatial scales of variation in natural communities and the processes driving them is critical for obtaining a predictive understanding of biodiversity. In this study, we focused on diverse communities inhabiting productive kelp forests on shallow subtidal rocky reefs in southern California, USA. We combined long-term community surveys from 86 sites with detailed environmental data to determine what structures assemblages of fishes, invertebrates and algae at multiple spatial scales. We identified the spatial scales of variation in species composition using a hierarchical analysis based on eigenfunctions, and assessed how sea surface temperature (SST), water column chlorophyll, giant kelp biomass, wave exposure and potential propagule delivery strength contributed to community variation at each scale. Spatial effects occurring at multiple scales explained 60% of the variation in fish assemblages and 52% of the variation in the assemblages of invertebrates and algae. Most variation occurred over broad spatial scales (> 200 km) consistent with spatial heterogeneity in SST and potential propagule delivery strength, while the latter also explained community variation at medium scales (65-200 km). Small scale (1-65 km) community variation was substantial but not linked to any of the measured drivers. Conclusions were consistent for both reef fishes and benthic invertebrates and algae, despite sharp differences in their adult mobility. Our results demonstrate the scale dependence of environmental drivers on kelp forest communities, showing that most species were strongly sorted along oceanographic conditions over various spatial scales. Such spatial effects must be integrated into models assessing the response of marine ecosystems to climate change.
Collapse
Affiliation(s)
- Thomas Lamy
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Andrew Rassweiler
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - David A Siegel
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
- Department of Geography, University of California, Santa Barbara, CA, 93106, USA
| | - Li Kui
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Tom W Bell
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Rachel D Simons
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
48
|
Denney C, Fields R, Gleason M, Starr R. Development of New Methods for Quantifying Fish Density Using Underwater Stereo-video Tools. J Vis Exp 2017. [PMID: 29286391 DOI: 10.3791/56635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The use of video camera systems in ecological studies of fish continues to gain traction as a viable, non-extractive method of measuring fish lengths and estimating fish abundance. We developed and implemented a rotating stereo-video camera tool that covers a full 360 degrees of sampling, which maximizes sampling effort compared to stationary camera tools. A variety of studies have detailed the ability of static, stereo-camera systems to obtain highly accurate and precise measurements of fish; the focus here was on the development of methodological approaches to quantify fish density using rotating camera systems. The first approach was to develop a modification of the metric MaxN, which typically is a conservative count of the minimum number of fish observed on a given camera survey. We redefine MaxN to be the maximum number of fish observed in any given rotation of the camera system. When precautions are taken to avoid double counting, this method for MaxN may more accurately reflect true abundance than that obtained from a fixed camera. Secondly, because stereo-video allows fish to be mapped in three-dimensional space, precise estimates of the distance-from-camera can be obtained for each fish. By using the 95% percentile of the observed distance from camera to establish species-specific areas surveyed, we account for differences in detectability among species while avoiding diluting density estimates by using the maximum distance a species was observed. Accounting for this range of detectability is critical to accurately estimate fish abundances. This methodology will facilitate the integration of rotating stereo-video tools in both applied science and management contexts.
Collapse
|
49
|
Caselle JE, Davis K, Marks LM. Marine management affects the invasion success of a non‐native species in a temperate reef system in California, USA. Ecol Lett 2017; 21:43-53. [DOI: 10.1111/ele.12869] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer E. Caselle
- Marine Science Institute University of California Santa Barbara Santa Barbara CA93106 USA
| | - Kathryn Davis
- Marine Science Institute University of California Santa Barbara Santa Barbara CA93106 USA
| | - Lindsay M. Marks
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara CA93106 USA
| |
Collapse
|
50
|
Thompson AR, Chen DC, Guo LW, Hyde JR, Watson W. Larval abundances of rockfishes that were historically targeted by fishing increased over 16 years in association with a large marine protected area. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170639. [PMID: 28989766 PMCID: PMC5627106 DOI: 10.1098/rsos.170639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Marine protected areas (MPAs) can facilitate recovery of diminished stocks by protecting reproductive adults. To effectively augment fisheries, however, reproductive output must increase within the bounds of MPAs so that larvae can be exported to surrounding areas and seed the region. In response to dramatic declines of rockfishes (Sebastes spp.) in southern California by the late 1990s two large MPAs, the Cowcod Conservation Areas (CCAs), were established in 2001. To evaluate whether the CCAs affected rockfish productivity we evaluated the dynamics of 8 species that were, and 7 that were not, historically targeted by fishing. Abundances of 6/8 targeted and 4/7 non-targeted species increased regionally from 1998 to 2013. These upturns were probably affected by environmental conditions in addition to changes in fishing pressure as the presence of most species correlated negatively with temperature, and temperature was lower than the historic average in 11/15 years. Seventy-five per cent of the targeted, but none of the non-targeted species increased at a greater rate inside than outside the CCAs while controlling for environmental factors. Results indicate that management actions, coupled with favourable environmental conditions, facilitated the resurgence of multiple rockfish species that were targeted by intense fishing effort for decades.
Collapse
Affiliation(s)
- Andrew R. Thompson
- NOAA Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA
| | - Dustin C. Chen
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Lian W. Guo
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, 611 N. Pleasant Street, Amherst, MA 01003-9297, USA
| | - John R. Hyde
- NOAA Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA
| | - William Watson
- NOAA Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA
| |
Collapse
|