1
|
Griffin S, de Oliveira Mallia J, Psakis G, Attard J, Caruana M, Gatt R. Comparative analysis of N/TERT-1 and N/TERT-2G keratinocyte responses to oxidative stress and immune challenges. Cell Signal 2025; 132:111861. [PMID: 40355015 DOI: 10.1016/j.cellsig.2025.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/05/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The responses of N/TERT-1 and N/TERT-2G keratinocyte cell lines to oxidative stress and immune challenges were investigated to assess their suitability for dermatological testing. The cell lines were exposed to various stimuli, including PAMPs, DAMPs, H₂O₂, and menadione, to assess cytokine production, oxidative stress markers, cell viability, apoptosis, and membrane integrity. IL-1α, IL-6, IL-8, TNF-α, and TGF-β levels significantly increased in N/TERT-1 cells following exposure to LPS, while N/TERT-2G cells remained unaffected. Both cell lines showed increased production of IL-1α, IL-1β, TNF-α, IL-6, and IL-8 in response to dsDNA and LMW and HMW Poly I:C, although TGF-β significantly decreased only in N/TERT-1 cells. In response to H₂O₂, a dose-dependent increase in cytokine levels was observed in N/TERT-2G, whereas N/TERT-1 did not exhibit a clear dose-dependent response. Markers of oxidative stress, including SOD and GSH, displayed similar patterns in both cell lines, with N/TERT-2G showing slightly higher sensitivity. Lipid peroxidation and mitochondrial membrane potential fluctuations were more pronounced in N/TERT-2G, suggesting greater oxidative stress sensitivity. The baseline GSH levels were higher in N/TERT-1 cells, which may contribute towards the enhanced resilience to oxidative stress. Despite decreased viability in MTT assays following H₂O₂ exposure, the lack of significant changes in cleaved Caspase-3 levels indicated that apoptosis was not the primary mechanism of cell death. These findings highlight the distinct characteristics of N/TERT-1 and N/TERT-2G cells, with N/TERT-1 showing higher baseline resilience to oxidative stress and N/TERT-2G displaying greater sensitivity, particularly to H₂O₂. The study underscores the importance of selecting the appropriate cell line for specific research applications in skin biology and disease modelling, considering the differences in their responses to oxidative and immune challenges.
Collapse
Affiliation(s)
- Sholeem Griffin
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
| | - Jefferson de Oliveira Mallia
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| | - Georgios Psakis
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| | - Juan Attard
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, Msida MSD2080, Malta
| | - Matthias Caruana
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
2
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Walker TDJ, Morris JP, Unterholzner L. Transcription stress causes an inflammatory response via release of IL-1α. Nat Struct Mol Biol 2025; 32:591-594. [PMID: 40217122 DOI: 10.1038/s41594-025-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Affiliation(s)
- Thomas D J Walker
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jessica P Morris
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
4
|
Jemaà M, Setti Boubaker N, Kerkeni N, M. Huber S. JNK Inhibition Overcomes Resistance of Metastatic Tetraploid Cancer Cells to Irradiation-Induced Apoptosis. Int J Mol Sci 2025; 26:1209. [PMID: 39940976 PMCID: PMC11818936 DOI: 10.3390/ijms26031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Tetraploidy is a condition in which the entire set of chromosomes doubles, most often due to errors during cell division. Tetraploidy can lead to genomic instability and significant consequences, in particular metastasis and treatment failure in tumours, including radiotherapy. The development of new strategies to sensitise these cells to treatment is of great importance. In our study, we investigated the in vitro combination of chemical treatment with the kinase inhibitor SP600125 and irradiation on diploid versus metastatic tetraploid RKO colon cancer clones. We assessed mitochondrial transmembrane potential, cell cycle and subG1 population by flow cytometry and performed clonogenic assays to evaluate cell sensitivity. We found that the combination overcomes irradiation resistance in metastatic tetraploid clones. To identify the main pathway involved in cell sensitivity, we screened the Harvard Medical School KINOMEscan library and performed a gene ontology biological process analysis. We found that the major kinases inhibited by SP600125 were ANKK1, BIKE, IKKA, JNK1, MP2K3, MP2K4, MKNK2, MYLK, PLK4, RPS6KA4(Kin,Dom,1), MYLK4 and TTK, and the pathways involved in clone sensitivity were DNA damage repair, radiation resistance and apoptosis, through JNK pathway inhibition. Finally, our main finding was that combined treatment with SP600125 and radiotherapy reduced the resistance of metastatic tetraploid cells to treatment, essentially by inhibiting the JNK pathway. This result supports a promising anti-cancer strategy to overcome the resistance of tetraploid cancer cells to irradiation.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
- Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules Laboratory LR18ES03, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
- Department of Biology, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Nouha Setti Boubaker
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine, Tunis El Manar University, Tunis 2092, Tunisia;
- Theranostic Biomarkers Laboratory, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Nesrine Kerkeni
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Trubetskoy D, Grudzien P, Klopot A, Tsoi LC, Kundu RV, White BEP, Budunova I. Activation of IL1A/IRAK1 axis and downstream proinflammatory signaling in healthy adult and neonatal African American skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624144. [PMID: 40236066 PMCID: PMC11996573 DOI: 10.1101/2024.11.18.624144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Differences in prevalence of inflammatory skin diseases including atopic dermatitis and psoriasis in African American (AA) versus White Non-Hispanic (WNH) population are well recognized. However, the underlying mechanisms are largely unknown. We previously observed significant differences in healthy AA skin transcriptome with differentially expressed genes (DEG) enriched for inflammation and cornification processes. Here we analyzed proteome in skin biopsies from healthy AA and WNH volunteers using Olink ® Explore Inflammation 384 biomarker panel. Among proteins with higher expression in AA skin were IRAK1, IL1A, IL4, IL22RA1. IL1A binding to IL1R1 receptor is known to result in recruitment of adapter molecules such as IRAK1, and activation of downstream NF-κB and MAPK signaling. We confirmed NF-κB and ERK1/2 activation in AA skin by Western blot analysis of their phosphorylation at specific activating sites. Importantly, we observed similar differences between AA and WNH neonatal foreskin and between AA and WNH 3D skin organoids. Further analysis of DEG promoters by Gene Transcription Regulation Database (GTRD) pointed to NF-κB and AP1 as key transcription factors involved in AA DEG regulation. Overall, proinflammatory signaling in healthy AA skin starting early in childhood may contribute to the increased risk of certain inflammatory skin diseases within the AA population.
Collapse
|
6
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
7
|
Chen Q, Li J. Molecular mechanism analysis of nontuberculous mycobacteria infection in patients with cystic fibrosis. Future Microbiol 2024; 19:877-888. [PMID: 38700285 PMCID: PMC11290754 DOI: 10.2217/fmb-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: This study aims to explore the molecular mechanisms of cystic fibrosis (CF) complicated with nontuberculous mycobacteria (NTM) infection. Materials & methods: Expression profiles of CF with NTM-infected patients were downloaded from GEO database. Intersection analysis yielded 78 genes associated with CF with NTM infection. The protein-protein interaction (PPI) network and the functions of hub genes were investigated. Results: Five hub genes (PIK3R1, IL1A, CXCR4, ACTN1, PFN1) were identified, which were primarily enriched in actin-related biological processes and pathways. Transcription factors RELA, JUN, NFKB1 and FOS that regulated hub genes modulated IL1A expression, while 21 other transcription factors regulated CXCR4 expression. Conclusion: In summary, this study may provide new insights into the mechanisms of CF with NTM infection.
Collapse
Affiliation(s)
- Qihuang Chen
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Jin Li
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| |
Collapse
|
8
|
Ghafouri F, Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Analysis of Transcriptome Profiles and lncRNA-miRNA-mRNA Competing Endogenous RNA Regulatory Network to Identify Biological Functional Effects of Genes and Pathways Associated with Johne's Disease in Dairy Cattle. Noncoding RNA 2024; 10:38. [PMID: 39051372 PMCID: PMC11270299 DOI: 10.3390/ncrna10040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Paratuberculosis or Johne's disease (JD), a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes huge economic losses and reduces animal welfare in dairy cattle herds worldwide. At present, molecular mechanisms and biological functions involved in immune responses to MAP infection of dairy cattle are not clearly understood. Our purpose was to integrate transcriptomic profiles and competing endogenous RNA (ceRNA) network analyses to identify key messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of peripheral blood mononuclear cells (PBMCs) for MAP infection in dairy cattle. In total, 28 lncRNAs, 42 miRNAs, and 370 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In this regard, we identified 21 hub genes (CCL20, CCL5, CD40, CSF2, CXCL8, EIF2AK2, FOS, IL10, IL17A, IL1A, IL1B, IRF1, MX2, NFKB1, NFKBIA, PTGS2, SOCS3, TLR4, TNF, TNFAIP3, and VCAM1) involved in MAP infection. Furthermore, eight candidate subnets with eight lncRNAs, 29 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 510, 22, and 11 significantly enriched GO terms related to MAP infection in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways related to MAP infection that were enriched included the immune system process, defense response, response to cytokine, leukocyte migration, regulation of T cell activation, defense response to bacterium, NOD-like receptor, B cell receptor, TNF, NF-kappa B, IL-17, and T cell receptor signaling pathways. Contributions of transcriptome profiles from MAP-positive and MAP-negative sample groups plus a ceRNA regulatory network underlying phenotypic differences in the intensity of pathogenicity of JD provided novel insights into molecular mechanisms associated with immune system responses to MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
| |
Collapse
|
9
|
Ryznar R, LaPorta A, Cooper S, Maher N, Clodfelder C, Edwards J, Towne F, Gubler KD. A distinct immune cytokine profile is associated with morning cortisol and repeated stress. Am J Disaster Med 2024; 19:33-43. [PMID: 38597645 DOI: 10.5055/ajdm.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE The objective of this study was to investigate possible immune cytokine trends throughout a week-long surgical simulation mass-casualty training session in order to determine the effects of stress inoculation on the immune system. METHODS Thirty-seven military medical students participated in a hyper-realistic surgical simulation training event conducted at Strategic Operations site in San Diego, California. Salivary samples were collected every morning of the stress training exercise for 4 consecutive days. Cortisol, along with a panel of 42 immune cytokines, was measured using multiplex enzyme-linked immunosorbent assays from Eve Technologies. The determined concentrations were averaged and plotted on a scatter plot, and then points were fit to a second-order polynomial trendline of best fit to measure. RESULTS The cytokines epidermal growth factor, growth-related oncogene-α, interleukin (IL)-1α, and platelet-derived growth factor-AA followed a noted pattern of cortisol decrease throughout the week. In addition, cytokines IL-27, granulocyte colony stimulating factor, IL-10, and IL-13 demonstrated a late peak, followed by a return to baseline at the conclusion of training. Finally, the cytokine monocyte chemoattractant protein-1 displayed a decline throughout the week followed by an increase on the last day of stress training. CONCLUSIONS Altogether, these results help to identify important biomarkers that may help to improve long-term stress adaptation and prevent post-traumatic stress disorder following exposure to repeated stress.
Collapse
Affiliation(s)
- Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado. ORCID: https://orcid.org/0000-0001-9695-712X
| | - Anthony LaPorta
- Military Medicine Program; Professor, Clinical Surgery, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Spencer Cooper
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Nicholas Maher
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | | | - Jeffrey Edwards
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Francina Towne
- Master of Science in Biomedical Sciences Program; Associate Professor of Immunology, Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - K Dean Gubler
- Surgery and Military Medicine; Director, Military Medicine Program, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| |
Collapse
|
10
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
11
|
Wang YH, Hagiwara S, Kazama H, Iizuka Y, Tanaka N, Tanaka J. Elotuzumab Enhances CD16-Independent NK Cell-Mediated Cytotoxicity against Myeloma Cells by Upregulating Several NK Cell-Enhancing Genes. J Immunol Res 2024; 2024:1429879. [PMID: 38444839 PMCID: PMC10914431 DOI: 10.1155/2024/1429879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Multiple myeloma (MM) is an intractable hematological malignancy caused by abnormalities in plasma cells. Combination therapy using antibodies and natural killer (NK) effectors, which are innate immune cells with safe and potent antitumor activity, is a promising approach for cancer immunotherapy and can enhance antitumor effects. Elotuzumab (Elo) is an immune-stimulatory antibody that targets the signaling lymphocytic activation molecule family 7 (SLAMF7) expressed on the surface of MM and NK cells. We confirmed that Elo strongly promoted NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) against SLAMF7-positive MM cells in a CD16-dependent NK cell line, and also activated expanded NK cells derived from peripheral blood mononuclear cells of healthy donors and patients with MM in the present study. However, the antitumor effects and genes involved in the direct promotion of NK cell-mediated activation using Elo in CD16-independent NK cells are not clearly known. In this study, we demonstrated that Elo pretreatment significantly enhanced CD16-independent NK cell-mediated cytotoxicity in both SLAMF7-positive MM.1S and SLAMF7-negative K562, U266, and RPMI 8226 tumor cells. Upon direct simulation of CD16-independent NK cells with Elo, increased levels of CD107a degranulation and IFN-γ secretion were observed along with the upregulation of granzyme B, TNF-α, and IL-1α gene expression. The enhanced NK cell function could also be attributed to the increased expression of the transcription factors T-BET and EOMES. Furthermore, the augmentation of the antitumor effects of CD16-independent NK cells upon pretreatment with Elo enhanced the expression of CRTAM, TNFRSF9, EAT-2, and FOXP3 genes and reduced the expression of HSPA6. Our results suggest that Elo directly promotes the cytotoxic function of CD16-independent NK cells against target cells, which is associated with the upregulation of the expression of several NK cell-enhancing genes.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Shotaro Hagiwara
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Hiroshi Kazama
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
- Department of Medicine, Tokyo Women's Medical University, Adachi Medical Center, 4-33-1, Kohoku, Adachi-Ku, Tokyo 123-8558, Japan
| | - Yuki Iizuka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| |
Collapse
|
12
|
Yamada A, Wake K, Imaoka S, Motoyoshi M, Yamamoto T, Asano M. Analysis of the effects of importin α1 on the nuclear translocation of IL-1α in HeLa cells. Sci Rep 2024; 14:1322. [PMID: 38225348 PMCID: PMC10789739 DOI: 10.1038/s41598-024-51521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024] Open
Abstract
Interleukin-1α (IL-1α), a cytokine released by necrotic cells, causes sterile inflammation. On the other hand, IL-1α is present in the nucleus and also regulates the expression of many proteins. A protein substrate containing a classical nuclear localization signal (cNLS) typically forms a substrate/importin α/β complex, which is subsequently transported to the nucleus. To the best of our knowledge, no study has directly investigated whether IL-1α-which includes cNLS-is imported into the nucleus in an importin α/β-dependent manner. In this study, we noted that all detected importin α subtypes interacted with IL-1α. In HeLa cells, importin α1-mediated nuclear translocation of IL-1α occurred at steady state and was independent of importin β1. Importin α1 not only was engaged in IL-1α nuclear transport but also concurrently functioned as a molecule that regulated IL-1α protein level in the cell. Furthermore, we discussed the underlying mechanism of IL-1α nuclear translocation by importin α1 based on our findings.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Kiyotaka Wake
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Saya Imaoka
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
13
|
Wang Y, Ahmadi MZ, Dikeman DA, Youn C, Archer NK. γδ T cell-intrinsic IL-1R promotes survival during Staphylococcus aureus bacteremia. Front Immunol 2023; 14:1171934. [PMID: 37483624 PMCID: PMC10361057 DOI: 10.3389/fimmu.2023.1171934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacteremia, further complicated by the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). A better understanding of host defense mechanisms is needed for the development of host-directed therapies as an alternative approach to antibiotics. The levels of IL-1, IL-17, and TNF-α cytokines in circulation have been associated with predictive outcomes in patients with S. aureus bacteremia. However, their causative role in survival and the cell types involved in these responses during bacteremia is not entirely clear. Using a mouse model of S. aureus bacteremia, we demonstrated that IL-17A/F and TNF-α had no significant impact on survival, whereas IL-1R signaling was critical for survival during S. aureus bacteremia. Furthermore, we identified that T cells, but not neutrophils, monocytes/macrophages, or endothelial cells were the crucial cell type for IL-1R-mediated survival against S. aureus bacteremia. Finally, we determined that the expression of IL-1R on γδ T cell, but not CD4+ or CD8+ T cells was responsible for survival against the S. aureus bacteremia. Taken together, we uncovered a role for IL-1R, but not IL-17A/F and TNF-α in protection against S. aureus bacteremia. Importantly, γδ T cell-intrinsic expression of IL-1R was crucial for survival, but not on other immune cells or endothelial cells. These findings reveal potential cellular and immunological targets for host-directed therapies for improved outcomes against S. aureus bacteremia.
Collapse
Affiliation(s)
| | | | | | | | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Ferrà-Cañellas MDM, Munar-Bestard M, Floris I, Ramis JM, Monjo M, Garcia-Sureda L. A Sequential Micro-Immunotherapy Medicine Increases Collagen Deposition in Human Gingival Fibroblasts and in an Engineered 3D Gingival Model under Inflammatory Conditions. Int J Mol Sci 2023; 24:10484. [PMID: 37445663 DOI: 10.3390/ijms241310484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Periodontal therapies use immune mediators, but their side effects can increase with dosage. Micro-immunotherapy (MI) is a promising alternative that employs immune regulators at low and ultralow doses to minimize adverse effects. In this study, the effects of 5 capsules and the entire 10-capsule sequence of the sequential MI medicine (MIM-seq) were tested in two in vitro models of periodontitis. Firstly, human gingival fibroblasts (hGFs) exposed to interleukin (IL)-1β to induce inflammation were treated with five different capsules of MIM-seq for 3 days or with MIM-seq for 24 days. Subsequently, MIM-seq was analyzed in a 3D model of human tissue equivalent of gingiva (GTE) under the same inflammatory stimulus. Simultaneously, a non-IL-1β-treated control and a vehicle were included. The effects of the treatments on cytotoxicity, collagen deposition, and the secreted levels of IL-1α, IL-6, prostaglandin E2 (PGE2), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were evaluated. None of the tested items were cytotoxic. The complete sequence of MIM-seq decreased PGE2 release and restored collagen deposition levels induced by IL-1β treatment in hGFs exposed to IL-1β. MIM-seq treatment restored collagen production levels in both models. These promising preclinical findings suggest that MIM-seq should be further investigated for periodontitis treatment.
Collapse
Affiliation(s)
- Maria Del Mar Ferrà-Cañellas
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Preclinical Research Department, Labo'Life España, 07330 Consell, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo'Life France, 44000 Nantes, France
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
15
|
Brusilovsky M, Rochman M, Shoda T, Kotliar M, Caldwell JM, Mack LE, Besse JA, Chen X, Weirauch MT, Barski A, Rothenberg ME. Vitamin D receptor and STAT6 interactome governs oesophageal epithelial barrier responses to IL-13 signalling. Gut 2023; 72:834-845. [PMID: 35918104 PMCID: PMC9892355 DOI: 10.1136/gutjnl-2022-327276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The contribution of vitamin D (VD) deficiency to the pathogenesis of allergic diseases remains elusive. We aimed to define the impact of VD on oesophageal allergic inflammation. DESIGN We assessed the genomic distribution and function of VD receptor (VDR) and STAT6 using histology, molecular imaging, motif discovery and metagenomic analysis. We examined the role of VD supplementation in oesophageal epithelial cells, in a preclinical model of IL-13-induced oesophageal allergic inflammation and in human subjects with eosinophilic oesophagitis (EoE). RESULTS VDR response elements were enriched in oesophageal epithelium, suggesting enhanced VDR binding to functional gene enhancer and promoter regions. Metagenomic analysis showed that VD supplementation reversed dysregulation of up to 70% of the transcriptome and epigenetic modifications (H3K27Ac) induced by IL-13 in VD-deficient cells, including genes encoding the transcription factors HIF1A and SMAD3, endopeptidases (SERPINB3) and epithelial-mesenchymal transition mediators (TGFBR1, TIAM1, SRC, ROBO1, CDH1). Molecular imaging and chromatin immunoprecipitation showed VDR and STAT6 colocalisation within the regulatory regions of the affected genes, suggesting that VDR and STAT6 interactome governs epithelial tissue responses to IL-13 signalling. Indeed, VD supplementation reversed IL-13-induced epithelial hyperproliferation, reduced dilated intercellular spaces and barrier permeability, and improved differentiation marker expression (filaggrin, involucrin). In a preclinical model of IL-13-mediated oesophageal allergic inflammation and in human EoE, VD levels inversely associated with severity of oesophageal eosinophilia and epithelial histopathology. CONCLUSIONS Collectively, these findings identify VD as a natural IL-13 antagonist with capacity to regulate the oesophageal epithelial barrier functions, providing a novel therapeutic entry point for type 2 immunity-related diseases.
Collapse
Affiliation(s)
- Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lydia E Mack
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Cordier-Dirikoc S, Pedretti N, Garnier J, Clarhaut-Charreau S, Ryffel B, Morel F, Bernard FX, Hamon de Almeida V, Lecron JC, Jégou JF. Dermal fibroblasts are the key sensors of aseptic skin inflammation through interleukin 1 release by lesioned keratinocytes. Front Immunol 2022; 13:984045. [PMID: 36268013 PMCID: PMC9576869 DOI: 10.3389/fimmu.2022.984045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
IL-1 plays a crucial role in triggering sterile inflammation following tissue injury. Although most studies associate IL-1 release by injured cells to the recruitment of neutrophils for tissue repair, the inflammatory cascade involves several molecular and cellular actors whose role remains to be specified. In the present study, we identified dermal fibroblasts among the IL-1R1-expressing skin cells as key sensors of IL-1 released by injured keratinocytes. After in vitro stimulation by recombinant cytokines or protein extracts of lysed keratinocytes containing high concentrations of IL-1, we show that dermal fibroblasts are by far the most IL-1-responsive cells compared to keratinocytes, melanocytes and endothelial cells. Fibroblasts have the property to respond to very low concentrations of IL-1 (from 10 fg/ml), even in the presence of 100-fold higher concentrations of IL-1RA, by increasing their expression of chemokines such as IL-8 for neutrophil recruitment. The capacity of IL-1-stimulated fibroblasts to attract neutrophils has been demonstrated both in vitro using cell migration assay and in vivo using a model of superficial epidermal lesion in IL-1R1-deficient mice which harbored reduced expression of inflammatory mediators and neutrophil skin infiltration. Together, our results shed a light on dermal fibroblasts as key relay cells in the chain of sterile inflammation induced after epidermal lesion.
Collapse
Affiliation(s)
| | | | - Julien Garnier
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Sandrine Clarhaut-Charreau
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | | | - Franck Morel
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | | | | | - Jean-Claude Lecron
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
- Service d’Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Jean-François Jégou
- Université de Poitiers, Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
- *Correspondence: Jean-François Jégou,
| |
Collapse
|
17
|
Mansouri S, Heylmann D, Stiewe T, Kracht M, Savai R. Cancer genome and tumor microenvironment: Reciprocal crosstalk shapes lung cancer plasticity. eLife 2022; 11:79895. [PMID: 36074553 PMCID: PMC9457687 DOI: 10.7554/elife.79895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer classification and treatment has been revolutionized by improving our understanding of driver mutations and the introduction of tumor microenvironment (TME)-associated immune checkpoint inhibitors. Despite the significant improvement of lung cancer patient survival in response to either oncogene-targeted therapy or anticancer immunotherapy, many patients show initial or acquired resistance to these new therapies. Recent advances in genome sequencing reveal that specific driver mutations favor the development of an immunosuppressive TME phenotype, which may result in unfavorable outcomes in lung cancer patients receiving immunotherapies. Clinical studies with follow-up after immunotherapy, assessing oncogenic driver mutations and the TME immune profile, not only reveal the underlying potential molecular mechanisms in the resistant lung cancer patients but also hold the key to better treatment choices and the future of personalized medicine. In this review, we discuss the crosstalk between cancer cell genomic features and the TME to reveal the impact of genetic alterations on the TME phenotype. We also provide insights into the regulatory role of cellular TME components in defining the genetic landscape of cancer cells during tumor development.
Collapse
Affiliation(s)
- Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Institute of Molecular Oncology, Marburg, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Lu Y, Xiang M, Xin L, Zhang Y, Wang Y, Shen Z, Li L, Cui X. Qiliqiangxin Modulates the Gut Microbiota and NLRP3 Inflammasome to Protect Against Ventricular Remodeling in Heart Failure. Front Pharmacol 2022; 13:905424. [PMID: 35721118 PMCID: PMC9201726 DOI: 10.3389/fphar.2022.905424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 02/03/2023] Open
Abstract
Aims: Pathological left ventricular (LV) remodeling induced by multiple causes often triggers fatal cardiac dysfunction, heart failure (HF), and even cardiac death. This study is aimed to investigate whether qiliqiangxin (QL) could improve LV remodeling and protect against HF via modulating gut microbiota and inhibiting nod-like receptor pyrin domain 3 (NLRP3) inflammasome activation. Methods: Rats were respectively treated with QL (100 mg/kg/day) or valsartan (1.6 mg/kg/day) by oral gavage after transverse aortic constriction or sham surgery for 13 weeks. Cardiac functions and myocardial fibrosis were assessed. In addition, gut microbial composition was assessed by 16S rDNA sequencing. Furthermore, rats’ hearts were harvested for histopathological and molecular analyses including immunohistochemistry, immunofluorescence, terminal-deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphated nick end labeling, and Western blot. Key findings: QL treatment preserved cardiac functions including LV ejection fractions and fractional shortening and markedly improved the LV remodeling. Moreover, HF was related to the gut microbial community reorganization like a reduction in Lactobacillus, while QL reversed it. Additionally, the protein expression levels like IL-1β, TNF-α, NF-κB, and NLRP3 were decreased in the QL treatment group compared to the model one. Conclusion: QL ameliorates ventricular remodeling to some extent in rats with HF by modulating the gut microbiota and NLRP3 inflammasome, which indicates the potential therapeutic effects of QL on those who suffer from HF.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,First Clinical Medical School, Shandong University of Chinese Medicine, Jinan, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,First Clinical Medical School, Shandong University of Chinese Medicine, Jinan, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Frisch SM. Interleukin-1α: Novel functions in cell senescence and antiviral response. Cytokine 2022; 154:155875. [PMID: 35447531 DOI: 10.1016/j.cyto.2022.155875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
The interleukin-1 proteins are a hub of innate inflammatory signaling that activates diverse aspects of adaptive immunity. Until recently, the IL-1α isoform was relatively incompletely understood compared with IL-1β. This review briefly summarizes novel and surprising aspects of IL-1α biology. IL-1α localizes to the nucleus, cytoplasm, mitochondria, cell membrane or extracellular space in various contexts, with corresponding distinct functions. In particular, we focus on multiple pathways by which IL-1α promotes the senescent cell phenotype, unexpectedly involving signaling molecules including mTOR, GATA4, mitochondrial cardiolipin and caspases-4/5. Finally, I review a novel pathway by which IL-1α promotes antiviral immunity.
Collapse
Affiliation(s)
- Steven M Frisch
- Department of Biochemistry and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
20
|
Kajitani GS, Quayle C, Garcia CCM, Fotoran WL, Dos Santos JFR, van der Horst GTJ, Hoeijmakers JHJ, Menck CFM. Photorepair of Either CPD or 6-4PP DNA Lesions in Basal Keratinocytes Attenuates Ultraviolet-Induced Skin Effects in Nucleotide Excision Repair Deficient Mice. Front Immunol 2022; 13:800606. [PMID: 35422806 PMCID: PMC9004445 DOI: 10.3389/fimmu.2022.800606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes. Additionally, these lesions may also induce mutations and thereby cause skin cancer. Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible for repairing bulky DNA lesions. Both types of photolesions can also be repaired by distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective photolesion by directly splitting each dimer through a light-dependent process termed photoreactivation. However, as photolyases are absent in placental mammals, these organisms depend solely on NER for the repair of DNA UV lesions. However, the individual contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has remained elusive. In this study, we show that in NER-deficient mice, the transgenic expression and photorepair of CPD-photolyase in basal keratinocytes completely inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand, photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression, and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents, both types of photolesions have causal roles in UVB-induced epidermal cell proliferation, hyperplasia, cell death and inflammation. Furthermore, these findings also support the notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators of these UVB-induced effects.
Collapse
Affiliation(s)
- Gustavo S Kajitani
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Carolina Quayle
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila C M Garcia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Wesley L Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana F R Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands.,University Hospital of Cologne, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Institute for Genome Stability in Aging and Disease, Cologne, Germany.,Princess Maxima Center for Pediatric Oncology, ONCODE Institute, Utrecht, Netherlands
| | - Carlos F M Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Kudo Y, Tamagawa T, Nishio K, Kaneko T, Yonehara Y, Tsunoda M. Nuclear localization of propiece IL-1α in HeLa cells. J Oral Sci 2022; 64:151-155. [PMID: 35236814 DOI: 10.2334/josnusd.21-0540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The study aimed to examine the nuclear localization of propiece interleukin (IL)-1α (ppIL-1α) and extracellular release rates of ppIL-1α, pIL-1α, and mIL-1α. METHODS The subcellular localization of IL-1α molecules was observed in HeLa cells transfected with green fluorescent protein (GFP)-tagged IL-1α. Extracellular release efficiency was examined using N-terminal HiBiT-tagged IL-1α. The nuclear localization status of ppIL-1α was examined by incubating ppIL-1α transfectants with 0.1% Triton X-100 solution or with complete medium on ice. RESULTS The results indicated the diffuse cytoplasmic and nuclear localization for m and p and ppIL-1, respectively. All IL-1α forms were released from the cells even in the steady state, and the release efficiency was 25%, 13%, and 8% for mIL-1α, pIL-1α, and ppIL-1α, respectively. Under oxidative stress condition, GFP-mIL-1α was totally diminished, but weak staining of GFP-pIL-1α and GFP-ppIL-1α was detected; nuclear localization of GFP-ppIL-1α was completely abolished by 0.1% Triton X-100 treatment, however, it remained in the nucleus after culture in complete medium on ice. CONCLUSION The results of this study showed that ppIL-1α was localized in the nucleus and released extracellularly even in the steady state. Moreover, its cellular localization is not firm, and it is presumed to be floating in the nucleoplasm.
Collapse
Affiliation(s)
- Yoshihiro Kudo
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry.,Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
22
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
23
|
Wu Z, Sainz AG, Shadel GS. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem Sci 2021; 46:812-821. [PMID: 34088564 PMCID: PMC9809014 DOI: 10.1016/j.tibs.2021.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.
Collapse
Affiliation(s)
- Zheng Wu
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Genetics, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Alva G. Sainz
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Experimental Pathology, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Gerald S. Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Correspondence: (G.S. Shadel)
| |
Collapse
|
24
|
Motomura K, Romero R, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Slutsky R, Levenson D, Gomez-Lopez N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol Hum Reprod 2021; 26:712-726. [PMID: 32647859 DOI: 10.1093/molehr/gaaa054] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1β. Lastly, using Nlrp3-/- mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- K Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - V Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA
| | - D Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - N Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Jia Y, Chen X, Sun J. Apremilast ameliorates IL-1α-induced dysfunction in epidermal stem cells. Aging (Albany NY) 2021; 13:19293-19305. [PMID: 34375302 PMCID: PMC8386542 DOI: 10.18632/aging.203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Skin tissue is the natural barrier that protects our body, the damage of which can be repaired by the epidermal stem cells (ESCs). However, external factors abolish the self-repair ability of ESCs by inducing oxidative stress and severe inflammation. Apremilast is a small molecular inhibitor of phosphodiesterase 4 that was approved for the treatment of psoriasis. In the present study, the protective property of Apremilast against IL-1α-induced dysfunction on epidermal stem cells, as well as the preliminary mechanism, will be investigated. METHODS ESCs were isolated from neonatal mice. The expression levels of TNF-α, IL-8, IL-12, MMP-2, and MMP-9 were detected using real-time PCR and ELISA. MitoSOX Red assay was used to determine the level of mitochondrial reactive oxygen species (ROS). Western blot and real-time PCR were utilized to determine the expression levels of IL-1R1, Myd88, and TRAF6. Activation of NF-κB was assessed by measuring the p-NF-κB p65 and luciferase activity. Capacities of ESCs were evaluated by measuring the gene expressions of integrin β1 and Krt19 using real-time PCR. RESULTS Firstly, the expression levels of TNF-α, IL-8, IL-12, MMP-2, MMP-9 and IL-1R1, as well as the ROS level, were significantly elevated by IL-1α but greatly suppressed by treatment with Apremilast. Subsequently, we found that the activated Myd88/TRAF6/NF-κB signaling pathway induced by stimulation with IL-1α was significantly inhibited by the introduction of Apremilast. As a result, Apremilast protected ESCs against IL-1α-induced impairment in capacities of ESCs, this was verified by the elevated expression levels of integrin β1 and Krt19. CONCLUSIONS Apremilast might ameliorate IL-1α-induced dysfunction in ESCs by mitigating oxidative stress and inflammation through inhibiting the activation of the Myd88/TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuxi Jia
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xiangru Chen
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jing Sun
- Department of Dermatology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| |
Collapse
|
27
|
Dobre M, Boscencu R, Neagoe IV, Surcel M, Milanesi E, Manda G. Insight into the Web of Stress Responses Triggered at Gene Expression Level by Porphyrin-PDT in HT29 Human Colon Carcinoma Cells. Pharmaceutics 2021; 13:pharmaceutics13071032. [PMID: 34371724 PMCID: PMC8309054 DOI: 10.3390/pharmaceutics13071032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 01/21/2023] Open
Abstract
Photodynamic therapy (PDT), a highly targeted therapy with acceptable side effects, has emerged as a promising therapeutic option in oncologic pathology. One of the issues that needs to be addressed is related to the complex network of cellular responses developed by tumor cells in response to PDT. In this context, this study aims to characterize in vitro the stressors and the corresponding cellular responses triggered by PDT in the human colon carcinoma HT29 cell line, using a new asymmetric porphyrin derivative (P2.2) as a photosensitizer. Besides investigating the ability of P2.2-PDT to reduce the number of viable tumor cells at various P2.2 concentrations and fluences of the activating light, we assessed, using qRT-PCR, the expression levels of 84 genes critically involved in the stress response of PDT-treated cells. Results showed a fluence-dependent decrease of viable tumor cells at 24 h post-PDT, with few cells that seem to escape from PDT. We highlighted following P2.2-PDT the concomitant activation of particular cellular responses to oxidative stress, hypoxia, DNA damage and unfolded protein responses and inflammation. A web of inter-connected stressors was induced by P2.2-PDT, which underlies cell death but also elicits protective mechanisms that may delay tumor cell death or even defend these cells against the deleterious effects of PDT.
Collapse
Affiliation(s)
- Maria Dobre
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mihaela Surcel
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Gina Manda
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| |
Collapse
|
28
|
Qian L, Li JZ, Sun X, Chen JB, Dai Y, Huang QX, Jin YJ, Duan QN. Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling. Int Immunopharmacol 2021; 96:107712. [PMID: 34162132 DOI: 10.1016/j.intimp.2021.107712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a basal host defense response that eliminates the causes and consequences of infection and tissue injury. Macrophages are the primary immune cells involved in the inflammatory response. When activated by LPS, macrophages release various pro-inflammatory cytokines, chemokines, inflammatory mediators, and MMPs. However, unbridled inflammation causes further damage to tissues. Safinamide is a selective and reversible monoamine oxidase B (MAOB) inhibitor that has been used for the treatment of Parkinson's disease. In this study, we aimed to investigate whether safinamide has effects on LPS-treated macrophages. Our results show that safinamide inhibited the expression of pro-inflammatory cytokines such as IL-1α, TNF-α, and IL-6. Furthermore, safinamide suppressed the production of CXCL1 and CCL2, thereby preventing leukocyte migration. In addition, safinamide reduced iNOS-derived NO, COX-2-derived PGE2, MMP-2, and MMP-9. Importantly, the functions of safinamide mentioned above were found to be dependent on its inhibitory effect on the TLR4/NF-κB signaling pathway. Our data indicates that safinamide may exert a protective effect against inflammatory response.
Collapse
Affiliation(s)
- LuLu Qian
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jun-Zhao Li
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - XueMei Sun
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jie-Bin Chen
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qiu-Xiang Huang
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying-Ji Jin
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qing-Ning Duan
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
29
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
30
|
Chiu JW, Binte Hanafi Z, Chew LCY, Mei Y, Liu H. IL-1α Processing, Signaling and Its Role in Cancer Progression. Cells 2021; 10:E92. [PMID: 33430381 PMCID: PMC7827341 DOI: 10.3390/cells10010092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin-1α (IL-1α) is a major alarmin cytokine which triggers and boosts the inflammatory responses. Since its discovery in the 1940s, the structure and bioactivity of IL-1α has been extensively studied and emerged as a vital regulator in inflammation and hematopoiesis. IL-1α is translated as a pro-form with minor bioactivity. The pro-IL-1α can be cleaved by several proteases to generate the N terminal and C terminal form of IL-1α. The C terminal form of IL-1α (mature form) has several folds higher bioactivity compared with its pro-form. IL-1α is a unique cytokine which could localize in the cytosol, membrane, nucleus, as well as being secreted out of the cell. However, the processing mechanism and physiological significance of these differentially localized IL-1α are still largely unknown. Accumulating evidence suggests IL-1α is involved in cancer pathogenesis. The role of IL-1α in cancer development is controversial as it exerts both pro- and anti-tumor roles in different cancer types. Here, we review the recent development in the processing and signaling of IL-1α and summarize the functions of IL-1α in cancer development.
Collapse
Affiliation(s)
| | | | | | - Yu Mei
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.W.C.); (Z.B.H.); (L.C.Y.C.)
| | - Haiyan Liu
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.W.C.); (Z.B.H.); (L.C.Y.C.)
| |
Collapse
|
31
|
Takemoto T, Kaetsu R, Hanayama M, Ishiyama Y, Sadamura M, Nishio K, Tsunoda M, Asano M, Motoyoshi M. Acid-electrolyzed functional water-induces Interleukin-1α release from Intracellular Storage Sites in Oral Squamous Cell Carcinoma. Int J Med Sci 2021; 18:1746-1752. [PMID: 33746591 PMCID: PMC7976592 DOI: 10.7150/ijms.53999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine the acid-electrolyzed functional water (FW)-mediated cytokine release in an oral squamous cell carcinoma-derived cell line (OSCC) following treatment with FW. FW is generated by the electrolysis of a sodium chloride solution and accelerate the burn wound healing. To elucidate the underlying mechanisms, the cytokine/chemokine secretion profile of HSC3 cells was examined using a cytokine array. FW treatment significantly induced interleukin (IL)-1α secretion, which was confirmed by enzyme-linked immunosorbent assay. Subsequently, the HSC3 cells were pre-treated with cycloheximide (CHX) for 1 h prior to FW stimulation to determine whether the augmented IL-1α secretion was due to enhanced protein synthesis. CHX pre-treatment did not affect IL-1α secretion suggesting that the secreted IL-1α might have been derived from intracellular storage sites. The amount of IL-1α in the cell lysate of the FW-treated HSC3 cells was significantly lower than that of the non-treated cells. Immunofluorescence staining using a polyclonal antibody against full-length IL-1α revealed a drastic reduction in IL-1α inside the FW- treated cells. IL-1α is synthesized in its precursor form (pIL-1α) and cleaved to produce pro-piece and mature IL-1α (ppIL-1α and mIL-1α) inside the cells. In the present study, only pIL-1α was detected within the HSC3 cells in its resting state. However, FW stimulation resulted in the release of the 33 kDa and two other smaller forms (about 19 kDa) of the protein. These results indicates that FW treatment induces IL-1α secretion, a typical alarmin, from the intracellular storage in OSCC cells.
Collapse
Affiliation(s)
- Tomoko Takemoto
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Ryo Kaetsu
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Machiko Hanayama
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yuuichi Ishiyama
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Masayuki Sadamura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan, 101-8310
| | - Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
32
|
Donlon NE, Sheppard A, Davern M, O’Connell F, Phelan JJ, Power R, Nugent T, Dinneen K, Aird J, Greene J, Nevins Selvadurai P, Bhardwaj A, Foley EK, Ravi N, Donohoe CL, Reynolds JV, Lysaght J, O’Sullivan J, Dunne MR. Linking Circulating Serum Proteins with Clinical Outcomes in Esophageal Adenocarcinoma-An Emerging Role for Chemokines. Cancers (Basel) 2020; 12:3356. [PMID: 33202734 PMCID: PMC7698106 DOI: 10.3390/cancers12113356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis and incidence is increasing rapidly in the Western world. Multi-modal treatment has improved survival outcomes but only for a minority of patients. Currently no markers have been identified to predict treatment response. This study investigated the association between clinical outcomes and pre-treatment levels of 54 serum proteins in n = 80 patients with EAC. Low tumor regression grade (TRG), corresponding to a favorable treatment response, was linked to prolonged overall survival (OS). CCL4 was higher in patients with a favorable treatment response, while Tie2 and CRP were higher in poor responders. Elevated CCL22 and CCL26 was associated with improved OS, while elevated IL-10 showed a negative association. CCL3, CCL4, IL-1α and IL-12/IL23p40 were highest in individuals with no adverse features of tumor biology, whereas levels of Tie2 and VEGF were lowest in this cohort. CCL4 was also elevated in patients with high tumor lymphocyte infiltration. Comparison of matched pre- and post-treatment serum (n = 28) showed a large reduction in VEGFC, and a concomitant increase in other cytokines, including CCL4. These data link several serum markers with clinical outcomes, highlighting an important role for immune cell trafficking in the EAC antitumor immune response.
Collapse
Affiliation(s)
- Noel E. Donlon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Andrew Sheppard
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Maria Davern
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - James J. Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Robert Power
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Timothy Nugent
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Kate Dinneen
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Aird
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Greene
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Paul Nevins Selvadurai
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Emma K. Foley
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| |
Collapse
|
33
|
Aquino-Martinez R, Khosla S, Farr JN, Monroe DG. Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem? Int J Mol Sci 2020; 21:E7441. [PMID: 33050175 PMCID: PMC7587987 DOI: 10.3390/ijms21207441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recent identification of senescent cells in periodontal tissues has the potential to provide new insights into the underlying mechanisms of periodontal disease etiology. DNA damage-driven senescence is perhaps one of the most underappreciated delayed consequences of persistent Gram-negative bacterial infection and inflammation. Although the host immune response rapidly protects against bacterial invasion, oxidative stress generated during inflammation can indirectly deteriorate periodontal tissues through the damage to vital cell macromolecules, including DNA. What happens to those healthy cells that reside in this harmful environment? Emerging evidence indicates that cells that survive irreparable genomic damage undergo cellular senescence, a crucial intermediate mechanism connecting DNA damage and the immune response. In this review, we hypothesize that sustained Gram-negative bacterial challenge, chronic inflammation itself, and the constant renewal of damaged tissues create a permissive environment for the abnormal accumulation of senescent cells. Based on emerging data we propose a model in which the dysfunctional presence of senescent cells may aggravate the initial immune reaction against pathogens. Further understanding of the role of senescent cells in periodontal disease pathogenesis may have clinical implications by providing more sophisticated therapeutic strategies to combat tissue destruction.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Lees JG, White D, Keating BA, Barkl-Luke ME, Makker PGS, Goldstein D, Moalem-Taylor G. Oxaliplatin-induced haematological toxicity and splenomegaly in mice. PLoS One 2020; 15:e0238164. [PMID: 32877416 PMCID: PMC7467301 DOI: 10.1371/journal.pone.0238164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Haematological toxicities occur in patients receiving oxaliplatin. Mild anaemia (grade 1-2) is a common side effect and approximately 90% of recipients develop measurable spleen enlargement. Although generally asymptomatic, oxaliplatin-induced splenomegaly is independently associated with complications following liver resection for colorectal liver metastasis and separately with poorer patient outcomes. Here, we investigated oxaliplatin-induced haematological toxicities and splenomegaly in mice treated with escalating dosages comparable to those prescribed to colorectal cancer patients. METHODS Blood was analysed, and smears assessed using Wright-Giemsa staining. Paw coloration was quantified as a marker of anaemia. Spleen weight and morphology were assessed for abnormalities relating to splenomegaly and a flow cytometry and multiplex cytokine array assessment was performed on splenocytes. The liver was assessed for sinusoidal obstructive syndrome. RESULTS Blood analysis showed dose dependent decreases in white and red blood cell counts, and significant changes in haematological indices. Front and hind paws exhibited dose dependent and dramatic discoloration indicative of anaemia. Spleen weight was significantly increased indicating splenomegaly, and red pulp tissue exhibited substantial dysplasia. Cytokines and chemokines within the spleen were significantly affected with temporal upregulation of IL-6, IL-1α and G-CSF and downregulation of IL-1β, IL-12p40, MIP-1β, IL-2 and RANTES. Flow cytometric analysis demonstrated alterations in splenocyte populations, including a significant reduction in CD45+ cells. Histological staining of the liver showed no evidence of sinusoidal obstructive syndrome but there were signs suggestive of extramedullary haematopoiesis. CONCLUSION Chronic oxaliplatin treatment dose dependently induced haematological toxicity and splenomegaly characterised by numerous physiological and morphological changes, which occurred independently of sinusoidal obstructive syndrome.
Collapse
Affiliation(s)
- Justin G. Lees
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (GM-T); (JGL)
| | - Daniel White
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brooke A. Keating
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mallory E. Barkl-Luke
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Preet G. S. Makker
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - David Goldstein
- Prince of Wales Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (GM-T); (JGL)
| |
Collapse
|
35
|
Salti T, Khazim K, Haddad R, Campisi-Pinto S, Bar-Sela G, Cohen I. Glucose Induces IL-1α-Dependent Inflammation and Extracellular Matrix Proteins Expression and Deposition in Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Front Immunol 2020; 11:1270. [PMID: 32733443 PMCID: PMC7358427 DOI: 10.3389/fimmu.2020.01270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is linked with metabolic stress that induces cellular damage and can provoke renal inflammation and fibrotic responses that eventually lead to chronic kidney disease. Because the inflammasome, interleukin 1 (IL-1), IL-1α/IL-β, and IL-1R are central elements of kidney inflammation and pharmacological IL-1R antagonist (IL-1Ra) was shown to prevent or even reverse diabetic nephropathy (DN) in animal models, we explored the intrinsic expression of IL-1 molecules in kidney tissue of DN patients as regulators of renal inflammation. We used biopsies taken from DN patients and controls and show a high level of IL-1α expression in renal tubular epithelial cells, whereas both IL-1 agonistic molecules (i.e., IL-1α and IL-1β) were devoid of the glomeruli. Human proximal tubular kidney HK-2 cells exposed to high glucose (HG) gradually increase the expression of IL-1α but not IL-1β and induce the expression and deposition of extracellular matrix (ECM) proteins. We further demonstrate that in vitro ectopic addition of recombinant IL-1α in low glucose concentration leads to a similar effect as in HG, while supplementing excess amounts of IL-1Ra in HG significantly attenuates the ECM protein overexpression and deposition. Accordingly, inhibition of IL-1α cleaving protease calpain, but not caspapse-1, also strongly reduces ECM protein production by HK-2 cells. Collectively, we demonstrate that IL-1α and not IL-1β, released from renal tubular cells is the key inflammatory molecule responsible for the renal inflammation in DN. Our result suggests that the clinical use of IL-1Ra in DN should be promoted over the individual neutralization of IL-1α or IL-1β in order to achieve better blocking of IL-1R signaling.
Collapse
Affiliation(s)
- Talal Salti
- Galilee Medical Center, Research Institute, Nahariya, Israel
| | - Khaled Khazim
- Galilee Medical Center, Research Institute, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Rami Haddad
- Galilee Medical Center, Research Institute, Nahariya, Israel
| | | | - Gil Bar-Sela
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Cancer Center, Emek Medical Center, Afula, Israel
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula, Israel
| |
Collapse
|
36
|
Novák J, Vopálenský V, Pospíšek M, Vedeler A. Co-localization of Interleukin-1α and Annexin A2 at the plasma membrane in response to oxidative stress. Cytokine 2020; 133:155141. [PMID: 32615410 DOI: 10.1016/j.cyto.2020.155141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Interleukin-1α (IL-1α) and Annexin A2 (AnxA2) are pleiotropic molecules with both intracellular and extracellular roles. They share several characteristics including unconventional secretion aided by S100 proteins, anchoring of the externalized proteins at the outer surface of the plasma membrane and response to oxidative stress. Although IL-1α and AnxA2 have been implicated in a variety of biological processes, including cancer, little is known about the mechanisms of their cellular release. In the present study, employing the non-cancerous breast epithelial MCF10A cells, we demonstrate that IL-1α and AnxA2 establish a close association in response to oxidative stress. Stress conditions lead to translocation of both proteins towards lamellipodia rich in vimentin and association of full-length IL-1α and Tyr23 phosphorylated AnxA2 with the plasma membrane at peripheral sites depleted of F-actin. Notably, membrane-associated IL-1α and AnxA2 preferentially localize to the outer edges of the MCF10A cell islands, suggesting that the two proteins participate in the communication of these epithelial cells with their neighboring cells. Similarly, in U2OS osteosarcoma cell line both endogenous IL-1α and transiently produced IL-1α/EGFP associate with the plasma membrane. While benign MFC10A cells present membrane-associated IL-1α and AnxA2 at the edges of their cell islands, the aggressive cancerous U2OS cells communicate in such manner also with distant cells.
Collapse
Affiliation(s)
- Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Abstract
Acute myocardial infarction (AMI) is associated with the induction of a sterile inflammatory response that leads to further injury. The NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a macromolecular structure responsible for the inflammatory response to injury or infection. NLRP3 can sense intracellular danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is primed and triggered by locally released damage-associated molecular patterns and amplifies the inflammatory response and cell death through caspase-1 activation. Here, we examine the scientific evidence supporting a role for NLRP3 in AMI and the available strategies to inhibit the effects of the inflammasome. Our focus is on the beneficial effects seen in experimental models of AMI in preclinical animal models and the initial results of clinical trials.
Collapse
|
38
|
Novak J, Zamostna B, Vopalensky V, Buryskova M, Burysek L, Doleckova D, Pospisek M. Interleukin-1α associates with the tumor suppressor p53 following DNA damage. Sci Rep 2020; 10:6995. [PMID: 32332775 PMCID: PMC7181607 DOI: 10.1038/s41598-020-63779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Interleukin-1α (IL-1α) is a dual-function proinflammatory mediator. In addition to its role in the canonical IL-1 signaling pathway, which employs membrane-bound receptors, a growing body of evidence shows that IL-1α has some additional intracellular functions. We identified the interaction of IL-1α with the tumor suppressor p53 in the nuclei and cytoplasm of both malignant and noncancerous mammalian cell lines using immunoprecipitation and the in situ proximity ligation assay (PLA). This interaction was enhanced by treatment with the antineoplastic drug etoposide, which suggests a role for the IL-1α•p53 interaction in genotoxic stress.
Collapse
Affiliation(s)
- J Novak
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Zamostna
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Vopalensky
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Buryskova
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - L Burysek
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - D Doleckova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
39
|
Conway EM. Thrombin: Coagulation's master regulator of innate immunity. J Thromb Haemost 2019; 17:1785-1789. [PMID: 31429203 DOI: 10.1111/jth.14586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Iskandar AR, Zanetti F, Kondylis A, Martin F, Leroy P, Majeed S, Steiner S, Xiang Y, Ortega Torres L, Trivedi K, Guedj E, Merg C, Frentzel S, Ivanov NV, Doshi U, Lee KM, McKinney WJ, Peitsch MC, Hoeng J. A lower impact of an acute exposure to electronic cigarette aerosols than to cigarette smoke in human organotypic buccal and small airway cultures was demonstrated using systems toxicology assessment. Intern Emerg Med 2019; 14:863-883. [PMID: 30835057 PMCID: PMC6722047 DOI: 10.1007/s11739-019-02055-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.
Collapse
Affiliation(s)
- Anita R Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Sandro Steiner
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Laura Ortega Torres
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Utkarsh Doshi
- Altria Client Services LLC, Richmond, VA, 23219, USA
| | | | | | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
41
|
Sung HY, Chen WY, Huang HT, Wang CY, Chang SB, Tzeng SF. Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression. J Neurochem 2019; 150:691-708. [PMID: 31165473 DOI: 10.1111/jnc.14788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Abstract
Interleukin-33 (IL-33), a member of the IL1 family, has been found to be expressed in oligodendrocytes (OLGs) and released as an alarmin from injured OLGs to work on other glial cell-types in the central nervous system. However, its functional role in OLGs remains unclear. Herein, we present that IL-33 was mainly expressed in the nucleus of CC1+ -oligodendrocytes (OLGs) in mouse and rat corpus callosum, as well as NG2+ -oligodendrocyte precursor cells (OPCs). The in vitro study indicated that the amount of IL-33 expressing in OPCs was higher when compared to that detected in OLGs. Results from the experiments using lentivirus-mediated shRNA delivery against IL-33 expression (IL33-KD) in OPCs showed that IL33-KD reduced the differentiation of OLGs into mature OLGs along with the down-regulation of OLG differentiation-related genes and mature OLG marker proteins, myelin basic protein (MBP) and proteolipid protein (PLP). Alternatively, we observed reduced differentiation of OLGs that were prepared from the brains of IL-33 gene knockout (IL33-KO) mice with anxiolytic-like behavior. Observations were correlated with the results showing lower levels of MBP and PLP in IL33-KO cultures than those detected in the control cultures prepared from wildtype (WT) mice. Transmission Electron Microscopy (TEM) analysis revealed that the myelin structures in the corpus callosum of the IL33-KO mice were impaired compared to those observed in the WT mice. Overall, this study provides important evidence that declined expression of IL-33 in OPCs suppresses the maturation of OLGs. Moreover, gene deficiency of IL-33 can disrupt OLG maturation and interfere with myelin compaction. Cover Image for this issue: doi: 10.1111/jnc.14522.
Collapse
Affiliation(s)
- Hsin-Yu Sung
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yen Wang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Grigaitis P, Jonusiene V, Zitkute V, Dapkunas J, Dabkeviciene D, Sasnauskiene A. Exogenous interleukin-1α signaling negatively impacts acquired chemoresistance and alters cell adhesion molecule expression pattern in colorectal carcinoma cells HCT116. Cytokine 2018; 114:38-46. [PMID: 30583087 DOI: 10.1016/j.cyto.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023]
Abstract
Proinflammatory cytokine and chemokine signaling from the tumor microenvironment is thought to be crucial for developing and sustaining colorectal cancer by regulating a multitude of pathways associated with a variety of cellular mechanisms. Among these pathways there is acquired chemoresistance, which is usually a major obstacle in the way towards successful chemotherapeutic treatment of advanced colorectal cancer cases. Despite of an emerging body of data published on the role of cytokine signaling network in cancer, little is known about the effects of the upstream cytokine interleukin-1α (IL-1α) signaling to the cancer cells. In this study we have shown that the increase in exogenous IL-1α signaling increases chemosensitivity of both chemosensitive and chemoresistant colorectal cancer cell lines, treated with a widely used cytotoxic antimetabolite 5-fluorouracil (5-FU). This was a result of increased cell death but not of the changes in 5-FU-induced cell cycle arrest. Noticeably, combined exogenous IL-1α and 5-FU treatment had significant effects on the expression of cell adhesion molecules, suggesting a decrease in adhesion-dependent chemoresistance and, on the other hand, an increase in metastatic potential of the cells. These results lead to a conclusion that modulation of IL-1 receptor activity could have applications as a part of combination therapy for advanced and highly metastatic colorectal cancers.
Collapse
Affiliation(s)
- Pranas Grigaitis
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Violeta Jonusiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Vilmante Zitkute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Daiva Dabkeviciene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| | - Ausra Sasnauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius 10227, Lithuania.
| |
Collapse
|
43
|
Litmanovich A, Khazim K, Cohen I. The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Oncol Ther 2018; 6:109-127. [PMID: 32700032 PMCID: PMC7359982 DOI: 10.1007/s40487-018-0089-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukin-1 (IL-1) has long been known to be a key mediator of immunity and inflammation. Its dysregulation has been implicated in recent years in tumorigenesis and tumor progression, and its upregulation is thought to be associated with many tumors. Overexpression of the IL-1 agonists IL-1α and IL-1β has been shown to promote tumor invasiveness and metastasis by inducing the expression of angiogenic genes and growth factors. IL-1 blockers such as anakinra and canakinumab are already approved and widely used for the treatment of some autoimmune and autoinflammatory diseases and are currently being tested in preclinical and human clinical trials for cancer therapy. In this paper we review the most recent discoveries regarding the association between IL-1 dysregulation and cancer and present the novel IL-1 blockers currently being tested in cancer therapy and their corresponding clinical trials.
Collapse
Affiliation(s)
- Adi Litmanovich
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Khaled Khazim
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Idan Cohen
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
- Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
44
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
45
|
Interleukin-1α as an intracellular alarmin in cancer biology. Semin Immunol 2018; 38:3-14. [PMID: 30554608 DOI: 10.1016/j.smim.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
|
46
|
Archer NK, Jo JH, Lee SK, Kim D, Smith B, Ortines RV, Wang Y, Marchitto MC, Ravipati A, Cai SS, Dillen CA, Liu H, Miller RJ, Ashbaugh AG, Uppal AS, Oyoshi MK, Malhotra N, Hoff S, Garza LA, Kong HH, Segre JA, Geha RS, Miller LS. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J Allergy Clin Immunol 2018; 143:1426-1443.e6. [PMID: 30240702 DOI: 10.1016/j.jaci.2018.08.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is associated with epidermal barrier defects, dysbiosis, and skin injury caused by scratching. In particular, the barrier-defective epidermis in patients with AD with loss-of-function filaggrin mutations has increased IL-1α and IL-1β levels, but the mechanisms by which IL-1α, IL-1β, or both are induced and whether they contribute to the aberrant skin inflammation in patients with AD is unknown. OBJECTIVE We sought to determine the mechanisms through which skin injury, dysbiosis, and increased epidermal IL-1α and IL-1β levels contribute to development of skin inflammation in a mouse model of injury-induced skin inflammation in filaggrin-deficient mice without the matted mutation (ft/ft mice). METHODS Skin injury of wild-type, ft/ft, and myeloid differentiation primary response gene-88-deficient ft/ft mice was performed, and ensuing skin inflammation was evaluated by using digital photography, histologic analysis, and flow cytometry. IL-1α and IL-1β protein expression was measured by means of ELISA and visualized by using immunofluorescence and immunoelectron microscopy. Composition of the skin microbiome was determined by using 16S rDNA sequencing. RESULTS Skin injury of ft/ft mice induced chronic skin inflammation involving dysbiosis-driven intracellular IL-1α release from keratinocytes. IL-1α was necessary and sufficient for skin inflammation in vivo and secreted from keratinocytes by various stimuli in vitro. Topical antibiotics or cohousing of ft/ft mice with unaffected wild-type mice to alter or intermix skin microbiota, respectively, resolved the skin inflammation and restored keratinocyte intracellular IL-1α localization. CONCLUSIONS Taken together, skin injury, dysbiosis, and filaggrin deficiency triggered keratinocyte intracellular IL-1α release that was sufficient to drive chronic skin inflammation, which has implications for AD pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Jay-Hyun Jo
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Steven K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mark C Marchitto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Shuting S Cai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Alyssa G Ashbaugh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Angad S Uppal
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Michiko K Oyoshi
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Nidhi Malhotra
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Sabine Hoff
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass; TRG Oncology III, Drug Discovery, Bayer AG, Berlin, Germany
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Heidi H Kong
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Md.
| |
Collapse
|
47
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
48
|
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315:H1553-H1568. [PMID: 30168729 DOI: 10.1152/ajpheart.00158.2018] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia-reperfusion injury induces a sterile inflammatory response, leading to further injury that contributes to the final infarct size. Locally released danger-associated molecular patterns lead to priming and triggering of the NOD-like receptor protein 3 inflammasome and amplification of the inflammatory response and cell death by activation of caspase-1. We review strategies inhibiting priming, triggering, or caspase-1 activity or blockade of the inflammasome-related cytokines interleukin-1β and interleukin-18, focusing on the beneficial effects in experimental models of acute myocardial infarction in animals and the initial results of clinical translational research trials.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia.,Division of Cardiothoracic Surgery, Virginia Commonwealth University , Richmond, Virginia
| | - Adolfo G Mauro
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| | - Zachary Cutter
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| | - Antonio Abbate
- VCU Pauley Heart Center , Richmond, Virginia.,VCU Johnson Center for Critical Care and Pulmonary Research , Richmond, Virginia
| |
Collapse
|
49
|
Mack M. Inflammation and fibrosis. Matrix Biol 2018; 68-69:106-121. [DOI: 10.1016/j.matbio.2017.11.010] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
|
50
|
Gomez-Arroyo J, Abbate A, Voelkel NF. Pulmonary arterial hypertension and the Enigma code of smouldering inflammation. Eur Respir J 2018; 48:305-7. [PMID: 27478186 DOI: 10.1183/13993003.00996-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jose Gomez-Arroyo
- Dept of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Antonio Abbate
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|