1
|
Aloui E, Beurton J, Medemblik C, Hugoni L, Clarot I, Boudier A, Arntz Y, De Giorgi M, Combet J, Fleith G, Mathieu E, Kharouf N, Kocgozlu L, Heinrich B, Favier D, Brender M, Boulmedais F, Schaaf P, Frisch B, Lavalle P. Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies. Adv Healthc Mater 2025; 14:e2403385. [PMID: 39846332 PMCID: PMC11912121 DOI: 10.1002/adhm.202403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.
Collapse
Affiliation(s)
- Eya Aloui
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Jordan Beurton
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
| | - Claire Medemblik
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Ludivine Hugoni
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Igor Clarot
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
| | - Ariane Boudier
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
- Institut Universitaire de France (IUF)ParisFrance
| | - Youri Arntz
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Marcella De Giorgi
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Jérôme Combet
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Guillaume Fleith
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Eric Mathieu
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Naji Kharouf
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Leyla Kocgozlu
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Benoît Heinrich
- Université de Strasbourg, CNRSInstitut de Physique et Chimie des Matériaux de Strasbourg UMR 7504StrasbourgF‐67034France
| | - Damien Favier
- Université de Strasbourg, CNRSInstitut de Physique et Chimie des Matériaux de Strasbourg UMR 7504StrasbourgF‐67034France
| | - Michael Brender
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Pierre Schaaf
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Benoît Frisch
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| |
Collapse
|
2
|
Wang H, Shi C, Zhang C, Xiong Y, Liu F, Zhong L, Zhang J. Bovine Serum Albumin/Polyvinyl Alcohol Double‐Network Hydrogel Containing ϵ‐Polylysine for Antibacterial Performance. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202303389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/20/2024] [Indexed: 01/06/2025]
Abstract
AbstractWith the discovery and abuse of antibiotics, bacterial resistance has become a key problem in the field of antibacterial materials. Therefore, antibacterial materials that can effectively inhibit bacterial infection are considered to be important biological materials. In this study, a double‐network hydrogel system was designed using bovine serum albumin (BSA) and polyvinyl alcohol (PVA) as the main body. The first network was formed by reducing the disulfide bond on BSA to sulfhydryl group by tris (2‐carboxyethyl) phosphine (TCEP). The second network of PVA was used as the hydrogel to prepare a double‐network hydrogel with good mechanical strength. The introduction of ϵ‐polylysine gives the hydrogel antibacterial activity, which enables it to destroy the cell structure and kill bacteria through electrostatic interaction, and can effectively solve the problem of drug resistance in the field of antibacterial medicine.
Collapse
Affiliation(s)
- Hui Wang
- School of Food Engineering Ludong University Yantai 264025 China
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Changxin Shi
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Chenyun Zhang
- Ceramic Institute Wuxi Vocational Institute of Arts & Technology Wu Xi Shi, Yixing 214206 China
| | - Yingshuo Xiong
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Fangjie Liu
- School of Food Engineering Ludong University Yantai 264025 China
- Institute of Bionanotechnology Ludong University Yantai 264025 China
| | - Linlin Zhong
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Jin Zhang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| |
Collapse
|
3
|
Kirmic Cosgun SN, Ceylan Tuncaboylu D, Alemdar M. G-POSS connected double network starch gels for protein release. Int J Biol Macromol 2024; 257:128705. [PMID: 38081486 DOI: 10.1016/j.ijbiomac.2023.128705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Starch is one of the most frequently preferred natural polymers in hydrogel synthesis. Herein, we combined two strategies of associating brittle and ductile networks in a structure and incorporating inorganic particles into the polymeric gel to design mechanically enhanced nanocomposite double network (DN) starch gels. For the first time in the literature, nanocomposite starch gels (s-NC) were designed by cross-linking starch chains with 8-armed glycidyl-polyhedral oligomeric silsesquioxane (g-POSS) units. Fourier Transform Infrared Spectroscopy and Energy Dispersive X-Ray Spectroscopy analyses have proven that g-POSS is included in the gel structure and is homogeneously distributed throughout the network. More stable d-NC-DMA and d-NC-VP gels were obtained by incorporating N,N-dimethylacrylamide (DMA), or 1-vinyl-2-pyrrolidinone (VP) units, respectively, into g-POSS-linked starch gels, and the reaction kinetics were followed in situ. In SEM images, it was observed that d-NC-DMA had smaller pores and thicker pore walls compared to s-NC and d-NC-VP starch gels, and its mechanical strength was shown to be much superior by rheological tests, compression, and tensile analyses. In addition to increasing the mechanical strength of the gels, the potential of starch in protein release applications using amylase sensitivity has been demonstrated in vitro experiments using the model protein BSA.
Collapse
Affiliation(s)
- Seyma Nur Kirmic Cosgun
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| | - Deniz Ceylan Tuncaboylu
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey.
| | - Mahinur Alemdar
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| |
Collapse
|
4
|
Zhao Z, Pan M, Yang W, Huang C, Qiao C, Yang H, Wang J, Wang X, Liu J, Zeng H. Bioinspired engineered proteins enable universal anchoring strategy for surface functionalization. J Colloid Interface Sci 2023; 650:1525-1535. [PMID: 37487283 DOI: 10.1016/j.jcis.2023.07.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
HYPOTHESIS Conventional coating strategies and materials for bio-applications with protective, diagnostic, and therapeutic functions are commonly limited by their arduous preparation processes and lack of on-demand functionalities. Herein, inspired by the 'root-leaf' structure of grass, a series of novel polyacrylate-conjugated proteins can be engineered with sticky bovine serum albumin (BSA) protein as a 'root' anchoring layer and a multifunctional polyacrylate as a 'leaf' functional layer for the facile coating procedure and versatile surface functionalities. EXPERIMENTS The engineered proteins were synthesized based on click chemistry, where the 'root' layer can universally anchor onto both organic and inorganic substrates through a facile dip/spraying method with excellent stability in harsh solution conditions, thanks to its multiple adaptive molecular interactions with substrates that further elucidated by molecular force measurements between the 'root' BSA protein and substrates. The 'leaf' conjugated-polyacrylates imparted coatings with versatile on-demand functionalities, such as resistance to over 99% biofouling in complex biofluids, pH-responsive performance, and robust adhesion with various nanomaterials. FINDINGS By synergistically leveraging the universal anchoring capabilities of BSA with the versatile physicochemical properties of polyacrylates, this study introduces a promising and facile strategy for imparting novel functionalities to a myriad of surfaces through engineering natural proteins and biomaterials for biotechnical and nanotechnical applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
5
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
6
|
Klemm B, Roshanasan A, Piergentili I, van Esch JH, Eelkema R. Naked-Eye Thiol Analyte Detection via Self-Propagating, Amplified Reaction Cycle. J Am Chem Soc 2023; 145:21222-21230. [PMID: 37748772 PMCID: PMC10557148 DOI: 10.1021/jacs.3c02937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 09/27/2023]
Abstract
We present an approach for detecting thiol analytes through a self-propagating amplification cycle that triggers the macroscopic degradation of a hydrogel scaffold. The amplification system consists of an allylic phosphonium salt that upon reaction with the thiol analyte releases a phosphine, which reduces a disulfide to form two thiols, closing the cycle and ultimately resulting in exponential amplification of the thiol input. When integrated in a disulfide cross-linked hydrogel, the amplification process leads to physical degradation of the hydrogel in response to thiol analytes. We developed a numerical model to predict the behavior of the amplification cycle in response to varying concentrations of thiol triggers and validated it with experimental data. Using this system, we were able to detect multiple thiol analytes, including a small molecule probe, glutathione, DNA, and a protein, at concentrations ranging from 132 to 0.132 μM. In addition, we discovered that the self-propagating amplification cycle could be initiated by force-generated molecular scission, enabling damage-triggered hydrogel destruction.
Collapse
Affiliation(s)
- Benjamin Klemm
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ardeshir Roshanasan
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Irene Piergentili
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan H. van Esch
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Cheng L, Guo Z, Lin Y, Wei X, Zhao K, Yang Z. Bovine Serum Albumin Molecularly Imprinted Electrochemical Sensors Modified by Carboxylated Multi-Walled Carbon Nanotubes/CaAlg Hydrogels. Gels 2023; 9:673. [PMID: 37623128 PMCID: PMC10454541 DOI: 10.3390/gels9080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall carbon nanotubes (CMWCNT)/CaAlg hydrogel films (MIPs) and non-imprinted hydrogel films (NIPs). The adsorption capacity of the MIP film for BSA was 27.23 mg/g and the imprinting efficiency was 2.73. The MIP and NIP hydrogel film were loaded on the surface of the printed electrode, and electrochemical performance tests were carried out by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) using the electrochemical workstation. The loaded MIP film and NIP film effectively improved the electrochemical signal of the bare carbon electrode. When the pH value of the Tris HCl elution solution was 7.4, the elution time was 15 min and the adsorption time was 15 min, and the peak currents of MIP-modified electrodes and NIP-modified electrodes reached their maximum values. There was a specific interaction between MIP-modified electrodes and BSA, exhibiting specific recognition for BSA. In addition, the MIP-modified electrodes had good anti-interference, reusability, stability, and reproducibility. The detection limit (LOD) was 5.6 × 10-6 mg mL-1.
Collapse
Affiliation(s)
- Letian Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Zhilong Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Yuansheng Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Xiujuan Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Zhengchun Yang
- Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China;
| |
Collapse
|
8
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Kong F, Mehwish N, Lee BH. Emerging albumin hydrogels as personalized biomaterials. Acta Biomater 2023; 157:67-90. [PMID: 36509399 DOI: 10.1016/j.actbio.2022.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Developing biomaterials-based tissue engineering scaffolds with personalized features and intrinsic biocompatibility is appealing and urgent. Through utilizing various strategies, albumin, as the most abundant protein in plasma, could be fabricated into sustainable, cost-effective, and potentially personalized hydrogels that would display enormous biological applications. To date, much of the albumin-based research is primarily engrossed in using albumin as a therapeutic molecule or a drug carrier, not much as a scaffold for tissue engineering. For this reason, we have come up with a detailed and insightful review of recent progress in albumin-based hydrogels having an emphasis on production techniques, material characteristics, and biological uses. It is envisioned that albumin-based scaffolds would be appealing and useful platforms to meet current tissue engineering needs and achieve the goal of clinical translation to benefit patients. STATEMENT OF SIGNIFICANCE: The creation of autologous material-based scaffolds is a potential method for preventing immunological reactions and obtaining the best therapeutic results. Patient-derived albumin hydrogels may consequently provide improved opportunities for personalized treatment due to their abundant supply and minimal immunogenicity. To provide a detailed and insightful summary on albumin-based hydrogels, this review includes latest comprehensive information on their preparation procedures, features, and applications in 3D printing and other biomedical applications. The challenges, along with the future potential for implementing albumin-based hydrogels in clinics, have also been addressed.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Nabila Mehwish
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
10
|
Bustamante GAG, Salas BMS, Ortega MMC, Encinas JC, Félix DER, Chan‐Chan LH, Gautrín REN, Romero García J, del Castillo Castro T. Chondroitin/polypyrrole nanocomposite hydrogels for the accurate release of 5‐fluorouracil by electrical stimulation. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - José Carmelo Encinas
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora, Hermosillo Sonora Mexico
| | | | | | | | | | | |
Collapse
|
11
|
Mahdipour E, Mequanint K. Films, Gels and Electrospun Fibers from Serum Albumin Globular Protein for Medical Device Coating, Biomolecule Delivery and Regenerative Engineering. Pharmaceutics 2022; 14:2306. [PMID: 36365125 PMCID: PMC9698923 DOI: 10.3390/pharmaceutics14112306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 09/18/2023] Open
Abstract
Albumin is a natural biomaterial that is abundantly available in blood and body fluids. It is clinically used as a plasma expander, thereby increasing the plasma thiol concentration due to its cysteine residues. Albumin is a regulator of intervascular oncotic pressure, serves as an anti-inflammatory modulator, and it has a buffering role due to its histidine imidazole residues. Because of its unique biological and physical properties, albumin has also emerged as a suitable biomaterial for coating implantable devices, for cell and drug delivery, and as a scaffold for tissue engineering and regenerative medicine. As a biomaterial, albumin can be used as surface-modifying film or processed either as cross-linked protein gels or as electrospun fibers. Herein we have discussed how albumin protein can be utilized in regenerative medicine as a hydrogel and as a fibrous mat for a diverse role in successfully delivering drugs, genes, and cells to targeted tissues and organs. The review of prior studies indicated that albumin is a tunable biomaterial from which different types of scaffolds with mechanical properties adjustable for various biomedical applications can be fabricated. Based on the progress made to date, we concluded that albumin-based device coatings, delivery of drugs, genes, and cells are promising strategies in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Elahe Mahdipour
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, University Ave., Mashhad 9177948564, Iran
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
12
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
13
|
Injectable redox albumin-based hydrogel with in-situ loaded dihydromyricetin. Colloids Surf B Biointerfaces 2022; 220:112871. [PMID: 36174492 DOI: 10.1016/j.colsurfb.2022.112871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Albumin is widely used in clinics due to its demonstrated biological safety and functional flexibility. Hydrogels derived from natural albumin possess high moisture retention ability and good biodegradability, making albumin ideal biomaterials compared with synthetic polymers. Herein, by reducing disulfide bonds in bovine serum albumin molecules with glutathione and re-oxidizing the free thiols using dimethyl sulfoxide (DMSO) as additional oxidant, three-dimensional network was assembled, leading to the formation of hydrogel. Meanwhile, DMSO is also an excellent solvent for many drugs, and the hydrophobic drug dihydromyricetin (DMY) can be well dissolved in DMSO. During the crosslinking reaction, DMSO participated in fabricating a porous albumin hydrogel network. At the same time, increased loading of DMY and sustained release of DMY were achieved, improving bioavailability of hydrophobic drug DMY. Rheological test and cytotoxicity assay proved excellent elasticity and biocompatibility of the hydrogel. Self-healing property and narrow-needle injection provided potential application of the hydrogel as biomedical materials. This method for formation hydrogels and in situ loading of drugs may expand to preparing other drug loaded hydrogels and find wide applications.
Collapse
|
14
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
15
|
Lee WT, Yoon J, Kim SS, Kim H, Nguyen NT, Le XT, Lee ES, Oh KT, Choi HG, Youn YS. Combined Antitumor Therapy Using In Situ Injectable Hydrogels Formulated with Albumin Nanoparticles Containing Indocyanine Green, Chlorin e6, and Perfluorocarbon in Hypoxic Tumors. Pharmaceutics 2022; 14:pharmaceutics14010148. [PMID: 35057044 PMCID: PMC8781012 DOI: 10.3390/pharmaceutics14010148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Combined therapy using photothermal and photodynamic treatments together with chemotherapeutic agents is considered one of the most synergistic treatment protocols to ablate hypoxic tumors. Herein, we sought to fabricate an in situ-injectable PEG hydrogel system having such multifunctional effects. This PEG hydrogel was prepared with (i) nabTM-technique-based paclitaxel (PTX)-bound albumin nanoparticles with chlorin-e6 (Ce6)-conjugated bovine serum albumin (BSA-Ce6) and indocyanine green (ICG), named ICG/PTX/BSA-Ce6-NPs (~175 nm), and (ii) an albumin-stabilized perfluorocarbon (PFC) nano-emulsion (BSA-PFC-NEs; ~320 nm). This multifunctional PEG hydrogel induced moderate and severe hyperthermia (41−42 °C and >48 °C, respectively) at the target site under two different 808 nm laser irradiation protocols, and also induced efficient singlet oxygen (1O2) generation under 660 nm laser irradiation supplemented by oxygen produced by ultrasound-triggered PFC. Due to such multifunctionality, our PEG hydrogel formula displayed significantly enhanced killing of three-dimensional 4T1 cell spheroids and also suppressed the growth of xenografted 4T1 cell tumors in mice (tumor volume: 47.7 ± 11.6 and 63.4 ± 13.0 mm3 for photothermal and photodynamic treatment, respectively, vs. PBS group (805.9 ± 138.5 mm3), presumably based on sufficient generation of moderate heat as well as 1O2/O2 even under hypoxic conditions. Our PEG hydrogel formula also showed excellent hyperthermal efficacy (>50 °C), ablating the 4T1 tumors when the irradiation duration was extended and output intensity was increased. We expect that our multifunctional PEG hydrogel formula will become a prototype for ablation of otherwise poorly responsive hypoxic tumors.
Collapse
Affiliation(s)
- Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Johyun Yoon
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Sung Soo Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Hanju Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
- Correspondence: ; Tel.: +82-31-290-7785
| |
Collapse
|
16
|
Samoylenko O, Korotych O, Manilo M, Samchenko Y, Shlyakhovenko V, Lebovka N. Biomedical Applications of Laponite®-Based Nanomaterials and Formulations. SPRINGER PROCEEDINGS IN PHYSICS 2022:385-452. [DOI: 10.1007/978-3-030-80924-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Characterization of albumin and hyaluronan-albumin mixed hydrogels. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
|
19
|
Yoon H, Lee H, Shin SY, Jodat YA, Jhun H, Lim W, Seo JW, Kim G, Mun JY, Zhang K, Wan KT, Noh S, Park YJ, Baek SH, Hwang YS, Shin SR, Bae H. Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS OMEGA 2021; 6:33511-33522. [PMID: 34926900 PMCID: PMC8675023 DOI: 10.1021/acsomega.1c04292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.
Collapse
Affiliation(s)
- Heejeong Yoon
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Hanna Lee
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Seon Young Shin
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Yasamin A. Jodat
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hyunjhung Jhun
- Technical
Assistance Center, Korea Food Research Institute, Jeonbuk 55365, Republic of Korea
| | - Wonseop Lim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Wook Seo
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyumin Kim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Young Mun
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Kaizhen Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kai-Tak Wan
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Seulgi Noh
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Yeon Joo Park
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Sang Hong Baek
- Laboratory
of Cardiovascular Regeneration, Division of Cardiology, Seoul St.
Mary’s Hospital, The Catholic University
of Korea School of Medicine, Seoul 02841, Republic
of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Ryon Shin
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hojae Bae
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
20
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Diffusion-controlled release of the theranostic protein-photosensitizer Azulitox from composite of Fmoc-Phenylalanine Fibrils encapsulated with BSA hydrogels. J Biotechnol 2021; 341:51-62. [PMID: 34464649 DOI: 10.1016/j.jbiotec.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
Hydrogels offer a promising potential for the encapsulation and regulated release of drugs due to their biocompatibility and their tunable properties as materials. Only a limited number of systems and procedures enable the encapsulation of sensitive proteins. N-terminally fmoc-protected phenylalanine has been shown to self-assemble into a transparent, stable hydrogel It can be considered a supergelator due to the low amount of monomers necessary for hydrogelation (0.1% w/v), making it a good candidate for the encapsulation and stabilization of sensitive proteins. However, application options for this hydrogel are rather limited to those of many other fibril-based materials due to its intrinsic lack of mechanical strength and high susceptibility to changes in environmental conditions. Here, we demonstrate that the stability of a fibrillary system and the resulting release of the protein-photosensitizer Azulitox can be increased by combining the hydrogel with a tightly cross-linked BSA hydrogel. Azulitox is known to display cell-penetrating properties, anti-proliferative activity and has a distinctive fluorescence. Confocal microscopy and fluorescence measurements verified the maintenance of all essential functions of the encapsulated protein. In contrast, the combination of fibrillary and protein hydrogel resulted in a significant stabilization of the matrix and an adjustable release pattern for encapsulated protein.
Collapse
|
22
|
Qiu X, Zhuang M, Yuan X, Liu Z, Wu W. Nanocomposite coating of albumin/Li-containing bioactive glass nanospheres promotes osteogenic activity of PEEK. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:120. [PMID: 34495414 PMCID: PMC8426230 DOI: 10.1007/s10856-021-06597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Polyetheretherketone (PEEK) is an important material applied in orthopedic applications, as it posses favorable properties for orthopedic implants, e.g., radiolucency and suitable elastic modulus. However, PEEK exhibits insufficient osteogenesis and osteointegration that limits its clinical applications. In this study, we aimed to enhance the osteogenisis of PEEK by using a surface coating approach. Nanocomposite coating composed of albumin/lithium containing bioactive glass nanospheres was fabricated on PEEK through dip-coating method. The presence of nanocomposite coating on PEEK was confirmed by SEM, FTIR, and XRD techniques. Nanocomposite coatings significantly enhanced hydrophilicity and roughness of PEEK. The nanocomposite coatings also enhanced adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells due to the presence of bioactive glass nanospheres and the BSA substrate film. The results indicate the great potential of the nanocomposite coating in enhancing osteogenesis and osteointegration of PEEK implants.
Collapse
Affiliation(s)
- Xubin Qiu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Wenjian Wu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Xia T, Jiang X, Deng L, Yang M, Chen X. Albumin-based dynamic double cross-linked hydrogel with self-healing property for antimicrobial application. Colloids Surf B Biointerfaces 2021; 208:112042. [PMID: 34425530 DOI: 10.1016/j.colsurfb.2021.112042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Hydrogels as ideal material are widely used in biomedical field against bacterial infection. Hydrogels synthesized from natural protein possess better biocompatibility than that synthesized from synthetic polymers. In this work, we designed bovine serum albumin (BSA) based hydrogel via double dynamic crosslinking. The cleavage and rearrangement of disulfide bonds of BSA triggered by glutathione (GSH) forms a disulfide bridge network, and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) grafts the amino groups of BSA by a Mannich-type reaction to form a second network. Integrating THPS into the BSA/GSH system enables gel formation and endows excellent antimicrobial properties. Rheological tests showed the hydrogel featuring elasticity, good mechanical strength and self-healing properties. Antibacterial and cytotoxicity tests proved the hydrogel excellent bacteriostatic ability and low cytotoxicity. This albumin-based hydrogel with low cost is expected to realize wide biomedical applications.
Collapse
Affiliation(s)
- Tiantian Xia
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
24
|
Nandi R, Agam Y, Amdursky N. A Protein-Based Free-Standing Proton-Conducting Transparent Elastomer for Large-Scale Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101208. [PMID: 34219263 DOI: 10.1002/adma.202101208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Indexed: 05/26/2023]
Abstract
A most important endeavor in modern materials' research is the current shift toward green environmental and sustainable materials. Natural resources are one of the attractive building blocks for making environmentally friendly materials. In most cases, however, the performance of nature-derived materials is inferior to the performance of carefully designed synthetic materials. This is especially true for conductive polymers, which is the topic here. Inspired by the natural role of proteins in mediating protons, their utilization in the creation of a free-standing transparent polymer with a highly elastic nature and proton conductivity comparable to that of synthetic polymers, is demonstrated. Importantly, the polymerization process relies on natural protein crosslinkers and is spontaneous and energy-efficient. The protein used, bovine serum albumin, is one of the most affordable proteins, resulting in the ability to create large-scale materials at a low cost. Due to the inherent biodegradability and biocompatibility of the elastomer, it is promising for biomedical applications. Here, its immediate utilization as a solid-state interface for sensing of electrophysiological signals, is shown.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
25
|
Mao SY, Peng HW, Wei SY, Chen CS, Chen YC. Dynamically and Spatially Controllable Albumin-Based Hydrogels for the Prevention of Postoperative Adhesion. ACS Biomater Sci Eng 2021; 7:3293-3305. [PMID: 34152719 DOI: 10.1021/acsbiomaterials.1c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the degree of severity and the geometry of wounds vary, it is necessary to prepare an antiadhesive hydrogel that possesses dynamically controllable material properties, exhibits biodegradability, and possesses drug-releasing properties. Injectable, oxygen peroxide-sensitive, and photo-cross-linkable hydrogels that permit in situ dynamic and spatial control of their physicochemical properties were synthesized for the prevention of postoperative adhesion. Albumin is the most abundant protein in blood serum and serves as a carrier for several molecules that exhibit poor water solubility. It is therefore a suitable biomaterial for the fabrication of hydrogels since it presents a low risk of life-threatening complications and does not require immunosuppressive therapy for preventing graft rejection. The physicochemical properties of this hydrogel can then be spatially postadjusted via transdermal exposure to light to release drugs, depending on what is required for the injury. A significant reduction in postoperative peritoneal adhesion was observed in an animal model involving severe sidewall and bowel abrasions. This study demonstrated that the fabricated dually cross-linked, albumin-based hydrogels have great potential in such applications because they showed a low immune response, easy handling, full wound coverage, and tunable biodegradability. Precise spatial and controllable drug-release profiles may also be achieved via in situ transdermal post-tuning of the biomaterials, depending on the injury.
Collapse
Affiliation(s)
- Syuan-Yu Mao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Hui-Wen Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Shih-Yen Wei
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
26
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Motabar D, Li J, Wang S, Tsao CY, Tong X, Wang LX, Payne GF, Bentley WE. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol Bioeng 2021; 118:2744-2758. [PMID: 33851726 DOI: 10.1002/bit.27793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
28
|
Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with phase tunability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111590. [PMID: 33321635 DOI: 10.1016/j.msec.2020.111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Amyloids are fibrillar structures formed due to protein aggregation or misfolding when the molecules undergo a conformational change from α-helix to β-sheet. Although this self-assembly is associated with many neurodegenerative diseases in vivo, the highly ordered amyloidic structures formed in vitro are ideal scaffolds for many bionanotechnological applications. Amyloid fibrillar networks under specific stimuli can also form stable hydrogels. We have used bovine serum albumin (BSA) as a model amyloidogenic protein to obtain thermally-induced hydrogels that display tunable sol-gel-sol transitions spanning over minutes to days. High concentrations of BSA (14-22% w/v) were heated at 65 °C for less than 3 min without any cross-linking agent to yield soft, injectable gels that were non-toxic to mammalian cells. A detailed investigation of temperature, concentration, incubation time and ionic strength on the formation and reversal of these gels was carried out using visual inspection, rheology, electron microscopy, fluorescence spectroscopy, UV-visible spectroscopy and circular dichroism spectroscopy. The optimum gelation temperature (Tg) for phase reversal of BSA gels was found to lie between 60 and 70 °C. An increase in protein concentration led to a reduction in the gelation time and increase in the gel-to-rev sol transition time. Gels heated for longer duration than their minimum gelation time yielded irreversible gels suggesting that low incubation periods were favourable for partial protein denaturation and hydrogel formation. This was supported by time-resolved secondary and tertiary structural ensemble studies. Further, the hydrogel networks demonstrated a zero-order drug release kinetics and the rev sol was found to be cytocompatible with HaCaT skin cell lines. Overall, our approach demonstrates rapid, crosslinker-free thermoresponsive BSA gelation with wide tunability and control on the time and material property, ideal for topical drug delivery applications.
Collapse
Affiliation(s)
- Shruti Khanna
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ajay Kumar Singh
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumya Prakash Behera
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
29
|
Lutzweiler G, Barthes J, Charles AL, Ball V, Louis B, Geny B, Vrana NE. Improving the colonization and functions of Wharton's Jelly-derived mesenchymal stem cells by a synergetic combination of porous polyurethane scaffold with an albumin-derived hydrogel. ACTA ACUST UNITED AC 2020; 16:015005. [PMID: 33300500 DOI: 10.1088/1748-605x/abaf05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of neo-tissues assisted by artificial scaffolds is continually progressing, but the reproduction of the extracellular environment surrounding cells is quite complex. While synthetic scaffolds can support cell growth, they lack biochemical cues that can prompt cell proliferation or differentiation. In this study, Wharton's Jelly-derived mesenchymal stem cells are seeded on a polyurethane (PU) scaffold combined with a hydrogel based on bovine serum albumin (BSA). BSA hydrogel is obtained through thermal treatment. While such treatment leads to partial unfolding of the protein, we show that the extent of denaturation is small enough to maintain its bioactivity, such as protein binding. Therefore, BSA provides a suitable playground for cells inside the scaffold, allowing higher spreading, proliferation and matrix secretions. Furthermore, the poor mechanical properties of the hydrogel are compensated for by the porous PU scaffold, whose architecture is well controlled. We show that even though PU by itself can allow cell adhesion and protein secretion, cell proliferation is 3.5 times higher in the PU + BSA scaffolds as compared to pure PU after 21 d, along with the non-collagenous protein secretions (389 versus 134 μmmg -1). Conversely, the secretion of sulphated glycosaminoglycans is 12.3-fold higher in the scaffold made solely of PU. Thereby, we propose a simple approach to generating a hybrid material composed of a combination of PU and BSA hydrogel as a promising scaffold for tissue regeneration.
Collapse
Affiliation(s)
- G Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085, Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Lantigua D, Nguyen MA, Wu X, Suvarnapathaki S, Kwon S, Gavin W, Camci-Unal G. Synthesis and characterization of photocrosslinkable albumin-based hydrogels for biomedical applications. SOFT MATTER 2020; 16:9242-9252. [PMID: 32929420 DOI: 10.1039/d0sm00977f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-based biomaterials are widely used to generate three-dimensional (3D) scaffolds for tissue regeneration as well as compact delivery systems for drugs, genes, and peptides. Specifically, albumin-based biomaterials are of particular interest for their ability to facilitate controlled delivery of drugs and other therapeutic agents. These hydrogels possess non-toxic and non-immunogenic properties that are desired in tissue engineering scaffolds. This work employs a rapid ultraviolet (UV) light induced crosslinking to fabricate bovine serum albumin (BSA) hydrogels. Using four different conditions, the BSA hydrogel properties were modulated based on the extent of glycidyl methacrylate modification in each polymer. The highly tunable mechanical behavior of the material was determined through compression tests which yielded a range of material strengths from 4.4 ± 1.5 to 122 ± 7.4 kPa. Pore size measurements also varied from 7.7 ± 1.7 to 23.5 ± 6.6 μm in the photocrosslinked gels. The physical properties of materials such as swelling and degradation were also characterized. In further evaluation, 3D scaffolds were used in cell encapsulation and in vivo implantation studies. The biocompatibility and degradability of the material demonstrated effective integration with the native tissue environment. These modifiable chemical and mechanical properties allow BSA hydrogels to be fine-tuned to a plethora of biomedical applications including regenerative medicine, in vitro cancer study models, and wound healing approaches.
Collapse
Affiliation(s)
- Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Michelle A Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Seongjin Kwon
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Wendy Gavin
- Core Research Facilities, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA and Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Hájovská P, Chytil M, Kalina M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int J Biol Macromol 2020; 161:738-745. [DOI: 10.1016/j.ijbiomac.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
32
|
Saldanha DJ, Abdali Z, Modafferi D, Janfeshan B, Dorval Courchesne NM. Fabrication of fluorescent pH-responsive protein-textile composites. Sci Rep 2020; 10:13052. [PMID: 32747732 PMCID: PMC7400762 DOI: 10.1038/s41598-020-70079-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
Wearable pH sensors are useful tools in the healthcare and fitness industries, allowing consumers to access information related to their health in a convenient manner via the monitoring of body fluids. In this work, we tailored novel protein-textile composites to fluorescently respond to changing pH. To do so, we used amyloid curli fibers, a key component in the extracellular matrix of Escherichia coli, as genetic scaffold to fuse a pH-responsive fluorescent protein, pHuji. Engineered amyloids form macroscopic and environmentally resistant aggregates that we isolated to use as stand-alone hydrogel-based sensors, and that we trapped within textile matrices to create responsive bio-composites. We showed that these composites were mechanically robust and vapor-permeable, thus exhibiting favorable characteristics for wearable platforms. CsgA-pHuji fibers integrated in the textile allowed the final device to respond to pH changes and distinguish between alkaline and acidic solutions. We demonstrated that the resulting composites could sustain their fluorescence response over days, and that their sensing ability was reversible for at least 10 high/low pH cycles, highlighting their potential for continuous monitoring. Overall, we introduced a biosynthesized amyloid-based textile composite that could be used as biosensing patch for a variety of applications in the smart textile industry.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Zahra Abdali
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Daniel Modafferi
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Bita Janfeshan
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | | |
Collapse
|
33
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [PMID: 31480996 DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
34
|
Teimouri S, Kasapis S. Morphology of genipin-crosslinked BSA networks yields a measurable effect on the controlled release of vitamin B6. Food Chem 2020; 314:126204. [DOI: 10.1016/j.foodchem.2020.126204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/24/2019] [Accepted: 01/11/2020] [Indexed: 12/20/2022]
|
35
|
Teimouri S, Morrish C, Kasapis S. Release profile of vitamin B6 from a pH-responsive BSA network crosslinked with genipin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
37
|
Ong J, Zhao J, Justin AW, Markaki AE. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol Bioeng 2019; 116:3457-3468. [PMID: 31520415 PMCID: PMC6899591 DOI: 10.1002/bit.27167] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 01/04/2023]
Abstract
Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- John Ong
- Department of Engineering, University of Cambridge, Cambridge, UK.,Gastroenterology Specialty Training Program, East of England Deanery, Cambridge, UK
| | - Junzhe Zhao
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | | - Athina E Markaki
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Hu TM, Lin CY, Chou HC, Wu MJ. Turning proteins into hydrophobic floatable materials with multiple potential applications. J Colloid Interface Sci 2019; 554:166-176. [DOI: 10.1016/j.jcis.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
39
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
40
|
Yang G, Lu Y, Bomba HN, Gu Z. Cysteine-rich Proteins for Drug Delivery and Diagnosis. Curr Med Chem 2019; 26:1377-1388. [DOI: 10.2174/0929867324666170920163156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/23/2022]
Abstract
An emerging focus in nanomedicine is the exploration of multifunctional nanocomposite materials that integrate stimuli-responsive, therapeutic, and/or diagnostic functions. In this effort, cysteine-rich proteins have drawn considerable attention as a versatile platform due to their good biodegradability, biocompatibility, and ease of chemical modification. This review surveys cysteine-rich protein-based biomedical materials, including protein-metal nanohybrids, gold nanoparticle-protein agglomerates, protein-based nanoparticles, and hydrogels, with an emphasis on their preparation methods, especially those based on the cysteine residue-related reactions. Their applications in tumor-targeted drug delivery and diagnostics are highlighted.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Science & Technology of Eco-Textile, Donghua University, Ministry of Education, Shanghai 201620, China
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
41
|
Thomas J, Sharma A, Panwar V, Chopra V, Ghosh D. Polysaccharide-Based Hybrid Self-Healing Hydrogel Supports the Paracrine Response of Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:2013-2027. [DOI: 10.1021/acsabm.9b00074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jijo Thomas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Anjana Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vineeta Panwar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Deepa Ghosh
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
42
|
Amdursky N, Mazo MM, Thomas MR, Humphrey EJ, Puetzer JL, St-Pierre JP, Skaalure SC, Richardson RM, Terracciano CM, Stevens MM. Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. J Mater Chem B 2018; 6:5604-5612. [PMID: 30283632 PMCID: PMC6166857 DOI: 10.1039/c8tb01014e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogels are promising materials for mimicking the extra-cellular environment. Here, we present a simple methodology for the formation of a free-standing viscoelastic hydrogel from the abundant and low cost protein serum albumin. We show that the mechanical properties of the hydrogel exhibit a complicated behaviour as a function of the weight fraction of the protein component. We further use X-ray scattering to shed light on the mechanism of gelation from the formation of a fibrillary network at low weight fractions to interconnected aggregates at higher weight fractions. Given the match between our hydrogel elasticity and that of the myocardium, we investigated its potential for supporting cardiac cells in vitro. Interestingly, these hydrogels support the formation of several layers of myocytes and significantly promote the maintenance of a native-like gene expression profile compared to those cultured on glass. When confronted with a multicellular ventricular cell preparation, the hydrogels can support macroscopically contracting cardiac-like tissues with a distinct cell arrangement, and form mm-long vascular-like structures. We envisage that our simple approach for the formation of an elastic substrate from an abundant protein makes the hydrogel a compelling biomedical material candidate for a wide range of cell types.
Collapse
Affiliation(s)
- Nadav Amdursky
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | - Manuel M. Mazo
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | - Michael R. Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | - Eleanor J. Humphrey
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer L. Puetzer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | - Jean-Philippe St-Pierre
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | - Stacey C. Skaalure
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| | | | - Cesare M. Terracciano
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK
| |
Collapse
|
43
|
Liu Y, Wang YM, Sedano S, Jiang Q, Duan Y, Shen W, Jiang JH, Zhong W. Encapsulation of ionic nanoparticles produces reactive oxygen species (ROS)-responsive microgel useful for molecular detection. Chem Commun (Camb) 2018; 54:4329-4332. [PMID: 29637948 DOI: 10.1039/c8cc01432a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encapsulation of ionic nanoparticles in a hydrogel microparticle, i.e. microgel, produces a target-stimulated probe for molecular detection. Selective reactive oxygen species (ROS) release the enclosed cations from the microgel which subsequently turn on the fluorogenic dyes to emit intense fluorescence, permitting rapid detection of ROS or ROS-producing molecules. The ROS-responsive microgel provides the advantages of simple fabrication, bright and stable signals, easy handling, and rapid response, carrying great promise in biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Environmental Toxicology Program, University of California, Riverside 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang L, Liang K, Jiang X, Yang M, Liu YN. Dynamic Protein-Metal Ion Networks: A Unique Approach to Injectable and Self-Healable Metal Sulfide/Protein Hybrid Hydrogels with High Photothermal Efficiency. Chemistry 2018; 24:6557-6563. [DOI: 10.1002/chem.201705841] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Liqiang Wang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| | - Kaixin Liang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - Xingxing Jiang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| |
Collapse
|
45
|
Iurciuc (Tincu) CE, Savin A, Atanase LI, Danu M, Martin P, Popa M. Encapsulation of Saccharomyces cerevisiae in hydrogel particles based gellan ionically cross-linked with zinc acetate. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Ferreira N, Ferreira L, Cardoso V, Boni F, Souza A, Gremião M. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
O'Connor NA, Jitianu M, Nunez G, Picard Q, Wong M, Akpatsu D, Negrin A, Gharbaran R, Lugo D, Shaker S, Jitianu A, Redenti S. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties. Int J Biol Macromol 2018; 111:370-378. [PMID: 29325744 DOI: 10.1016/j.ijbiomac.2018.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epichlorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids.
Collapse
Affiliation(s)
- Naphtali A O'Connor
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| | - Mihaela Jitianu
- Department of Chemistry, William Paterson University, 300 Pompton Rd, Wayne, NJ 07470, United States
| | - Greisly Nunez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - Quentin Picard
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - Madeline Wong
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States; Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - David Akpatsu
- Department of Chemistry, William Paterson University, 300 Pompton Rd, Wayne, NJ 07470, United States
| | - Adam Negrin
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - Rajendra Gharbaran
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468, United States; Biological Sciences Department, Bronx Community College of the City University of New York, Bronx, NY 10453, United States
| | - Daniel Lugo
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - Sundus Shaker
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States
| | - Andrei Jitianu
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Stephen Redenti
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468, United States; Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| |
Collapse
|
48
|
Bodenberger N, Kubiczek D, Rosenau F. Easy Manipulation of Architectures in Protein-based Hydrogels for Cell Culture Applications. J Vis Exp 2017:55813. [PMID: 28809838 PMCID: PMC5614017 DOI: 10.3791/55813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hydrogels are recognized as promising materials for cell culture applications due to their ability to provide highly hydrated cell environments. The field of 3D templates is rising due to the potential resemblance of those materials to the natural extracellular matrix. Protein-based hydrogels are particularly promising because they can easily be functionalized and can achieve defined structures with adjustable physicochemical properties. However, the production of macroporous 3D templates for cell culture applications using natural materials is often limited by their weaker mechanical properties compared to those of synthetic materials. Here, different methods were evaluated to produce macroporous bovine serum albumin (BSA)-based hydrogel systems, with adjustable pore sizes in the range of 10 to 70 µm in radius. Furthermore, a method to generate channels in this protein-based material that are several hundred microns long was established. The different methods to produce pores, as well as the influence of pore size on material properties such as swelling ratio, pH, temperature stability, and enzymatic degradation behavior, were analyzed. Pore sizes were investigated in the native, swollen state of the hydrogels using confocal laser scanning microscopy. The feasibility for cell culture applications was evaluated using a cell-adhesive RGD peptide modification of the protein system and two model cell lines: human breast cancer cells (A549) and adenocarcinomic human alveolar basal epithelial cells (MCF7).
Collapse
Affiliation(s)
| | - Dennis Kubiczek
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University
| | - Frank Rosenau
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University
| |
Collapse
|
49
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
50
|
Wezena CA, Krafczyk J, Staudacher V, Deponte M. Growth inhibitory effects of standard pro- and antioxidants on the human malaria parasite Plasmodium falciparum. Exp Parasitol 2017; 180:64-70. [PMID: 28242353 DOI: 10.1016/j.exppara.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 01/13/2023]
Abstract
The redox metabolism of the malaria parasite Plasmodium falciparum and its human host has been suggested to play a central role for parasite survival and clearance. A common approach to test hypotheses in redox research is to challenge or rescue cells with pro- and antioxidants. However, quantitative data on the susceptibility of infected erythrocytes towards standard redox agents is surprisingly scarce. Here we determined the IC50 values of P. falciparum strains 3D7 and Dd2 for a set of redox agents using a SYBR green-based growth assay. Parasite killing in this assay required extremely high concentrations of hydrogen peroxide with a millimolar IC50 value, whereas IC50 values for tert-butyl hydroperoxide and diamide were between 67 and 121 μM. Thus, in contrast to tert-butyl hydroperoxide and the disulfide-inducing agent diamide, the host-parasite unit appears to be very robust against challenges with hydrogen peroxide with implications for host defense mechanisms. N-acetylcysteine, ascorbate, and dithiothreitol also had antiproliferative instead of growth-promoting effects with IC50 values around 12, 3 and 0.4 mM, respectively. So-called antioxidants can therefore also inhibit parasite growth with implications for clinical trials and studies on 'oxidative stress'. Furthermore, the addition of reductants to parasite cultures resulted in the gelation of albumin, the formation of methemoglobin and hemolysis. These effects can alter the fluorescence in SYBR green assays and have to be taken into account for the determination of IC50 values. In summary, standard oxidants and reductants both inhibit the growth of P. falciparum with IC50 values differing by three orders of magnitude.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Johannes Krafczyk
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| |
Collapse
|