1
|
Prokopiuk V, Onishchenko A, Pazura Y, Bespalova I, Kökbaş U, Tryfonyuk L, Mateychenko P, Kot K, Kurmangaliyeva S, Kot Y, Yefimova S, Tkachenko A. Nanostructured zinc carbonate hydroxide microflakes: assessing the toxicity against erythrocytes and L929 cells in vitro. NANOTECHNOLOGY 2024; 36:085102. [PMID: 39637441 DOI: 10.1088/1361-6528/ad9aac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn5(CO3)(OH)6microflakes. Cytotoxicity of the microflakes was assessed against murine L929 cell line and rat mature erythrocytes. Viability, motility, cell death pathways, implication of Ca2+, reactive oxygen species and reactive nitrogen species (RNS) signaling, caspases, and alterations of cell membranes following exposure of L929 cells to the microflakes were assessed. To assess hemocompatibility of the Zn-containing microflakes, osmotic fragility and hemolysis assays were performed, as well as multiple eryptosis parameters were evaluated. Our findings indicate a dose-response cytotoxicity of ZnCH microflakes against L929 cells with no toxicity observed for low concentrations (10 mg l-1and below). At high concentrations (25 mg l-1and above), ZnCH microflakes promoted nitrosyl stress, Ca2+- and caspase-dependent apoptosis, and altered lipid order of cell membranes in a dose-dependent manner, evidenced by up to 7-fold elevation of RNS-dependent fluorescence, 2.9-fold enhancement of Fura 2-dependent fluorescence, over 20-fold elevation of caspases-dependent fluorescence (caspase-3, caspase-8, and caspase-9), and up to 4.4-fold increase in the ratiometric index of the NR12S probe. Surprisingly, toxicity to enucleated mature erythrocytes was found to be lower compared to L929 cells. ZnCH microflakes induced eryptosis associated with oxidative stress, nitrosyl stress, Ca2+signaling and recruitment of caspases at 25-50-100 mg l-1. Eryptosis assays were found to be more sensitive than evaluation of hemolysis. Zn5(CO3)(OH)6microflakes show no cytotoxicity at low concentrations indicating their potential as a source of zinc for livestock animals.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Yuliia Pazura
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Iryna Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad, 50300 Nevşehir, Turkey
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33028 Rivne, Ukraine
| | - Pavlo Mateychenko
- Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev st, 030012 Aktobe, Kazakhstan
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
2
|
Salgado L, Cifuentes-Delgado PC, Orozco JC, Muñoz-Camargo C, Reyes LH, Quezada V, Cruz JC. Evaluating the impact of cell-penetrating motif position on the cellular uptake of magnetite nanoparticles. Front Bioeng Biotechnol 2024; 12:1450694. [PMID: 39687269 PMCID: PMC11646778 DOI: 10.3389/fbioe.2024.1450694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Cell-penetrating peptides (CPPs) have been employed to enhance the cellular uptake and intracellular delivery of various nanocarriers. Among them, nanoparticles (NPs) have been used as suitable vehicles for delivering different bioactive molecules in the treatment of a diverse range of diseases. Given the pivotal role of the conjugation method of CPPs, this study aims to evaluate the impact of the position of a cell-penetrating motif (LFVCR) on the biocompatibility, cellular uptake, and endosomal escape of magnetite NPs. The designed peptide's physicochemical properties suggest they are well-suited for efficient cell penetration with minimal cytotoxicity. The resulting designed nanoconjugates were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results indicate that motif position significantly impacts the cellular uptake and endosomal escape of the designed nanobioconjugates. Key findings suggest that motif exposure enhances endocytosis-mediated cell internalization and improves endosomal escape efficiency. These results were compared with nanobioconjugates displaying previously reported CPPs. The selected nanobioconjugate demonstrated superior performance in endosomal escape and comparable cell uptake to the reference nanobioconjugates. These results, along with the nanobioconjugate's physicochemical characteristics and high biocompatibility, position the nanocarrier as a suitable candidate for delivering diverse bioactive molecules.
Collapse
Affiliation(s)
- Laura Salgado
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan Camilo Orozco
- Center for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá, Colombia
| | | | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Mishra G, Awasthi R, Mishra SK, Singh AK, Tiwari AK, Singh SK, Nandi MK. Development of Epigallocatechin and Ascorbic Acid Dual Delivery Transferosomes for Managing Alzheimer's Disease: In Vitro and in Vivo Studies. ACS OMEGA 2024; 9:35463-35474. [PMID: 39184506 PMCID: PMC11339821 DOI: 10.1021/acsomega.4c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) and ascorbic acid (AA)-loaded transferosomes (TRANS) were developed for brain delivery. The investigation covered EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS formulations using the film hydration technique. We analyzed the formed transferosomes to confirm the presence of vesicles loaded with the respective drugs and their performance within a living organism. The sizes of the particles for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS were measured correspondingly at 174.2 ± 1.80, 132.7 ± 12.22, and 184.31 ± 9.5 nm. The appearance of diffused rings in the scanning electron microscopic image suggests that the payload has a crystalline structure. The atomic force microscope image displayed minimal surface irregularities, potentially indicating the presence of a lipid layer on the surface. Hemolysis results indicated the safety of the vesicles. The results showed 10.23, 7.21, and 8.20% of hemolysis for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS, respectively. In the case of EGCG-AA-TRANS, the release of EGCG was determined to be 61.65% ± 4.61 after 72 h when exposed to phosphate buffer saline (pH 7.4). In vivo studies show a good response against Alzheimer's disease (AD). EGCG-AA-TRANS (82.166%) exhibited a higher percentage of AChE inhibition in comparison to EGCG-TRANS (66.550%) and AA-TRANS (53.466%). Intranasal delivery of EGCG-AA-TRANS resulted in approximately a 5-fold enhancement in memory. Formulation allowed EGCG and AA to accumulate in various organs, including the brain. The results suggest that EGCG-AA-TRANS could be safe and effective for treating AD.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health
Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Tiwari
- Department
of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
5
|
Cocîrlea MD, Simionescu N, Petrovici AR, Silion M, Biondi B, Lastella L, Oancea S. In Vitro Screening of Ecotoxic and Cytotoxic Activities of Ailanthus altissima Leaf Extract against Target and Non-Target Plant and Animal Cells. Int J Mol Sci 2024; 25:5653. [PMID: 38891841 PMCID: PMC11171768 DOI: 10.3390/ijms25115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ailanthus altissima, an invasive plant species, exhibits pharmacological properties, but also some allergic effects on humans. This study aimed to evaluate the potential toxicity of A. altissima leaves, using a complex approach towards different organisms. The ecotoxic impact of a crude extract was investigated on seeds germination and brine shrimp lethality. Cytotoxicity was studied in vitro using non-target (haemolysis, liposomal model, fibroblast), and target (cancer cells) assays. Leaf extract at 1000 µg/mL significantly inhibited wheat and tomato germination, while no significant effects were found on parsley germination. A slight stimulatory effect on wheat and tomato germination was found at 125 µg/mL. In a brine shrimp-test, the extract showed a low toxicity at 24 h post-exposure (LC50 = 951.04 ± 28.26 μg/mL), the toxic effects increasing with the exposure time and extract concentration. Leaf extract caused low hematotoxicity. The extract was biocompatible with human gingival fibroblasts. No anti-proliferative effect was found within the concentration range of 10-500 µg/mL on malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2). In a liposomal model-test, the extract proved to possess low capability to alter the eukaryotic cell-mimicking membranes within the tested concentration range. Given the low to moderate toxicity on tested organisms/cells, the A. altissima autumn leaves may find useful applications.
Collapse
Affiliation(s)
- Maria Denisa Cocîrlea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica-Voda, 700487 Iasi, Romania; (N.S.); (A.R.P.)
| | - Anca Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica-Voda, 700487 Iasi, Romania; (N.S.); (A.R.P.)
| | - Mihaela Silion
- Physics of Polymers and Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, Consiglio Nazionale delle Ricerche (CNR), Via Marzolo 1, 35131 Padova, Italy;
| | - Luana Lastella
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania;
| |
Collapse
|
6
|
Koltakov IA, Shilova EV, Nakvasina MA, Antipov SS, Korchagina EE, Artyukhov VG. Effect of Magnetite Nanoparticles on Human Blood Components. Bull Exp Biol Med 2024; 176:811-815. [PMID: 38896317 DOI: 10.1007/s10517-024-06114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 06/21/2024]
Abstract
The qualitative composition and zeta potential of magnetite nanoparticles (size 4.2±1.2 nm) obtained by co-precipitation method were determined by X-ray and diffraction dynamic light scattering. The zeta potential of Fe3O4 particles was -15.1±4.5 mV. The possibility of interaction of magnetite nanoparticles with human blood plasma proteins and hemoglobin as well as with erythrocyte membranes was demonstrated by spectrophotometry, electrophoresis, and fluorescence methods. No changes in the sizes of hemoglobin molecules and plasma proteins after their modification by Fe3O4 particles were detected. The possibility of modifying the structural state of erythrocyte membranes in the presence of magnetite nanoparticles was demonstrated by means of fluorescent probe 1-anilinonaphthalene-8-sulfonate.
Collapse
Affiliation(s)
| | - E V Shilova
- Voronezh State University, Voronezh, Russia.
| | | | | | | | | |
Collapse
|
7
|
Hsiao YN, Ilhami FB, Cheng CC. CO 2-Responsive Water-Soluble Conjugated Polymers as a Multifunctional Fluorescent Probe for Bioimaging Applications. Biomacromolecules 2024; 25:997-1008. [PMID: 38153011 DOI: 10.1021/acs.biomac.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We describe important progress in the synthesis and development of gas-responsive water-soluble conjugated polymers (WSCPs) with potential as multifunctional fluorescent materials for biomedical imaging and probes. A water-soluble WSCP (I-PT) composed of a hydrophobic fluorescent polythiophene backbone and a hydrophilic imidazole side chain was successfully prepared through a facile and efficient two-step synthetic route. Owing to the repulsive force between the hydrophilic and hydrophobic segments and the highly sensitive carbon dioxide (CO2)- and nitrogen (N2)-responsive imidazole groups in its structure, I-PT can spontaneously self-assemble into spherical-like nanoparticles in an aqueous environment, and thus exhibits unique light absorption and fluorescence properties as well as rapid responsiveness to CO2 and N2. In addition, its structure, optical absorption/fluorescence behavior, and surface potential can be quickly turned on and off through alternating cycles of CO2 and N2 bubbling and exhibit controllable cyclic switching stability, thereby allowing effective manipulation of its hierarchical structure and chemical-physical characteristics. More importantly, a series of in vitro cell experiments confirmed that, compared to the significant cytotoxicity of pristine and N2-treated I-PT nanoparticles, CO2-treated I-PT nanoparticles exhibit extremely low cytotoxicity in normal and cancer cells and undergo greatly accelerated cellular uptake, resulting in a significant increase in the intensity and stability of their fluorescence signal in the intracellular environment. Overall, this newly discovered CO2/N2-responsive system provides new insights to effectively enhance the biocompatibility, cellular internalization, and intracellular fluorescence characteristics of WSCPs and holds great potential for biomedical imaging/sensing applications.
Collapse
Affiliation(s)
- Yu-Nong Hsiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
8
|
Karageorgou MA, Apostolopoulou A, Tomazinaki ME, Stanković D, Stiliaris E, Bouziotis P, Stamopoulos D. Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe 3O 4 Dual-Modality Contrast Agent in Peripheral Human Blood. MATERIALS (BASEL, SWITZERLAND) 2024; 17:335. [PMID: 38255503 PMCID: PMC10820996 DOI: 10.3390/ma17020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Adamantia Apostolopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
- Laboratory of Biology, School of Medicine, Department of Basic Medical Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mina-Ermioni Tomazinaki
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Dragana Stanković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| | - Efstathios Stiliaris
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
| | - Dimosthenis Stamopoulos
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| |
Collapse
|
9
|
Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV, Tkachenko AS. Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? NANOTECHNOLOGY 2023; 35:035102. [PMID: 37827140 DOI: 10.1088/1361-6528/ad02a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Aim. In this study, blood compatibility of ZnO nanoparticles-polymer nanocomplex (D-PAA/ZnONPs(SO42-)) synthesizedin situinto dextran-graft-polyacrylamide (D-PAA) using zinc sulphate as a precursor was tested using hemolysis, osmotic fragility and eryptosis assays.Materials and methods. Dose-dependent ability to induce eryptosis was assessed following 24 h incubation at concentrations of 0-800 mg l-1analyzing hallmarks of eryptosis (cell shrinkage and phosphatidylserine externalization), as well as reactive oxygen species generation. Hemolysis was detected spectrophotometrically based on hemoglobin release following exposure to the D-PAA/ZnONPs(SO42-) nanocomplex. Osmotic fragility test (OFT) involved detection of hemolysis of red blood cells exposed to 0.2% saline solution following incubation with the D-PAA/ZnONPs(SO42-) nanocomplex. Additional incubation of the nanocomplex in the presence or absence of either ascorbic acid or EGTA was used to reveal the implication of oxidative stress- or Ca2+-mediated mechanisms in D-PAA/ZnONPs(SO42-) nanocomplex-induced erythrotoxicity.Results. Hemocompatibility assessment of the D-PAA/ZnONPs(SO42-) nanocomplex revealed that it induced hemolysis and reduced resistance of erythrocytes to osmotic stress at concentrations of above 400 and 200 mg l-1, respectively. Oxidative stress- or Ca2+-mediated mechanisms were not involved in D-PAA/ZnONPs(SO42-) nanocomplex-induced hemolysis. Strikingly, the D-PAA/ZnONPs(SO42-) nanocomplex did not promote cell membrane scrambling, cell shrinkage and oxidative stress in red blood cells following the direct exposure for 24 h. Thus, the D-PAA/ZnONPs(SO42-) nanocomplex did not induce eryptosisin vitro. Eryptosis is generally considered to occur earlier than hemolysis in response to stress in order to prevent hemolytic cell death. Counterintuitively, our data suggest that hemolysis can be triggered by nanomaterials prior to eryptosis indicating that eryptosis and hemolysis assays should be used in combination for testing blood compatibility of nanomaterials.Conclusions. The D-PAA/ZnONPs(SO42-) nanocomplex has a good hemocompatibility profile at low concentrations. Hemocompatibility testing in nanotoxicology should include both eryptosis and hemolysis assays.
Collapse
Affiliation(s)
- Anatolii I Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| | - Volodymyr Yu Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st., 61015 Kharkiv, Ukraine
| | - Vasyl A Chumachenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Pavlo A Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Liliya Y Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Sobornast, 33000 Rivne, Ukraine
| | - Nataliya V Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Anton S Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| |
Collapse
|
10
|
Oltolina F, Santaella Escolano MDC, Jabalera Y, Prat M, Jimenez Lopez C. mAb-Functionalized Biomimetic MamC-Mediated-Magnetoliposomes as Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2023; 24:13958. [PMID: 37762260 PMCID: PMC10531091 DOI: 10.3390/ijms241813958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability. Herein, we describe the production of the magnetoliposomes (LP) embedding BMNPs functionalized (or not) with doxorubicin (DOXO), [LP(+/-DOXO-BMNPs)], and their surface modification with the DO-24 mAb, which targets the human Met/HGF receptor's ectodomain (overexpressed in many cancers). Nanoformulations were extensively characterized using TEM, DLS, FTIR and when tested in vitro, the lipid coating increased the colloidal stability and their biocompatibility, favoring the cellular uptake in cells overexpressing the cognate receptor. Indeed, the magnetoliposomes mAb-LP(+/-DOXO-BMNPs) exerted a specific active targeting ability by the presence of the mAb that preserved its immunocompetence. Both LP(BMNPs) and mAb-LP(BMNPs) were not toxic to cells, while +/-mAb-LP(DOXO-BMNPs) nanoformulations were indeed cytotoxic. Therefore, this study represents a proof of concept for the development of promising drug carriers for cancer therapy based on local chemotherapy directed by mAbs.
Collapse
Affiliation(s)
- Francesca Oltolina
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | | | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| |
Collapse
|
11
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Prokopiuk V, Yefimova S, Onishchenko A, Kapustnik V, Myasoedov V, Maksimchuk P, Butov D, Bespalova I, Tkachenko A. Assessing the Cytotoxicity of TiO 2-x Nanoparticles with a Different Ti 3+(Ti 2+)/Ti 4+ Ratio. Biol Trace Elem Res 2023; 201:3117-3130. [PMID: 36029428 DOI: 10.1007/s12011-022-03403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 12/31/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles are promising biomedical agents characterized by good biocompatibility. In this study, we explored the cytotoxicity of TiO2-x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio and analyzed the efficiency of eryptosis indices as a tool in nanotoxicology. Two types of TiO2-x nanoparticles (NPs) were synthesized by the hydrolysis of titanium alkoxide varying the nitric acid content in the hydrolysis mixture. Transmission electron microscopy (TEM) images show that 1-TiO2-x and 2-TiO2-x NPs are 5 nm in size, whereas X-ray photoelectron spectroscopy (XPS) reveals different Ti3+ (Ti2+)/Ti4+ ratios in the crystal lattices of synthesized NPs. 1-TiO2-x nanoparticles contained 54% Ti4+, 38% Ti3+, and 8% Ti2+, while the relative amount of Ti4+ and Ti3+ in the crystal lattice of 2-TiO2-x nanoparticles was 63% and 37%, respectively. Cell viability and cell motility induced by TiO2-x nanoparticles were investigated on primary fibroblast cultures. Eryptosis modulation by the nanoparticles along with cell death mechanisms was studied on rat erythrocytes. We report that both TiO2-x nanoparticles do not decrease the viability of fibroblasts simultaneously stimulating cell migration. Data from in vitro studies on erythrocytes indicate that TiO2-x nanoparticles trigger eryptosis via ROS- (1-TiO2-x) and Ca2+-mediated mechanisms (both TiO2-x nanoparticles) suggesting that evaluation of eryptosis parameters is a more sensitive nanotoxicological approach for TiO2-x nanoparticles than cultured fibroblast assays. TiO2-x nanoparticles are characterized by low toxicity against fibroblasts, but they induce eryptosis, which is shown to be a promising tool for nanotoxicity screening. The Ti3+ (Ti2+)/Ti4+ ratio at least partly determines the cytotoxicity mechanisms for TiO2-x nanoparticles.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Valeriy Kapustnik
- Department of Internal and Occupational Diseases, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Pavel Maksimchuk
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Dmytro Butov
- Department of Phthisiology and Pulmonology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Irina Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
| |
Collapse
|
13
|
Vazhnichaya E, Lytvyn S, Kurapov Y, Semaka O, Lutsenko R, Chunikhin A. The influence of pure (ligandless) magnetite nanoparticles functionalization on blood gases and electrolytes in acute blood loss. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2023; 50:102675. [PMID: 37028737 DOI: 10.1016/j.nano.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Objective was to compare the effect of functionalization of magnetite (Fe3O4) nanoparticles (NPs) with sodium chloride (NaCl), or its combination with ethylmethylhydroxypyrydine succinate (EMHPS) and polyvinylpyrrolidone (PVP) on blood gases and electrolytes in acute blood loss. Ligandless magnetite NPs were synthesized by the electron beam technology and functionalized by mentioned agents. Size of NPs in colloidal solutions Fe3O4@NaCl, Fe3O4@NaCl@EMHPS, Fe3O4@NaCl@PVP, Fe3O4@NaCl@EMHPS@PVP (nanosystems 1-4) was determined by dynamic light scattering. In vivo experiments were performed on 27 Wistar rats. Acute blood loss was modeled by removal 25 % circulating blood. Nanosystems 1-4 were administered to animals intaperitoneally after the blood loss with followed determination of blood gases, pH and electrolytes. In blood loss, nanosystems Fe3O4@NaCl and Fe3O4@NaCl@PVP were able to improve the state of blood gases, pH, and the ratio of sodium/potassium in the blood. So, magnetite NPs with a certain surface modification can promote oxygen transport under hypoxic conditions.
Collapse
Affiliation(s)
- Elena Vazhnichaya
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Stanislav Lytvyn
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine.
| | - Yurii Kurapov
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine
| | - Oleksandr Semaka
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Ruslan Lutsenko
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Alexander Chunikhin
- Department of Smooth Muscle, O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich Street, 01054 Kyiv, Ukraine
| |
Collapse
|
14
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
15
|
Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, Dizge N, Özdemir S, Gonca S, Ocakoglu K. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater 2023; 111:872-880. [PMID: 36420776 DOI: 10.1002/jbm.b.35197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
The control over bacterial diseases requires the development of novel antibacterial agents. The use of antibacterial nanomedicines is one of the strategies to tackle antibiotic resistance. The study was designed to assess the antimicrobial activity of cerium oxide (CeO2 ) nanoparticles (NP) of two different sizes (CeO2 NP1 [1-2 nm] and CeO2 NP2 [10-12 nm]) and their cytotoxicity towards eukaryotic cells. The antimicrobial activity, effects of nanoparticles on DNA cleavage, microbial cell viability, and biofilm formation inhibition were analyzed. The impact of cerium oxide nanoparticles on eryptosis of erythrocytes was estimated using annexin V staining by flow cytometry. The newly synthesized CeO2 NP1 and CeO2 NP2 displayed moderate antimicrobial activities. CeO2 NP1 and CeO2 NP2 exhibited single-strand DNA cleavage ability. CeO2 NPs were found to show 100% microbial cell viability inhibition at a concentration of 500 mg/L. In addition, CeO2 NP1 and CeO2 NP2 inhibited the biofilm formation of S. aureus and P. aeruginosa. Larger cerium oxide nanoparticles were found to be less toxic against erythrocytes compared with the smaller ones. CeO2 nanoparticles demonstrate moderate antimicrobial activity and low cytotoxicity towards erythrocytes, which make them promising antibacterial agents.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Vladimir Klochkov
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kavok
- Department of Nanostructured Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Tatyana Chumachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine.,Department of Epidemiology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Serpil Gonca
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Mersin University, Mersin, Turkey
| | - Kasim Ocakoglu
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, Tarsus, Turkey
| |
Collapse
|
16
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
17
|
Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, Knigavko O, Maksimchuk P, Kökbaş U, Kalashnyk-Vakulenko Y, Arkatov A, Khanzhyn V, Prokopyuk V, Vyshnytska I, Tkachenko A. Rare-earth orthovanadate nanoparticles trigger Ca 2+-dependent eryptosis. NANOTECHNOLOGY 2023; 34:205101. [PMID: 36780664 DOI: 10.1088/1361-6528/acbb7f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application.Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+and LaVO4:Eu3+nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases.Methods. Blood samples (n= 9) were incubated for 24 h with 0-10-20-40-80 mg l-1GdVO4:Eu3+or LaVO4:Eu3+nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+and LaVO4:Eu3+nanoparticles was assessed by confocal laser scanning microscopy.Results.Both nanoparticles triggered eryptosis at concentrations of 80 mg l-1. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+nanoparticles were internalized after a 24 h incubation, while the large-sized (∼30 nm) LaVO4:Eu3+nanoparticles were localized preferentially around erythrocytes.Conclusions.Both internalized GdVO4:Eu3+and non-internalized LaVO4:Eu3+nanoparticles (80 mg l-1) promote eryptosis of erythrocytes after a 24 h exposurein vitrovia Ca2+signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv , Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st,33000 Rivne, Ukraine
| | - Oleksandr Knigavko
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad. 50300 / Nevşehir, Turkey
| | - Yuliia Kalashnyk-Vakulenko
- Department of Otorhinolaryngology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Andrii Arkatov
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Vladyslav Khanzhyn
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Iryna Vyshnytska
- Saint James School of Medicine, Albert Lake Drive, The Quarter, A-1 2640, Anguilla
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| |
Collapse
|
18
|
Lytvyn S, Vazhnichaya E, Kurapov Y, Semaka O, Babijchuk L, Zubov P. Cytotoxicity of magnetite nanoparticles deposited in sodium chloride matrix and their functionalized analogues in erythrocytes. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
19
|
Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184115. [PMID: 36603803 DOI: 10.1016/j.bbamem.2022.184115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400μg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Collapse
|
20
|
Mehrizi TZ, Ardestani MS, Kafiabad SA. A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011-2021. Curr Drug Deliv 2023; 20:261-280. [PMID: 35570560 DOI: 10.2174/1567201819666220513092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE To obtain safe and qualified blood products (e.g., platelets, plasma, and red blood cells), various limitations such as limited shelf life (especially for platelets) and stability must be addressed. In this review study, the most commonly used metal nanomaterials (e.g., gold, silver, iron, and magnetic) reported in the literature from 2011 to 2021 were discussed owing to their unique properties, which provide exciting approaches to overcome these limitations and improve the stability, safety, and quality of blood products. Novelty: This study reviews for the first time the results of studies (from 2011 to 2021) that consider the effects of various metallic nanoparticles on the different blood products. RESULTS The results of this review study showed that some metallic nanoparticles are effective in improving the stability of plasma proteins. For this purpose, modified Fe3O4 magnetic nanoparticles and citrate-AuNPs protect albumin products against stressful situations. Also, SiO2 microspheres and silicacoated magnetite nanoparticles are highly capable of improving IgG stability. ZnO nanoparticles also reduced thrombin production, and protein-coated GMNP nanoparticles prevented unwanted leakage of factor VIII through blood vessels. Furthermore, the stability and longevity of erythrocytes can be improved by AuNP nanoparticles and Zr-based organic nanoparticles. In addition, platelet storage time can be improved using PEGylated Au and functionalized iron oxide nanoparticles. SUGGESTION According to the results of this study, it is suggested that further research should be conducted on metal nanoparticles as the most promising candidates to prepare metal nanoparticles with improved properties to increase the stability of various blood products.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
21
|
Setia A, Mehata AK, Vikas, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
22
|
Tian Y, Li Y, Sun S, Dong Y, Tian Z, Zhan L, Wang X. Effects of urban particulate matter on the quality of erythrocytes. CHEMOSPHERE 2023; 313:137560. [PMID: 36526140 DOI: 10.1016/j.chemosphere.2022.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
With the acceleration of industrialisation and urbanisation, air pollution has become a serious global concern as a hazard to human health, with urban particulate matter (UPM) accounting for the largest share. UPM can rapidly pass into and persist within systemic circulation. However, few studies exist on whether UPM may have any impact on blood components. In this study, UPM standards (SRM1648a) were used to assess the influence of UPM on erythrocyte quality in terms of oxidative and metabolic damage as well as phagocytosis by macrophages in vitro and clearance in vivo. Our results showed that UPM had weak haemolytic properties. It can oxidise haemoglobin and influence the oxygen-carrying function, redox balance, and metabolism of erythrocytes. UPM increases the content of reactive oxygen species (ROS) and decreases antioxidant function according to the data of malonaldehyde (MDA), glutathione (GSH), and glucose 6 phosphate dehydrogenase (G6PDH). UPM can adhere to or be internalised by erythrocytes at higher concentrations, which can alter their morphology. Superoxide radicals produced in the co-incubation system further disrupted the structure of red blood cell membranes, thereby lowering the resistance to the hypotonic solution, as reflected by the osmotic fragility test. Moreover, UPM leads to an increase in phosphatidylserine exposure in erythrocytes and subsequent clearance by the mononuclear phagocytic system in vivo. Altogether, this study suggests that the primary function of erythrocytes may be affected by UPM, providing a warning for erythrocyte quality in severely polluted areas. For critically ill patients, transfusion of erythrocytes with lesions in morphology and function will have serious clinical consequences, suggesting that potential risks should be considered during blood donation screening. The current work expands the scope of blood safety studies.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China; Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Yuxuan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
23
|
Meiping Dong, Cao L, Mao Y, Zhao Z. Alteplase Improves Neurological Function and Affects Expression of SDF-1 and Claudin-5 in Rats with Acute Cerebral Infarction. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Mishra G, Awasthi R, Singh AK, Singh S, Mishra SK, Singh SK, Nandi MK. Intranasally Co-administered Berberine and Curcumin Loaded in Transfersomal Vesicles Improved Inhibition of Amyloid Formation and BACE-1. ACS OMEGA 2022; 7:43290-43305. [PMID: 36467923 PMCID: PMC9713875 DOI: 10.1021/acsomega.2c06215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Selective permeability of the blood-brain barrier restricts the treatment efficacy of neurologic diseases. Berberine (BBR) and curcumin (CUR)-loaded transferosomes (TRANS) were prepared for the effective management of Alzheimer's disease (AD). The study involved the syntheses of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS by the film hydration method. Vesicles were characterized to ensure the formation of drug-loaded vesicles and their in vivo performance. The particle sizes of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS were 139.2 ± 7, 143.4 ± 8, and 165.3 ± 6.5 nm, respectively. The presence of diffused rings in the SED image indicates the crystalline nature of the payload. Low surface roughness in an AFM image could be associated with the presence of a surface lipid. BBR-CUR-TRANS showed 41.03 ± 1.22 and 47.79 ± 3.67% release of BBR and 19.22 ± 1.47 and 24.67 ± 1.94% release of CUR, respectively, in phosphate buffer saline (pH 7.4) and acetate buffer (pH 4.0). Formulations showed sustained release of both loaded drugs. BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS exhibited a lower percentage of hemolysis than pure BBR and CUR, indicating the safety of the payload from delivery vesicles. Lower percentages of binding were recorded from BBR-CUR-TRANS than BBR-TRANS and CUR-TRANS. Acetylcholinesterase inhibition activity of the prepared transferosomes was greater than that of pure drugs, which are thought to have good cellular penetration. The spatial memory was improved in treated mice models. The level of malondialdehyde decreased in AD animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS, respectively, as compared to the scopolamine-induced AD animals. BBR-CUR-TRANS-treated animals showed the highest decrease in the NO level. The catalase level was significantly restored in scopolamine-intoxicated animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS. The immunohistochemistry result suggested that the BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS have significantly decreased the regulation of expression of BACE-1 through antioxidant activity. In conclusion, the study highlights the utility of formulated transferosomes as promising carriers for the co-delivery of drugs to the brain.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem
Nagar, Dehradun, Uttarakhand248 007, India
| | - Anurag Kumar Singh
- Cancer
Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, Alabama36101-0271, United States
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Snigdha Singh
- Mahatma
Gandhi Kashi Vidyapith, Varanasi, Uttar Pradesh221 002, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh221 005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| |
Collapse
|
25
|
Cytotoxicity of Hybrid Noble Metal-Polymer Composites. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1487024. [PMID: 36267838 PMCID: PMC9578826 DOI: 10.1155/2022/1487024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present research was to assess the cytotoxicity of gold and silver nanoparticles synthesized into dextran-graft-polyacrylamide (D-PAA) polymer nanocarrier, which were used as a basis for further preparation of multicomponent nanocomposites revealed high efficacy for antitumor therapy. The evaluation of the influence of Me-polymer systems on the viability and metabolic activity of fibroblasts and eryptosis elucidating the mechanisms of the proeryptotic effects has been done in the current research. The nanocomposites investigated in this study did not reduce the survival of fibroblasts even at the highest used concentration. Our findings suggest that hybrid Ag/D-PAA composite activated eryptosis via ROS- and Ca2+-mediated pathways at the low concentration, in contrast to other studied materials. Thus, the cytotoxicity of Ag/D-PAA composite against erythrocytes was more pronounced compared with D-PAA and hybrid Au/polymer composite. Eryptosis is a more sensitive tool for assessing the biocompatibility of nanomaterials compared with fibroblast viability assays.
Collapse
|
26
|
Chen Z, Yang B, Yan Z, Song E, Song Y. Eryptosis is an indicator of hematotoxicity in the risk assessment of environmental amorphous silica nanoparticles exposure: The role of macromolecule corona. Toxicol Lett 2022; 367:40-47. [PMID: 35870742 DOI: 10.1016/j.toxlet.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
Silica nanoparticles (SiO2 NPs) have been widely manufactured for various applications and unintentionally generated in various industrial processes. SiO2 NPs exposure is potentially hazardous to human health. Incremental evidence has indicated the presence of SiO2 NPs in systemic circulation, which warranted their interaction with blood components. Due to the obvious weakness of hemolysis in the risk assessment of environmental NPs, we for the first time use eryptosis as a sensitive indicator to assess the hematotoxicity of SiO2 NPs. In vitro results showed that the exposure of erythrocytes to pristine SiO2 NPs resulted in typical features of eryptosis, including oxidative stress, calcium influx, phosphatidylserine externalization and hemolysis. However, SiO2 NPs covered with mouse plasma (SiO2@MP) or grafted with polyvinylpyrrolidone (SiO2@PVP) did not stimulate eryptosis. Interestingly, neither bare nor macromolecule-decolorated SiO2 NPs caused eryptosis in our in vivo mouse model, highlighting the protective role of coronal proteins on the amelioration of SiO2 NPs-induced hematotoxicity. These results emphasized the influences of surface modification on the toxicity of environmental NPs.
Collapse
Affiliation(s)
- Zhangde Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Ziyi Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China.
| |
Collapse
|
27
|
Onishchenko A, Myasoedov V, Yefimova S, Nakonechna O, Prokopyuk V, Butov D, Kökbaş U, Klochkov V, Maksimchuk P, Kavok N, Tkachenko A. UV Light-Activated GdYVO 4:Eu 3+ Nanoparticles Induce Reactive Oxygen Species Generation in Leukocytes Without Affecting Erythrocytes In Vitro. Biol Trace Elem Res 2022; 200:2777-2792. [PMID: 34386912 DOI: 10.1007/s12011-021-02867-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NPs) have been reported to be promising enhancement agents for radiation therapy. The aim of the study was to assess the cytotoxicity of UV non-treated and UV pretreated GdYVO4:Eu3+ nanoparticles against erythrocytes and leukocytes by detecting eryptosis and reactive oxygen species (ROS) generation. Levels of intracellular ROS in erythrocytes and leukocytes using a ROS-sensitive dye 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), as well as eryptosis rate utilizing annexin V staining, following direct exposure to UV-activated and nonactivated NPs were detected by flow cytometry. Blood cells were collected from 9 intact WAG rats. Neither the UV light-untreated GdYVO4:Eu3+ NPs nor the treated ones promoted eryptosis and ROS generation in erythrocytes. Low concentrations of UV light-untreated NPs did not induce oxidative stress in leukocytes, evidenced by unaffected intracellular ROS levels. UV light treatment grants prooxidant properties to NPs, confirmed by NP-induced ROS overproduction in leukocytes. High concentrations of both UV light-treated and untreated NPs altered the redox state of leukocytes. UV light treatment imparts prooxidant properties to GdYVO4:Eu3+ NPs, making them promising radiosensitizing agents in cancer radiation therapy.
Collapse
Affiliation(s)
- Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Volodymyr Prokopyuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiology of the Reproductive System, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Dmytro Butov
- Department of Phthisiology and Pulmonology, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
| | - Vladimir Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Nataliya Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
| |
Collapse
|
28
|
A multistep in vitro hemocompatibility testing protocol recapitulating the foreign body reaction to nanocarriers. Drug Deliv Transl Res 2022; 12:2089-2100. [PMID: 35318565 PMCID: PMC9360154 DOI: 10.1007/s13346-022-01141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
The development of drug nanocarriers based on polymeric, lipid and ceramic biomaterials has been paving the way to precision medicine, where the delivery of poorly soluble active compounds and personalized doses are made possible. However, the nano-size character of these carriers has been demonstrated to have the potential to elicit pathways of the host response different from those of the same biomaterials when engineered as larger size implants and of the drugs when administered without a carrier. Therefore, a specific regulatory framework needs to be made available that can offer robust scientific insights and provide safety data by reliable tests of these novel nano-devices. In this context, the present work presents a multistep protocol for the in vitro assessment of the hemocompatibility of nanocarriers of different physicochemical properties. Poly (ethyl butyl cyanoacrylate) nanoparticles and lipid-based (LipImage™ 815) nanoparticles of comparable hydrodynamic diameter were tested through a battery of assays using human peripheral blood samples and recapitulating the main pathways of the host response upon systemic administration; i.e., protein interactions, fibrinogen-platelet binding, cytotoxicity, and inflammatory response. The data showed the sensitivity and reproducibility of the methods adopted that were also demonstrated to determine individual variability as well as to discriminate between activation of pathways of inflammation and unintended release of inflammatory signaling caused by loss of cell integrity. Therefore, this multistep testing is proposed as a reliable protocol for nanoparticle development and emerging regulatory frameworks.
Collapse
|
29
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
30
|
Kush P, Kumar P, Singh R, Kaushik A. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian J Pharm Sci 2021; 16:704-737. [PMID: 35027950 PMCID: PMC8737424 DOI: 10.1016/j.ajps.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
This review covers extensively the synthesis & surface modification, characterization, and application of magnetic nanoparticles. For biomedical applications, consideration should be given to factors such as design strategies, the synthesis process, coating, and surface passivation. The synthesis method regulates post-synthetic change and specific applications in vitro and in vivo imaging/diagnosis and pharmacotherapy/administration. Special insights have been provided on biodistribution, pharmacokinetics, and toxicity in a living system, which is imperative for their wider application in biology. These nanoparticles can be decorated with multiple contrast agents and thus can also be used as a probe for multi-mode imaging or double/triple imaging, for example, MRI-CT, MRI-PET. Similarly loading with different drug molecules/dye/fluorescent molecules and integration with other carriers have found application not only in locating these particles in vivo but simultaneously target drug delivery/hyperthermia inside the body. Studies are underway to collect the potential of these magnetically driven nanoparticles in various scientific fields such as particle interaction, heat conduction, imaging, and magnetism. Surely, this comprehensive data will help in the further development of advanced techniques for theranostics based on high-performance magnetic nanoparticles and will lead this research area in a new sustainable direction.
Collapse
Affiliation(s)
- Preeti Kush
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Parveen Kumar
- Nanotechnology Division (H-1), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, United States
| |
Collapse
|
31
|
García-Torra V, Cano A, Espina M, Ettcheto M, Camins A, Barroso E, Vazquez-Carrera M, García ML, Sánchez-López E, Souto EB. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. TOXICS 2021; 9:195. [PMID: 34437513 PMCID: PMC8402504 DOI: 10.3390/toxics9080195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/29/2023]
Abstract
Metal nanoparticles have been extensively investigated for different types of pharmaceutical applications. However, their use has raised some concerns about their toxicity involving the increase of reactive oxygen species causing cellular apoptosis. Therefore, in this review we summarize the most relevant toxicity mechanisms of gold, silver, copper and copper oxide nanoparticles as well as production methods of metal nanoparticles. Parameters involved in their toxicity such as size, surface charge and concentration are also highlighted. Moreover, a critical revision of the literature about the strategies used to reduce the toxicity of this type of nanoparticles is carried out throughout the review. Additionally, surface modifications using different coating strategies, nanoparticles targeting and morphology modifications are deeply explained.
Collapse
Affiliation(s)
- Victor García-Torra
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (V.G.-T.); (A.C.); (M.E.); (M.L.G.)
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (V.G.-T.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (V.G.-T.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.B.); (M.V.-C.)
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.B.); (M.V.-C.)
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.B.); (M.V.-C.)
- Networking Research Centre of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Manel Vazquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.B.); (M.V.-C.)
- Networking Research Centre of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (V.G.-T.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (V.G.-T.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Tkachenko A, Kot Y, Prokopyuk V, Onishchenko A, Bondareva A, Kapustnik V, Chumachenko T, Perskiy Y, Butov D, Nakonechna O. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien Med Wochenschr 2021; 172:10.1007/s10354-021-00874-2. [PMID: 34383224 DOI: 10.1007/s10354-021-00874-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Concerns about the biosafety of the common food additive E407a have been raised. It has been demonstrated to induce intestinal inflammation, accompanied by activation of apoptosis, upon oral exposure. Thus, it is of interest to investigate how E407a affects eryptosis, a suicidal cell death mode of red blood cells. OBJECTIVE To evaluate the effects of semi-refined carrageenan (E407a) on eryptosis. METHODS Flow cytometry was employed to assess eryptosis in blood exposed to various concentrations of E407a (0 g/L, 1 g/L, 5 g/L, and 10 g/L) during incubation for 24 h by analyzing phosphatidylserine externalization in erythrocytes using annexin V staining and via evaluating reactive oxygen species (ROS) generation using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In addition, the eryptosis indices mentioned above were determined in rats orally administered E407a at a dose of 140 mg/kg weight for 2 weeks. Confocal scanning laser microscopy was performed to visualize cell membrane scrambling. RESULTS Oral intake of E407a for 2 weeks by rats was not associated with membrane scrambling in erythrocytes. However, ROS overproduction was observed. Meanwhile, incubation of blood with various concentrations of semi-refined carrageenan resulted in a dose-dependent promotion of eryptosis, evidenced by the enhanced percentage of annexin V-positive erythrocytes and higher mean fluorescence intensity (MFI) values of annexin V-FITC in all erythrocytes. The highest concentration of E407a promotes a statistically significant increase in ROS generation in erythrocytes, suggesting the role of ROS-mediated induction of eryptosis in this case. CONCLUSION Incubation of blood with the food additive E407a leads to the activation of eryptosis in a dose-dependent manner. ROS-mediated mechanisms are partially responsible for E407a-induced eryptosis.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine.
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine.
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine
- Department of Cryobiology of the Reproduction System , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 61015, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Alla Bondareva
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Valeriy Kapustnik
- Department of Internal and Occupational Diseases, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Tetyana Chumachenko
- Department of Epidemiology, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Yevgen Perskiy
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine
| | - Dmytro Butov
- Department of Phthisiology and Pulmonology, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| |
Collapse
|
33
|
Mehrizi TZ. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. NANO 2021; 16:2130007. [DOI: 10.1142/s1793292021300073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In this paper (from 2010 to 2020), the effects of polymeric, metallic and nonmetallic nanoparticles on red blood cells’ hemocompatibility were investigated for the first time. Here, we have considered the latest findings which can help to improve the hemocompatibility of RBCs. It is important to maintain the quality of red blood cells for improving the hemocompatibility because blood products directly affect the health of patients after blood transfusion. Although RBCs can be stored for up to 42 days at 2–6∘C, hypothermic storage lesions (HSLs) are very common in these products. This problem affects the quality of RBC products. Thus, it is necessary to modify the surface molecules of RBCs during storage time to reduce HSLs and alloimmunization complications. Therefore, we reviewed the reported effects of polymeric, metallic and carbon-based nanoparticles on RBCs between 2010 and 2020. The results of our study have shown that the use of negatively charged dendrimers, unsaturated/uncharged liposomes, and PEGylated forms of NPs and RBCs are the best approaches to improve the hemocompatibility conditions of red blood cells. However, large cationic dendrimers, liposomes composed of saturated lipid with long acyl chain, and cationic chitosan nanoparticles have less RBC compatibility. In addition, polymeric nanoparticles have more capacity for surface modification, which makes it possible to make more hemocompatible derivatives. Among metallic nanoparticles, gold and iron nanoparticles were more RBC compatible. However, the smaller size, higher concentration and longer exposure time of these nanoparticles can induce hemolysis and morphological changes in RBCs. On the other side, nonmetallic nanoparticles mostly had poor RBC compatibility, but their effects on RBCs strongly depended on their concentration and physicochemical properties and could be controllable. As a result, the use of polyethylene glycol (PEG), gold, polymeric, and iron nanoparticles in the design of protocols to maintain the survival, structure and activity of red blood cells for improving hemocompatibility can be more effective.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
34
|
Tian Y, Tian Z, Dong Y, Wang X, Zhan L. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv 2021; 11:6958-6971. [PMID: 35423203 PMCID: PMC8695043 DOI: 10.1039/d0ra10124a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, nanomaterials have been widely used in the field of biomedicine due to their unique physical and chemical properties, and have shown good prospects for in vitro diagnosis, drug delivery, and imaging. With regard to transporting nanoparticles (NPs) to target tissues or organs in the body intravenously or otherwise, blood is the first tissue that NPs come into contact with and is also considered an important gateway for targeted transport. Erythrocytes are the most numerous cells in the blood, but previous studies based on interactions between erythrocytes and NPs mostly focused on the use of erythrocytes as drug carriers for nanomedicine which were chemically bound or physically adsorbed by NPs, so little is known about the effects of nanoparticles on the morphology, structure, function, and circulation time of erythrocytes in the body. Herein, this review focuses on the mechanisms by which nanoparticles affect the structure and function of erythrocyte membranes, involving the hemocompatibility of NPs, the way that NPs interact with erythrocyte membranes, effects of NPs on erythrocyte surface membrane proteins and their structural morphology and the effect of NPs on erythrocyte lifespan and function. The detailed analysis in this review is expected to shed light on the more advanced biocompatibility of nanomaterials and pave the way for the development of new nanodrugs.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| |
Collapse
|
35
|
Rabbani A, Haghniaz R, Khan T, Khan R, Khalid A, Naz SS, Ul-Islam M, Vajhadin F, Wahid F. Development of bactericidal spinel ferrite nanoparticles with effective biocompatibility for potential wound healing applications. RSC Adv 2021; 11:1773-1782. [PMID: 35424142 PMCID: PMC8693516 DOI: 10.1039/d0ra08417d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
The current study was devised to explore the antibacterial activity and underlying mechanism of spinel ferrite nanoparticles (NPs) along with their biocompatibility and wound healing potentials. In this regard, nickel ferrite and zinc/nickel ferrite NPs were synthesized via a modified co-precipitation method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy Energy-dispersive X-ray spectroscopy (EDX). The biocompatibility of the synthesized NPs with human dermal fibroblast (HDF) and red blood cells (RBCs) was assessed. The biocompatible concentrations of the NPs were used to investigate the antimicrobial activity against various pathogenic Gram-negative and Gram-positive bacteria. The mode of bactericidal action was also explored. In vitro scratch assay was performed to evaluate the wound healing potential of NPs. The SEM-EDX analysis showed that the average particles size of nickel ferrite and zinc/nickel ferrite were 49 and 46 nm, respectively, with appropriate elemental composition and homogenous distribution. The XRD pattern showed all the characteristic diffraction peaks of spinel ferrite NPs, which confirmed the synthesis of the pure phase cubic spinel structure. The biocompatible concentration of nickel ferrite and zinc/nickel ferrite NPs was found to be 250 and 125 μg ml-1, respectively. Both the NPs showed inhibition against all the selected strains in the concentration range of 50 to 1000 μg ml-1. Studies on the underlying antimicrobial mechanism revealed damage to the cell membrane, protein leakage, and intracellular reactive oxygen species production. The in vitro scratch assay confirmed the migration and proliferation of fibroblast with artificial wound shrinkage. This study shows that nickel ferrite and zinc/nickel ferrite NPs could be a strong candidate for antibacterial and wound healing nano-drugs.
Collapse
Affiliation(s)
- Atiya Rabbani
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Reihaneh Haghniaz
- Khademhosseini's Laboratory, Center for Minimally Invasive Therapeutics (CMIT) California NanoSystems Institute, University of California Los Angles Los Angles USA
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Ayesha Khalid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Syeda Sohaila Naz
- Department of Nanosciences and Technology, National Centre for Physics Islamabad Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University Salalah Oman
| | | | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Mang, Khanpur Road Haripur Pakistan
| |
Collapse
|
36
|
BLOOD GASES AND ELECTROLYTES UNDER USE OF MAGNETITE NANOPARTICLES IN BLOOD LOSS. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-3-77-194-198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
38
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
39
|
Koleoso M, Feng X, Xue Y, Li Q, Munshi T, Chen X. Micro/nanoscale magnetic robots for biomedical applications. Mater Today Bio 2020; 8:100085. [PMID: 33299981 PMCID: PMC7702192 DOI: 10.1016/j.mtbio.2020.100085] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward the achievement of commercialization for these devices.
Collapse
Affiliation(s)
- M. Koleoso
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - X. Feng
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Y. Xue
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Q. Li
- School of Engineering, Institute for Energy Systems, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - T. Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK
| | - X. Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
40
|
Joseph MM, Ramya AN, Vijayan VM, Nair JB, Bastian BT, Pillai RK, Therakathinal ST, Maiti KK. Targeted Theranostic Nano Vehicle Endorsed with Self-Destruction and Immunostimulatory Features to Circumvent Drug Resistance and Wipe-Out Tumor Reinitiating Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003309. [PMID: 32797715 DOI: 10.1002/smll.202003309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The downsides of conventional cancer monotherapies are profound and enormously consequential, as drug-resistant cancer cells and cancer stem cells (CSC) are typically not eliminated. Here, a targeted theranostic nano vehicle (TTNV) is designed using manganese-doped mesoporous silica nanoparticle with an ideal surface area and pore volume for co-loading an optimized ratio of antineoplastic doxorubicin and a drug efflux inhibitor tariquidar. This strategically framed TTNV is chemically conjugated with folic acid and hyaluronic acid as a dual-targeting entity to promote folate receptor (FR) mediated cancer cells and CD44 mediated CSC uptake, respectively. Interestingly, surface-enhanced Raman spectroscopy is exploited to evaluate the molecular changes associated with therapeutic progression. Tumor microenvironment selective biodegradation and immunostimulatory potential of the MSN-Mn core are safeguarded with a chitosan coating which modulates the premature cargo release and accords biocompatibility. The superior antitumor response in FR-positive syngeneic and CSC-rich human xenograft murine models is associated with a tumor-targeted biodistribution, favorable pharmacokinetics, and an appealing bioelimination pattern of the TTNV with no palpable signs of toxicity. This dual drug-loaded nano vehicle offers a feasible approach for efficient cancer therapy by on demand cargo release in order to execute complete wipe-out of tumor reinitiating cancer stem cells.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Centre for Nanoscale Materials and Biointergration, University of Alabama at Birmingham, 1300 University Blvd. CH 386, Birmingham, AL, 35294, USA
| | - Jyothi B Nair
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Blossom T Bastian
- Computer Vision Lab, Department of Electronics and Communication Engineering, College of Engineering, Thiruvananthapuram, 695016, India
| | - Raveendran K Pillai
- Clinical Laboratory Services, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Sreelekha T Therakathinal
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, 695011, India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| |
Collapse
|
41
|
Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR, Hsiao CD. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020; 25:E3159. [PMID: 32664325 PMCID: PMC7397295 DOI: 10.3390/molecules25143159] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles' toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 90007, Taiwan
| | | | | | - Oliver B Villaflores
- Department of Biochemistry, Faculty of Pharmacy and Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
42
|
Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C. The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 2020; 10:7559-7569. [PMID: 35492144 PMCID: PMC9049842 DOI: 10.1039/c9ra10969b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used and have attracted increased attention for their unique physicochemical properties, especially in biomedical sciences as contrast agents following intravenous administration. However, only few studies have systematically reported the blood compatibility of iron oxide nanoparticles with different physicochemical properties such as different sizes and surface ligands. Therefore, we selected three widely used organic ligands (polyacrylic acid, hyaluronic acid, and chitosan) with modified SPIONs at the same size of 5-6 nm, and polyacrylic acid-modified SPIONs with different sizes (5, 10, and 30 nm) at different concentrations to evaluate their haemocompatibility. Our results revealed that SPIONs modified with polyacrylic acid demonstrated size-dependent destruction of red blood cells and complement activation. Interestingly, 5 nm SPIONs prolonged blood clotting time as compared with 10 nm and 30 nm SPIONs in vitro. Compared with polyacrylic acid-modified SPIONs, hyaluronic acid- and chitosan-modified SPIONs least affected red blood cells, platelets, coagulation, and complement activation. Hence, hyaluronic acid- and chitosan-coated SPIONs are more suitable for nanomedicine applications than polyacrylic acid-coated SPIONs. Furthermore, the interaction between SPIONs and blood components strongly correlated with the administered concentration of nanoparticles. These results will provide some experimental information for safe-by-design SPIONs.
Collapse
Affiliation(s)
- Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Rongqi Wang
- Department of Clinical Laboratory, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital Beijing 100080 P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- Faculty of Life Sciences & Medicine, Northwest University (NWU) Xi'an 710069 P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
43
|
Joseph MM, Hari N, Pillai RK, Nair AJ, Therakathinal T S. Galactoxyloglucan Endowed Biogenic Nanoimmunobiotics Arrests Microbial Growth and Elicits Antitumor Immunity. ACS APPLIED BIO MATERIALS 2019; 3:801-814. [DOI: 10.1021/acsabm.9b00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manu M. Joseph
- Laboratory of Biopharmaceutics & Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| | - Neethu Hari
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Raveendran K. Pillai
- Clinical Laboratory Services, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| | | | - Sreelekha Therakathinal T
- Laboratory of Biopharmaceutics & Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala 695011, India
| |
Collapse
|
44
|
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 2019; 8:E1209. [PMID: 31591302 PMCID: PMC6829615 DOI: 10.3390/cells8101209] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding cell-nanoparticle interactions is critical to developing effective nanosized drug delivery systems. Nanoparticles have already advanced the treatment of several challenging conditions including cancer and human immunodeficiency virus (HIV), yet still hold the potential to improve drug delivery to elusive target sites. Even though most nanoparticles will encounter blood at a certain stage of their transport through the body, the interactions between nanoparticles and blood cells is still poorly understood and the importance of evaluating nanoparticle hemocompatibility is vastly understated. In contrast to most review articles that look at the interference of nanoparticles with the intricate coagulation cascade, this review will explore nanoparticle hemocompatibility from a cellular angle. The most important functions of the three cellular components of blood, namely erythrocytes, platelets and leukocytes, in hemostasis are highlighted. The potential deleterious effects that nanoparticles can have on these cells are discussed and insight is provided into some of the complex mechanisms involved in nanoparticle-blood cell interactions. Throughout the review, emphasis is placed on the importance of undertaking thorough, all-inclusive hemocompatibility studies on newly engineered nanoparticles to facilitate their translation into clinical application.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
45
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
46
|
Martínez-Rodríguez NL, Tavárez S, González-Sánchez ZI. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol In Vitro 2019; 57:54-61. [PMID: 30771471 DOI: 10.1016/j.tiv.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Ferrite nanoparticles (NPs) have gained attention in biomedicine due to their many potential applications, such as targeted drug delivery, their use as contrast agents for magnetic resonance imaging and oncological treatments. The information about the risk effects of ferrite NPs in human blood cells is, however, scarce. To assess their potential toxicity, in vitro studies were carried out with magnetite and zinc, nickel and nickel‑zinc ferrites NPs at different concentrations (50, 100 and 200 μg·ml-1). The toxicity of the ferrite NPs was evaluated in humans by determining red blood hemolysis, by measuring the content of total proteins, and by assaying catalase and glutathione-S-transferase activities. Our results show that nickel‑zinc ferrite lead to hemolysis, and that magnetite, zinc and nickel‑zinc ferrites increase glutathione-S-transferase activity. No significant changes in human peripheral blood mononuclear cells viability were observed after the treatment with the four different ferrite NPs in vitro.
Collapse
Affiliation(s)
- Nelson Leonel Martínez-Rodríguez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Sara Tavárez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Zaira Isabel González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic.
| |
Collapse
|
47
|
Jarosiewicz M, Michałowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. CHEMOSPHERE 2019; 215:404-412. [PMID: 30336317 DOI: 10.1016/j.chemosphere.2018.09.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) as well as bromophenols, i.e. 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) have raised wide concerns due to their widespread occurrence in the environment and adverse effects observed in living organisms including human. The effect of BFRs on apoptosis of human erythrocytes has not been examined, that is why we have decided to assess eryptotic potential of these substances by determining changes in phosphatidylserine (PS) translocation, alterations in intracellular ROS and calcium ion levels, as well as caspase-3 and calpain activation in this cell type. It has been found that all BFRs studied even in the concentration of 0.001 μg/mL induced ROS formation. The compounds examined caused apoptosis by PS externalization and caspase-3 activation in human red blood cells. It has also been shown that calcium ions and calpain did not play a significant role in eryptosis induction by BFRs studied in human erythrocytes.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland.
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| |
Collapse
|
48
|
Melzak KA, Uhlig S, Kirschhöfer F, Brenner-Weiss G, Bieback K. The Blood Bag Plasticizer Di-2-Ethylhexylphthalate Causes Red Blood Cells to Form Stomatocytes, Possibly by Inducing Lipid Flip-Flop. Transfus Med Hemother 2018; 45:413-422. [PMID: 30574059 DOI: 10.1159/000490502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background During storage of red blood cell (RBC) concentrates, the plasticizer di-2-ethylhexylphthalate (DEHP) that keeps the blood bags soft leaches out and can be taken up by the RBCs. DEHP is known to be beneficial for the RBC storage quality, but the molecular mechanisms of the action are unknown. Methods Aqueous suspensions of DEHP were added to RBCs in buffer. The morphological effects were observed on RBCs from 5 donors. Flow cytometry with annexin A5 binding was used to measure the exposed phosphatidylserine. Results DEHP induced the formation of stomatocytes at concentrations as low as ng/ml, provided that the cell suspension was also sufficiently dilute. Some spherocytes, which were susceptible to lysis, were also formed; after lysis, RBC ghosts were seen to continue the transition to the cup-shaped stomatocyte form. Incubation with DEHP increased the exposed phosphatidylserine, an effect that was also observed in the presence of vanadate, which inhibits the ATP-dependent translocases that maintain the membrane's lipid asymmetry. Conclusions DEHP can have an active effect on RBC shape, instead of just preventing the storage-related shape changes. The effect appears to be mediated by increased flip-flop of lipids between the leaflets of the RBC membrane.
Collapse
Affiliation(s)
- Kathryn A Melzak
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefanie Uhlig
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
49
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
50
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|