1
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Alves P, Emmel V, Stefanoff G, Krsticevic F, Ezpeleta J, Murillo J, Tapia E, Delatorre E, Abdelhay E, Hassan R. Unique synapomorphies and high diversity in South American Raji-related Epstein-Barr virus genomes. Mem Inst Oswaldo Cruz 2023; 118:e230122. [PMID: 37937604 PMCID: PMC10629697 DOI: 10.1590/0074-02760230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.
Collapse
Affiliation(s)
- Paula Alves
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Vanessa Emmel
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| | - Gustavo Stefanoff
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Câncer, Coordenação de Pesquisa Clínica, Rio de Janeiro, RJ, Brasil
| | - Flavia Krsticevic
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Joaquín Ezpeleta
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Javier Murillo
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Elizabeth Tapia
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Edson Delatorre
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia, Laboratório de Genômica e Ecologia Viral, Vitória, ES, Brasil
| | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| | - Rocio Hassan
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Wang Y, Rong Y, Yang L, Lu Z. Genetic variability and mutation of Epstein‒Barr virus (EBV)-encoded LMP-1 and BHRF-1 genes in EBV-infected patients: identification of precise targets for development of personalized EBV vaccines. Virus Genes 2023; 59:541-553. [PMID: 37243920 PMCID: PMC10220333 DOI: 10.1007/s11262-023-02006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
The critical Epstein‒Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) and BamHI fragment H rightward open reading frame 1 (BHRF-1) genes affect EBV-mediated malignant transformation and virus replication during EBV infection. Therefore, these two genes are considered ideal targets for EBV vaccine development. However, gene mutations in LMP-1 and BHRF-1 in different cohorts may affect the biological functions of EBV, which would seriously hinder development of personalized vaccines for EBV. In the present study, by performing nested polymerase chain reaction (nested PCR) and DNA sequence techniques, we analyzed the nucleotide variability and phylogeny of LMP-1 containing a 30 bp deletion region (del-LMP-1) and BHRF-1 in EBV-infected patients (N = 382) and healthy persons receiving physical examination (N = 98; defined as the control group) in Yunnan Province, China. Three BHRF-1 subtypes were identified in this study: 79V88V, 79L88L, and 79V88L, with mutation frequencies of 58.59%, 24.24%, and 17.17%, respectively. Compared with the control group, the distribution of BHRF-1 subtypes of the three groups showed no significant difference, suggesting that BHRF-1 is highly conserved in EBV-related samples. In addition, a short fragment of del-LMP-1 was found in 133 cases, and the nucleotide variation rate was 87.50% (133/152). For del-LMP-1, a significant distribution in three groups was detected, as characterized by a high mutation rate. In conclusion, our study illustrates gene variability and mutations of EBV-encoded del-LMP-1 and BHRF-1 in clinical samples. Highly mutated LMP-1 might be associated with various types of EBV-related diseases, indicating that BHRF-1 combined with LMP-1 may be used as an ideal target for development of EBV personalized vaccines.
Collapse
Affiliation(s)
- Yue Wang
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijuan Yang
- Central Lab of the 2Nd, Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Zhiyan Lu
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Lupo J, Truffot A, Andreani J, Habib M, Epaulard O, Morand P, Germi R. Virological Markers in Epstein–Barr Virus-Associated Diseases. Viruses 2023; 15:v15030656. [PMID: 36992365 PMCID: PMC10051789 DOI: 10.3390/v15030656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Epstein–Barr virus (EBV) is an oncogenic virus infecting more than 95% of the world’s population. After primary infection—responsible for infectious mononucleosis in young adults—the virus persists lifelong in the infected host, especially in memory B cells. Viral persistence is usually without clinical consequences, although it can lead to EBV-associated cancers such as lymphoma or carcinoma. Recent reports also suggest a link between EBV infection and multiple sclerosis. In the absence of vaccines, research efforts have focused on virological markers applicable in clinical practice for the management of patients with EBV-associated diseases. Nasopharyngeal carcinoma is an EBV-associated malignancy for which serological and molecular markers are widely used in clinical practice. Measuring blood EBV DNA load is additionally, useful for preventing lymphoproliferative disorders in transplant patients, with this marker also being explored in various other EBV-associated lymphomas. New technologies based on next-generation sequencing offer the opportunity to explore other biomarkers such as the EBV DNA methylome, strain diversity, or viral miRNA. Here, we review the clinical utility of different virological markers in EBV-associated diseases. Indeed, evaluating existing or new markers in EBV-associated malignancies or immune-mediated inflammatory diseases triggered by EBV infection continues to be a challenge.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
- Correspondence:
| | - Aurélie Truffot
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Julien Andreani
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Mohammed Habib
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olivier Epaulard
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Service de Maladies Infectieuses, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Raphaële Germi
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| |
Collapse
|
5
|
Alves P, Larrate M, Garcia-Costa A, Rohan P, Gama BE, Abdelhay E, Delatorre E, Hassan R. Spatial Dispersal of Epstein-Barr Virus in South America Reveals an African American Variant in Brazilian Lymphomas. Viruses 2022; 14:v14081762. [PMID: 36016384 PMCID: PMC9412316 DOI: 10.3390/v14081762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Epstein−Barr virus (EBV) is a saliva-borne ɣ-herpesvirus associated with benign and malignant lymphoproliferation. EBV-mediated tumorigenic mechanisms are not fully understood and may be related to viral genetic variations. In this work, we characterize the genetic diversity of EBV from Brazil, assessing 82 samples derived from saliva from asymptomatic carriers (n = 45), biopsies of benign reactive hyperplasia (n = 4), and lymphomas (n = 33). Phylogenetic and phylogeographic analysis of the entire coding region of the LMP-1 was performed. Additionally, type 1/type 2 distinction by the EBNA3C gene and Zp variants were evaluated. Our results revealed a high diversity of EBV in Brazil, with the co-circulation of four main clades, described here as: Mediterranean (40.2%, n = 33), Raji/Argentine (39%, n = 32), B95-8 (6.1%, n = 5), and Asian II (1.2%, n = 1). The Raji/Argentine and Mediterranean clades were the most prevalent in South America (45% and 28%, respectively). The Raji/Argentine clade was associated with polymorphisms I124V/I152L, del30 bp, and ins15 bp (p < 0.0001, to all clades) and with a high haplotype diversity related to EBV type and Zp variants. We found that a Raji/Argentine subclade spread primarily from Brazil and later to other South American countries. Although no LMP1 variant has been directly associated with disease, the Raji/Argentine clade was predominantly clustered with lymphomas (61%) and the Mediterranean clade with non-malignant cases (59%) (p = 0.1). These data highlight the high genetic diversity of EBV circulating in Brazil, calling attention to a Raji-related variant with great recombination potential in Brazilian lymphomas.
Collapse
Affiliation(s)
- Paula Alves
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
- Correspondence: (P.A.); (E.D.)
| | - Marcella Larrate
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Aruanã Garcia-Costa
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Paulo Rohan
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Bianca Ervatti Gama
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Eliana Abdelhay
- Laboratório de Células Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre 29500-000, Brazil
- Correspondence: (P.A.); (E.D.)
| | - Rocio Hassan
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
6
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
7
|
Liao HM, Liu H, Chin PJ, Li B, Hung GC, Tsai S, Otim I, Legason ID, Ogwang MD, Reynolds SJ, Kerchan P, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Ayers LW, Pfeiffer RM, Bhatia K, Goedert JJ, Lo SC, Mbulaiteye SM. Epstein-Barr Virus in Burkitt Lymphoma in Africa Reveals a Limited Set of Whole Genome and LMP-1 Sequence Patterns: Analysis of Archival Datasets and Field Samples From Uganda, Tanzania, and Kenya. Front Oncol 2022; 12:812224. [PMID: 35340265 PMCID: PMC8948429 DOI: 10.3389/fonc.2022.812224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with endemic Burkitt lymphoma (eBL), but the contribution of EBV variants is ill-defined. Studies of EBV whole genome sequences (WGS) have identified phylogroups that appear to be distinct for Asian versus non-Asian EBV, but samples from BL or Africa, where EBV was first discovered, are under-represented. We conducted a phylogenetic analysis of EBV WGS and LMP-1 sequences obtained primarily from BL patients in Africa and representative non-African EBV from other conditions or regions using data from GenBank, Sequence Read Archive, or Genomic Data Commons for the Burkitt Lymphoma Genome Sequencing Project (BLGSP) to generate data to support the use of a simpler biomarker of geographic or phenotypic associations. We also investigated LMP-1 patterns in 414 eBL cases and 414 geographically matched controls in the Epidemiology of Burkitt Lymphoma in East African children and minors (EMBLEM) study using LMP-1 PCR and Sanger sequencing. Phylogenetic analysis revealed distinct genetic patterns of African versus Asian EBV sequences. We identified 281 single nucleotide variations (SNVs) in LMP-1 promoter and coding region, which formed 12 unique patterns (A to L). Nine patterns (A, AB, C, D, F, I, J, K and L) predominated in African EBV, of which four were found in 92% of BL samples (A, AB, D, and H). Predominant patterns were B and G in Asia and H in Europe. EBV positivity in peripheral blood was detected in 95.6% of EMBLEM eBL cases versus 79.2% of the healthy controls (odds ratio [OR] =3.83; 95% confidence interval 2.06-7.14). LMP-1 was successfully sequenced in 66.7% of the EBV DNA positive cases but in 29.6% of the controls (ORs ranging 5-11 for different patterns). Four LMP-1 patterns (A, AB, D, and K) were detected in 63.1% of the cases versus 27.1% controls (ORs ranges: 5.58-11.4). Dual strain EBV infections were identified in WGS and PCR-Sanger data. In conclusion, EBV from Africa is phylogenetically separate from EBV in Asia. Genetic diversity in LMP-1 formed 12 patterns, which showed promising geographic and phenotypic associations. Presence of multiple strain infection should be considered in efforts to refine or improve EBV markers of ancestry or phenotype. Lay Summary Epstein-Barr virus (EBV) infection, a ubiquitous infection, contributes to the etiology of both Burkitt Lymphoma (BL) and nasopharyngeal carcinoma, yet their global distributions vary geographically with no overlap. Genomic variation in EBV is suspected to play a role in the geographical patterns of these EBV-associated cancers, but relatively few EBV samples from BL have been comprehensively studied. We sought to compare phylogenetic patterns of EBV genomes obtained from BL samples in Africa and from tumor and non-tumor samples from elsewhere. We concluded that EBV obtained from BL in Africa is genetically separate from EBV in Asia. Through comprehensive analysis of nucleotide variations in EBV's LMP-1 gene, we describe 12 LMP-1 patterns, two of which (B and G) were found mostly in Asia. Four LMP-1 patterns (A, AB, D, and F) accounted for 92% of EBVs sequenced from BL in Africa. Our results identified extensive diversity of EBV, but BL in Africa was associated with a limited number of variants identified, which were different from those identified in Asia. Further research is needed to optimize the use of PCR and sequencing to study LMP-1 diversity for classification of EBV variants and for use in epidemiologic studies to characterize geographic and/or phenotypic associations of EBV variants with EBV-associated malignancies, including eBL.
Collapse
Affiliation(s)
- Hsiao-Mei Liao
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hebing Liu
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Pei-Ju Chin
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Bingjie Li
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Guo-Chiuan Hung
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shien Tsai
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Constance N. Tenge
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A. Were
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Nestory Masalu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Esther Kawira
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Shirati Health and Educational Foundation, Shirati, Tanzania
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shyh-Ching Lo
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Ranger-Rogez S. EBV Genome Mutations and Malignant Proliferations. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA virus with a relatively stable genome. Indeed, genomic variability is reported to be around 0.002%. However, some regions are more variable such as those carrying latency genes and specially EBNA1, -2, -LP, and LMP1. Tegument genes, particularly BNRF1, BPLF1, and BKRF3, are also quite mutated. For a long time, it has been considered for this ubiquitous virus, which infects a very large part of the population, that particular strains could be the cause of certain diseases. However, the mutations found, in some cases, are more geographically restricted rather than associated with proliferation. In other cases, they appear to be involved in oncogenesis. The objective of this chapter is to provide an update on changes in viral genome sequences in malignancies associated with EBV. We focused on describing the structure and function of the proteins corresponding to the genes mentioned above in order to understand how certain mutations of these proteins could increase the tumorigenic character of this virus. Mutations described in the literature for these proteins were identified by reporting viral and/or cellular functional changes as they were described.
Collapse
|
9
|
Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia 2021; 35:2460-2468. [PMID: 34117356 PMCID: PMC8410593 DOI: 10.1038/s41375-021-01313-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023]
Abstract
Natural killer/T-cell lymphoma (NKTL) is a sub-type of Epstein-Barr virus (EBV)-related non-Hodgkin lymphomas common in Asia and Latin America but rare elsewhere. Its pathogenesis is complex and incompletely understood. Lymphoma cells are transformed from NK- or T-cells, sometimes both. EBV-infection and subsequent genetic alterations in infected cells are central to NKTL development. Hemophagocytic syndrome is a common complication. Accurate staging is important to predict outcomes but there is controversy which system is best. More than two-thirds of NKTL lympohmas are localized at diagnosis, are frequently treated with radiation therapy only and have 5-year survival of about 70 percent. Persons with advanced NKTLs receive radiation therapy synchronously or metachronously with diverse multi-drug chemotherapy typically including L-asparginase with 5-year survival of about 40 percent. Some persons with widespread NKTL receive chemotherapy only. There are few data on safety and efficacy of high-dose therapy and a haematopoietic cell autotransplant. Immune therapies, histone deacetylase (HDAC)-inhibitors and other drugs are in early clinical trials. There are few randomized controlled clinical trials in NKTLs and no therapy strategy is clearly best; more effective therapy(ies) are needed. Some consensus recommendations are not convincingly evidence-based. Mechanisms of multi-drug resistance are considered. We discuss these issues including recent advances in our understanding of and therapy of NKTLs.
Collapse
Affiliation(s)
- Hua Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Bi-Bo Fu
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
10
|
Shire K, Marcon E, Greenblatt J, Frappier L. Characterization of a cancer-associated Epstein-Barr virus EBNA1 variant reveals a novel interaction with PLOD1 and PLOD3. Virology 2021; 562:103-109. [PMID: 34304093 DOI: 10.1016/j.virol.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequence analysis of Epstein-Barr virus genomes from tumours and healthy individuals identified three amino acid changes in EBNA1 that are strongly associated with gastric carcinoma and nasopharyngeal carcinoma. Here we show that, while these mutations do not impact EBNA1 plasmid maintenance function, one of them (Thr85Ala) decreases transcriptional activation and results in a gain of function interaction with PLOD1 and PLOD3. PLOD family proteins are strongly linked to multiple cancers, and PLOD1 is recognized as a prognostic marker of gastric carcinoma. We identified the PLOD1 binding site in EBNA1as the N-terminal transactivation domain and show that lysine 83 is critical for this interaction. The results provide a novel link between EBV infection and the cancer-associated PLOD proteins.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada; Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
11
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
12
|
Emanuele Liardo RL, Borzì AM, Spatola C, Martino B, Privitera G, Basile F, Biondi A, Vacante M. Effects of infections on the pathogenesis of cancer. Indian J Med Res 2021; 153:431-445. [PMID: 34380789 PMCID: PMC8354054 DOI: 10.4103/ijmr.ijmr_339_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown an inverse relationship between acute infections and cancer development. On the other hand, there is a growing evidence that chronic infections may contribute significantly to the carcinogenesis. Factors responsible for increased susceptibility to infections may include modifications of normal defence mechanisms or impairment of host immunity due to altered immune function, genetic polymorphisms, ageing and malnourishment. Studies have demonstrated that children exposed to febrile infectious diseases show a subsequent reduced risk for ovarian cancer, melanoma and many other cancers, while common acute infections in adults are associated with reduced risks for melanoma, glioma, meningioma and multiple cancers. Chronic inflammation associated with certain infectious diseases has been suggested as a cause for the development of tumours. Mechanisms of carcinogenesis due to infections include cell proliferation and DNA replication by mitogen-activated protein kinase pathway, production of toxins that affect the cell cycle and lead to abnormal cell growth and inhibition of apoptosis. This review was aimed to summarize the available evidence on acute infections as a means of cancer prevention and on the role of chronic infections in the development and progression of cancer.
Collapse
Affiliation(s)
- Rocco Luca Emanuele Liardo
- Radiodiagnostic & Oncological Radiotherapy Unit, University of Catania, ‘Policlinico G. Rodolico – San Marco’ Catania, Italy
| | - Antonio Maria Borzì
- Department of General Surgery & Medical-Surgical Specialties, University of Catania, ‘Policlinico G. Rodolico – San Marco‘ Catania, Italy
| | - Corrado Spatola
- Radiodiagnostic & Oncological Radiotherapy Unit, University of Catania, ‘Policlinico G. Rodolico – San Marco’ Catania, Italy
| | - Barbara Martino
- Department of General Surgery & Medical-Surgical Specialties, University of Catania, ‘Policlinico G. Rodolico – San Marco‘ Catania, Italy
| | - Giuseppe Privitera
- Radiodiagnostic & Oncological Radiotherapy Unit, University of Catania, ‘Policlinico G. Rodolico – San Marco’ Catania, Italy
| | - Francesco Basile
- Department of General Surgery & Medical-Surgical Specialties, University of Catania, ‘Policlinico G. Rodolico – San Marco‘ Catania, Italy
| | - Antonio Biondi
- Department of General Surgery & Medical-Surgical Specialties, University of Catania, ‘Policlinico G. Rodolico – San Marco‘ Catania, Italy
| | - Marco Vacante
- Department of General Surgery & Medical-Surgical Specialties, University of Catania, ‘Policlinico G. Rodolico – San Marco‘ Catania, Italy
| |
Collapse
|
13
|
Telford M, Hughes DA, Juan D, Stoneking M, Navarro A, Santpere G. Expanding the Geographic Characterisation of Epstein-Barr Virus Variation through Gene-Based Approaches. Microorganisms 2020; 8:E1686. [PMID: 33138327 PMCID: PMC7692309 DOI: 10.3390/microorganisms8111686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr Virus (EBV) infects the vast majority of human individuals worldwide (~90%) and is associated with several diseases, including different types of cancer and multiple sclerosis, which show wide variation in incidence among global geographical regions. Genetic variants in EBV genomic sequences have been used to determine the geographical structure of EBV isolates, but our understanding of EBV diversity remains highly incomplete. We generated sequences for 13 pivotal EBV genes derived from 103 healthy individuals, expanding current EBV diversity datasets with respect to both geographic coverage and number of isolates per region. These newly generated sequences were integrated with the more than 250 published EBV genomes, generating the most geographically comprehensive data set of EBV strains to date. We report remarkable variation in single-gene phylogenies that, when analysed together, show robust signals of population structure. Our results not only confirm known major global patterns of geographic variation, such as the clear separation of Asian isolates from the rest, and the intermixed relationships among African, European and Australian isolates, but yield novel phylogenetic relationships with previously unreported populations. We provide a better understanding of EBV's population structure in South America, Africa and, by the inclusion of Turkey and Georgia, we also gain insight into EBV diversity in Western Asia, a crossroads connecting Europe, Africa and Asia. In summary, our results provide a detailed world-wide characterisation of EBV genetic clusters, their enrichment in specific geographic regions, novel inter-population relationships, and a catalogue of geographically informative EBV genetic variants.
Collapse
Affiliation(s)
- Marco Telford
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
| | - David A. Hughes
- Bristol Population Health Science Institute, University of Bristol, Bristol BS8 2BN, UK;
| | - David Juan
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
| | - Arcadi Navarro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Department of Experimental and Health Sciences (DCEXS), Barcelona Biomedical Research Park, 08003 Barcelona, Spain; (M.T.); (D.J.)
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Sciences (ICREA), 08010 Barcelona, Spain
- Barcelonaβeta Brain Research Center and Pasqual Maragall Foundation, Carrer Wellington 30, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
14
|
Epstein-Barr Virus Genomes Reveal Population Structure and Type 1 Association with Endemic Burkitt Lymphoma. J Virol 2020; 94:JVI.02007-19. [PMID: 32581102 DOI: 10.1128/jvi.02007-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is distinguished by its inclusion of Epstein-Barr virus (EBV). In order to better understand the impact of EBV variation in eBL tumorigenesis, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (n = 58) and healthy controls (n = 40) residing in the same geographic region in Kenya. Using our unbiased methods, we found that EBV type 1 was significantly more prevalent in eBL patients (74.5%) than in healthy children (47.5%) (odds ratio = 3.24, 95% confidence interval = 1.36 to 7.71, P = 0.007), as opposed to similar proportions in both groups. Controlling for EBV type, we also performed a genome-wide association study identifying six nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. In addition, viruses isolated from plasma of eBL patients were identical to their tumor counterparts consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions, as well as one novel genome with a 20-kb deletion, resulting in the loss of multiple lytic and virion genes. Comparing EBV types, viral genes displayed differential variation rates as type 1 appeared to be more divergent, while type 2 demonstrated novel substructures. Overall, our findings highlight the complexities of the EBV population structure and provide new insight into viral variation, potentially deepening our understanding of eBL oncogenesis.IMPORTANCE Improved viral enrichment methods conclusively demonstrate EBV type 1 to be more prevalent in eBL patients than in geographically matched healthy controls, which previously underrepresented the prevalence of EBV type 2. Genome-wide association analysis between cases and controls identifies six eBL-associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1 genes. Analysis of population structure reveals that EBV type 2 exists as two genomic subgroups and was more commonly found in female than in male eBL patients.
Collapse
|
15
|
Zanella L, Riquelme I, Buchegger K, Abanto M, Ili C, Brebi P. A reliable Epstein-Barr Virus classification based on phylogenomic and population analyses. Sci Rep 2019; 9:9829. [PMID: 31285478 PMCID: PMC6614506 DOI: 10.1038/s41598-019-45986-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 90% of the human population, playing a key role in the origin and progression of malignant and non-malignant diseases. Many attempts have been made to classify EBV according to clinical or epidemiological information; however, these classifications show frequent incongruences. For instance, they use a small subset of genes for sorting strains but fail to consider the enormous genomic variability and abundant recombinant regions present in the EBV genome. These could lead to diversity overestimation, alter the tree topology and misinterpret viral types when classified, therefore, a reliable EBV phylogenetic classification is needed to minimize recombination signals. Recombination events occur 2.5-times more often than mutation events, suggesting that recombination has a much stronger impact than mutation in EBV genomic diversity, detected within common ancestral node positions. The Hierarchical Bayesian Analysis of Population Structure (hierBAPS) resulted in the differentiation of 12 EBV populations showed seven monophyletic and five paraphyletic. The populations identified were related to geographic location, of which three populations (EBV-p1/Asia/GC, EBV-p2/Asia II/Tumors and EBV-p4/China/NPC) were related to tumor development. Therefore, we proposed a new consistent and non-simplistic EBV classification, beneficial in minimizing the recombination signal in the phylogeny reconstruction, investigating geography relationship and even infer associations to human diseases. These EBV classifications could also be useful in developing diagnostic applications or defining which strains need epidemiological surveillance.
Collapse
Affiliation(s)
- Louise Zanella
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Michel Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
16
|
Bristol JA, Djavadian R, Albright ER, Coleman CB, Ohashi M, Hayes M, Romero-Masters JC, Barlow EA, Farrell PJ, Rochford R, Kalejta RF, Johannsen EC, Kenney SC. A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog 2018; 14:e1007179. [PMID: 30052684 PMCID: PMC6082571 DOI: 10.1371/journal.ppat.1007179] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/08/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Emily R. Albright
- Department of Molecular Virology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carrie B. Coleman
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Makoto Ohashi
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth A. Barlow
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul J. Farrell
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary Rochford
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado United States of America
| | - Robert F. Kalejta
- Department of Molecular Virology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Liao HM, Liu H, Lei H, Li B, Chin PJ, Tsai S, Bhatia K, Gutierrez M, Epelman S, Biggar RJ, Nkrumah F, Neequaye J, Ogwang MD, Reynolds SJ, Lo SC, Mbulaiteye SM. Frequency of EBV LMP-1 Promoter and Coding Variations in Burkitt Lymphoma Samples in Africa and South America and Peripheral Blood in Uganda. Cancers (Basel) 2018; 10:E177. [PMID: 29865259 PMCID: PMC6024959 DOI: 10.3390/cancers10060177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is linked to several cancers, including endemic Burkitt lymphoma (eBL), but causal variants are unknown. We recently reported novel sequence variants in the LMP-1 gene and promoter in EBV genomes sequenced from 13 of 14 BL biopsies. Alignments of the novel sequence variants for 114 published EBV genomes, including 27 from BL cases, revealed four LMP-1 variant patterns, designated A to D. Pattern A variant was found in 48% of BL EBV genomes. Here, we used PCR-Sanger sequencing to evaluate 50 additional BL biopsies from Ghana, Brazil, and Argentina, and peripheral blood samples from 113 eBL cases and 115 controls in Uganda. Pattern A was found in 60.9% of 64 BL biopsies evaluated. Compared to PCR-negative subjects in Uganda, detection of Pattern A in peripheral blood was associated with eBL case status (odds ratio [OR] 31.7, 95% confidence interval: 6.8⁻149), controlling for relevant confounders. Variant Pattern A and Pattern D were associated with eBL case status, but with lower ORs (9.7 and 13.6, respectively). Our results support the hypothesis that EBV LMP-1 Pattern A may be associated with eBL, but it is not the sole associated variant. Further research is needed to replicate and elucidate our findings.
Collapse
Affiliation(s)
- Hsiao-Mei Liao
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Hebing Liu
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Heiyan Lei
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Bingjie Li
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Pei-Ju Chin
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Shien Tsai
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | | | - Marina Gutierrez
- Laboratorio Stamboulian, Laboratorio Stamboulian, Buenos Aires 1414, Argentina.
| | - Sidnei Epelman
- Department of Pediatric Oncology, St Marcelina Hospital, Sao Paolo 08270-070, Brazil.
| | - Robert J Biggar
- Infections and Immunoepidemiology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Francis Nkrumah
- Noguchi Memorial Institute, Kor Le Bu University, P.O. Box LG 581 Legon, Accra, Ghana.
| | - Janet Neequaye
- Department of Child Health, University of Ghana, P.O. Box LG 25 Legon, Accra, Ghana.
| | - Martin D Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, P.O. Box 180, Gulu, Uganda.
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Shyh-Ching Lo
- Center for Biologics Evaluation and Research, Food and Drug Administration, White Oak, MD 20993, USA.
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Ewald PW. Ancient cancers and infection-induced oncogenesis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 21:178-185. [PMID: 29778408 DOI: 10.1016/j.ijpp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 06/08/2023]
Abstract
Cancers have been reported in bone and soft tissue of ancient agricultural populations. Fossilized bones from prehistoric periods provide evidence of tumors but only one example of cancer. Difficulties in diagnosing the causes of lesions in mummified tissue and fossilized bone, and in interpreting the prevalence of cancers from remains, draw attention to the need for complementary approaches to assess the occurrence of cancer in ancient populations. This paper integrates current knowledge about pathogen induction of cancer with phylogenetic analyses of oncogenic pathogens, and concludes that pathogen-induced cancers were probably generally present in ancient historic and prehistoric human populations. Consideration of cancers in extant human populations and wildlife lends credence to this conclusion, with the caveat that the presence of cancers may depend on population-specific exposures to oncogenic parasites and carcinogens.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
19
|
Liu J, Ji X, Shen Z, Wang PhD Y, Luo PhD B. Sequence variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J Med Virol 2018; 90:1629-1635. [PMID: 29797589 DOI: 10.1002/jmv.25233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The BamHI A rightward frame 1 (BARF1) gene of the Epstein-Barr virus (EBV) is involved in carcinogenesis and immunomodulation of EBV-associated malignancies. The geographical distributions and the disease associations of BARF1 variants remain unclear. In the current study, the BARF1 variants in nasopharyngeal carcinoma (NPC) cases and healthy donors from southern and northern China, the NPC endemic and non-endemic areas, as well as in 153 sequenced EBV genomes from diseased and normal people from around the world, were determined and compared among areas and populations. Only 1 consistent coding change, V29A, and several consistent silent mutations were identified. Two BARF1 types (B95-8 and V29A) and 2 B95-8 subtypes (B95-8t165545c and B95-8P ) were classified. For Chinese isolates, the B95-8 type was dominant in both southern and northern China, but the isolates from southern China showed a higher frequency of the B95-8t165545c subtype than the isolates from northern China (76.0%, 38/50 NPC cases and 50.7%, 37/73 healthy donors vs 26.4%, 24/91 NPC cases and 7.6%, 6/79 healthy donors, P < .0001). Furthermore, the B95-8t165545c subtype was more frequent in NPC cases than healthy donors in both southern China (P = .005) and northern China (P = .001). For EBV genomes, the B95-8P subtype was dominant in northern China, Europe, America, and Australia, while V29A was dominant in Africa. The B95-8t165545c subtype was only identified in Asia and demonstrated high frequency (81.2%, 26/32) in genomes from NPC cases in southern China. These results further reveal conservation and possibly geographically spread variations of BARF1 and may also indicate the preference of EBV strains with the B95-8t165545c subtype in NPC cases, without biological or pathogenic implications.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Xinqiang Ji
- Modern Educational Technology Center, Qingdao University, Qingdao, China
| | - Zhichao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China.,Department of Clinical Laboratory, The People's Liberation Army 107 Hospital, Yantai, China
| | - Yun Wang PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
20
|
Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma. J Virol 2018; 92:JVI.01239-17. [PMID: 29093097 DOI: 10.1128/jvi.01239-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 01/10/2023] Open
Abstract
Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis.IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the first EBV sequences from non-Asian GC. We further identify sequence changes in some EBV proteins common to GC isolates. In addition, gene expression analysis of eight of the EBV-positive GCs showed consistent expression of both the expected latency proteins and a subset of lytic proteins that was not consistent with typical lytic or abortive lytic expression. These results suggest that novel mechanisms activate expression of some EBV lytic proteins and that their expression may contribute to oncogenesis.
Collapse
|
21
|
Abstract
Whole-genome sequencing (WGS) of pathogens is becoming increasingly important not only for basic research but also for clinical science and practice. In virology, WGS is important for the development of novel treatments and vaccines, and for increasing the power of molecular epidemiology and evolutionary genomics. In this Opinion article, we suggest that WGS of viruses in a clinical setting will become increasingly important for patient care. We give an overview of different WGS methods that are used in virology and summarize their advantages and disadvantages. Although there are only partially addressed technical, financial and ethical issues in regard to the clinical application of viral WGS, this technique provides important insights into virus transmission, evolution and pathogenesis.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Infection, UK; and the Division of Biological Anthropology, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, University of Cambridge, Cambridge CB2 3QG, UK.,
- and the Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK.,
| | - Mathew A. Beale
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
- and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
| |
Collapse
|
22
|
Chiara M, Manzari C, Lionetti C, Mechelli R, Anastasiadou E, Chiara Buscarinu M, Ristori G, Salvetti M, Picardi E, D'Erchia AM, Pesole G, Horner DS. Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics. Genome Biol Evol 2016; 8:3284-3291. [PMID: 27635051 PMCID: PMC5203774 DOI: 10.1093/gbe/evw226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects the majority of the human population and is implicated as a causal or contributory factor in numerous diseases. We sequenced 27 complete EBV genomes from a cohort of Multiple Sclerosis (MS) patients and healthy controls from Italy, although no variants showed a statistically significant association with MS. Taking advantage of the availability of ∼130 EBV genomes with known geographical origins, we reveal a striking geographic distribution of EBV sub-populations with distinct allele frequency distributions. We discuss mechanisms that potentially explain these observations, and their implications for understanding the association of EBV with human disease.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Caterina Manzari
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Claudia Lionetti
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Rosella Mechelli
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, "A. Moro", Bari, Italy
| | - Anna Maria D'Erchia
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, "A. Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, "A. Moro", Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy .,Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
23
|
Kwok H, Chiang AKS. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes. Viruses 2016; 8:60. [PMID: 26927157 PMCID: PMC4810250 DOI: 10.3390/v8030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022] Open
Abstract
Genomic sequences of Epstein–Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.
Collapse
Affiliation(s)
- Hin Kwok
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|