1
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Ghaffari MH, Wilms JN, Caruso D, Sauerwein H, Leal LN. Serum lipidomic profiling of dairy calves fed milk replacers containing animal or vegetable fats. J Dairy Sci 2024; 107:9997-10012. [PMID: 39004138 DOI: 10.3168/jds.2024-25120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Vegetable fat blends are commonly used as fat sources in milk replacers (MR) for calves, but their composition differs considerably from that of bovine milk fat. The aim of this study was to investigate the serum lipid profile of preweaning calves fed twice-daily MR containing 30% fat (% DM). Upon arrival, 30 male Holstein-Friesian calves (BW = 45.6 ± 4.0 kg, age = 2.29 ± 0.8 d) were randomly assigned to 2 experimental diets (n = 15 per treatment): one MR was derived from either vegetable fats (VG; 65% rapeseed and 35% coconut fats) or animal fats (AN; 65% packers lard and 35% dairy cream). The 2 MR formulas contained 30% fat, 24% CP, and 36% lactose. Calves were housed indoors in individual pens with ad libitum access to chopped straw and water. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 13.5% solids. An untargeted liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) method was employed to analyze the lipid profiles in the serum of calves sampled from the jugular vein at 35 d of age. In total, 594 lipids were characterized, comprising 25 different lipid classes. Principal component analysis (PCA) showed significant separation between VG and AN, indicating different lipid profiles in the serum. An orthogonal partial least squares discriminant analysis (OPLS-DA) classification model was used to further validate the distinction between the 2 treatment groups. The model exhibited a robust class separation and high predictive accuracy. Using a volcano plot (fold change threshold ≥1.5 and false discovery rate ≤0.05), it was observed that calves fed AN had higher levels of 39 lipid species in serum than calves fed VG, whereas 171 lipid species were lower in the AN group. Lipid classes, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), triglycerides (TG), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE), were different. In particular, PC and PE were observed at lower levels in calves fed AN, possibly indicating shifts in cell membrane characteristics, intracellular signaling, and liver functions. In addition, a decrease in certain triglyceride (TG) species was observed in calves fed AN, including a decrease in TG species such as TG 36:0 and TG 38:0, possibly related to variations in the content of certain fatty acids within the AN MR, such as C10:0, C12:0, C14:0, and C18:0, compared with the VG MR. Calves fed AN had lower levels of LPC and LPE, and lysophosphatidylinositol, SM, and phosphatidylinositol species than calves fed VG, suggesting shifts in lipoprotein and lipid metabolic pathways. In conclusion, these results deepen the understanding of how lipid sources in MR can modulate the serum lipidome profiles of dairy calves.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany.
| | - J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands.
| | - D Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Via Balzaretti, 20133 Milano, Italy; Unitech OMICs, Mass Spectrometry Platform, University of Milan, 20133 Milan, Italy
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
3
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
4
|
Denisenko YK, Omatova UM, Novgorodtseva TP, Ermolenko EV. Molecular species of glycerophosphoethanolamines in obesity-associated asthma. BIOMEDITSINSKAIA KHIMIIA 2023; 69:174-183. [PMID: 37384909 DOI: 10.18097/pbmc20236903174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Bronchial asthma (BA) complicated by obesity is a progressive disease phenotype that hardly responds to standard therapy. In this regard, it is important to elucidate cellular and molecular mechanisms of development of this comorbid pathology. In recent years, lipidomics has become an active research tool, opening new opportunities not only for understanding cellular processes in health and disease, but also for providing a personalized approach to medicine. The aim of this study was to characterize the lipidome phenotype based on the study of molecular species of glycerophosphatidylethanolamines (GPEs) in blood plasma of patients with BA complicated by obesity. Molecular species of GPEs were studied in blood samples of 11 patients. Identification and quantification of GPEs was carried out using high resolution tandem mass spectrometry. For the first time in this pathology, a change in the lipidome profile of molecular species of diacyl, alkyl-acyl and alkenyl-acyl HPEs of blood plasma was shown. In BA complicated by obesity, acyl groups 18:2 and 20:4 were dominated in the sn2 position of the molecular composition of diacylphosphoethanolamines. Simultaneously with the increase in the level of GPE diacyls with the fatty acids (FA) 20:4, 22:4, and 18:2, there was a decrease in these FAs in alkyl and alkenyl molecular species of GPEs, thus indicating their redistribution between subclasses. The eicosapentaenoic acid (20:5) deficiency at the sn2 position of alkenyl GPEs in patients with BA complicated by obesity indicates a decrease in the substrate for the synthesis of anti-inflammatory mediators. The resulting imbalance in the distribution of GPE subclasses, due to a pronounced increase in the content of diacyl GPE under conditions of the deficiency of molecular species of ether forms, can probably cause chronic inflammation and the development of oxidative stress. The recognized lipidome profile characterized by the modification of the basic composition and the chemical structure of GPE molecular species in BA complicated by obesity indicates their involvement in the pathogenetic mechanisms underlying BA development. The elucidation of particular roles of individual subclasses of glycerophospholipids and their individual members may contribute to the identification of new therapeutic targets and biomarkers of bronchopulmonary pathology.
Collapse
Affiliation(s)
- Yu K Denisenko
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - U M Omatova
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - T P Novgorodtseva
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - E V Ermolenko
- A.V. Zhirmunsky National Scientific Center for Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Metabolomic Analysis of the Takifugu Obscurus Gill under Acute Hypoxic Stress. Animals (Basel) 2022; 12:ani12192611. [PMID: 36230352 PMCID: PMC9559691 DOI: 10.3390/ani12192611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Takifugu obscurus is an economically important aquaculture species in China. In recent years, the development of the domestic breeding industry of the globefish has been very rapid. However, oxygen fluctuations and nourishing substances in the aquaculture water have caused oxygen deprivation, which makes great economic losses in high-density farming. As the main respiratory organ of fish, gills are greatly affected by changes in dissolved oxygen. Therefore, in this study, we explored the molecular mechanism of hypoxia tolerance of pufferfish by analyzing the changes of metabolites in gill tissue under acute hypoxia. These data provide a scientific basis for the control of dissolved oxygen in the aquatic environment of T. obscurus, and also provide a reference for the breeding of the new varieties with low oxygen tolerance. Abstract Takifugu obscurus has relatively small gills and gill pores. Consequently, a relatively low respiratory capacity. This fish is thus easily negatively affected by the low levels of dissolved oxygen (DO) that are common in high-intensity aquaculture. In order to clarify the mechanisms underlying the hypoxia response of T. obscurus, we used liquid mass spectrometry (LC–MS) to identify and quantify the metabolites present in the T. obscurus gill under the following conditions: normoxia (DO, 7.0 ± 0.2 mg/L), hypoxia (DO, 0.9 ± 0.2 mg/L), and reoxygenation (4, 12, and 24 h after return to normoxia conditions). We identified a total of 821 and 383 metabolites in the gill in positive and negative ion modes, respectively. Of the metabolites identified in positive ion mode, 136 were differentially abundant between hypoxia and all other conditions; of the metabolites identified in negative ion mode, 34 were differentially abundant between hypoxia and all other conditions. The metabolites which were differentially abundant under hypoxia primarily included glycerol phospholipids, fatty acids, hormones, and amino acids as well as related compounds. The pathways which were significantly enriched in the differentially abundant metabolites included the lipid metabolism, amino acid metabolism, purine metabolism, FoxO signaling pathway, and mTOR signaling pathway. Our results help to clarify the mechanisms underlying hypoxia tolerance and to identify hypoxia-related metabolites, as well as to highlight potential research targets for the development of hypoxic-tolerant strains in the future.
Collapse
|
6
|
Abeyrathne EDNS, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol 2022; 31:1243-1256. [PMID: 35992319 PMCID: PMC9385935 DOI: 10.1007/s10068-022-01138-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Egg yolk contains very high levels of lipids, which comprise 33% of whole egg yolk. Although triglyceride is the main lipid, egg yolk is the richest source of phospholipids and cholesterol in nature. The egg yolk phospholipids have a unique composition with high levels of phosphatidylcholine followed by phosphatidylethanolamine, sphingomyelin, plasmalogen, and phosphatidylinositol. All the egg yolk lipids are embedded inside the HDL and LDL micelles or granular particles. Egg yolk lipids can be easily extracted using solvents or supercritical extraction methods but their commercial applications of egg yolk lipids are limited. Egg yolk lipids have excellent potential as a food ingredient or cosmeceutical, pharmaceutical, and nutraceutical agents because they have excellent functional and biological characteristics. This review summarizes the current knowledge on egg yolk lipids' extraction methods and functions and discusses their current and future use, which will be important to increase the use and value of the egg.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla, 90000 Sri Lanka
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Ki-Chang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
7
|
Naffaa V, Magny R, Regazzetti A, Van Steenwinckel J, Gressens P, Laprévote O, Auzeil N, Schang AL. Shift in phospholipid and fatty acid contents accompanies brain myelination. Biochimie 2022; 203:20-31. [DOI: 10.1016/j.biochi.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
|
8
|
Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat Microbiol 2022; 7:986-1000. [PMID: 35725777 PMCID: PMC9246714 DOI: 10.1038/s41564-022-01152-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Inositol lipids are ubiquitous in eukaryotes and have finely tuned roles in cellular signalling and membrane homoeostasis. In Bacteria, however, inositol lipid production is relatively rare. Recently, the prominent human gut bacterium Bacteroides thetaiotaomicron (BT) was reported to produce inositol lipids and sphingolipids, but the pathways remain ambiguous and their prevalence unclear. Here, using genomic and biochemical approaches, we investigated the gene cluster for inositol lipid synthesis in BT using a previously undescribed strain with inducible control of sphingolipid synthesis. We characterized the biosynthetic pathway from myo-inositol-phosphate (MIP) synthesis to phosphoinositol dihydroceramide, determined the crystal structure of the recombinant BT MIP synthase enzyme and identified the phosphatase responsible for the conversion of bacterially-derived phosphatidylinositol phosphate (PIP-DAG) to phosphatidylinositol (PI-DAG). In vitro, loss of inositol lipid production altered BT capsule expression and antimicrobial peptide resistance. In vivo, loss of inositol lipids decreased bacterial fitness in a gnotobiotic mouse model. We identified a second putative, previously undescribed pathway for bacterial PI-DAG synthesis without a PIP-DAG intermediate, common in Prevotella. Our results indicate that inositol sphingolipid production is widespread in host-associated Bacteroidetes and has implications for symbiosis. The pathways responsible for inositol lipid production in human gut Bacteroides are characterized and these lipids are important for capsule expression and antimicrobial peptide resistance in vitro and colonization in vivo.
Collapse
|
9
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
10
|
Oyeniyi EA, Sorgi CA, Gardinassi LG, Azevedo LF, Adeyemi JA, Omotoso OT, Faccioli LH, Greggi Antunes LM, Barbosa F. Phospholipids modifications, genotoxic and anticholinesterase effects of pepper fruit (Dennettia tripetala G. Baker) extract in Swiss mice. Food Chem Toxicol 2022; 165:113189. [PMID: 35636641 DOI: 10.1016/j.fct.2022.113189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The toxicity of D. tripetala fruit extract to mice was investigated using data obtained from lipidomic analyses, comet and Acetylcholinesterase (AChE) assays. Mice (n = 8) were exposed for 30 days via oral gavage to vehicle (5% Tween 80) (negative control), D. tripetala extract (100, 200 and 400 mg/kg) and 40 mg/kg methyl methanesulfonate (MMS) (positive control). The profile of compounds in the fruit extract was analyzed using gas chromatography-mass spectrometry. Out of the total of 32 compounds identified, considerable amount of established insecticidal compounds such as 2-phenylnitroethane, cis-vaccenic acid, linalool and linoleic acid were detected. Fruit extract did not induce DNA damage relative to negative control. Percentage gain in body weights differed significantly across the four weeks. Significantly highest and lowest brain AChE activity was observed in animals exposed to 200 and 400 mg/kg D. tripetala, respectively. Fruit extract modulated the brain phospholipid profile due to significant fold changes of 48 lipid species out of the total of 280 lipid species. High number of differentially expressed phosphatidylcholine (PC) species and significant levels of phosphatidylethanolamine (PE) at 400 mg/kg suggests that activation of inflammation and methylation pathways are the most plausible mechanisms of D. tripetala toxicity to mouse brain tissue.
Collapse
Affiliation(s)
- Emmanuel Ayobami Oyeniyi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria; Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Carlos Arterio Sorgi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Joseph Adewuyi Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Olumuyiwa Temitope Omotoso
- Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lucia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
11
|
Ghosh Biswas R, Soong R, Ning P, Lane D, Bastawrous M, Jenne A, Schmidig D, de Castro P, Graf S, Kuehn T, Kümmerle R, Bermel W, Busse F, Struppe J, Simpson MJ, Simpson AJ. Exploring the Applications of Carbon-Detected NMR in Living and Dead Organisms Using a 13C-Optimized Comprehensive Multiphase NMR Probe. Anal Chem 2022; 94:8756-8765. [PMID: 35675504 DOI: 10.1021/acs.analchem.2c01356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Comprehensive multiphase-nuclear magnetic resonance (CMP-NMR) is a non-invasive approach designed to observe all phases (solutions, gels, and solids) in intact samples using a single NMR probe. Studies of dead and living organisms are important to understand processes ranging from biological growth to environmental stress. Historically, such studies have utilized 1H-based phase editing for the detection of soluble/swollen components and 1H-detected 2D NMR for metabolite assignments/screening. However, living organisms require slow spinning rates (∼500 Hz) to increase survivability, but at such low speeds, complications from water sidebands and spectral overlap from the modest chemical shift window (∼0-10 ppm) make 1H NMR challenging. Here, a novel 13C-optimized E-Free magic angle spinning CMP probe is applied to study all phases in ex vivo and in vivo samples. This probe consists of a two-coil design, with an inner single-tuned 13C coil providing a 113% increase in 13C sensitivity relative to a traditional multichannel single-CMP coil design. For organisms with a large biomass (∼0.1 g) like the Ganges River sprat (ex vivo), 13C-detected full spectral editing and 13C-detected heteronuclear correlation (HETCOR) can be performed at natural abundance. Unfortunately, for a single living shrimp (∼2 mg), 13C enrichment was still required, but 13C-detected HETCOR shows superior data relative to heteronuclear single-quantum coherence at low spinning speeds (due to complications from water sidebands in the latter). The probe is equipped with automatic-tuning-matching and is compatible with automated gradient shimming─a key step toward conducting multiphase screening of dead and living organisms under automation in the near future.
Collapse
Affiliation(s)
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Paris Ning
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Peter de Castro
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Rainer Kümmerle
- Bruker BioSpin AG, Industriestrasse 26, Fällanden 8117, Switzerland
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Jochem Struppe
- Bruker Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821-3991, USA
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
12
|
Maleš P, Brkljača Z, Domazet Jurašin D, Bakarić D. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121013. [PMID: 35176647 DOI: 10.1016/j.saa.2022.121013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
One of the advantages of investigating lipid phase transitions by thermoanalytical techniques such as DSC is manifested in the proportionality of the signal strength on a DSC curve, attributed to a particular thermotropic event, and its cooperativity degree. Accordingly, the pretransition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is less noticeable than its main phase transition; as a matter of fact, when DSC measurements are performed at low heating rate, such low-cooperativity phase transition could go (almost) unnoticed. The aim of this work is to present temperature-dependent UV/Vis spectroscopy, based on a temperature-dependent change in DPPC suspension turbidity, as a technique applicable for determination of lipid phase transition temperatures. Multivariate analyzes of the acquired UV/Vis spectra show that phase transitions of the low-cooperativity degree, such as pretransitions, can be identified with the same certainty as transitions of a high-cooperativity degree.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
13
|
Suliman M, Case KC, Schmidtke MW, Lazcano P, Onu CJ, Greenberg ML. Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159137. [PMID: 35247568 DOI: 10.1016/j.bbalip.2022.159137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an "inositol-less death" phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes. Abnormalities in inositol metabolism have been associated with several human disorders. Despite its importance, very little is known about the regulation of inositol synthesis and the pathways regulated by inositol in human cells. The current study aimed to address this knowledge gap. Knockout of ISYNA1 (encoding myo-inositol-3-P synthase 1) in HEK293T cells generated a human cell line that is deficient in de novo inositol synthesis. ISYNA1-KO cells exhibited inositol-less death when deprived of inositol. Lipidomic analysis identified inositol depletion as a global regulator of phospholipid levels in human cells, including downregulation of phosphatidylinositol (PI) and upregulation of the phosphatidylglycerol (PG)/cardiolipin (CL) branch of phospholipid metabolism. RNA-Seq analysis revealed that inositol depletion induced substantial changes in the expression of genes involved in cell signaling, including extracellular signal-regulated kinase (ERK), and genes controlling amino acid transport and protein processing in the endoplasmic reticulum (ER). This study provides the first in-depth characterization of the effects of inositol depletion on phospholipid metabolism and gene expression in human cells, establishing an essential role for inositol in maintaining cell viability and regulating cell signaling and metabolism.
Collapse
Affiliation(s)
- Mahmoud Suliman
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Chisom J Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
14
|
Serum Metabolomics Analysis for Biomarkers of Lactobacillus plantarum FRT4 in High-Fat Diet-Induced Obese Mice. Foods 2022; 11:foods11020184. [PMID: 35053915 PMCID: PMC8774460 DOI: 10.3390/foods11020184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus plantarum is considered a potential probiotic supplementation for treating obesity. However, the underlying molecular mechanism is poorly understood. Our previous study displayed that L. plantarum FRT4 alleviated obesity in mice fed a high-fat diet (HFD) through ameliorating the HFD-induced gut microbiota dysbiosis. To explore the roles of FRT4 in obesity prevention, in this study, we investigated changes in serum metabolomic phenotype by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and analyzed the pathway of HFD-fed Kunming female mice orally administered with FRT4 for eight weeks. Using orthogonal partial least squares discriminant analysis (OPLS-DA), metabolite patterns with significant changes were observed. 55 metabolites including phosphatidylcholine, lysophophatidylcholine, sphingomyelin, serotonin, indole-3-methyl aceta, indole-3-carbinol, indole-5,6-quino, 11,12-DHET, prostaglandin B2, leukotriene B4, and 3-hydroxybenzoic acid were identified as potential biomarkers associated with obesity, which were mainly involving in glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. Perturbations of 14 biomarkers could be regulated by FRT4 intervention. These metabolites may serve as valuable biomarkers to understand the mechanisms by which intake of diets containing FRT4 contributes to the treatment or prevention of obesity. Thus, FRT4 can be a promising dietary supplement for the prevention of HFD-induced obesity.
Collapse
|
15
|
Vieira AFC, Xatse MA, Tifeki H, Diot C, Walhout AJM, Olsen CP. Monomethyl branched-chain fatty acids are critical for C. elegans survival in elevated glucose conditions. J Biol Chem 2021; 298:101444. [PMID: 34826420 PMCID: PMC8819037 DOI: 10.1016/j.jbc.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
The maintenance of optimal membrane composition under basal and stress conditions is critical for the survival of an organism. High-glucose stress has been shown to perturb membrane properties by decreasing membrane fluidity, and the membrane sensor PAQR-2 is required to restore membrane integrity. However, the mechanisms required to respond to elevated dietary glucose are not fully established. In this study, we used a 13C stable isotope-enriched diet and mass spectrometry to better understand the impact of glucose on fatty acid dynamics in the membrane of Caenorhabditis elegans. We found a novel role for monomethyl branched-chain fatty acids (mmBCFAs) in mediating the ability of the nematodes to survive conditions of elevated dietary glucose. This requirement of mmBCFAs is unique to glucose stress and was not observed when the nematode was fed elevated dietary saturated fatty acid. In addition, when worms deficient in elo-5, the major biosynthesis enzyme of mmBCFAs, were fed Bacillus subtilis (a bacteria strain rich in mmBCFAs) in combination with high glucose, their survival rates were rescued to wild-type levels. Finally, the results suggest that mmBCFAs are part of the PAQR-2 signaling response during glucose stress. Taken together, we have identified a novel role for mmBCFAs in stress response in nematodes and have established these fatty acids as critical for adapting to elevated glucose.
Collapse
Affiliation(s)
- Andre F C Vieira
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester MA 01609
| | - Mark A Xatse
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester MA 01609
| | - Hamide Tifeki
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester MA 01609; Department of Chemistry, University of Alaska Anchorage, Anchorage AK 99508
| | - Cédric Diot
- Program in Systems Biology and Program in Molecular Medicine, UMASS Medical School, Worcester MA 01605
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, UMASS Medical School, Worcester MA 01605
| | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester MA 01609.
| |
Collapse
|
16
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Wu Y, Chen Z, Fuda H, Tsukui T, Wu X, Shen N, Saito N, Chiba H, Hui SP. Oxidative Stress Linked Organ Lipid Hydroperoxidation and Dysregulation in Mouse Model of Nonalcoholic Steatohepatitis: Revealed by Lipidomic Profiling of Liver and Kidney. Antioxidants (Basel) 2021; 10:1602. [PMID: 34679736 PMCID: PMC8533338 DOI: 10.3390/antiox10101602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent disease related to lipid metabolism disorder and oxidative stress. Lipid hydroperoxidation is known to be a critical driving force of various disorders and diseases. However, the combination of both intact and hydroperoxidized lipids in NASH has not yet been studied. In this work, the liver and kidney samples from NASH-model mice were comprehensively investigated by using the LC/MS-based lipidomic analysis. As a result, triglycerides showed the amount accumulation and the profile alteration for the intact lipids in the NASH group, while phosphatidylethanolamines, lysophosphatidylethanolamines, plasmalogens, and cardiolipins largely depleted, suggesting biomembrane damage and mitochondria dysfunction. Notably, the lipid hydroperoxide species of triglyceride and phosphatidylcholine exhibited a significant elevation in both the liver and the kidney of the NASH group and showed considerable diagnostic ability. Furthermore, the relationship was revealed between the lipid metabolism disturbance and the lipid hydroperoxide accumulation, which played a key role in the vicious circle of NASH. The present study suggested that the omics approach to the lipid hydroperoxide profile might be the potential diagnostic marker of NASH and other oxidative stress-related diseases, as well as the evaluative treatment index of antioxidants.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Xunzhi Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Nianqiu Shen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Natsuki Saito
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| |
Collapse
|
18
|
Ren D, Li Y, Xue Y, Tang X, Yong L, Li Y. A study using LC-MS/MS-based metabolomics to investigate the effects of iron oxide nanoparticles on rat liver. NANOIMPACT 2021; 24:100360. [PMID: 35559819 DOI: 10.1016/j.impact.2021.100360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/31/2021] [Accepted: 10/24/2021] [Indexed: 06/15/2023]
Abstract
Iron oxide nanoparticles (IONPs) are widely used in food additives, but their metabolic mechanism in the body is still unclear. In this study, male Sprague-Dawley rats were orally administered with IONPs for 28 days to investigate the adverse effect and metabolic mechanism on liver by the combination of traditional toxicology technology and liquid chromatography tandem-mass spectrometry (LC-MS/MS)-based metabolomics. The results showed that IONPs could increase the concentration of blood glucose and the metabolites in the liver of the control and IONPs-treated group were significantly changed. A total of 32 different metabolites were found, including choline, Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidylserine (PS), etc. Pathway analysis based on KEGG database demonstrated that the glycerophospholipid metabolism pathway would be affected. And the expression of the key enzymes of altered metabolomics pathway was further verified at the transcription level. In short, our study clarified oral exposure to IONPs would induce lipid metabolism disorders in the liver of rats, which provided useful information about their safety and potential risks.
Collapse
Affiliation(s)
- Dongxia Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yulin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xue
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Xiaoyue Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yun Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
19
|
Jenni A, Knüsel S, Nagar R, Benninger M, Häner R, Ferguson MAJ, Roditi I, Menon AK, Bütikofer P. Elimination of GPI2 suppresses glycosylphosphatidylinositol GlcNAc transferase activity and alters GPI glycan modification in Trypanosoma brucei. J Biol Chem 2021; 297:100977. [PMID: 34284059 PMCID: PMC8358704 DOI: 10.1016/j.jbc.2021.100977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.
Collapse
Affiliation(s)
- Aurelio Jenni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Chemical and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Robert Häner
- Department for Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Andrés‐Benito P, Gelpi E, Jové M, Mota‐Martorell N, Obis È, Portero‐Otin M, Povedano M, Pujol A, Pamplona R, Ferrer I. Lipid alterations in human frontal cortex in ALS-FTLD-TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol Appl Neurobiol 2021; 47:544-563. [PMID: 33332650 PMCID: PMC8248144 DOI: 10.1111/nan.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.
Collapse
Affiliation(s)
- Pol Andrés‐Benito
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc‐Hospital Clínic‐Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPSBarcelonaSpain
- Institute of NeurologyMedical University of ViennaViennaAustria
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Natalia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Manuel Portero‐Otin
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELAService of NeurologyBellvitge University HospitalHospitalet de LlobregatSpain
| | - Aurora Pujol
- Catalan Institution for Research and Advanced Studies (ICREABarcelonaSpain
- Neurometabolic Diseases LaboratoryBellvitge Biomedical Research InstituteHospital Duran i ReynalsHospitalet de Llobregat, BarcelonaSpain
- Center for Biomedical Research on Rare Diseases (CIBERERInstitute of Health Carlos IIIMadridSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Isidro Ferrer
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
21
|
Preston G, Emmerzaal T, Radenkovic S, Lanza IR, Oglesbee D, Morava E, Kozicz T. Cerebellar and multi-system metabolic reprogramming associated with trauma exposure and post-traumatic stress disorder (PTSD)-like behavior in mice. Neurobiol Stress 2021; 14:100300. [PMID: 33604421 PMCID: PMC7872981 DOI: 10.1016/j.ynstr.2021.100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Silvia Radenkovic
- Metabolomic Expertise Center, CCB, VIB- KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
| | - Ian R. Lanza
- Division of Endocrinology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
22
|
Moitra S, Basu S, Pawlowic M, Hsu FF, Zhang K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front Cell Infect Microbiol 2021; 11:647870. [PMID: 33777852 PMCID: PMC7996062 DOI: 10.3389/fcimb.2021.647870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in Leishmania. PC synthesis mainly occurs via the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, Leishmania parasites can acquire PC and other lipids from the host or culture medium. In this study, we assessed the function and essentiality of choline ethanolamine phosphotransferase (CEPT) in Leishmania major which is responsible for the final step of the de novo synthesis of PC and PE. Our data indicate that CEPT is localized in the endoplasmic reticulum and possesses the activity to generate PC from CDP-choline and diacylglycerol. Targeted deletion of CEPT is only possible in the presence of an episomal CEPT gene in the promastigote stage of L. major. These chromosomal null parasites require the episomal expression of CEPT to survive in culture, confirming its essentiality during the promastigote stage. In contrast, during in vivo infection of BALB/c mice, these chromosomal null parasites appeared to lose the episomal copy of CEPT while maintaining normal levels of virulence, replication and cellular PC. Therefore, while the de novo synthesis of PC/PE is indispensable for the proliferation of promastigotes, intracellular amastigotes appear to acquire most of their lipids through salvage and remodeling.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mattie Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
23
|
Doucette KA, Chaiyasit P, Calkins DL, Martinez KN, Van Cleave C, Knebel CA, Tongraar A, Crans DC. The Interfacial Interactions of Glycine and Short Glycine Peptides in Model Membrane Systems. Int J Mol Sci 2020; 22:ijms22010162. [PMID: 33375246 PMCID: PMC7795424 DOI: 10.3390/ijms22010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The interactions of amino acids and peptides at model membrane interfaces have considerable implications for biological functions, with the ability to act as chemical messengers, hormones, neurotransmitters, and even as antibiotics and anticancer agents. In this study, glycine and the short glycine peptides diglycine, triglycine, and tetraglycine are studied with regards to their interactions at the model membrane interface of Aerosol-OT (AOT) reverse micelles via 1H NMR spectroscopy, dynamic light scattering (DLS), and Langmuir trough measurements. It was found that with the exception of monomeric glycine, the peptides prefer to associate between the interface and bulk water pool of the reverse micelle. Monomeric glycine, however, resides with the N-terminus in the ordered interstitial water (stern layer) and the C-terminus located in the bulk water pool of the reverse micelle.
Collapse
Affiliation(s)
- Kaitlin A. Doucette
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Prangthong Chaiyasit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (A.T.)
| | - Donn L. Calkins
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Kayli N. Martinez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Callan A. Knebel
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
| | - Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (A.T.)
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (D.L.C.); (K.N.M.); (C.V.C.); (C.A.K.)
- Correspondence: ; Tel.: +1-970-491-7635
| |
Collapse
|
24
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
25
|
Horibata Y, Ando H, Sugimoto H. Locations and contributions of the phosphotransferases EPT1 and CEPT1 to the biosynthesis of ethanolamine phospholipids. J Lipid Res 2020; 61:1221-1231. [PMID: 32576654 DOI: 10.1194/jlr.ra120000898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/EPT1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for PE production and 1-alkyl-2-acyl-glycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine. Here, we investigated the intracellular location and contribution to ethanolamine phospholipid (EP) biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the ER. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of 1-alkenyl-2-acyl-glycerophosphoethanolamine than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did not significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16-20:4 > DAG 18:0-20:4 > DAG 16:0-18:1 = AAG 16-18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0-18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.
Collapse
Affiliation(s)
- Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | - Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
26
|
Dawoody Nejad L, Stumpe M, Rauch M, Hemphill A, Schneiter R, Bütikofer P, Serricchio M. Mitochondrial sphingosine-1-phosphate lyase is essential for phosphatidylethanolamine synthesis and survival of Trypanosoma brucei. Sci Rep 2020; 10:8268. [PMID: 32427974 PMCID: PMC7237492 DOI: 10.1038/s41598-020-65248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
Sphingosine-1-phosphate is a signaling molecule involved in the control of cell migration, differentiation, survival and other physiological processes. This sphingolipid metabolite can be degraded by the action of sphingosine-1-phosphate lyase (SPL) to form hexadecenal and ethanolamine phosphate. The importance of SPL-mediated ethanolamine phosphate formation has been characterized in only few cell types. We show that in the protozoan parasite Trypanosoma brucei, expression of TbSpl is essential for cell survival. Ablation of TbSpl expression increased sphingosine-1-phosphate levels and reduced de novo formation and steady-state levels of the glycerophospholipid phosphatidylethanolamine (PE). Growth of TbSpl-depleted parasites could be in part rescued by ethanolamine supplementation to the growth medium, indicating that the main function of TbSpl is to provide ethanolamine phosphate for PE synthesis. In contrast to most cell types analyzed, where SPL localizes to the endoplasmic reticulum, we found by high-resolution microscopy that TbSpl is a mitochondrial protein. In spite of its mitochondrial localization, TbSpl depletion had no apparent effect on mitochondrial morphology but resulted in aggregation of acidocalcisomes. Our results link mitochondria to sphingolipid metabolism and suggest possible roles for PE in acidocalcisome function.
Collapse
Affiliation(s)
- Ladan Dawoody Nejad
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Stumpe
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Monika Rauch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Castellanos-Castro S, Bolaños J, Orozco E. Lipids in Entamoeba histolytica: Host-Dependence and Virulence Factors. Front Cell Infect Microbiol 2020; 10:75. [PMID: 32211340 PMCID: PMC7075943 DOI: 10.3389/fcimb.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- College of Sciences and Humanities, Autonomous University of Mexico City, Mexico City, Mexico.,BioImage Analysis Unit, Pasteur Institute, Paris, France
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.,Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nnicolás Hidalgo, Morelia, Mexico
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
28
|
Normile TG, McEvoy K, Del Poeta M. Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. J Fungi (Basel) 2020; 6:E25. [PMID: 32102324 PMCID: PMC7151148 DOI: 10.3390/jof6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections pose an increasing threat to human hosts, especially in immunocompromised individuals. In response to the increasing morbidity and mortality of fungal infections, numerous groups have shown great strides in uncovering novel treatment options and potential efficacious vaccine candidates for this increasing threat due to the increase in current antifungal resistance. Steryl glycosides are lipid compounds produced by a wide range of organisms, and are largely understudied in the field of pathogenicity, especially to fungal infections. Published works over the years have shown these compounds positively modulating the host immune response. Recent advances, most notably from our lab, have strongly indicated that steryl glycosides have high efficacy in protecting the host against lethal Cryptococcal infection through acting as an immunoadjuvant. This review will summarize the keystone studies on the role of steryl glycosides in the host immune response, as well as elucidate the remaining unknown characteristics and future perspectives of these compounds for the host-fungal interactions.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, New York, NY 11768, USA
| |
Collapse
|
29
|
Abstract
Due to its unique biology the mitochondrion of Trypanosoma brucei has attracted a lot of interest since many decades, making it arguably the best studied mitochondrion outside yeast and mammals. Here we describe a method allowing purification of mitochondria from procyclic trypanosomes that yields highly enriched and functional organelles. The method is based on isotonic lysis of cells by nitrogen cavitation, DNase I digestion, differential centrifugation and Nycodenz gradient centrifugation. The method is scalable and can be adapted to culture volumes a small as 100 mL or as large as 24 L.
Collapse
Affiliation(s)
- Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Taïb B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, Ahima RS. Lipid accumulation and oxidation in glioblastoma multiforme. Sci Rep 2019; 9:19593. [PMID: 31863022 PMCID: PMC6925201 DOI: 10.1038/s41598-019-55985-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor in adults. Despite the multimodal standard treatments for GBM, the median survival is still about one year. Analysis of brain tissues from GBM patients shows that lipid droplets are highly enriched in tumor tissues while undetectable in normal brain tissues, yet the identity and functions of lipid species in GBM are not well understood. The aims of the present work are to determine how GBM utilizes fatty acids, and assess their roles in GBM proliferation. Treatment of U138 GBM cells with a monounsaturated fatty acid, oleic acid, induces accumulation of perilipin 2-coated lipid droplets containing triglycerides enriched in C18:1 fatty acid, and increases fatty acid oxidation. Interestingly, oleic acid also increases glucose utilization and proliferation of GBM cells. In contrast, pharmacologic inhibition of monoacylglycerol lipase attenuates GBM proliferation. Our findings demonstrate that monounsaturated fatty acids promote GBM proliferation via triglyceride metabolism, suggesting a novel lipid droplet-mediated pathway which may be targeted for GBM treatment.
Collapse
Affiliation(s)
- Bouchra Taïb
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amine M Aboussalah
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | | | - Suming Chen
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
31
|
Stephenson DJ, MacKnight HP, Hoeferlin LA, Park M, Allegood J, Cardona CL, Chalfant CE. A rapid and adaptable lipidomics method for quantitative UPLC-mass spectrometric analysis of phosphatidylethanolamine and phosphatidylcholine in vitro, and in cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1765-1776. [PMID: 31788037 PMCID: PMC6884326 DOI: 10.1039/c9ay00052f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are highly prevalent phospholipids in mammalian membranes. There are currently no methods for detection of minute levels of these phospholipids or simultaneously with products of the utilization of these phospholipid substrates by phospholipase A2 (PLA2) enzymes. To examine the substrate utilization of PE and PC by PLA2, we developed a method to accurately detect and measure specific forms of PE and PC as low as 50 femtomoles. Validation of this method consisted of an enzymatic assay to monitor docosahexaenoic acid and arachidonic acid release from the hydrolysis of PE and PC by group IV phospholipase A2 (cPLA2α) coupled to the generation of lyso-PE (LPE) and lyso-PC (LPC). In addition, the PE and PC profiles of RAW 264.7 macrophages were monitored with zymosan/lipopolysaccharide-treatment. Finally, genetic validation for the specificity of the method consisted of the downregulation of two biosynthetic enzymes responsible for the production of PE and PC, choline kinase A (CHKA) and ethanolamine kinase 1 (ETNK1). This new UPLC ESI-MS/MS method provides accurate and highly sensitive detection of PE and PC species containing AA and DHA allowing for the specific examination of the substrate utilization of these phospholipids by PLA2 in vitro and in cells.
Collapse
Affiliation(s)
- Daniel J. Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond VA, 23298
| | - H. Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond VA, 23298
| | - L. Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond VA, 23298
- VCU Massey Cancer Center, Cancer Cell Signaling Program, Virginia Commonwealth University, Richmond VA, 23298
| | - Margaret Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
- The Moffitt Cancer Center, Tampa, FL 33620
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond VA, 23298
| | - Christopher L. Cardona
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| |
Collapse
|
32
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
33
|
Konarzewska P, Wang Y, Han GS, Goh KJ, Gao YG, Carman GM, Xue C. Phosphatidylserine synthesis is essential for viability of the human fungal pathogen Cryptococcus neoformans. J Biol Chem 2019; 294:2329-2339. [PMID: 30602568 DOI: 10.1074/jbc.ra118.006738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/28/2018] [Indexed: 11/06/2022] Open
Abstract
Phospholipids are an integral part of the cellular membrane structure and can be produced by a de novo biosynthetic pathway and, alternatively, by the Kennedy pathway. Studies in several yeast species have shown that the phospholipid phosphatidylserine (PS) is synthesized from CDP-diacylglycerol and serine, a route that is different from its synthesis in mammalian cells, involving a base-exchange reaction from preexisting phospholipids. Fungal-specific PS synthesis has been shown to play an important role in fungal virulence and has been proposed as an attractive drug target. However, PS synthase, which catalyzes this reaction, has not been studied in the human fungal pathogen Cryptococcus neoformans Here, we identified and characterized the PS synthase homolog (Cn Cho1) in this fungus. Heterologous expression of Cn CHO1 in a Saccharomyces cerevisiae cho1Δ mutant rescued the mutant's growth defect in the absence of ethanolamine supplementation. Moreover, an Sc cho1Δ mutant expressing Cn CHO1 had PS synthase activity, confirming that the Cn CHO1 encodes PS synthase. We also found that PS synthase in C. neoformans is localized to the endoplasmic reticulum and that it is essential for mitochondrial function and cell viability. Of note, its deficiency could not be complemented by ethanolamine or choline supplementation for the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) via the Kennedy pathway. These findings improve our understanding of phospholipid synthesis in a pathogenic fungus and indicate that PS synthase may be a useful target for antifungal drugs.
Collapse
Affiliation(s)
| | - Yina Wang
- From the Public Health Research Institute and
| | - Gil-Soo Han
- the Rutgers Center for Lipid Research and.,Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, and
| | - Kwok Jian Goh
- the School of Biological Sciences, Nanyang Technological University, Singapore 117597, Singapore
| | - Yong-Gui Gao
- the School of Biological Sciences, Nanyang Technological University, Singapore 117597, Singapore
| | - George M Carman
- the Rutgers Center for Lipid Research and.,Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, and
| | - Chaoyang Xue
- From the Public Health Research Institute and .,the Rutgers Center for Lipid Research and.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| |
Collapse
|
34
|
Chang W, Hatch GM, Wang Y, Yu F, Wang M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol Med 2018; 23:702-710. [PMID: 30402908 PMCID: PMC6349352 DOI: 10.1111/jcmm.13984] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/02/2018] [Indexed: 01/21/2023] Open
Abstract
Insulin resistance induced by high‐fat diet and impropriate life style is a major contributor to the pathogenesis of metabolic disease. However, the underlying molecular mechanisms remain unclear. Recent studies in metabolic dysfunction have extended this beyond simply elevated cholesterol and triglycerides levels and have identified a key role for lipid metabolism. For example, altered phospholipid metabolism has now become central in the pathogenesis of metabolic disease. In this review, we discuss the association between insulin sensitivity and phospholipid metabolism and highlight the most significant discoveries generated over the last several decades. Finally, we summarize the current knowledge surrounding the molecular mechanisms related to phospholipids and insulin resistance and provide new insight for future research into their relationship.
Collapse
Affiliation(s)
- Wenguang Chang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Grant M Hatch
- Departments of Pharmacology and Therapeutics, Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Wang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Fei Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Kilian N, Choi JY, Voelker DR, Ben Mamoun C. Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood. J Biol Chem 2018; 293:17308-17316. [PMID: 30287688 DOI: 10.1074/jbc.r118.003213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets.
Collapse
Affiliation(s)
- Nicole Kilian
- From the Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520 and
| | - Jae-Yeon Choi
- the Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Dennis R Voelker
- the Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Choukri Ben Mamoun
- From the Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520 and
| |
Collapse
|
36
|
Lim SL, Jia Z, Lu Y, Zhang H, Ng CT, Bay BH, Shen HM, Ong CN. Metabolic signatures of four major histological types of lung cancer cells. Metabolomics 2018; 14:118. [PMID: 30830374 DOI: 10.1007/s11306-018-1417-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Histologically lung cancer is classified into four major types: adenocarcinoma (Ad), squamous cell carcinoma (SqCC), large cell carcinoma (LCC), and small cell lung cancer (SCLC). Presently, our understanding of cellular metabolism among them is still not clear. OBJECTIVES The goal of this study was to assess the cellular metabolic profiles across these four types of lung cancer using an untargeted metabolomics approach. METHODS Six lung cancer cell lines, viz., Ad (A549 and HCC827), SqCC (NCl-H226 and NCl-H520), LCC (NCl-H460), and SCLC (NCl-H526), were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry, with normal human small airway epithelial cells (SAEC) as the control group. The principal component analysis (PCA) was performed to identify the metabolic signatures that had characteristic alterations in each histological type. Further, a metabolite set enrichment analysis was performed for pathway analysis. RESULTS Compared to the SAEC, 31, 27, 34, 34, 32, and 39 differential metabolites mainly in relation to nucleotides, amino acid, and fatty acid metabolism were identified in A549, HCC827, NCl-H226, NCl-H520, NCl-H460, and NCl-H526 cells, respectively. The metabolic signatures allowed the six cancerous cell lines to be clearly separated in a PCA score plot. CONCLUSION The metabolic signatures are unique to each histological type, and appeared to be related to their cell-of-origin and mutation status. The changes are useful for assessing the metabolic characteristics of lung cancer, and offer potential for the establishment of novel diagnostic tools for different origin and oncogenic mutation of lung cancer.
Collapse
Affiliation(s)
- Swee Ling Lim
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #11-01, Tahir Foundation Building, Singapore, 117549, Singapore
| | - Zhunan Jia
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
- NUS Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore, 117411, Singapore
| | - Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #11-01, Tahir Foundation Building, Singapore, 117549, Singapore.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Cheng Teng Ng
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Han Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #11-01, Tahir Foundation Building, Singapore, 117549, Singapore.
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
37
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
38
|
Gottier P, Serricchio M, Vitale R, Corcelli A, Bütikofer P. Cross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases. MICROBIAL CELL 2017; 4:376-383. [PMID: 29167800 PMCID: PMC5695855 DOI: 10.15698/mic2017.11.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. For the protozoan parasite Trypanosoma brucei cardiolipin synthesis is essential for survival, indicating that the enzymes involved in cardiolipin production represent potential drug targets. T. brucei cardiolipin synthase (TbCLS) is unique as it belongs to the family of phospholipases D (PLD), harboring a prokaryotic-type cardiolipin synthase (CLS) active site domain. In contrast, most other eukaryotic CLS, including the yeast ortholog ScCrd1, are members of the CDP-alcohol phosphatidyltransferase family. To study if these mechanistically distinct CLS enzymes are able to catalyze cardiolipin production in a cell that normally expresses a different type of CLS, we expressed TbCLS and ScCrd1 in CLS-deficient yeast and trypanosome strains, respectively. Our results show that TbCLS complemented cardiolipin production in CRD1 knockout yeast and partly restored wild-type colony forming capability under stress conditions. Remarkably, CL remodeling appeared to be impaired in the transgenic construct, suggesting that CL production and remodeling are tightly coupled processes that may require a clustering of the involved proteins into specific CL-synthesizing domains. In contrast, no complementation was observed by heterologous expression of ScCrd1 in conditional TbCLS knockout trypanosomes, despite proper mitochondrial targeting of the protein.
Collapse
Affiliation(s)
- Petra Gottier
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Rita Vitale
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Angela Corcelli
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Peter Bütikofer
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Meat and Seafood Consumption in Relation to Plasma Metabolic Profiles in a Chinese Population: A Combined Untargeted and Targeted Metabolomics Study. Nutrients 2017; 9:nu9070683. [PMID: 28665358 PMCID: PMC5537798 DOI: 10.3390/nu9070683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
We examined the relationship between different patterns of meat and seafood consumption and plasma metabolic profiles in an Asian population. We selected 270 ethnic Chinese men and women from the Singapore Prospective Study Program based on their dietary habits assessed with a validated food frequency questionnaire. Participants were divided into four subgroups: high meat and high seafood (n = 60), high meat and low seafood (n = 64), low meat and high seafood (n = 60), and low meat and low seafood (n = 86) consumers. Plasma metabolites were measured using both targeted and untargeted mass spectroscopy-based analyses. A total of 42 metabolites differed significantly by dietary group. Higher concentrations of essential amino acids, polyunsaturated fatty acids, and d-glucose were found in high meat and/or seafood consumers as compared with the group with a low consumption of these animal foods. Red meat, poultry, fish, shellfish, soy products, and dairy were each correlated with at least one differential metabolite (r = −0.308 to 0.448). Some observations, such as the correlation between fish and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), confirmed previous studies. Other observations, such as the correlation between shellfish and phosphatidylethanolamine (p36:4), were novel. We also observed significant correlations between plasma metabolites and clinical characteristics, such as CMPF with fasting blood glucose (r = 0.401). These findings demonstrate a significant influence of meat and seafood consumption on metabolic profiles in the Asian population.
Collapse
|
40
|
Chagovets VV, Wang Z, Kononikhin AS, Starodubtseva NL, Borisova A, Salimova D, Popov IA, Kozachenko AV, Chingin K, Chen H, Frankevich VE, Adamyan LV, Sukhikh GT. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution mass spectrometry. Sci Rep 2017; 7:2546. [PMID: 28566741 PMCID: PMC5451410 DOI: 10.1038/s41598-017-02708-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Obtaining fast screening information on molecular composition of a tissue sample is of great importance for a disease biomarkers search and for online surgery control. In this study, high resolution mass spectrometry analysis of eutopic and ectopic endometrium tissues (90 samples) is done using direct tissue spray mass spectrometry in both positive and negative ion modes. The most abundant peaks in the both ion modes are those corresponding to lipids. Species of three lipid classes are observed, phosphatidylcholines (PC), sphingomyelins (SM) and phosphoethanolamines (PE). Direct tissue analysis gives mainly information on PC and SM lipids (29 species) in positive ion mode and PC, SM and PE lipids (50 species) in negative ion mode which gives complementary data for endometriosis foci differentiation. The biggest differences were found for phospholipids with polyunsaturated acyls and alkils. Although, tissue spray shows itself as appropriate tool for tissue investigation, caution should be paid to the interpretation of mass spectra because of their higher complexity with more possible adducts formation and multiple interferences must be taken into account. The present work extends the application of direct tissue analysis for the rapid differentiation between endometriotic tissues of different foci.
Collapse
Affiliation(s)
- Vitaliy V Chagovets
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Zhihao Wang
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Alexey S Kononikhin
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Natalia L Starodubtseva
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Anna Borisova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Dinara Salimova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Igor A Popov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Andrey V Kozachenko
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China.
| | - Vladimir E Frankevich
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia.
| | - Leila V Adamyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| |
Collapse
|
41
|
Gottier P, Gonzalez-Salgado A, Menon AK, Liu YC, Acosta-Serrano A, Bütikofer P. RFT1 Protein Affects Glycosylphosphatidylinositol (GPI) Anchor Glycosylation. J Biol Chem 2016; 292:1103-1111. [PMID: 27927990 DOI: 10.1074/jbc.m116.758367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/17/2016] [Indexed: 12/16/2022] Open
Abstract
The membrane protein RFT1 is essential for normal protein N-glycosylation, but its precise function is not known. RFT1 was originally proposed to translocate the glycolipid Man5GlcNAc2-PP-dolichol (needed to synthesize N-glycan precursors) across the endoplasmic reticulum membrane, but subsequent studies showed that it does not play a direct role in transport. In contrast to the situation in yeast, RFT1 is not essential for growth of the parasitic protozoan Trypanosoma brucei, enabling the study of its function in a null background. We now report that lack of T. brucei RFT1 (TbRFT1) not only affects protein N-glycosylation but also glycosylphosphatidylinositol (GPI) anchor side-chain modification. Analysis by immunoblotting, metabolic labeling, and mass spectrometry demonstrated that the major GPI-anchored proteins of T. brucei procyclic forms have truncated GPI anchor side chains in TbRFT1 null parasites when compared with wild-type cells, a defect that is corrected by expressing a tagged copy of TbRFT1 in the null background. In vivo and in vitro labeling experiments using radiolabeled GPI precursors showed that GPI underglycosylation was not the result of decreased formation of the GPI precursor lipid or defective galactosylation of GPI intermediates in the endoplasmic reticulum, but rather due to modifications that are expected to occur in the Golgi apparatus. Unexpectedly, immunofluorescence microscopy localized TbRFT1 to both the endoplasmic reticulum and the Golgi, consistent with the proposal that TbRFT1 plays a direct or indirect role in GPI anchor glycosylation in the Golgi apparatus. Our results implicate RFT1 in a wider range of glycosylation processes than previously appreciated.
Collapse
Affiliation(s)
- Petra Gottier
- From the Institute of Biochemistry and Molecular Medicine and.,Graduate School of Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Anant K Menon
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, and
| | | | - Alvaro Acosta-Serrano
- the Departments of Parasitology and.,Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Peter Bütikofer
- From the Institute of Biochemistry and Molecular Medicine and
| |
Collapse
|
42
|
Pawlowic M, Hsu FF, Moitra S, Biyani N, Zhang K. Plasmenylethanolamine synthesis in Leishmania major. Mol Microbiol 2016; 101:238-49. [PMID: 27062077 PMCID: PMC4935589 DOI: 10.1111/mmi.13387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Ethanolamine glycerophospholipids are ubiquitous cell membrane components. Trypanosomatid parasites of the genus Leishmania synthesize the majority of their ethanolamine glycerophospholipids as 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine or plasmenylethanolamine (PME) through the Kennedy pathway. PME is a subtype of ether phospholipids also known as ethanolamine plasmalogen whose functions are not well characterized. In this study, we investigated the role of PME synthesis in Leishmania major through the characterization of an ethanolamine phosphotransferase (EPT) mutant. EPT-null parasites are largely devoid of PME and fully viable in regular medium but fail to proliferate in the absence of fetal bovine serum. They exhibit significant abnormalities in the synthesis and localization of GPI-anchored surface molecules. EPT-null mutants also show attenuated virulence in BALB/c mice. Furthermore, in addition to PME synthesis, ethanolamine also contributes to the production of phosphatidylcholine, the most abundant class of lipids in Leishmania. Together, these findings suggest that ethanolamine production is likely required for Leishmania promastigotes to generate bulk phospholipids, to handle stress, and to control the expression of membrane bound virulence factors.
Collapse
Affiliation(s)
- Mattie Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Fong-fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO 63110, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Neha Biyani
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
43
|
Chauhan N, Farine L, Pandey K, Menon AK, Bütikofer P. Lipid topogenesis--35years on. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:757-766. [PMID: 26946259 DOI: 10.1016/j.bbalip.2016.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Glycerophospholipids are the principal fabric of cellular membranes. The pathways by which these lipids are synthesized were elucidated mainly through the work of Kennedy and colleagues in the late 1950s and early 1960s. Subsequently, attention turned to cell biological aspects of lipids: Where in the cell are lipids synthesized? How are lipids integrated into membranes to form a bilayer? How are they sorted and transported from their site of synthesis to other cellular destinations? These topics, collectively termed 'lipid topogenesis', were the subject of a review article in 1981 by Bell, Ballas and Coleman. We now assess what has been learned about early events of lipid topogenesis, i.e. "lipid synthesis, the integration of lipids into membranes, and lipid translocation across membranes", in the 35 years since the publication of this important review. We highlight the recent elucidation of the X-ray structures of key membrane enzymes of glycerophospholipid synthesis, progress on identifying lipid scramblase proteins needed to equilibrate lipids across membranes, and new complexities in the subcellular location and membrane topology of phosphatidylinositol synthesis revealed through a comparison of two unicellular model eukaryotes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Biochemistry, Weill Cornell Medical College, New York 10065, USA
| | - Luce Farine
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, New York 10065, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York 10065, USA.
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|