1
|
Schmidt H, Zhang M, Chakarov D, Bansal V, Mourelatos H, Sánchez-Rivera FJ, Lowe SW, Ventura A, Leslie CS, Pritykin Y. Genome-wide CRISPR guide RNA design and specificity analysis with GuideScan2. Genome Biol 2025; 26:41. [PMID: 40011959 PMCID: PMC11863968 DOI: 10.1186/s13059-025-03488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
We present GuideScan2 for memory-efficient, parallelizable construction of high-specificity CRISPR guide RNA (gRNA) databases and user-friendly design and analysis of individual gRNAs and gRNA libraries for targeting coding and non-coding regions in custom genomes. GuideScan2 analysis identifies widespread confounding effects of low-specificity gRNAs in published CRISPR screens and enables construction of a gRNA library that reduces off-target effects in a gene essentiality screen. GuideScan2 also enables the design and experimental validation of allele-specific gRNAs in a hybrid mouse genome. GuideScan2 will facilitate CRISPR experiments across a wide range of applications.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dimitar Chakarov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vineet Bansal
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Haralambos Mourelatos
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Yuri Pritykin
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Zucker M, Perry MA, Gould SI, Elkrief A, Safonov A, Thummalapalli R, Mehine M, Chakravarty D, Brannon AR, Ladanyi M, Razavi P, Donoghue MTA, Murciano-Goroff YR, Grigoriadis K, McGranahan N, Jamal-Hanjani M, Swanton C, Chen Y, Shen R, Chandarlapaty S, Solit DB, Schultz N, Berger MF, Chang J, Schoenfeld AJ, Sánchez-Rivera FJ, Reznik E, Bandlamudi C. Pan-cancer analysis of biallelic inactivation in tumor suppressor genes identifies KEAP1 zygosity as a predictive biomarker in lung cancer. Cell 2025; 188:851-867.e17. [PMID: 39701102 PMCID: PMC11922039 DOI: 10.1016/j.cell.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/14/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
The canonical model of tumor suppressor gene (TSG)-mediated oncogenesis posits that loss of both alleles is necessary for inactivation. Here, through allele-specific analysis of sequencing data from 48,179 cancer patients, we define the prevalence, selective pressure for, and functional consequences of biallelic inactivation across TSGs. TSGs largely assort into distinct classes associated with either pan-cancer (Class 1) or lineage-specific (Class 2) patterns of selection for biallelic loss, although some TSGs are predominantly monoallelically inactivated (Class 3/4). We demonstrate that selection for biallelic inactivation can be utilized to identify driver genes in non-canonical contexts, including among variants of unknown significance (VUSs) of several TSGs such as KEAP1. Genomic, functional, and clinical data collectively indicate that KEAP1 VUSs phenocopy established KEAP1 oncogenic alleles and that zygosity, rather than variant classification, is predictive of therapeutic response. TSG zygosity is therefore a fundamental determinant of disease etiology and therapeutic sensitivity.
Collapse
Affiliation(s)
- Mark Zucker
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria A Perry
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rohit Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Yuan Chen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Michael F Berger
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Todorov LG, Oonuma K, Kusakabe TG, Levine MS, Lemaire LA. Neural crest lineage in the protovertebrate model Ciona. Nature 2024; 635:912-916. [PMID: 39443803 DOI: 10.1038/s41586-024-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.
Collapse
Affiliation(s)
- Lauren G Todorov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
4
|
Asquith NL, Becker IC, Scimone MT, Boccia T, Camacho V, Barrachina MN, Guo S, Freire D, Machlus K, Schulman S, Flaumenhaft R, Italiano JE. Targeting cargo to an unconventional secretory system within megakaryocytes allows the release of transgenic proteins from platelets. J Thromb Haemost 2024; 22:3235-3248. [PMID: 39122192 DOI: 10.1016/j.jtha.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Platelets are essential for hemostasis and thrombosis and play vital roles during metastatic cancer progression and infection. Hallmarks of platelet function are activation, cytoskeletal rearrangements, and the degranulation of their cellular contents upon stimulation. While α-granules and dense granules are the most studied platelet secretory granules, the dense tubular system (DTS) also functions as a secretory system for vascular thiol isomerases. However, how DTS cargo is packaged and transported from megakaryocytes (MKs) to platelets is poorly understood. OBJECTIVES To underpin the mechanisms responsible for DTS cargo transport and leverage those for therapeutic protein packaging into platelets. METHODS A retroviral expression system combined with immunofluorescence confocal microscopy was employed to track protein DTS cargo protein disulfide isomerase fused to enhanced green fluorescent protein (eGFP-PDI) during platelet production. Murine bone marrow transplantation models were used to determine the release of therapeutic proteins from platelets. RESULTS We demonstrated that the endoplasmic reticulum retrieval motif Lys-Asp-Glu-Leu (KDEL) located at the C-terminus of protein disulfide isomerase was essential for the regular transport of eGFP-PDI-containing granules. eGFP-PDIΔKDEL, in which the retrieval signal was deleted, was aberrantly packaged, and its expression was upregulated within clathrin-coated endosomes. Finally, we found that ectopic transgenic proteins, such as tissue factor pathway inhibitor and interleukin 2, can be packaged into MKs and proplatelets by adding a KDEL retrieval sequence. CONCLUSION Our data corroborate the DTS as a noncanonical secretory system in platelets and demonstrate that in vitro-generated MKs and platelets may be used as a delivery system for transgenic proteins during cellular therapy.
Collapse
Affiliation(s)
- Nathan L Asquith
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/NathanAsquith1
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Mark T Scimone
- Cellular Imaging Core, Neurobiology, Boston Children's Hospital, Boston, Massachusetts, USA; Life Sciences, Biotechnology, University of New Hampshire, Manchester, New Hampshire, USA
| | - Thais Boccia
- Harvard Medical School, Boston, Massachusetts, USA; Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Virginia Camacho
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - María N Barrachina
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Shihui Guo
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kellie Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Oikawa K, Ohno SI, Ono K, Hirao K, Murakami A, Harada Y, Kumagai K, Sudo K, Takanashi M, Ishikawa A, Mineo S, Fujita K, Umezu T, Watanabe N, Murakami Y, Ogawa S, Schultz KA, Kuroda M. Liver-specific DICER1 syndrome model mice develop cystic liver tumors with defective primary cilia. J Pathol 2024; 264:17-29. [PMID: 38922876 DOI: 10.1002/path.6320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
DICER1 syndrome is a tumor predisposition syndrome caused by familial genetic mutations in DICER1. Pathogenic variants of DICER1 have been discovered in many rare cancers, including cystic liver tumors. However, the molecular mechanisms underlying liver lesions induced by these variants remain unclear. In the present study, we sought to gain a better understanding of the pathogenesis of these variants by generating a mouse model of liver-specific DICER1 syndrome. The mouse model developed bile duct hyperplasia with fibrosis, similar to congenital hepatic fibrosis, as well as cystic liver tumors resembling those in Caroli's syndrome, intrahepatic cholangiocarcinoma, and hepatocellular carcinoma. Interestingly, the mouse model of DICER1 syndrome showed abnormal formation of primary cilia in the bile duct epithelium, which is a known cause of bile duct hyperplasia and cyst formation. These results indicated that DICER1 mutations contribute to cystic liver tumors by inducing defective primary cilia. The mouse model generated in this study will be useful for elucidating the potential mechanisms of tumorigenesis induced by DICER1 variants and for obtaining a comprehensive understanding of DICER1 syndrome. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kana Ono
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kaito Hirao
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Ayano Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuyoshi Kumagai
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | | | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shouichirou Mineo
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Watanabe
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shinichiro Ogawa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol 2024:10.1038/s41587-024-02172-9. [PMID: 38472508 DOI: 10.1038/s41587-024-02172-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wuest
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Grace A Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Varun K Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, Cabana CM, Rideout WM, Jaramillo GC, Khirallah JM, Holland K, Randolph PB, Freed-Pastor WA, Davis JR, Kulstad Z, Westcott PMK, Lin L, Anzalone AV, Horton BL, Pattada NB, Shanahan SL, Ye Z, Spranger S, Xu Q, Sánchez-Rivera FJ, Liu DR, Jacks T. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol 2024; 42:424-436. [PMID: 37169967 PMCID: PMC11120832 DOI: 10.1038/s41587-023-01783-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
Collapse
Affiliation(s)
- Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I Gould
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christina M Cabana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel Cervantes Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katie Holland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Angelo State University, San Angelo, TX, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary Kulstad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brendan L Horton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefani Spranger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Akama-Garren EH, Yin X, Prestwood TR, Ma M, Utz PJ, Carroll MC. T cell help shapes B cell tolerance. Sci Immunol 2024; 9:eadj7029. [PMID: 38363829 PMCID: PMC11095409 DOI: 10.1126/sciimmunol.adj7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
T cell help is a crucial component of the normal humoral immune response, yet whether it promotes or restrains autoreactive B cell responses remains unclear. Here, we observe that autoreactive germinal centers require T cell help for their formation and persistence. Using retrogenic chimeras transduced with candidate TCRs, we demonstrate that a follicular T cell repertoire restricted to a single autoreactive TCR, but not a foreign antigen-specific TCR, is sufficient to initiate autoreactive germinal centers. Follicular T cell specificity influences the breadth of epitope spreading by regulating wild-type B cell entry into autoreactive germinal centers. These results demonstrate that TCR-dependent T cell help can promote loss of B cell tolerance and that epitope spreading is determined by TCR specificity.
Collapse
Affiliation(s)
- Elliot H. Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Xihui Yin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyler R. Prestwood
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J. Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Rogers LC, Kremer JC, Brashears CB, Lin Z, Hu Z, Bastos AC, Baker A, Fettig N, Zhou D, Shoghi KI, Dehner CA, Chrisinger JS, Bomalaski JS, Garcia BA, Oyama T, White EP, Van Tine BA. Discovery and Targeting of a Noncanonical Mechanism of Sarcoma Resistance to ADI-PEG20 Mediated by the Microenvironment. Clin Cancer Res 2023; 29:3189-3202. [PMID: 37339179 PMCID: PMC10425734 DOI: 10.1158/1078-0432.ccr-22-2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Leonard C. Rogers
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeff C. Kremer
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlyn B. Brashears
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Zhixian Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Alliny C.S. Bastos
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Adriana Baker
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Nicole Fettig
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Dong Zhou
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Carina A. Dehner
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | | | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Toshinao Oyama
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Eileen P. White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
10
|
Bortolucci J, Guazzaroni ME, Schoch T, Dürre P, Reginatto V. Enhancing 1,3-Propanediol Productivity in the Non-Model Chassis Clostridium beijerinckii through Genetic Manipulation. Microorganisms 2023; 11:1855. [PMID: 37513028 PMCID: PMC10383064 DOI: 10.3390/microorganisms11071855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Biotechnological processes at biorefineries are considered one of the most attractive alternatives for valorizing biomasses by converting them into bioproducts, biofuels, and bioenergy. For example, biodiesel can be obtained from oils and grease but generates glycerol as a byproduct. Glycerol recycling has been studied in several bioprocesses, with one of them being its conversion to 1,3-propanediol (1,3-PDO) by Clostridium. Clostridium beijerinckii is particularly interesting because it can produce a range of industrially relevant chemicals, including solvents and organic acids, and it is non-pathogenic. However, while Clostridium species have many potential advantages as chassis for synthetic biology applications, there are significant limitations when considering their use, such as their limited genetic tools, slow growth rate, and oxygen sensitivity. In this work, we carried out the overexpression of the genes involved in the synthesis of 1,3-PDO in C. beijerinckii Br21, which allowed us to increase the 1,3-PDO productivity in this strain. Thus, this study contributed to a better understanding of the metabolic pathways of glycerol conversion to 1,3-PDO by a C. beijerinckii isolate. Also, it made it possible to establish a transformation method of a modular vector in this strain, therefore expanding the limited genetic tools available for this bacterium, which is highly relevant in biotechnological applications.
Collapse
Affiliation(s)
- Jonatã Bortolucci
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - María-Eugenia Guazzaroni
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - Teresa Schoch
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Valeria Reginatto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| |
Collapse
|
11
|
Cazzoli R, Romeo F, Pallavicini I, Peri S, Romanenghi M, Pérez-Valencia JA, Hagag E, Ferrucci F, Elgendy M, Vittorio O, Pece S, Foiani M, Westermarck J, Minucci S. Endogenous PP2A inhibitor CIP2A degradation by chaperone-mediated autophagy contributes to the antitumor effect of mitochondrial complex I inhibition. Cell Rep 2023; 42:112616. [PMID: 37289585 DOI: 10.1016/j.celrep.2023.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Combined inhibition of oxidative phosphorylation (OXPHOS) and glycolysis has been shown to activate a PP2A-dependent signaling pathway, leading to tumor cell death. Here, we analyze highly selective mitochondrial complex I or III inhibitors in vitro and in vivo to elucidate the molecular mechanisms leading to cell death following OXPHOS inhibition. We show that IACS-010759 treatment (complex I inhibitor) induces a reactive oxygen species (ROS)-dependent dissociation of CIP2A from PP2A, leading to its destabilization and degradation through chaperone-mediated autophagy. Mitochondrial complex III inhibition has analogous effects. We establish that activation of the PP2A holoenzyme containing B56δ regulatory subunit selectively mediates tumor cell death, while the arrest in proliferation that is observed upon IACS-010759 treatment does not depend on the PP2A-B56δ complex. These studies provide a molecular characterization of the events subsequent to the alteration of critical bioenergetic pathways and help to refine clinical studies aimed to exploit metabolic vulnerabilities of tumor cells.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Francesco Romeo
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Sebastiano Peri
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Juan Alberto Pérez-Valencia
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filippo Ferrucci
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mohamed Elgendy
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW, Australia; School of Biomedical Sciences, UNSW Sydney, Randwick, NSW, Australia
| | - Salvatore Pece
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saverio Minucci
- Department of Experimental Oncology, IEO IRCCS, Istituto Europeo di Oncologia, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Schwörer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C, Thompson CB. Hypoxia Potentiates the Inflammatory Fibroblast Phenotype Promoted by Pancreatic Cancer Cell-Derived Cytokines. Cancer Res 2023; 83:1596-1610. [PMID: 36912618 PMCID: PMC10658995 DOI: 10.1158/0008-5472.can-22-2316] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a major cell type in the stroma of solid tumors and can exert both tumor-promoting and tumor-restraining functions. CAF heterogeneity is frequently observed in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by a dense and hypoxic stroma that features myofibroblastic CAFs (myCAF) and inflammatory CAFs (iCAF) that are thought to have opposing roles in tumor progression. While CAF heterogeneity can be driven in part by tumor cell-produced cytokines, other determinants shaping CAF identity and function are largely unknown. In vivo, we found that iCAFs displayed a hypoxic gene expression and biochemical profile and were enriched in hypoxic regions of PDAC tumors, while myCAFs were excluded from these regions. Hypoxia led fibroblasts to acquire an inflammatory gene expression signature and synergized with cancer cell-derived cytokines to promote an iCAF phenotype in a HIF1α-dependent fashion. Furthermore, HIF1α stabilization was sufficient to induce an iCAF phenotype in stromal cells introduced into PDAC organoid cocultures and to promote PDAC tumor growth. These findings indicate hypoxia-induced HIF1α as a regulator of CAF heterogeneity and promoter of tumor progression in PDAC. SIGNIFICANCE Hypoxia in the tumor microenvironment of pancreatic cancer potentiates the cytokine-induced inflammatory CAF phenotype and promotes tumor growth. See related commentary by Fuentes and Taniguchi, p. 1560.
Collapse
Affiliation(s)
- Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Francesco V Cimino
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manon Ros
- Center for Genomics and Systems Biology, New York University, New York, New York
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Ng
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
13
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
14
|
Soto-Feliciano YM, Sánchez-Rivera FJ, Perner F, Barrows DW, Kastenhuber ER, Ho YJ, Carroll T, Xiong Y, Anand D, Soshnev AA, Gates L, Beytagh MC, Cheon D, Gu S, Liu XS, Krivtsov AV, Meneses M, de Stanchina E, Stone RM, Armstrong SA, Lowe SW, Allis CD. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer Discov 2023; 13:146-169. [PMID: 36264143 PMCID: PMC9827117 DOI: 10.1158/2159-8290.cd-22-0416] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
Abstract
Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Douglas W. Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Yijun Xiong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Disha Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Alexey A. Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Leah Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Mary Clare Beytagh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - David Cheon
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Shengqing Gu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. Stone
- Leukemia Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - Scott W. Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| |
Collapse
|
15
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
16
|
A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat Cell Biol 2022; 24:1394-1406. [PMID: 36097072 PMCID: PMC9481461 DOI: 10.1038/s41556-022-00976-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Amino acid availability controls mTORC1 activity via a heterodimeric Rag GTPase complex that functions as a scaffold at the lysosomal surface, bringing together mTORC1 with its activators and effectors. Mammalian cells express four Rag proteins (RagA–D) that form dimers composed of RagA/B bound to RagC/D. Traditionally, the Rag paralogue pairs (RagA/B and RagC/D) are referred to as functionally redundant, with the four dimer combinations used interchangeably in most studies. Here, by using genetically modified cell lines that express single Rag heterodimers, we uncover a Rag dimer code that determines how amino acids regulate mTORC1. First, RagC/D differentially define the substrate specificity downstream of mTORC1, with RagD promoting phosphorylation of its lysosomal substrates TFEB/TFE3, while both Rags are involved in the phosphorylation of non-lysosomal substrates such as S6K. Mechanistically, RagD recruits mTORC1 more potently to lysosomes through increased affinity to the anchoring LAMTOR complex. Furthermore, RagA/B specify the signalling response to amino acid removal, with RagB-expressing cells maintaining lysosomal and active mTORC1 even upon starvation. Overall, our findings reveal key qualitative differences between Rag paralogues in the regulation of mTORC1, and underscore Rag gene duplication and diversification as a potentially impactful event in mammalian evolution. Gollwitzer, Grützmacher et al. and Figlia et al. establish that the various Rag GTPase genes and isoforms differentially regulate mTORC1 activity and distinctly modulate the responsiveness of mammalian cells to amino acid availability.
Collapse
|
17
|
De Saeger J, Vermeersch M, Gaillochet C, Jacobs TB. Simple and Efficient Modification of Golden Gate Design Standards and Parts Using Oligo Stitching. ACS Synth Biol 2022; 11:2214-2220. [PMID: 35675166 DOI: 10.1021/acssynbio.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly of DNA parts is a critical aspect of contemporary biological research. Gibson assembly and Golden Gate cloning are two popular options. Here, we explore the use of single stranded DNA oligos with Gibson assembly to augment Golden Gate cloning workflows in a process called "oligo stitching". Our results show that oligo stitching can efficiently convert Golden Gate parts between different assembly standards and directly assemble incompatible Golden Gate parts without PCR amplification. Building on previous reports, we show that it can also be used to assemble de novo sequences. As a final application, we show that restriction enzyme recognition sites can be removed from plasmids and utilize the same concept to perform saturation mutagenesis. Given oligo stitching's versatility and high efficiency, we expect that it will be a useful addition to the molecular biologist's toolbox.
Collapse
Affiliation(s)
- Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
18
|
Planès R, Pinilla M, Santoni K, Hessel A, Passemar C, Lay K, Paillette P, Valadão ALC, Robinson KS, Bastard P, Lam N, Fadrique R, Rossi I, Pericat D, Bagayoko S, Leon-Icaza SA, Rombouts Y, Perouzel E, Tiraby M, Zhang Q, Cicuta P, Jouanguy E, Neyrolles O, Bryant CE, Floto AR, Goujon C, Lei FZ, Martin-Blondel G, Silva S, Casanova JL, Cougoule C, Reversade B, Marcoux J, Ravet E, Meunier E. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol Cell 2022; 82:2385-2400.e9. [PMID: 35594856 PMCID: PMC9108100 DOI: 10.1016/j.molcel.2022.04.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France; InvivoGen, Toulouse, France; IRIM, University of Montpellier, CNRS, Montpellier, France.
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France; InvivoGen, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Kenneth Lay
- Institute of Medical Biology, Agency of Science, Technology and Research, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore; Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | | | | | - Kim Samirah Robinson
- A(∗)STAR Skin Research Laboratories, 11 Mandalay Road, 308232 Singapore, Singapore
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Nathaniel Lam
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Ricardo Fadrique
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ida Rossi
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Pericat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | | | | | - Qian Zhang
- University of Paris, Imagine Institute, Paris, France
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Olivier Neyrolles
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Clare E Bryant
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Andres R Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | | | - Franklin Zhong Lei
- A(∗)STAR Skin Research Laboratories, 11 Mandalay Road, 308232 Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road, 308232 Singapore, Singapore
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, CHU de Toulouse, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Stein Silva
- Critical Care Unit, University Hospital of Purpan, Toulouse, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Bruno Reversade
- Institute of Medical Biology, Agency of Science, Technology and Research, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore; Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, 117597 Singapore, Singapore; The Medical Genetics Department, Koç University School of Medicine, 34010 Istanbul, Turkey
| | - Julien Marcoux
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | | | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
19
|
James JS, Jones S, Martella A, Luo Y, Fisher DI, Cai Y. Automation and Expansion of EMMA Assembly for Fast-Tracking Mammalian System Engineering. ACS Synth Biol 2022; 11:587-595. [PMID: 35061373 DOI: 10.1021/acssynbio.1c00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With applications from functional genomics to the production of therapeutic biologics, libraries of mammalian expression vectors have become a cornerstone of modern biological investigation and engineering. Multiple modular vector platforms facilitate the rapid design and assembly of vectors. However, such systems approach a technical bottleneck when a library of bespoke vectors is required. Utilizing the flexibility and robustness of the Extensible Mammalian Modular Assembly (EMMA) toolkit, we present an automated workflow for the library-scale design, assembly, and verification of mammalian expression vectors. Vector design is simplified using our EMMA computer-aided design tool (EMMA-CAD), while the precision and speed of acoustic droplet ejection technology are applied in vector assembly. Our pipeline facilitates significant reductions in both reagent usage and researcher hands-on time compared with manual assembly, as shown by system Q-metrics. To demonstrate automated EMMA performance, we compiled a library of 48 distinct plasmid vectors encoding either CRISPR interference or activation modalities. Characterization of the workflow parameters shows that high assembly efficiency is maintained across vectors of various sizes and design complexities. Our system also performs strongly compared with manual assembly efficiency benchmarks. Alongside our automated pipeline, we present a straightforward strategy for integrating gRNA and Cas modules into the EMMA platform, enabling the design and manufacture of valuable genome editing resources.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, U.K
| | - Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Singh H, Seruggia D, Madha S, Saxena M, Nagaraja AK, Wu Z, Zhou J, Huebner AJ, Maglieri A, Wezenbeek J, Hochedlinger K, Orkin SH, Bass AJ, Hornick JL, Shivdasani RA. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev 2021; 36:38-52. [PMID: 34969824 PMCID: PMC8763054 DOI: 10.1101/gad.348983.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Here, Singh et al. show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy. Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach–intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Davide Seruggia
- Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ankur K Nagaraja
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Aaron J Huebner
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Adrianna Maglieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juliette Wezenbeek
- Hubretch Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, Netherlands
| | - Konrad Hochedlinger
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Stuart H Orkin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jason L Hornick
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184:6101-6118.e13. [PMID: 34852236 PMCID: PMC8671355 DOI: 10.1016/j.cell.2021.11.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan S Askari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, Pillai RG, Rabinowitz JD, Papagiannakopoulos T. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. SCIENCE ADVANCES 2021; 7:eabk1023. [PMID: 34788087 PMCID: PMC8598006 DOI: 10.1126/sciadv.abk1023] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 05/20/2023]
Abstract
The KEAP1/NRF2 pathway promotes metabolic rewiring to support redox homeostasis. Activation of NRF2 occurs in many cancers, often due to KEAP1 mutations, and is associated with more aggressive disease and treatment resistance. To identify metabolic dependencies in cancers with NRF2 activation, we performed a metabolism-focused CRISPR screen. Glucose-6-phosphate dehydrogenase (G6PD), which was recently shown to be dispensable in Ras-driven tumors, was a top dependency. G6PD catalyzes the committed step of the oxidative pentose phosphate pathway that produces NADPH and nucleotide precursors, but neither antioxidants nor nucleosides rescued. Instead, G6PD loss triggered tricarboxylic acid (TCA) intermediate depletion because of up-regulation of the alternative NADPH-producing enzymes malic enzyme and isocitrate dehydrogenase. In vivo, G6PD impairment markedly suppressed KEAP1 mutant tumor growth, and this suppression was further augmented by TCA depletion by glutaminase inhibition. Thus, G6PD inhibition–induced TCA depletion is a therapeutic vulnerability of NRF2-activated cancer.
Collapse
Affiliation(s)
- Hongyu Ding
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Zihong Chen
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, 91 Prospect Avenue, Princeton, NJ 08544, USA
| | - Katherine Wu
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Shih Ming Huang
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Warren L. Wu
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Sarah E. LeBoeuf
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ray G. Pillai
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, 423 East 23rd Avenue, New York, NY 10016, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, 91 Prospect Avenue, Princeton, NJ 08544, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Freed-Pastor WA, Lambert LJ, Ely ZA, Pattada NB, Bhutkar A, Eng G, Mercer KL, Garcia AP, Lin L, Rideout WM, Hwang WL, Schenkel JM, Jaeger AM, Bronson RT, Westcott PMK, Hether TD, Divakar P, Reeves JW, Deshpande V, Delorey T, Phillips D, Yilmaz OH, Regev A, Jacks T. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 2021; 39:1342-1360.e14. [PMID: 34358448 PMCID: PMC8511341 DOI: 10.1016/j.ccell.2021.07.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
The CD155/TIGIT axis can be co-opted during immune evasion in chronic viral infections and cancer. Pancreatic adenocarcinoma (PDAC) is a highly lethal malignancy, and immune-based strategies to combat this disease have been largely unsuccessful to date. We corroborate prior reports that a substantial portion of PDAC harbors predicted high-affinity MHC class I-restricted neoepitopes and extend these findings to advanced/metastatic disease. Using multiple preclinical models of neoantigen-expressing PDAC, we demonstrate that intratumoral neoantigen-specific CD8+ T cells adopt multiple states of dysfunction, resembling those in tumor-infiltrating lymphocytes of PDAC patients. Mechanistically, genetic and/or pharmacologic modulation of the CD155/TIGIT axis was sufficient to promote immune evasion in autochthonous neoantigen-expressing PDAC. Finally, we demonstrate that the CD155/TIGIT axis is critical in maintaining immune evasion in PDAC and uncover a combination immunotherapy (TIGIT/PD-1 co-blockade plus CD40 agonism) that elicits profound anti-tumor responses in preclinical models, now poised for clinical evaluation.
Collapse
Affiliation(s)
- William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laurens J Lambert
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana P Garcia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William L Hwang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roderick T Bronson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Devan Phillips
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Omer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aviv Regev
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Mol Diagn Ther 2021; 25:577-592. [PMID: 34327614 DOI: 10.1007/s40291-021-00550-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 02/01/2023]
Abstract
Natural killer (NK) cell-mediated cancer immunotherapy has grown significantly over the past two decades. More recently, multi-specific engagers have been developed as cancer therapeutics to effectively arm endogenous NK cells to more potently induce specific cytolytic responses against tumor targets. This review explores the bi- and tri-specific NK/tumor engagers that are emerging as a new generation of immunotherapeutics. These molecules vary in configuration, but they typically have small molecular weights and domains that engage specific tumor antigens and NK cell-activating receptors such as CD16, NKp30, NKp46, and NKG2D. They have demonstrated compelling potential in boosting NK cell cytotoxicity against specific tumor targets. This highly adaptable off-the-shelf platform, which in some formats also integrates cytokines, is poised to revolutionize targeted NK cell immunotherapy, either as a monotherapy or in combination with other effective anti-cancer therapies.
Collapse
|
25
|
Janská L, Anandi L, Kirchberger NC, Marinkovic ZS, Schachtner LT, Guzelsoy G, Carmona-Fontaine C. The MEMIC: An ex vivo system to model the complexity of the tumor microenvironment. Dis Model Mech 2021; 14:271783. [PMID: 34407185 PMCID: PMC8382743 DOI: 10.1242/dmm.048942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
There is an urgent need for accurate, scalable and cost-efficient models of the tumor microenvironment. Here, we detail how to fabricate and use the metabolic microenvironment chamber (MEMIC) – a 3D-printed ex vivo model of intratumoral heterogeneity. A major driver of the cellular and molecular diversity in tumors is accessibility to the blood stream. Whereas perivascular tumor cells have direct access to oxygen and nutrients, cells further from the vasculature must survive under progressively more ischemic environments. The MEMIC simulates this differential access to nutrients, allow co-culturing any number of cell types, and it is optimized for live imaging and other microscopy-based analyses. Owing to a modular design and full experimental control, the MEMIC provides insights into the tumor microenvironment that would be difficult to obtain via other methods. As proof of principle, we show that cells sense gradual changes in metabolite concentration leading to predictable molecular and cellular spatial patterns. We propose the MEMIC as a complement to standard in vitro and in vivo experiments, diversifying the tools available to accurately model, perturb and monitor the tumor microenvironment. Editor's choice: We present how to fabricate the MEMIC, an experimental model of the tumor microenvironment, describing proof-of-principle experiments and providing image analysis tools that are helpful when using this system.
Collapse
Affiliation(s)
- Libuše Janská
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Libi Anandi
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Nell C Kirchberger
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Zoran S Marinkovic
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Logan T Schachtner
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Gizem Guzelsoy
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
26
|
Vervoort SJ, Welsh SA, Devlin JR, Barbieri E, Knight DA, Offley S, Bjelosevic S, Costacurta M, Todorovski I, Kearney CJ, Sandow JJ, Fan Z, Blyth B, McLeod V, Vissers JHA, Pavic K, Martin BP, Gregory G, Demosthenous E, Zethoven M, Kong IY, Hawkins ED, Hogg SJ, Kelly MJ, Newbold A, Simpson KJ, Kauko O, Harvey KF, Ohlmeyer M, Westermarck J, Gray N, Gardini A, Johnstone RW. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell 2021; 184:3143-3162.e32. [PMID: 34004147 PMCID: PMC8567840 DOI: 10.1016/j.cell.2021.04.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| | - Sarah A Welsh
- The Wistar Institute, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer R Devlin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Deborah A Knight
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sarah Offley
- The Wistar Institute, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Matteo Costacurta
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Conor J Kearney
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Victoria McLeod
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Ben P Martin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Gareth Gregory
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, VIC, Australia
| | | | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Simon J Hogg
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Madison J Kelly
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Andrea Newbold
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton 3168, VIC, Australia
| | - Michael Ohlmeyer
- Mount Sinai School of Medicine, New York, NY 10029, USA; Atux Iskay LLC, Plainsboro, NJ 08536, USA
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | | | | | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
27
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
28
|
Hitchman TD, Bayshtok G, Ceraudo E, Moore AR, Lee C, Jia R, Wang N, Pachai MR, Shoushtari AN, Francis JH, Guan Y, Chen J, Chang MT, Taylor BS, Sakmar TP, Huber T, Chi P, Chen Y. Combined Inhibition of Gα q and MEK Enhances Therapeutic Efficacy in Uveal Melanoma. Clin Cancer Res 2021; 27:1476-1490. [PMID: 33229459 PMCID: PMC8086191 DOI: 10.1158/1078-0432.ccr-20-2860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE All uveal melanoma and a fraction of other melanoma subtypes are driven by activation of the G-protein alpha-q (Gαq) pathway. Targeting these melanomas has proven difficult despite advances in the molecular understanding of key driver signaling pathways in the disease pathogenesis. Inhibitors of Gαq have shown promising preclinical results, but their therapeutic activity in distinct Gαq mutational contexts and in vivo have remained elusive. EXPERIMENTAL DESIGN We used an isogenic melanocytic cellular system to systematically examine hotspot mutations in GNAQ (e.g., G48V, R183Q, Q209L) and CYSLTR2 (L129Q) found in human uveal melanoma. This cellular system and human uveal melanoma cell lines were used in vitro and in in vivo xenograft studies to assess the efficacy of Gαq inhibition as a single agent and in combination with MEK inhibition. RESULTS We demonstrate that the Gαq inhibitor YM-254890 inhibited downstream signaling and in vitro growth in all mutants. In vivo, YM-254890 slowed tumor growth but did not cause regression in human uveal melanoma xenografts. Through comprehensive transcriptome analysis, we observed that YM-254890 caused inhibition of the MAPK signaling with evidence of rebound by 24 hours and combination treatment of YM-254890 and a MEK inhibitor led to sustained MAPK inhibition. We further demonstrated that the combination caused synergistic growth inhibition in vitro and tumor shrinkage in vivo. CONCLUSIONS These data suggest that the combination of Gαq and MEK inhibition provides a promising therapeutic strategy and improved therapeutic window of broadly targeting Gαq in uveal melanoma.See related commentary by Neelature Sriramareddy and Smalley, p. 1217.
Collapse
Affiliation(s)
- Tyler D Hitchman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Amanda R Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ruobing Jia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, P.R. China
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander N Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York
| | - Jasmine H Francis
- Opthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juliet Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York
| |
Collapse
|
29
|
Di Blasi R, Zouein A, Ellis T, Ceroni F. Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends Biotechnol 2021; 39:1004-1018. [PMID: 33526300 DOI: 10.1016/j.tibtech.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Construction of DNA-encoded programs is central to synthetic biology and the chosen method often determines the time required to design and build constructs for testing. Here, we describe and summarise key features of the available toolkits for DNA construction for mammalian cells. We compare the different cloning strategies based on their complexity and the time needed to generate constructs of different sizes, and we reflect on why Golden Gate toolkits now dominate due to their modular design. We look forward to future advances, including accessory packs for cloning toolkits that can facilitate editing, orthogonality, advanced regulation, and integration into synthetic chromosome construction.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Annalise Zouein
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
30
|
Hsiao WY, Jung SM, Tang Y, Haley JA, Li R, Li H, Calejman CM, Sanchez-Gurmaches J, Hung CM, Luciano AK, DeMambro V, Wellen KE, Rosen CJ, Zhu LJ, Guertin DA. The Lipid Handling Capacity of Subcutaneous Fat Is Programmed by mTORC2 during Development. Cell Rep 2020; 33:108223. [PMID: 33027655 PMCID: PMC7607535 DOI: 10.1016/j.celrep.2020.108223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.
Collapse
Affiliation(s)
- Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuefeng Tang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John A. Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Division of Endocrinology, Developmental Biology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amelia K. Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Kathryn E. Wellen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA,Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A. Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Lead Contact,Correspondence:
| |
Collapse
|
31
|
Li A, Herbst RH, Canner D, Schenkel JM, Smith OC, Kim JY, Hillman M, Bhutkar A, Cuoco MS, Rappazzo CG, Rogers P, Dang C, Jerby-Arnon L, Rozenblatt-Rosen O, Cong L, Birnbaum M, Regev A, Jacks T. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep 2020; 29:2998-3008.e8. [PMID: 31801068 PMCID: PMC6990979 DOI: 10.1016/j.celrep.2019.10.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023] Open
Abstract
Regulatory T cells (Tregs) can impair anti-tumor immune responses and are associated with poor prognosis in multiple cancer types. Tregs in human tumors span diverse transcriptional states distinct from those of peripheral Tregs, but their contribution to tumor development remains unknown. Here, we use single-cell RNA sequencing (RNA-seq) to longitudinally profile dynamic shifts in the distribution of Tregs in a genetically engineered mouse model of lung adenocarcinoma. In this model, interferon-responsive Tregs are more prevalent early in tumor development, whereas a specialized effector phenotype characterized by enhanced expression of the interleukin-33 receptor ST2 is predominant in advanced disease. Treg-specific deletion of ST2 alters the evolution of effector Treg diversity, increases infiltration of CD8+ T cells into tumors, and decreases tumor burden. Our study shows that ST2 plays a critical role in Treg-mediated immunosuppression in cancer, highlighting potential paths for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Rebecca H Herbst
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - David Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jonathan Y Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Michelle Hillman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Michael S Cuoco
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - C Garrett Rappazzo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Patricia Rogers
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Celeste Dang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Livnat Jerby-Arnon
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Le Cong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael Birnbaum
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Aviv Regev
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Romero R, Sánchez-Rivera FJ, Westcott PMK, Mercer KL, Bhutkar A, Muir A, González Robles TJ, Lamboy Rodríguez S, Liao LZ, Ng SR, Li L, Colón CI, Naranjo S, Beytagh MC, Lewis CA, Hsu PP, Bronson RT, Vander Heiden MG, Jacks T. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. NATURE CANCER 2020; 1:589-602. [PMID: 34414377 PMCID: PMC8373048 DOI: 10.1038/s43018-020-0071-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Romero
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Francisco J Sánchez-Rivera
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kim L Mercer
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Z Liao
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Leanne Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Santiago Naranjo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Mary Clare Beytagh
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Caroline A Lewis
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Tufts University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
33
|
Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, Alagesan B, Lee EJ, Yao MA, Lucito MS, Spielman B, Da Silva B, Schoepfer C, Wright K, Creighton B, Afinowicz L, Yu KH, Grützmann R, Aust D, Gimotty PA, Pollard KS, Hruban RH, Goggins MG, Pilarsky C, Park Y, Pappin DJ, Hollingsworth MA, Tuveson DA. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 2020; 364:1156-1162. [PMID: 31221853 DOI: 10.1126/science.aaw3145] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and β1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.
Collapse
Affiliation(s)
- Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eun Jung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa A Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Spielman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brandon Da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christina Schoepfer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brianna Creighton
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lauren Afinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Joan and Sanford I. Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Aust
- Institute for Pathology, Universitätsklinikum Dresden, 01307 Dresden, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, Institute for Computational Health Sciences, and Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph H Hruban
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael G Goggins
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,Departments of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
34
|
Fonseca JP, Bonny AR, Town J, El-Samad H. Assembly of Genetic Circuits with the Mammalian ToolKit. Bio Protoc 2020; 10:e3547. [PMID: 33659521 DOI: 10.21769/bioprotoc.3547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/02/2022] Open
Abstract
The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. The Mammalian ToolKit (MTK) is a Golden Gate-based cloning toolkit for fast, reproducible and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be assembled into transcriptional units and further weaved into complex circuits. These circuits are easily repurposed and introduced in mammalian cells by different methods.
Collapse
Affiliation(s)
- João P Fonseca
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Alain R Bonny
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Jason Town
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA.,CZ Biohub, San Francisco, USA
| |
Collapse
|
35
|
Ng SR, Rideout WM, Akama-Garren EH, Bhutkar A, Mercer KL, Schenkel JM, Bronson RT, Jacks T. CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proc Natl Acad Sci U S A 2020; 117:513-521. [PMID: 31871154 PMCID: PMC6955235 DOI: 10.1073/pnas.1821893117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Collapse
Affiliation(s)
- Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elliot H Akama-Garren
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Roderick T Bronson
- Department of Pathology, Tufts University School of Veterinary Medicine, North Grafton, MA 01536
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
36
|
Fonseca JP, Bonny AR, Kumar GR, Ng AH, Town J, Wu QC, Aslankoohi E, Chen SY, Dods G, Harrigan P, Osimiri LC, Kistler AL, El-Samad H. A Toolkit for Rapid Modular Construction of Biological Circuits in Mammalian Cells. ACS Synth Biol 2019; 8:2593-2606. [PMID: 31686495 DOI: 10.1021/acssynbio.9b00322] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. Current methods for the assembly of mammalian DNA circuits are laborious, slow, and expensive. Here we present the Mammalian ToolKit (MTK), a Golden Gate-based cloning toolkit for fast, reproducible, and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be assembled into transcriptional units and further weaved into complex circuits. We showcase the capabilities of the MTK by using it to generate single-integration landing pads, create and deliver libraries of protein variants and sgRNAs, and iterate through dCas9-based prototype circuits. As a biological proof of concept, we demonstrate how the MTK can speed the generation of noninfectious viral circuits to enable rapid testing of pharmacological inhibitors of emerging viruses that pose a major threat to human health.
Collapse
Affiliation(s)
- João Pedro Fonseca
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Alain R. Bonny
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - G. Renuka Kumar
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Andrew H. Ng
- Cell Design Initiative, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jason Town
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qiu Chang Wu
- Harvard Systems Biology Graduate Program, Cambridge, Massachusetts 02138, United States
| | - Elham Aslankoohi
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Susan Y. Chen
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Galen Dods
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Patrick Harrigan
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Lindsey C. Osimiri
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
- The UC Berkeley−UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94132, United States
| | - Amy L. Kistler
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
37
|
Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, Nabel CS, Lewis CA, Romero R, Mercer KL, Bhutkar A, Phat S, Myers DT, Muzumdar MD, Westcott PMK, Beytagh MC, Farago AF, Vander Heiden MG, Dyson NJ, Jacks T. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019; 11:eaaw7852. [PMID: 31694929 PMCID: PMC7401885 DOI: 10.1126/scitranslmed.aaw7852] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.
Collapse
Affiliation(s)
- Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caterina I Colón
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Peggy P Hsu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhaoqi Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher S Nabel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rodrigo Romero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Mandar Deepak Muzumdar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Clare Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Schmidt L, Eskiocak B, Kohn R, Dang C, Joshi NS, DuPage M, Lee DY, Jacks T. Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proc Natl Acad Sci U S A 2019; 116:17460-17469. [PMID: 31409707 PMCID: PMC6717259 DOI: 10.1073/pnas.1904253116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells inhibit tumor development in mouse models and their presence in tumors correlates with patient survival. However, tumor-associated NK cells become dysfunctional; thus, stimulation of NK cells in cancer is emerging as an attractive immunotherapeutic strategy. In a mouse model of lung adenocarcinoma, NK cells localized to tumor stroma with immature phenotypes and low functional capacity. To test their responsiveness within established disease, we engineered a system for inducible expression of activating ligands in tumors. After stimulation, NK cells localized inside tumors, with increased cytokine production capacity. Strikingly, T cells were also recruited to tumors in an NK cell-dependent manner, and exhibited higher functionality. In neoantigen-expressing tumors, NK cell stimulation enhanced the number and function of tumor-specific T cells and, in long-term settings, reduced tumor growth. Thus, even in established disease NK cells can be activated to contribute to antitumor immunity, supporting their potential as an important target in cancer immunotherapy.
Collapse
Affiliation(s)
- Leah Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Banu Eskiocak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ryan Kohn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Celeste Dang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nikhil S Joshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michel DuPage
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Da-Yae Lee
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
39
|
Haldeman JM, Conway AE, Arlotto ME, Slentz DH, Muoio DM, Becker TC, Newgard CB. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res 2019; 47:e23. [PMID: 30590691 PMCID: PMC6393299 DOI: 10.1093/nar/gky1286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023] Open
Abstract
Genetic manipulation via transgene overexpression, RNAi, or Cas9-based methods is central to biomedical research. Unfortunately, use of these tools is often limited by vector options. We have created a modular platform (pMVP) that allows a gene of interest to be studied in the context of an array of promoters, epitope tags, conditional expression modalities, and fluorescent reporters, packaged in 35 custom destination vectors, including adenovirus, lentivirus, PiggyBac transposon, and Sleeping Beauty transposon, in aggregate >108,000 vector permutations. We also used pMVP to build an epigenetic engineering platform, pMAGIC, that packages multiple gRNAs and either Sa-dCas9 or x-dCas9(3.7) fused to one of five epigenetic modifiers. Importantly, via its compatibility with adenoviral vectors, pMAGIC uniquely enables use of dCas9/LSD1 fusions to interrogate enhancers within primary cells. To demonstrate this, we used pMAGIC to target Sa-dCas9/LSD1 and modify the epigenetic status of a conserved enhancer, resulting in altered expression of the homeobox transcription factor PDX1 and its target genes in pancreatic islets and insulinoma cells. In sum, the pMVP and pMAGIC systems empower researchers to rapidly generate purpose-built, customized vectors for manipulation of gene expression, including via targeted epigenetic modification of regulatory elements in a broad range of disease-relevant cell types.
Collapse
Affiliation(s)
- Jonathan M Haldeman
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - Amanda E Conway
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Michelle E Arlotto
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Thomas C Becker
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| |
Collapse
|
40
|
Khilko Y, Weyman PD, Glass JI, Adams MD, McNeil MA, Griffin PB. DNA assembly with error correction on a droplet digital microfluidics platform. BMC Biotechnol 2018; 18:37. [PMID: 29859085 PMCID: PMC5984785 DOI: 10.1186/s12896-018-0439-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/24/2018] [Indexed: 12/02/2022] Open
Abstract
Background Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. Results We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 μL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl2, Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb− 1. Conclusion We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization. Electronic supplementary material The online version of this article (10.1186/s12896-018-0439-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuliya Khilko
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.,Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Sq, San Jose, CA, 95192, USA
| | - Philip D Weyman
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - John I Glass
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Mark D Adams
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Melanie A McNeil
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Sq, San Jose, CA, 95192, USA
| | - Peter B Griffin
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
41
|
Roper J, Tammela T, Akkad A, Almeqdadi M, Santos SB, Jacks T, Yilmaz ÖH. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat Protoc 2018; 13:217-234. [PMID: 29300388 PMCID: PMC6145089 DOI: 10.1038/nprot.2017.136] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most genetically engineered mouse models (GEMMs) of colorectal cancer are limited by tumor formation in the small intestine, a high tumor burden that limits metastasis, and the need to generate and cross mutant mice. Cell line or organoid transplantation models generally produce tumors in ectopic locations-such as the subcutaneous space, kidney capsule, or cecal wall-that do not reflect the native stromal environment of the colon mucosa. Here, we describe detailed protocols to rapidly and efficiently induce site-directed tumors in the distal colon of mice that are based on colonoscopy-guided mucosal injection. These techniques can be adapted to deliver viral vectors carrying Cre recombinase, CRISPR-Cas9 components, CRISPR-engineered mouse tumor organoids, or human cancer organoids to mice to model the adenoma-carcinoma-metastasis sequence of tumor progression. The colonoscopy injection procedure takes ∼15 min, including preparation. In our experience, anyone with reasonable hand-eye coordination can become proficient with mouse colonoscopy and mucosal injection with a few hours of practice. These approaches are ideal for a wide range of applications, including assessment of gene function in tumorigenesis, examination of tumor-stroma interactions, studies of cancer metastasis, and translational research with patient-derived cancers.
Collapse
Affiliation(s)
- Jatin Roper
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Akkad
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Mohammad Almeqdadi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Sebastian B Santos
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Survival of pancreatic cancer cells lacking KRAS function. Nat Commun 2017; 8:1090. [PMID: 29061961 PMCID: PMC5653666 DOI: 10.1038/s41467-017-00942-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the proto-oncogene KRAS are a hallmark of pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy with few effective therapeutic options. Despite efforts to develop KRAS-targeted drugs, the absolute dependence of PDAC cells on KRAS remains incompletely understood. Here we model complete KRAS inhibition using CRISPR/Cas-mediated genome editing and demonstrate that KRAS is dispensable in a subset of human and mouse PDAC cells. Remarkably, nearly all KRAS deficient cells exhibit phosphoinositide 3-kinase (PI3K)-dependent mitogen-activated protein kinase (MAPK) signaling and induced sensitivity to PI3K inhibitors. Furthermore, comparison of gene expression profiles of PDAC cells retaining or lacking KRAS reveal a role of KRAS in the suppression of metastasis-related genes. Collectively, these data underscore the potential for PDAC resistance to even the very best KRAS inhibitors and provide insights into mechanisms of response and resistance to KRAS inhibition. Pancreatic cancer cells may develop resistance to KRAS inhibitors due to activation of compensatory pathways. In this study, the authors demonstrate that KRAS is dispensable in a subset of pancreatic cancer and that PI3K signalling may have an important role in mediating tumor growth following KRAS inhibition.
Collapse
|
43
|
Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA. Multiple T-DNA Delivery to Plants Using Novel Mini Binary Vectors with Compatible Replication Origins. ACS Synth Biol 2017; 6:1962-1968. [PMID: 28657330 DOI: 10.1021/acssynbio.6b00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improved plants are necessary to meet human needs. Agrobacterium-mediated transformation is the most common method used to rewire plant capabilities. For plant gene delivery, DNA constructs are assembled into binary T-DNA vectors that rely on broad host range origins for bacterial replication. Here we present pLX vectors, a set of mini binary T-DNA plasmids suitable for Type IIS restriction endonuclease- and overlap-based assembly methods. pLX vectors include replicons from compatible broad host range plasmids. Simultaneous usage of pBBR1- and RK2-based pLX vectors in a two-plasmid/one-Agrobacterium strain strategy allowed multigene delivery to plants. Adoption of pLX vectors will facilitate routine plant transformations and targeted mutagenesis, as well as complex part and circuit characterization.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Leonor C. Bedoya
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | |
Collapse
|
44
|
Martella A, Matjusaitis M, Auxillos J, Pollard SM, Cai Y. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors. ACS Synth Biol 2017; 6:1380-1392. [PMID: 28418644 DOI: 10.1021/acssynbio.7b00016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Mantas Matjusaitis
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Jamie Auxillos
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
45
|
Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sánchez-Rivera FJ, Park YK, Liang X, Eng G, Taylor MS, Azimi R, Kedrin D, Neupane R, Beyaz S, Sicinska ET, Suarez Y, Yoo J, Chen L, Zukerberg L, Katajisto P, Deshpande V, Bass AJ, Tsichlis PN, Lees J, Langer R, Hynes RO, Chen J, Bhutkar A, Jacks T, Yilmaz ÖH. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol 2017; 35:569-576. [PMID: 28459449 PMCID: PMC5462879 DOI: 10.1038/nbt.3836] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
In vivo interrogation of the function of genes implicated in tumorigenesis is limited by the need to generate and cross germline mutant mice. Here we describe approaches to model colorectal cancer (CRC) and metastasis, which rely on in situ gene editing and orthotopic organoid transplantation in mice without cancer-predisposing mutations. Autochthonous tumor formation is induced by CRISPR-Cas9-based editing of the Apc and Trp53 tumor suppressor genes in colon epithelial cells and by orthotopic transplantation of Apc-edited colon organoids. ApcΔ/Δ;KrasG12D/+;Trp53Δ/Δ (AKP) mouse colon organoids and human CRC organoids engraft in the distal colon and metastasize to the liver. Finally, we apply the orthotopic transplantation model to characterize the clonal dynamics of Lgr5+ stem cells and demonstrate sequential activation of an oncogene in established colon adenomas. These experimental systems enable rapid in vivo characterization of cancer-associated genes and reproduce the entire spectrum of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jatin Roper
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Tuomas Tammela
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Naniye Malli Cetinbas
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Adam Akkad
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Ali Roghanian
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Steffen Rickelt
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Mohammad Almeqdadi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Katherine Wu
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Matthias A Oberli
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | | | - Yoona K Park
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Xu Liang
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - George Eng
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roxana Azimi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Dmitriy Kedrin
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Rachit Neupane
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Semir Beyaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Ewa T Sicinska
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yvelisse Suarez
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Yoo
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Lillian Chen
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pekka Katajisto
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip N Tsichlis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jacqueline Lees
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Richard O Hynes
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jianzhu Chen
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Arjun Bhutkar
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K, Park Y, Azimi R, Kerper NR, Wesselhoeft RA, Gu X, Schmidt L, Cornwall-Brady M, Yilmaz ÖH, Xue W, Katajisto P, Bhutkar A, Jacks T. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 2017; 545:355-359. [PMID: 28489818 PMCID: PMC5903678 DOI: 10.1038/nature22334] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
Abstract
The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and presence of cancer cells with properties of normal tissue stem cells1,2. Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration3–5. Here we report that murine and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signaling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that they have features of normal tissue stem cells. Genetic perturbation of Wnt production or signaling suppressed tumour progression. Small molecule inhibitors targeting essential post-translational modification of Wnt reduced tumour growth and dramatically decreased proliferative potential of the lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies.
Collapse
Affiliation(s)
- Tuomas Tammela
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Francisco J Sanchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Naniye Malli Cetinbas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Katherine Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Nikhil S Joshi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Katja Helenius
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yoona Park
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Roxana Azimi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Natanya R Kerper
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - R Alexander Wesselhoeft
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xin Gu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Leah Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Milton Cornwall-Brady
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Wen Xue
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,RNA Therapeutics Institute, Program in Molecular Medicine, and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pekka Katajisto
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
47
|
Celie PHN, Parret AHA, Perrakis A. Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 2016; 38:145-54. [DOI: 10.1016/j.sbi.2016.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
|