1
|
Sharma S, Satheesan A, Majumdar A, Mukherjee S, Basu A. PARP-16 regulates the PERK and IRE-1α Mediated Unfolded Protein Response in Japanese Encephalitis Virus-Infected Neural Stem/Progenitor Cells. Mol Neurobiol 2025; 62:8084-8096. [PMID: 39979689 DOI: 10.1007/s12035-025-04748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
The viral infection and subsequent accumulation of viral proteins in the infected cells leads to endoplasmic reticulum (ER) stress. Japanese encephalitis virus (JEV) infection in the Central Nervous System (CNS) has been shown to induce unfolded protein response (UPR). The ER stress is resolved by the UPR which comprises certain signals that are transduced from the ER either to both the cytoplasm or nucleus, resulting in the adaptation for survival or may even lead to apoptosis. Here, we demonstrate that Poly ADP-ribose polymerase-16 (PARP-16) expression is regulating the ER stress response following JEV infection of Neural Stem/Progenitor cells (NSPCs) in the BALB/c mouse model. Activation of the key sensors of UPR, namely, protein kinase R (PKR)-like ER kinase (PERK) and Inositol-requiring enzyme-1α (IRE-1α) by PARP-16 upon JEV infection, led to the activation of their downstream signalling cascade. The siRNA-mediated in vitro downregulation of PARP-16 in NSPCs alleviated the overall UPR, as the abundance of UPR markers and their downstream modulators of signalling cascade was found to be downregulated. These results highlight an important role of PARP-16 during JEV infection of NSPCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- National Brain Research Centre, Manesar, Haryana, 122052, India
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E0J9, Canada
| | | | - Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Sriparna Mukherjee
- National Brain Research Centre, Manesar, Haryana, 122052, India
- Department of Pharmacology and Physiology, Pavilion Roger-Gaudry, Universite de Montréal, Montréal, Québec, Canada
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
2
|
Tripathi S, Sengar S, Basu A, Sharma V. LncRNA JINR1 regulates miR-216b-5p/GRP78 and miR-1-3p/DDX5 axis to promote JEV infection and cell death. J Virol 2025; 99:e0006625. [PMID: 40272157 PMCID: PMC12090723 DOI: 10.1128/jvi.00066-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025] Open
Abstract
Japanese encephalitis virus (JEV) infection in the central nervous system (CNS) leads to neuroinflammation and neuronal cell death. Several long non-coding RNAs (lncRNAs) are differentially expressed during viral infection and regulate multiple aspects of viral pathogenesis. Previously, we have shown that JEV/West Nile virus (WNV) infection promotes JEV-induced non-coding RNA 1 (JINR1) expression in SH-SY5Y cells, and it interacts with RNA-binding motif protein 10 (RBM10) to enhance cell death and viral replication. In this study, we show that JEV or WNV infection of the SH-SY5Y cells inhibits the expression of microRNAs (miRNAs) miR-216b-5p and miR-1-3p. These miRNAs bind to the JEV/WNV genome, and their overexpression during JEV/WNV infection reduces viral replication and cell death. Depleting JINR1 or RBM10 during viral infection prevents the downregulation of miR-216b-5p and miR-1-3p. In addition, JINR1 or RBM10 knockdown during JEV/WNV infection enhances the binding of RNA Pol II and H3K4me3 at the promoters of miR-216b-5p and miR-1-3p. JINR1 or RBM10 depletion also prevents the binding of H3K27me3 at the promoters of these miRNAs, suggesting that JINR1 and RBM10 are involved in their transcription repression. Interestingly, JINR1 also acts as a competing endogenous RNA (ceRNA) that directly binds to miR-216b-5p and miR-1-3p, resulting in the upregulation of their targets glucose-regulated protein 78 (GRP78) and DEAD-Box Helicase 5 (DDX5), respectively, which are involved in regulating viral replication. Our findings suggest that JINR1 uses multiple mechanisms to promote JEV and WNV infection in neuronal cells. IMPORTANCE Infection of the central nervous system (CNS) by Japanese encephalitis virus (JEV) or West Nile virus (WNV) leads to neuroinflammation and neuronal cell death. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) regulate viral infection by regulating the expression of host genes. However, knowledge about the interplay between lncRNAs and miRNAs during JEN/WNV infection is limited. We show that JEV/WNV infection inhibits the expression of anti-viral host miRNAs miR-216b-5p and miR-1-3p. These miRNAs inhibit the JEV and WNV replication by directly binding with their genome. JINR1 and its interacting protein, RBM10, inhibit the transcription of miR-216b-5p and miR-1-3p. Interestingly, JINR1 also binds and sequesters miR-216b-5p and miR-1-3p, resulting in upregulation of their targets GRP78 and DDX5, respectively, which promote viral infection. Our findings suggest that lncRNA JINR1 is a potential target for developing anti-virals against JEV/WNV infection.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Mehta P, Swaminathan A, Yadav A, Chattopadhyay P, Shamim U, Pandey R. Integrative genomics important to understand host-pathogen interactions. Brief Funct Genomics 2024; 23:1-14. [PMID: 35909219 DOI: 10.1093/bfgp/elac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2024] Open
Abstract
Infectious diseases are the leading cause of morbidity and mortality worldwide. Causative pathogenic microbes readily mutate their genome and lead to outbreaks, challenging the healthcare and the medical support. Understanding how certain symptoms manifest clinically is integral for therapeutic decisions and vaccination efficacy/protection. Notably, the interaction between infecting pathogens, host response and co-presence of microbes influence the trajectories of disease progression and clinical outcome. The spectrum of observed symptomatic patients (mild, moderate and severe) and the asymptomatic infections highlight the challenges and the potential for understanding the factors driving protection/susceptibility. With the increasing repertoire of high-throughput tools, such as cutting-edge multi-omics profiling and next-generation sequencing, genetic drivers of factors linked to heterogeneous disease presentations can be investigated in tandem. However, such strategies are not without limits in terms of effectively integrating host-pathogen interactions. Nonetheless, an integrative genomics method (for example, RNA sequencing data) for exploring multiple layers of complexity in host-pathogen interactions could be another way to incorporate findings from high-throughput data. We further propose that a Holo-transcriptome-based technique to capture transcriptionally active microbial units can be used to elucidate functional microbiomes. Thus, we provide holistic perspective on investigative methodologies that can harness the same genomic data to investigate multiple seemingly independent but deeply interconnected functional domains of host-pathogen interaction that modulate disease severity and clinical outcomes.
Collapse
|
6
|
Tripathi S, Sengar S, Shree B, Mohapatra S, Basu A, Sharma V. An RBM10 and NF-κB interacting host lncRNA promotes JEV replication and neuronal cell death. J Virol 2023; 97:e0118323. [PMID: 37991381 PMCID: PMC10734533 DOI: 10.1128/jvi.01183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| |
Collapse
|
7
|
Song Z, Su M, Li X, Xie J, Han F, Yao J. A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma. BMC Gastroenterol 2023; 23:432. [PMID: 38066437 PMCID: PMC10709857 DOI: 10.1186/s12876-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. METHODS We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. RESULTS The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. CONCLUSION Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.
Collapse
Affiliation(s)
- Zhaoxiang Song
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Su
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Li
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Xie
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianning Yao
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Mohapatra S, Tripathi S, Sharma V, Basu A. Regulation of microglia-mediated inflammation by host lncRNA Gm20559 upon flaviviral infection. Cytokine 2023; 172:156383. [PMID: 37801852 DOI: 10.1016/j.cyto.2023.156383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) and West Nile Viruses (WNV) are neurotropic flaviviruses which cause neuronal death and exaggerated glial activation in the central nervous system. Role of host long non coding RNAs in shaping microglial inflammation upon flavivirus infections has been unexplored. This study attempted to decipher the role of lncRNA Gm20559 in regulating microglial inflammatory response in context of flaviviruses. METHODS Antisense oligonucleotide LNA Gapmers designed against lncRNA Gm20559 and non-specific site (negative control) were used for Gm20559 knockdown in JEV and WNV-infected N9 microglial cells. Upon establishing successful Gm20559 knockdown, expression of various proinflammatory cytokines, chemokines, interferon-stimulated genes (ISGs) and RIG-I were checked by qRT-PCR and cytometric bead array. Western Blotting was done to analyse the phosphorylation level of various inflammatory markers and viral non-structural protein expression. Plaque Assays were employed to quantify viral titres in microglial supernatant upon knocking down Gm20559. Effect of microglial supernatant on HT22 neuronal cells was assessed by checking expression of apoptotic protein and viral non-structural protein by Western Blotting. RESULTS Upregulation in Gm20559 expression was observed in BALB/c pup brains, primary microglia as well as N9 microglia cell line upon both JEV and WNV infection. Knockdown of Gm20559 in JEV and WNV-infected N9 cell led to the reduction of major proinflammatory cytokines - IL-1β, IL-6, IP-10 and IFN-β. Inhibition of Gm20559 upon JEV infection in N9 microglia also led to downregulation of RIG-I and OAS-2, which was not the case in WNV-infected N9 microglia. Phosphorylation level of P38 MAPK was reduced in case of JEV-infected N9 microglia and not WNV-infected N9 microglia. Whereas phosphorylation of NF-κB pathway was unchanged upon Gm20559 knockdown in both JEV and WNV-infected N9 microglia. However, treating HT22 cells with JEV and WNV-infected microglial supernatant with and without Gm20559 could not trigger cell death or influence viral replication. CONCLUSION Knockdown studies on lncRNA Gm20559 suggests its pivotal role in maintaining the inflammatory milieu of microglia in flaviviral infection by modulating the expression of various pro-inflammatory cytokines. However, Gm20559-induced increased microglial proinflammatory response upon flavivirus infection fails to trigger neuronal death.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
9
|
Genena SESR, Fadhil MM, Mansour MM, Attwa AHM, Khalil MMIM. Expression pattern of long non-coding RNAs MALAT1 and MEG3 in COVID-19 patients. J Gene Med 2023; 25:e3532. [PMID: 37209019 DOI: 10.1002/jgm.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND COVID-19 is a novel infectious disease for which no specific treatment exists. It is likely that a combination of genetic and non-genetic factors predispose to it. Expression levels of genes that are involved in the interaction with SARS-CoV-2 or the host response are thought to play a role in disease susceptibility and severity. It is crucial to explore biomarkers for disease severity and outcome. Herein, we studied the expression levels and effects of long non-coding metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) and long non-coding maternally expressed gene 3 (lnc-MEG3) in COVID-19 patients. The study enrolled 35 hospitalized and 35 non-hospitalized COVID-19 patients, and 35 healthy controls. A chest computed tomography (CT) scan, complete blood count (CBC), ferritin, C-reactive protein (CRP), D-dimer and analysis of lnc-MALAT1 and lnc-MEG3 expression were done. RESULTS There was a significant relation between ferritin, CRP, D-dimer levels, oxygen saturation, CT-CORADS score and disease severity. Lnc-MALAT1 was significantly higher but lnc-MEG3 was significantly lower in patients vs. controls, and in hospitalized vs. non-hospitalized patients. Elevated MALAT1 and reduced MEG3 levels were significantly associated with more elevated ferritin, CRP, D-dimer levels, lower oxygen saturation, higher CT-CORADS score and poor survival. Moreover, MALAT1 and MEG3 levels displayed higher sensitivity and specificity as predictors of COVID-19 severity compared with other prognostic biochemical markers such as ferritin, CRP, and D-dimer. CONCLUSIONS MALAT1 levels are higher, whereas MEG3 levels are lower in COVID-19 patients. Both are linked to disease severity and mortality and could emerge as predictive biomarkers for COVID-19 severity and therapeutic targets.
Collapse
Affiliation(s)
- Shaimaa El Sayed Ramadan Genena
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - Maher Mishaal Fadhil
- Department of Zoology Physiology, Faculty of Science, Menoufia University, Menoufia Governorate, Egypt
| | - Manal Monir Mansour
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - Asrar Helal Mahrous Attwa
- Department of Chest disease and Tuberculosis, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | | |
Collapse
|
10
|
Verma S, Sahu BD, Mugale MN. Role of lncRNAs in hepatocellular carcinoma. Life Sci 2023; 325:121751. [PMID: 37169145 DOI: 10.1016/j.lfs.2023.121751] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bidhya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int J Mol Sci 2023; 24:ijms24021581. [PMID: 36675095 PMCID: PMC9867397 DOI: 10.3390/ijms24021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.
Collapse
|
12
|
Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. Int J Mol Sci 2022; 23:ijms23073649. [PMID: 35409008 PMCID: PMC8998971 DOI: 10.3390/ijms23073649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug–target interaction (DNN-DTI) model could be trained by drug–target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.
Collapse
|
13
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
14
|
Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, Garcia-Valtanen P, Al-Delfi Z, Gummow J, Ferguson C, O'Connor S, Reddi BAJ, Hissaria P, Shaw D, Kok-Lim C, Gleadle JM, Beard MR, Barry SC, Grubor-Bauk B, Lynn DJ. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med 2022; 20:26. [PMID: 35027067 PMCID: PMC8758383 DOI: 10.1186/s12916-021-02228-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher M Hope
- Women's and Children's Health Network, North Adelaide, SA, Australia.,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Pravin Hissaria
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.,Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simon C Barry
- Women's and Children's Health Network, North Adelaide, SA, Australia. .,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
15
|
Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors. Comput Struct Biotechnol J 2022; 20:2759-2777. [PMID: 35685361 PMCID: PMC9167876 DOI: 10.1016/j.csbj.2022.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.
Collapse
|
16
|
Lu S, Yang LX, Cao ZJ, Zhao JS, You J, Feng YX. Transcriptional Control of Metastasis by Integrated Stress Response Signaling. Front Oncol 2021; 11:770843. [PMID: 34746012 PMCID: PMC8570279 DOI: 10.3389/fonc.2021.770843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
As a central cellular program to sense and transduce stress signals, the integrated stress response (ISR) pathway has been implicated in cancer initiation and progression. Depending on the genetic mutation landscape, cellular context, and differentiation states, there are emerging pieces of evidence showing that blockage of the ISR can selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR can also influence metastasis, especially via proteostasis-independent mechanisms. In particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of essential transcription factors. In this review, we summarized the current understandings of ISR in cancer metastasis from the perspective of transcriptional regulation.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Li-Xian Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Zi-Jian Cao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Xiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Long non-coding RNAs associated with infection and vaccine-induced immunity. Essays Biochem 2021; 65:657-669. [PMID: 34528687 DOI: 10.1042/ebc20200072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
The immune system responds to infection or vaccination through a dynamic and complex process that involves several molecular and cellular factors. Among these factors, long non-coding RNAs (lncRNAs) have emerged as significant players in all areas of biology, particularly in immunology. Most of the mammalian genome is transcribed in a highly regulated manner, generating a diversity of lncRNAs that impact the differentiation and activation of immune cells and affect innate and adaptive immunity. Here, we have reviewed the range of functions and mechanisms of lncRNAs in response to infectious disease, including pathogen recognition, interferon (IFN) response, and inflammation. We describe examples of lncRNAs exploited by pathogenic agents during infection, which indicate that lncRNAs are a fundamental part of the arms race between hosts and pathogens. We also discuss lncRNAs potentially implicated in vaccine-induced immunity and present examples of lncRNAs associated with the antibody response of subjects receiving Influenza or Yellow Fever vaccines. Elucidating the widespread involvement of lncRNAs in the immune system will improve our understanding of the factors affecting immune response to different pathogenic agents, to better prevent and treat disease.
Collapse
|
18
|
Long M, Pan Y, Chen J, Jia F, Wang H, Li D, Feng K, Yan L, Wang X, Ning X, Qiu L, Zhang J, Sun Q. Sweeping analysis of transcript profile in dengue virus serotype 3 infection and antibody-dependent enhancement of infection. Virulence 2021; 12:2764-2776. [PMID: 34699307 PMCID: PMC8583062 DOI: 10.1080/21505594.2021.1996072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dengue virus infection mainly causes dengue hemorrhagic fever (DHF) and/or dengue shock syndrome (DSS). However, ADE (antibody-dependent enhancement) is one of the main pathogenic factors, and its pathogenic mechanism has not been fully elucidated. Recently, with the development of high-throughput sequencing, an increased number of RNAs have been confirmed to play a vital regulatory role in the process of virus infection. However, there is a lack of research on dengue virus infection and ADE. In this study, we used RNA-Seq to detect differentially expressed RNAs (DE RNAs) profiles in mock-infected, DENV-3-infected, and ADE-infected THP-1 cells. Firstly, we found 69 circRNAs, 259 miRNAs, and 18 mRNAs were differentially expressed in THP-1 vs DENV-3. In THP-1 vs ADE, 94 circRNAs, 263 miRNAs, and 111 mRNAs were differentially expressed. In DENV-3 vs ADE, 68 circRNAs, 105 miRNAs, and 94 mRNAs were differentially expressed. Functional enrichment analysis of these DE RNAs mainly focused on immune system, viral infectious diseases, cytokine-cytokine receptor interactions, and NOD/RIG-I-like receptor signaling pathways. In DENV-3 vs ADE, notably, the expression of HBB was up-regulated, which was a Fcγ Receptor-mediated phagocytosis protein. Additionally, we predicted the encoding ability of DE circRNAs, and it was found that a small peptide was encoded by novel_circ_001562 and that its amino acid sequence was consistent with that of DDX60L, which is a class of interferon-stimulated genes. Finally, we constructed the ceRNA regulatory network pathway. Therefore, our study provides a new strategy for further investigation on DENV-host interactions.
Collapse
Affiliation(s)
- Mingwang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Kunming Medical University, Kunming, Peoples Republic of China
| | - Han Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Daiying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Lingmei Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| | - Xuelei Ning
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan University, Kunming, Peoples Republic of China
| | - Lijuan Qiu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Kunming Medical University, Kunming, Peoples Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, Peoples Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, PR China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Peoples Republic of China
| |
Collapse
|
19
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
20
|
Lu Y, Gao Z, Liu C, Long M, Yang L, Li R, Dong K, Zhang H. Integrative analysis of lncRNA-miRNA-mRNA-associated competing endogenous RNA regulatory network involved in EV71 infection. Am J Transl Res 2021; 13:7440-7457. [PMID: 34377228 PMCID: PMC8340214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The competing endogenous RNA (ceRNA) axis has been shown to play a critical role in the pathogenesis of various viral infections. Generally, the ceRNA network involves long non-coding RNAs (lncRNAs) that act as sponges for miRNA to regulate mRNA expression. However, no information is available regarding the involvement of ceRNA networks in Enterovirus type 71 (EV71) infections. In the present study, data obtained from Gene Expression Omnibus (GEO) database was analyzed using various bioinformatics tools. EV71 infection in rhabdomyosarcoma (RD) cells was associated with differential expression of six lncRNAs, 28 miRNAs, and 349 mRNAs. Gene function enrichment analysis suggested induction of cytoplasmic vesicle process upon EV71 infection. The ceRNA networks were constructed, in which 20 hub genes were predicted by protein-protein interaction. To confirm the MALAT1/miR-194-5p/DUSP1 ceRNA regulatory axis in EV71 infection, real-time quantitative polymerase chain reaction (qRT-PCR) and luciferase reporter assay were performed. The results of the study also revealed the involvement of the MALAT1/miR-194-5p axis in apoptosis induced by EV71 infection, while no association with autophagy was observed. Thus, the present study provided novel insights into the pathogenic mechanism of EV71 infection.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Longfei Yang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ruicheng Li
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
21
|
Lu HY, Wang GY, Zhao JW, Jiang HT. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J Clin Lab Anal 2021; 35:e23881. [PMID: 34240756 PMCID: PMC8373329 DOI: 10.1002/jcla.23881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) was characterized by loss of renal function, associated with chronic kidney disease, end‐stage renal disease, and length of hospital stay. Long non‐coding RNAs (lncRNAs) participated in AKI development and progression. Here, we aimed to investigate the roles and mechanisms of lncRNA MALAT1 in AKI. Methods AKI serum samples were obtained from 129 AKI patients. ROC analysis was conducted to confirm the diagnostic value of MALAT1 in differentiating AKI from healthy volunteers. After hypoxic treatment on HK‐2 cells, the expressions of inflammatory cytokines, MALAT1, miR‐204, APOL1, p65, and p‐p65, were measured by RT‐qPCR and Western blot assays. The targeted relationship between miR‐204 and MALAT1 or miR‐204 and APOL1 was determined by luciferase reporter assay and RNA pull‐down analysis. After transfection, CCK‐8, flow cytometry, and TUNEL staining assays were performed to evaluate the effects of MALAT1 and miR‐204 on AKI progression. Results From the results, lncRNA MALAT1 was strongly elevated in serum samples from AKI patients, with the high sensitivity and specificity concerning differentiating AKI patients from healthy controls. In vitro, we established the AKI cell model after hypoxic treatment. After experiencing hypoxia, we found significantly increased MALAT1, IL‐1β, IL‐6, and TNF‐α expressions along with decreased miR‐204 level. Moreover, the targeted relationship between MALAT1 and miR‐204 was confirmed. Silencing of MALAT1 could reverse hypoxia‐triggered promotion of HK‐2 cell apoptosis. Meanwhile, the increase of IL‐1β, IL‐6, and TNF‐α after hypoxia treatment could be repressed by MALAT1 knockdown as well. After co‐transfection with MALAT1 silencing and miR‐204 inhibition, we found that miR‐204 could counteract the effects of MALAT1 on HK‐2 cell progression and inflammation after under hypoxic conditions. Finally, NF‐κB signaling was inactivated while APOL1 expression was increased in HK‐2 cells after hypoxia treatment, and lncRNA MALAT1 inhibition reactivated NF‐κB signaling while suppressed APOL1 expression by sponging miR‐204. Conclusions Collectively, these results illustrated that knockdown of lncRNA MALAT1 could ameliorate AKI progression and inflammation by targeting miR‐204 through APOL1/NF‐κB signaling.
Collapse
Affiliation(s)
- Hai-Yuan Lu
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Guo-Yi Wang
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jin-Wen Zhao
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hai-Tao Jiang
- Department of Orthopedics, Huai'an First People's Hospital, Huai'an, China
| |
Collapse
|
22
|
CloneSeq: A highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. Dev Cell 2021; 56:1804-1817.e7. [PMID: 34010629 DOI: 10.1016/j.devcel.2021.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/07/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Single-cell assays have revealed the importance of heterogeneity in many biological systems. However, limited sensitivity is a major hurdle for uncovering cellular variation. To overcome it, we developed CloneSeq, combining clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing (RNA-seq). We show that clonal cells maintain similar transcriptional profiles and cell states. CloneSeq of lung cancer cells revealed cancer-specific subpopulations, including cancer stem-like cells, that were not revealed by scRNA-seq. Clonal expansion within 3D soft microenvironments supported cellular stemness of embryonic stem cells (ESCs) even without pluripotent media, and it improved epigenetic reprogramming efficiency of mouse embryonic fibroblasts. CloneSeq of ESCs revealed that the differentiation decision is made early during Oct4 downregulation and is maintained during early clonal expansion. Together, we show CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging the enhanced sensitivity within clones.
Collapse
|
23
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
24
|
Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsiè R, Klironomos F, Koppstein D, Hönzke K, Ayoub S, Buccitelli C, Hoffmann K, Richter A, Legnini I, Ivanov A, Mari T, Del Giudice S, Papies J, Praktiknjo S, Meyer TF, Müller MA, Niemeyer D, Hocke A, Selbach M, Akalin A, Rajewsky N, Drosten C, Landthaler M. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021; 24:102151. [PMID: 33585804 PMCID: PMC7866843 DOI: 10.1016/j.isci.2021.102151] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/20/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Detailed knowledge of the molecular biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral replication, host responses, and disease progression. Here, we report gene expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such as IL-6, were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Kirstin Mösbauer
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Asija Diag
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Lina Theresa Gottula
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Roberto Arsiè
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Filippos Klironomos
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- Department of Pediatrics, Charité – University Hospital Berlin, 13353 Berlin, Germany
| | - David Koppstein
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Katja Hönzke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Salah Ayoub
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Christopher Buccitelli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Karen Hoffmann
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité – University Hospital Berlin, 10117 Berlin, Germany
| | - Tommaso Mari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Simone Del Giudice
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Samantha Praktiknjo
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Thomas F. Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, 24105 Kiel, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
25
|
Zhou X, Yuan Q, Zhang C, Dai Z, Du C, Wang H, Li X, Yang S, Zhao A. Inhibition of Japanese encephalitis virus proliferation by long non-coding RNA SUSAJ1 in PK-15 cells. Virol J 2021; 18:29. [PMID: 33509198 PMCID: PMC7841041 DOI: 10.1186/s12985-021-01492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus is a mosquito-borne neurotropic flavivirus that causes acute viral encephalitis in humans. Pigs are crucial amplifier host of JEV. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in virus infection. METHODS JEV proliferation was evaluated after overexpression or knockdown of lncRNA-SUSAJ1 using western blotting and reverse-transcription polymerase chain reaction (RT-PCR). C-C chemokine receptor type 1 (CCR1) was found to regulate the expression of lncRNA-SUSAJ1 by inhibitors screen. The expression of lncRNA-SUSAJ1 was detected using RT-PCR after overexpression or knockdown of transcription factor SP1. In addition, the enrichments of transcription factor SP1 on the promoter of lncRNA-SUSAJ1 were analyzed by chromatin immunoprecipitation. RESULTS In this study, we demonstrated that swine lncRNA-SUSAJ1 could suppress JEV proliferation in PK-15 cells. We also found that CCR1 inhibited the expression of lncRNA-SUSAJ1 via the transcription factor SP1. In addition, knockdown of CCR1 could upregulated the expression of SP1 and lncRNA-SUSAJ1, resulting in resistance to JEV proliferation. CONCLUSIONS These findings illustrate the importance of lncRNAs in virus proliferation, and reveal how this virus regulates lncRNAs in host cells to promote its proliferation.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Qiongyu Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chen Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Zhenglie Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chengtao Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| |
Collapse
|
26
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
27
|
Liu W, Wang Z, Liu L, Yang Z, Liu S, Ma Z, Liu Y, Ma Y, Zhang L, Zhang X, Jiang M, Cao X. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proc Natl Acad Sci U S A 2020; 117:23695-23706. [PMID: 32907941 PMCID: PMC7519350 DOI: 10.1073/pnas.2003932117] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) involved in the regulation of antiviral innate immune responses need to be further identified. By functionally screening the lncRNAs in macrophages, here we identified lncRNA Malat1, abundant in the nucleus but significantly down-regulated after viral infection, as a negative regulator of antiviral type I IFN (IFN-I) production. Malat1 directly bound to the transactive response DNA-binding protein (TDP43) in the nucleus and prevented activation of TDP43 by blocking the activated caspase-3-mediated TDP43 cleavage to TDP35. The cleaved TDP35 increased the nuclear IRF3 protein level by binding and degrading Rbck1 pre-mRNA to prevent IRF3 proteasomal degradation upon viral infection, thus selectively promoting antiviral IFN-I production. Deficiency of Malat1 enhanced antiviral innate responses in vivo, accompanying the increased IFN-I production and reduced viral burden. Importantly, the reduced MALAT1, augmented IRF3, and increased IFNA mRNA were found in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients. Therefore, the down-regulation of MALAT1 in virus-infected cells or in human cells from autoimmune diseases will increase host resistance against viral infection or lead to autoinflammatory interferonopathies via the increased type I IFN production. Our results demonstrate that the nuclear Malat1 suppresses antiviral innate responses by targeting TDP43 activation via RNA-RBP interactive network, adding insight to the molecular regulation of innate responses and autoimmune pathogenesis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Lun Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Zhongfei Ma
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Yin Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Yuanwu Ma
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 100021 Beijing, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 100021 Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Minghong Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China;
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China;
- National Key Laboratory of Medical Immunology and Institute of Immunology, Navy Medical University, 200433 Shanghai, China
- College of Life Science, Nankai University, 300071 Tianjin, China
| |
Collapse
|
28
|
Protein Coding and Long Noncoding RNA (lncRNA) Transcriptional Landscape in SARS-CoV-2 Infected Bronchial Epithelial Cells Highlight a Role for Interferon and Inflammatory Response. Genes (Basel) 2020; 11:genes11070760. [PMID: 32646047 PMCID: PMC7397219 DOI: 10.3390/genes11070760] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated.
Collapse
|
29
|
Cardamone G, Paraboschi EM, Soldà G, Cantoni C, Supino D, Piccio L, Duga S, Asselta R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 2020; 28:1414-1428. [PMID: 30566690 DOI: 10.1093/hmg/ddy438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Domenico Supino
- Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| |
Collapse
|
30
|
Zhang Y, Ma L, Wang C, Wang L, Guo Y, Wang G. Long noncoding RNA LINC00461 induced osteoarthritis progression by inhibiting miR-30a-5p. Aging (Albany NY) 2020; 12:4111-4123. [PMID: 32155130 PMCID: PMC7093191 DOI: 10.18632/aging.102839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Mounting studies have shown that long noncoding RNAs (lncRNAs) play important roles in the development and occurrence of several human diseases. However, the role of LINC00461 in osteoarthritis (OA) remains obscure. A CCK-8 assay was performed to detect cell viability, and qRT-PCR analysis was used to measure mRNA expression. The targeting by miR-30a-5p of the LINC00461 3'UTR was detected using a luciferase reporter assay. Our data indicated that the inflammatory mediators IL-6 and TNF-α induced LINC00461 expression in chondrocytes and that the expression of LINC00461 was upregulated in OA tissues. Furthermore, we showed that TNF-α and IL-6 suppressed the expression of miR-30a-5p and that miR-30a-5p expression was lower in OA tissues than in normal samples. The expression level of miR-30a-5p in OA tissues was negatively related to LINC00461 expression. In addition, we showed that LINC00461 directly interacted with miR-30a-5p in chondrocytes. Elevated expression of LINC00461 induced chondrocyte proliferation, cell cycle progression, inflammation, and extracellular matrix (ECM) degradation. However, we demonstrated that ectopic expression of miR-30a-5p suppressed cell growth, cell cycle progression, inflammation and ECM degradation. Finally, we found that overexpression of LINC00461 enhanced chondrocyte proliferation, cell cycle progression, inflammation, and ECM degradation by downregulating miR-30a-5p. These data demonstrated that LINC00461 may modulate the development of OA by suppressing miR-30a-5p expression in chondrocytes. We propose that LINC00461 and miR-30a-5p may be potential therapeutic and diagnostic targets for OA.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Longfei Ma
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Chengqun Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Lina Wang
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Yanxia Guo
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Guodong Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| |
Collapse
|
31
|
Jiang X, Li D, Wang G, Liu J, Su X, Yu W, Wang Y, Zhai C, Liu Y, Zhao Z. Thapsigargin promotes colorectal cancer cell migration through upregulation of lncRNA MALAT1. Oncol Rep 2020; 43:1245-1255. [PMID: 32323831 PMCID: PMC7057937 DOI: 10.3892/or.2020.7502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor in the world; however, the role and mechanism of endoplasmic reticulum (ER) stress in CRC metastasis remains largely unclear. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA), which has previously been associated with CRC metastasis. It has been suggested that ER stress pathways regulate lncRNA expression; however, the effect of ER stress on MALAT1 expression in cancer is unknown. The present study aimed to investigate the relationship between ER stress pathways, MALAT1 expression and cell migration in CRC cells. ER stress was induced by thapsigargin (TG); low dose TG induced the migration of HT29 and HCT116 cells, but not SW1116 and SW620 cells. This effect was associated with increased expression levels of MALAT1, as the knockdown of MALAT1 prevented TG-induced cell migration. TG-induced MALAT1 expression was associated with inositol-requiring enzyme 1 (IRE1) expression and activation of the protein kinase R (PKR)-like ER kinase (PERK) signaling pathway. X-box-binding protein 1 (XBP1) and activating transcription factor 4 (ATF4) binding sites were predicted to be located in the MALAT1 gene promoter regions and the expression of MALAT1 was positively associated with XBP1 and ATF4 expression levels in CRC tissue samples. Thus, these findings indicated that ER stress may promote the migration of CRC cells and contribute to the progression of CRC through the activation of the IRE1/XBP1 and PERK/eIF2α/ATF4 signaling pathways. In conclusion, to the best of our knowledge, this study is the first report that lncRNA MALAT1 expression is regulated by the IRE1/XBP1 pathway in CRC.
Collapse
Affiliation(s)
- Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongyun Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Jue Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xingkai Su
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuanyuan Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Congjie Zhai
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuegeng Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
32
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
33
|
Isaac C, Patel TR, Zovoilis A. Non-coding RNAs in virology: an RNA genomics approach. Biotechnol Genet Eng Rev 2018; 34:90-106. [PMID: 29865927 DOI: 10.1080/02648725.2018.1471642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.
Collapse
Affiliation(s)
- Christopher Isaac
- a Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases , Cumming School of Medicine, University of Calgary , Calgary , Canada.,c DiscoveryLab, Faculty of Medicine & Dentistry , University of Alberta , Edmonton , Canada
| | - Athanasios Zovoilis
- a Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , Canada
| |
Collapse
|
34
|
Quan H, Fan Q, Li C, Wang YY, Wang L. The transcriptional profiles and functional implications of long non-coding RNAs in the unfolded protein response. Sci Rep 2018; 8:4981. [PMID: 29563563 PMCID: PMC5862980 DOI: 10.1038/s41598-018-23289-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/08/2018] [Indexed: 01/03/2023] Open
Abstract
The unfolded protein response (UPR) is activated, when the folding capacity is compromised in the endoplasmic reticulum (ER). To date, most studies focused on the coding genes and microRNAs in UPR. Other non-coding RNAs affected by UPR and their roles in UPR have not been systematically studied. Long noncoding RNAs (lncRNAs) are increasingly recognized as powerful epigenetic regulators. In this study, we transcriptomically profiled the lncRNAs and mRNAs from mouse embryonic fibroblasts under ER stress, and identified many differentially expressed lncRNAs and mRNAs. Genomic location and mRNA-lncRNA co-expression analyses predicted a number of lncRNAs, which potentially regulate the expression of UPR genes. In particular, FR229754, an exonic sense lncRNA, is significantly up-regulated in UPR. FR229754 overlaps with Sel1l, and their expressions correlated with each other. Sel1l is involved in the ER-associated protein degradation. Silencing of FR229754 did not much affect the expression of Sel1l, but markedly reduced the levels of BiP/GRP78/Hspa5, a major ER chaperon up-regulated in UPR. Probing with pathway-specific inhibitors showed that up-regulation of FR229754 and Sel1 depended on the activation of PERK. Together, our study identified a number of candidate lncRNAs and paved the way for future characterization of their functions in UPR.
Collapse
Affiliation(s)
- Hongyang Quan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.,Patent Examination Corporation, State Intellectual Property Office, 2028 Tianfu Avenue South, Chengdu, 610213, China
| | - Qianqian Fan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.,National Research Institute for Family Planning, 12 Da Hui Si, Beijing, 100080, China
| | - Chuang Li
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Yan-Ying Wang
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Lin Wang
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.
| |
Collapse
|
35
|
Knap P, Tebaldi T, Di Leva F, Biagioli M, Dalla Serra M, Viero G. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections? Toxins (Basel) 2017; 9:E357. [PMID: 29469820 PMCID: PMC5705972 DOI: 10.3390/toxins9110357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells-i.e., host translation-to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections.
Collapse
Affiliation(s)
- Primoz Knap
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Toma Tebaldi
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Francesca Di Leva
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Marta Biagioli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| |
Collapse
|
36
|
McQuiston A, Diehl JA. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Res 2017; 6:1897. [PMID: 29152224 PMCID: PMC5664976 DOI: 10.12688/f1000research.12138.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2017] [Indexed: 12/28/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved stress response to intra- and extracellular conditions that disrupt endoplasmic reticulum (ER) protein-folding capacity. The UPR is engaged by a variety of disease conditions, including most cancers as well as both metabolic and neurodegenerative disorders. Three transmembrane transducers—PERK, IRE1, and ATF6—are responsible for activating downstream signaling pathways that mediate the UPR and subsequent stress response pathways. PERK, an ER resident transmembrane protein kinase, initiates both pro-apoptotic and pro-survival signaling pathways. In the context of neoplasia, PERK and its downstream targets alter gene expression that can be both pro- and anti-tumorigenic. In this review, we discuss recent advances in understanding how canonical and non-canonical PERK-mediated signaling pathways influence cell fate, tumor progression, and tumor suppression and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
37
|
McMahon M, Samali A, Chevet E. Regulation of the unfolded protein response by noncoding RNA. Am J Physiol Cell Physiol 2017. [DOI: 10.1152/ajpcell.00293.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are exposed to various intrinsic and extrinsic stresses in both physiological and pathological conditions. To adapt to those conditions, cells have evolved various mechanisms to cope with the disturbances in protein demand, largely through the unfolded protein response (UPR) in the endoplasmic reticulum (ER), but also through the integrated stress response (ISR). Both responses initiate downstream signaling to transcription factors that, in turn, trigger adaptive programs and/or in the case of prolonged stress, cell death mechanisms. Recently, noncoding RNAs, including microRNA and long noncoding RNA, have emerged as key players in the stress responses. These noncoding RNAs act as both regulators and effectors of the UPR and fine-tune the output of the stress signaling pathways. Although much is known about the UPR and the cross talk that exists between pathways, the contribution of small noncoding RNA has not been fully assessed. Herein we bring together and review the current known functions of noncoding RNA in regulating adaptive pathways in both physiological and pathophysiological conditions, illustrating how they operate within the known UPR functions and contribute to diverse cellular outcomes.
Collapse
Affiliation(s)
- Mari McMahon
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eric Chevet
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
| |
Collapse
|
38
|
Abstract
Massive studies have indicated that long non-coding RNAs (lncRNAs) are critical for the regulation of cellular biological processes by binding with RNA-related proteins. However, only a few experimentally supported lncRNA-protein associations have been reported. Existing network-based methods are typically focused on intrinsic features of lncRNA and protein but ignore the information implicit in the topologies of biological networks associated with lncRNAs. Considering the limitations in previous methods, we propose PLPIHS, an effective computational method for Predicting lncRNA-Protein Interactions using HeteSim Scores. PLPIHS uses the HeteSim measure to calculate the relatedness score for each lncRNA-protein pair in the heterogeneous network, which consists of lncRNA-lncRNA similarity network, lncRNA-protein association network and protein-protein interaction network. An SVM classifier to predict lncRNA-protein interactions is built with the HeteSim scores. The results show that PLPIHS performs significantly better than the existing state-of-the-art approaches and achieves an AUC score of 0.97 in the leave-one-out validation test. We also compare the performances of networks with different connectivity density and find that PLPIHS performs well across all the networks. Furthermore, we use the proposed method to identify the related proteins for lncRNA MALAT1. Highly-ranked proteins are verified by the biological studies and demonstrate the effectiveness of our method.
Collapse
|
39
|
Sharma M, Bhattacharyya S, Sharma KB, Chauhan S, Asthana S, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cells. J Gen Virol 2017; 98:1027-1039. [DOI: 10.1099/jgv.0.000792] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Manish Sharma
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
- Present address: Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kiran Bala Sharma
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Chauhan
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suramya Asthana
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
40
|
Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death Dis 2017; 8:e2556. [PMID: 28102850 PMCID: PMC5386351 DOI: 10.1038/cddis.2016.394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022]
Abstract
Japanese encephalitis virus (JEV), which is a causative agent of sporadic encephalitis, harbours itself inside the neural stem/progenitor cells. It is a well-known fact that JEV infects neural stem/progenitor cells and decreases their proliferation capacity. With mass spectrometry-based quantitative proteomic study, it is possible to reveal the impact of virus on the stem cells at protein level. Our aim was to perceive the stem cell proteomic response upon viral challenge. We performed a two-dimensional gel electrophoresis-based proteomic study of the human neural stem cells (hNS1 cell line) post JEV infection and found that 13 proteins were differentially expressed. The altered proteome profile of hNS1 cell line revealed sustained endoplasmic reticulum stress, which deteriorated normal cellular activities leading to cell apoptosis. The proteomic changes found in hNS1 cell line were validated in vivo in the subventricular zone of JE infected BALB/c mice. Congruent alterations were also witnessed in multipotent neural precursor cells isolated from human foetus and in autopsy samples of human brain clinically diagnosed as cases of JE patients. Endoplasmic reticulum resident chaperone GRP78, mitochondrial protein Prohibitin and heterogeneous nuclear ribonucleoprotein hnRNPC (C1/C2) have been shown to interact with viral RNA. Hence it is proposed that these are the principle candidates governing endoplasmic reticulum stress-induced apoptosis in JEV infection.
Collapse
|
41
|
Bu Y, Diehl JA. PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development. J Cell Physiol 2016; 231:2088-96. [PMID: 26864318 DOI: 10.1002/jcp.25336] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
Unfolded protein responses (UPR), consisting of three major transducers PERK, IRE1, and ATF6, occur in the midst of a variety of intracellular and extracellular challenges that perturb protein folding in the endoplasmic reticulum (ER). ER stress occurs and is thought to be a contributing factor to a number of human diseases, including cancer, neurodegenerative disorders, and various metabolic syndromes. In the context of neoplastic growth, oncogenic stress resulting from dysregulation of oncogenes such as c-Myc, Braf(V600E) , and HRAS(G12V) trigger the UPR as an adaptive strategy for cancer cell survival. PERK is an ER resident type I protein kinase harboring both pro-apoptotic and pro-survival capabilities. PERK, as a coordinator through its downstream substrates, reprograms cancer gene expression to facilitate survival in response to oncogenes and microenvironmental challenges, such as hypoxia, angiogenesis, and metastasis. Herein, we discuss how PERK kinase engages in tumor initiation, transformation, adaption microenvironmental stress, chemoresistance and potential opportunities, and potential opportunities for PERK targeted therapy. J. Cell. Physiol. 231: 2088-2096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiwen Bu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|