1
|
Takaya K, Kishi K. Identification of a new human senescent skin cell marker ribonucleoside-diphosphate reductase subunit M2 B. Biogerontology 2024; 25:1239-1251. [PMID: 39261410 DOI: 10.1007/s10522-024-10135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
In skin aging, it has been hypothesized that aging fibroblasts accumulate within the epidermal basal layer, dermis, and subcutaneous fat, causing abnormal tissue remodeling and extracellular matrix dysfunction, thereby inducing an aging-related secretory phenotype (SASP). A new treatment for skin aging involves the specific elimination of senescent skin cells, especially fibroblasts within the dermis and keratinocytes in the basal layer. This requires the identification of specific protein markers of senescent cells, such as ribonucleoside-diphosphate reductase subunit M2 B (RRM2B), which is upregulated in various malignancies in response to DNA stress damage. However, the behavior and role of RRM2B in skin aging remain unclear. Therefore, we examined whether RRM2B functions as a senescence marker using a human dermal fibroblast model of aging. In a model of cellular senescence induced by replicative aging and exposure to ionizing radiation or UVB, RRM2B was upregulated at the gene and protein levels. This was correlated with decreased uptake of the senescence-associated β-galactosidase activity and proliferation marker bromodeoxyuridine. RRM2B upregulation was concurrent with the increased expression of SASP factor genes. Furthermore, using fluorescence flow cytometry, RRM2B-positive cells were recovered more frequently in the aging cell population. In aging human skin, RRM2B was also found to be more abundant in the dermis and epidermal basal layer than other proteins. Therefore, RRM2B may serve as a clinical marker to identify senescent skin cells.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Wang M, Yan Y, Liu W, Fan J, Li E, Chen L, Wang X. Proline metabolism is essential for alkaline adaptation of Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 2024; 15:142. [PMID: 39397002 PMCID: PMC11472467 DOI: 10.1186/s40104-024-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products. To enhance the comprehensive utilization capability of saline-alkaline water, it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water. In this study, our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia (Oreochromis niloticus). RESULTS Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism. Meanwhile, to further clarify the role of proline metabolism, RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr (pyrroline-5-carboxylate reductases), the final rate-limiting enzyme in proline synthesis. The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress, and the environmental alkalinity impaired the growth performance of tilapia, and the higher the alkalinity, the greater the impairment. Moreover, environmental alkalinity caused oxidative stress in tilapia, enhanced ion transport, ammonia metabolism, and altered the intensity and form of energy metabolism in tilapia. When the expression level of the pycr gene decreased, the proline metabolism could not operate normally, and the ion transport, antioxidant defense system, and energy metabolism were severely damaged, ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress. CONCLUSIONS The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.
Collapse
Affiliation(s)
- Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxi Yan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinquan Fan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Wu CC, Tam EH, Shih YY, Lin YR, Hsueh PC, Shen HY, Woung CH, Wang LT, Tsai JC, Lin SJ, Chang CR, Ke PY, Kuo RL. Exploration of influenza A virus PA protein-associated cellular proteins discloses its impact on mitochondrial function. Virus Res 2024; 345:199387. [PMID: 38719025 PMCID: PMC11109008 DOI: 10.1016/j.virusres.2024.199387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ee-Hong Tam
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Yin Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ru Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Hsueh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Yi Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chian-Huey Woung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ting Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Chen Tsai
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Yuan Ke
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Zhuang F, Huang S, Liu L. PYCR3 modulates mtDNA copy number to drive proliferation and doxorubicin resistance in triple-negative breast cancer. Int J Biochem Cell Biol 2024; 171:106581. [PMID: 38642827 DOI: 10.1016/j.biocel.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in treatment due to its aggressive nature and limited therapeutic targets. Understanding the underlying molecular mechanisms driving TNBC progression and chemotherapy resistance is imperative for developing effective therapeutic strategies. Thus, in this study, we aimed to elucidate the role of pyrroline-5-carboxylate reductase 3 (PYCR3) in TNBC pathogenesis and therapeutic response. We observed that PYCR3 is significantly upregulated in TNBC specimens compared to normal breast tissues, correlating with a poorer prognosis in TNBC patients. Knockdown of PYCR3 not only suppresses TNBC cell proliferation but also reverses acquired resistance of TNBC cells to doxorubicin, a commonly used chemotherapeutic agent. Mechanistically, we identified the mitochondrial localization of PYCR3 in TNBC cells and demonstrated its impact on TNBC cell proliferation and sensitivity to doxorubicin through the regulation of mtDNA copy number and mitochondrial respiration. Importantly, Selective reduction of mtDNA copy number using the mtDNA replication inhibitor 2', 3'-dideoxycytidine effectively recapitulates the phenotypic effects observed in PYCR3 knockout, resulting in decreased TNBC cell proliferation and the reversal of doxorubicin resistance through apoptosis induction. Thus, our study underscores the clinical relevance of PYCR3 and highlight its potential as a therapeutic target in TNBC management. By elucidating the functional significance of PYCR3 in TNBC, our findings contribute to a deeper understanding of TNBC biology and provide a foundation for developing novel therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Feifei Zhuang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
5
|
Álvarez-Sánchez A, Grinat J, Doria-Borrell P, Mellado-López M, Pedrera-Alcócer É, Malenchini M, Meseguer S, Hemberger M, Pérez-García V. The GPI-anchor biosynthesis pathway is critical for syncytiotrophoblast differentiation and placental development. Cell Mol Life Sci 2024; 81:246. [PMID: 38819479 PMCID: PMC11143174 DOI: 10.1007/s00018-024-05284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
Collapse
Affiliation(s)
- Andrea Álvarez-Sánchez
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Johanna Grinat
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Paula Doria-Borrell
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Maravillas Mellado-López
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Érica Pedrera-Alcócer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta Malenchini
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Salvador Meseguer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
6
|
Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z, Zou L, Chen S, Zhu L, Zhao Q, Zhan G, Ouyang L, Peng C, Han B, Zhang J, Fu L. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther 2024; 9:133. [PMID: 38744811 PMCID: PMC11094072 DOI: 10.1038/s41392-024-01816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Liu
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhichao Fan
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Zou
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Ouyang
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
8
|
Farook MR, Croxford Z, Morgan S, Horlock AD, Holt AK, Rees A, Jenkins BJ, Tse C, Stanton E, Davies DM, Thornton CA, Jones N, Sheldon IM, Vincent EE, Cronin JG. Loss of mitochondrial pyruvate carrier 1 supports proline-dependent proliferation and collagen biosynthesis in ovarian cancer. Mol Metab 2024; 81:101900. [PMID: 38354856 PMCID: PMC10885617 DOI: 10.1016/j.molmet.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.
Collapse
Affiliation(s)
- M Rufaik Farook
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Zack Croxford
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Steffan Morgan
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Anthony D Horlock
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Amy K Holt
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - April Rees
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Carmen Tse
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Emma Stanton
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - D Mark Davies
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom; Department of Oncology, South-West Wales Cancer Centre, Singleton Hospital, Swansea SA2 8QA, UK
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Emma E Vincent
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, SA2 8PP, United Kingdom.
| |
Collapse
|
9
|
Atashi H, Chen Y, Wilmot H, Bastin C, Vanderick S, Hubin X, Gengler N. Single-step genome-wide association analyses for selected infrared-predicted cheese-making traits in Walloon Holstein cows. J Dairy Sci 2023; 106:7816-7831. [PMID: 37567464 DOI: 10.3168/jds.2022-23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to perform genome-wide association study to identify genomic regions associated with milk production and cheese-making properties (CMP) in Walloon Holstein cows. The studied traits were milk yield, fat percentage, protein percentage, casein percentage (CNP), calcium content, somatic cell score (SCS), coagulation time, curd firmness after 30 min from rennet addition, and titratable acidity. The used data have been collected from 2014 to 2020 on 78,073 first-parity (485,218 test-day records), 48,766 second-parity (284,942 test-day records), and 21,948 third-parity (105,112 test-day records) Holstein cows distributed in 671 herds in the Walloon Region of Belgium. Data of 565,533 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA) of 6,617 animals (1,712 males), were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of ∼216 KB) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for positional candidate genes. Heritability estimates for the studied traits ranged from 0.10 (SCS) to 0.53 (CNP), 0.10 (SCS) to 0.50 (CNP), and 0.12 (SCS) to 0.49 (CNP) in the first, second, and third parity, respectively. Genome-wide association analyses identified 6 genomic regions (BTA1, BTA14 [4 regions], and BTA20) associated with the considered traits. Genes including the SLC37A1 (BTA1), SHARPIN, MROH1, DGAT1, FAM83H, TIGD5, MROH6, NAPRT, ADGRB1, GML, LYPD2, JRK (BTA14), and TRIO (BTA20) were identified as positional candidate genes for the studied CMP. The findings of this study help to unravel the genomic background of a cow's ability for cheese production and can be used for the future implementation and use of genomic evaluation to improve the cheese-making traits in Walloon Holstein cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - C Bastin
- National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
10
|
Su M, Lin X, Xiao Z, She Y, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Genome-Wide Association Study of Lactation Traits in Chinese Holstein Cows in Southern China. Animals (Basel) 2023; 13:2545. [PMID: 37570353 PMCID: PMC10417049 DOI: 10.3390/ani13152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Xiaojue Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Zupeng Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
11
|
Bondareva O, Petrova T, Bodrov S, Gavrilo M, Smorkatcheva A, Abramson N. How voles adapt to subterranean lifestyle: Insights from RNA-seq. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Life under the earth surface is highly challenging and associated with a number of morphological, physiological and behavioral modifications. Subterranean niche protects animals from predators, fluctuations in environmental parameters, but is characterized by high levels of carbon dioxide and low levels of oxygen and implies high energy requirements associated with burrowing. Moreover, it lacks most of the sensory inputs available above ground. The current study describes results from RNA-seq analysis of four subterranean voles from subfamily Arvicolinae: Prometheomys schaposchnikowi, Ellobius lutescens, Terricola subterraneus, and Lasiopodomys mandarinus. Original RNA-seq data were obtained for eight species, for nine species, SRA data were downloaded from the NCBI SRA database. Additionally assembled transcriptomes of Mynomes ochrogaster and Cricetulus griseus were included in the analysis. We searched for the selection signatures and parallel amino acid substitutions in a total of 19 species. Even within this limited data set, we found significant changes of dN/dS ratio by free-ratio model analysis for subterranean Arvicolinae. Parallel substitutions were detected in genes RAD23B and PYCR2. These genes are associated with DNA repair processes and response to oxidative stress. Similar substitutions were discovered in the RAD23 genes for highly specialized subterranean Heterocephalus glaber and Fukomys damarensis. The most pronounced signatures of adaptive evolution related to subterranean niche within species of Arvicolinae subfamily were detected for Ellobius lutescens. Our results suggest that genomic adaptations can occur very quickly so far as the amount of selection signatures was found to be compliant with the degree of specialization to the subterranean niche and independent from the evolutionary age of the taxon. We found that the number of genomic signatures of selection does not depend on the age of the taxon, but is positively correlated with the degree of specialization to the subterranean niche.
Collapse
|
12
|
Daudu OI, Meeks KR, Zhang L, Seravalli J, Tanner JJ, Becker DF. Functional Impact of a Cancer-Related Variant in Human Δ 1-Pyrroline-5-Carboxylate Reductase 1. ACS OMEGA 2023; 8:3509-3519. [PMID: 36713721 PMCID: PMC9878632 DOI: 10.1021/acsomega.2c07788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 05/23/2023]
Abstract
Pyrroline-5-carboxylate reductase (PYCR) is a proline biosynthetic enzyme that catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Humans have three PYCR isoforms, with PYCR1 often upregulated in different types of cancers. Here, we studied the biochemical and structural properties of the Thr171Met variant of PYCR1, which is found in patients with malignant melanoma and lung adenocarcinoma. Although PYCR1 is strongly associated with cancer progression, characterization of a PYCR1 variant in cancer patients has not yet been reported. Thr171 is conserved in all three PYCR isozymes and is located near the P5C substrate binding site. We found that the amino acid replacement does not affect thermostability but has a profound effect on PYCR1 catalytic activity. The k cat of the PYCR1 variant T171M is 100- to 200-fold lower than wild-type PYCR1 when P5C is the variable substrate, and 10- to 25-fold lower when NAD(P)H is varied. A 1.84 Å resolution X-ray crystal structure of T171M reveals that the Met side chain invades the P5C substrate binding site, suggesting that the catalytic defect is due to steric clash preventing P5C from achieving the optimal pose for hydride transfer from NAD(P)H. These results suggest that any impact on PYCR1 function associated with T171M in cancer does not derive from increased catalytic activity.
Collapse
Affiliation(s)
- Oseeyi I. Daudu
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska, Lincoln, Nebraska 68588, United States
| | - Kaylen R. Meeks
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Lu Zhang
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska, Lincoln, Nebraska 68588, United States
| | - Javier Seravalli
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska, Lincoln, Nebraska 68588, United States
| | - John J. Tanner
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department
of Biochemistry, Redox Biology Center, University
of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
13
|
Li Z, Liu J, Fu H, Li Y, Liu Q, Song W, Zeng M. SENP3 affects the expression of PYCR1 to promote bladder cancer proliferation and EMT transformation by deSUMOylation of STAT3. Aging (Albany NY) 2022; 14:8032-8045. [PMID: 36227136 PMCID: PMC9596220 DOI: 10.18632/aging.204333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 12/09/2022]
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including bladder cancer (BC). In our study, we examined the regulation of STAT3 post-translational modifications (PTMs) and found that SENP3 is high in bladder cancer. Sentrin/SUMO-specific protease3 (SENP3) and STAT3 were highly expressed in BC tissues when compared with tissue adjacent to carcinoma. SENP3 induced STAT3 protein level and p-STAT3 translocating into nuclear through deSUMOylation of STAT3. Further, nuclear STAT3, as a transcriptional activity factor, promoted pyrroline-5-carboxylate reductase 1 PYCR1 gene and protein level by interacting with the promoter of (PYCR1). Next, we found that knockdown of PYCR1 inhibited Epithelial to mesenchymal transition of bladder cancer, and simultaneously mitigated the carcinogenic effects of STAT3. In vitro, STAT3 knockdown in bladder cancer cells inhibited cell proliferation, migration, and invasion. In contrast, SENP3 overexpression reversed these effects. In all, results lend novel insights into the regulation of STAT3, which has key roles in bladder cancer progression.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Jian Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Huifeng Fu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Qiang Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Mingqiang Zeng
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| |
Collapse
|
14
|
Kwon HN, Kurtzeborn K, Iaroshenko V, Jin X, Loh A, Escande-Beillard N, Reversade B, Park S, Kuure S. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism. Development 2022; 149:276992. [PMID: 36189831 PMCID: PMC9641663 DOI: 10.1242/dev.200986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vladislav Iaroshenko
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Abigail Loh
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore
| | - Nathalie Escande-Beillard
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Bruno Reversade
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Medical Genetics Department, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland,GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Author for correspondence ()
| |
Collapse
|
15
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
16
|
A BioID-Derived Proximity Interactome for SARS-CoV-2 Proteins. Viruses 2022; 14:v14030611. [PMID: 35337019 PMCID: PMC8951556 DOI: 10.3390/v14030611] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the SARS-CoV-2 virus–host interactome in human lung cancer-derived cells. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are associated with SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public access and continued analysis of host–viral protein associations and whole-cell proteomes of cells expressing the viral–BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions by comparing this study with previous reports, providing a strong foundation for future follow-up studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.
Collapse
|
17
|
Hu CAA. Isozymes of P5C reductase (PYCR) in human diseases: focus on cancer. Amino Acids 2021; 53:1835-1840. [PMID: 34291342 DOI: 10.1007/s00726-021-03048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Δ1-Pyrroline-5-carboxylate (P5C) reductase (PYCR or P5CR) catalyzes the conversion of P5C to L-proline (Pro) with concomitant oxidation of a cofactor, NADPH or NADH. Mammalian PYCR have been studied since 1950' and currently three isozymes of human PYCR, 1, 2, and L, have been identified and characterized and their roles in genetic diseases and cancer biology have been keenly investigated. These three isozymes are encoded by three different genes localized at three different chromosomes, and catalyze NAD(P)H-dependent reduction of P5C to Pro important for the transfer of oxidizing potential across the mitochondrion and cell. The review summarizes the current understanding of these three human PYCR isozymes and their roles in diseases with a focus on cancer.
Collapse
Affiliation(s)
- Chien-An A Hu
- MSC08 4670, Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
18
|
Bogner AN, Stiers KM, Tanner JJ. Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target. Amino Acids 2021; 53:1817-1834. [PMID: 34003320 PMCID: PMC8599497 DOI: 10.1007/s00726-021-02999-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Proline metabolism features prominently in the unique metabolism of cancer cells. Proline biosynthetic genes are consistently upregulated in multiple cancers, while the proline catabolic enzyme proline dehydrogenase has dual, context-dependent pro-cancer and pro-apoptotic functions. Furthermore, the cycling of proline and Δ1-pyrroline-5-carboxylate through the proline cycle impacts cellular growth and death pathways by maintaining redox homeostasis between the cytosol and mitochondria. Here we focus on the last enzyme of proline biosynthesis, Δ1-pyrroline-5-carboxylate reductase, known as PYCR in humans. PYCR catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to proline and forms the reductive half of the proline metabolic cycle. We review the research on the three-dimensional structure, biochemistry, inhibition, and cancer biology of PYCR. To provide a global view of PYCR gene upregulation in cancer, we mined RNA transcript databases to analyze differential gene expression in 28 cancer types. This analysis revealed strong, widespread upregulation of PYCR genes, especially PYCR1. Altogether, the research over the past 20 years makes a compelling case for PYCR as a cancer therapy target. We conclude with a discussion of some of the major challenges for the field, including developing isoform-specific inhibitors, elucidating the function of the long C-terminus of PYCR1/2, and characterizing the interactome of PYCR.
Collapse
Affiliation(s)
- Alexandra N Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
19
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
20
|
Zhang T, Liu Y, Liu W, Li Q, Hou W, Huang Y, Lv P, Meng L, Li Y, Jia Y, Liu X, Zuo Z. Increased PYCR1 mRNA predicts poor prognosis in kidney adenocarcinoma: A study based on TCGA database. Medicine (Baltimore) 2021; 100:e27145. [PMID: 34559102 PMCID: PMC8462611 DOI: 10.1097/md.0000000000027145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The pyrroline-5-carboxylate reductase 1 (PYCR1) plays important roles in cancers, but its contribution to adenocarcinoma of the kidney (AK) and the potential mechanism remain to be clarified. In this study, we aimed to demonstrate the relationship between PYCR1 mRNA and AK based on The Cancer Genome Atlas database.PYCR1 mRNA in AK and normal tissues was compared using Wilcoxon rank sum test. The relationship between PYCR1 mRNA and clinicopathological characters was evaluated using logistic regression. The association between PYCR1 mRNA and survival rate was evaluated using Kaplan-Meier test and Cox regression of univariate and multivariate analysis. Additionally, Gene Set Enrichment Analysis was conducted to annotate the biological function of PYCR1 mRNA.Increased PYCR1 mRNA was found in AK tissues. Increased PYCR1 mRNA was related to high histologic grade, clinical stage, and lymph node and distant metastasis. Kaplan-Meier survival analysis and univariate analysis showed that AK patients with increased PYCR1 mRNA had worse prognosis than those without. PYCR1 mRNA remained independently associated with overall survival (HR: 1.34; 95% CI: 1.07-1.66; P = .009) in multivariate analysis. The Gene Set Enrichment Analysis suggested that ribosome, proteasome, inhibition of p53 signaling pathway, extracellular matrix receptor interaction, and homologous recombination were differentially enriched in increased PYCR1 mRNA phenotype.Increased PYCR1 mRNA is a potential marker in patients with AK. More importantly, p53 pathway, ribosome, proteasome, extracellular matrix receptor interaction, and homologous are differentially enriched in AK patients with increased PYCR1 mRNA.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Liu
- Department of Emergency, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Qunwang Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wei Hou
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Huang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lu Meng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yinhua Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yunge Jia
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
May DG, Martin-Sancho L, Anschau V, Liu S, Chrisopulos RJ, Scott KL, Halfmann CT, Peña RD, Pratt D, Campos AR, Roux KJ. A BioID-derived proximity interactome for SARS-CoV-2 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34580671 PMCID: PMC8475972 DOI: 10.1101/2021.09.17.460814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here we use BioID to map the SARS-CoV-2 virus-host interactome using human lung cancer derived A549 cells expressing individual SARS-CoV-2 viral proteins. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are in association with SARS-CoV-2 proteins. We have also established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Collectively, these studies provide a valuable resource to potentially uncover novel SARS-CoV-2 biology and inform development of antivirals.
Collapse
|
22
|
Kay EJ, Koulouras G, Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front Oncol 2021; 11:719922. [PMID: 34513697 PMCID: PMC8429785 DOI: 10.3389/fonc.2021.719922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as 'wounds that do not heal'. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.
Collapse
Affiliation(s)
- Emily J. Kay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Li Y, Bie J, Song C, Liu M, Luo J. PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids 2021; 53:1841-1850. [PMID: 34273023 DOI: 10.1007/s00726-021-03047-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
Pyrroline-5-carboxylate reductase (PYCR), the last enzyme in proline synthesis that converts P5C into proline, was found promoting cancer growth and inhibiting apoptosis through multiple approaches, including regulating cell cycle and redox homeostasis, and promoting growth signaling pathways. Proline is abnormally up-regulated in multiple cancers and becomes one of the critical players in the reprogramming of cancer metabolism. As the last key enzymes in proline generation, PYCRs have been the subject of many investigations, and have been demonstrated to play an indispensable role in promoting tumorigenesis and cancer progression. In this article, we will thoroughly review the recent investigations on PYCRs in cancer development.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing, 100191, China. .,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China. .,Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
24
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
26
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
27
|
Chen S, Zhang X, Nie Y, Li H, Chen W, Lin W, Chen F, Xie Q. African Swine Fever Virus Protein E199L Promotes Cell Autophagy through the Interaction of PYCR2. Virol Sin 2021; 36:196-206. [PMID: 33830435 PMCID: PMC8027715 DOI: 10.1007/s12250-021-00375-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
African swine fever virus (ASFV), as a member of the large DNA viruses, may regulate autophagy and apoptosis by inhibiting programmed cell death. However, the function of ASFV proteins has not been fully elucidated, especially the role of autophagy in ASFV infection. One of three Pyrroline-5-carboxylate reductases (PYCR), is primarily involved in conversion of glutamate to proline. Previous studies have shown that depletion of PYCR2 was related to the induction of autophagy. In the present study, we found for the first time that ASFV E199L protein induced a complete autophagy process in Vero and HEK-293T cells. Through co-immunoprecipitation coupled with mass spectrometry (CoIP-MS) analysis, we firstly identified that E199L interact with PYCR2 in vitro. Importantly, our work provides evidence that E199L down-regulated the expression of PYCR2, resulting in autophagy activation. Overall, our results demonstrate that ASFV E199L protein induces complete autophagy through interaction with PYCR2 and down-regulate the expression level of PYCR2, which provide a valuable reference for the role of autophagy during ASFV infection and contribute to the functional clues of PYCR2.
Collapse
Affiliation(s)
- Sheng Chen
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Yu Nie
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Ding Z, Ericksen RE, Lee QY, Han W. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids 2021; 53:1807-1815. [PMID: 33646427 DOI: 10.1007/s00726-021-02961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
Collapse
Affiliation(s)
- Zhaobing Ding
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Russell E Ericksen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Qian Yi Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore.
| |
Collapse
|
29
|
Drastichova Z, Rudajev V, Pallag G, Novotny J. Proteome profiling of different rat brain regions reveals the modulatory effect of prolonged maternal separation on proteins involved in cell death-related processes. Biol Res 2021; 54:4. [PMID: 33557947 PMCID: PMC7871601 DOI: 10.1186/s40659-021-00327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Early-life stress in the form of maternal separation can be associated with alterations in offspring neurodevelopment and brain functioning. Here, we aimed to investigate the potential impact of prolonged maternal separation on proteomic profiling of prefrontal cortex, hippocampus and cerebellum of juvenile and young adult rats. A special attention was devoted to proteins involved in the process of cell death and redox state maintenance. Methods Long-Evans pups were separated from their mothers for 3 h daily over the first 3 weeks of life (during days 2–21 of age). Brain tissue samples collected from juvenile (22-day-old) and young adult (90-day-old) rats were used for label-free quantitative (LFQ) proteomic analysis. In parallel, selected oxidative stress markers and apoptosis-related proteins were assessed biochemically and by Western blot, respectively. Results In total, 5526 proteins were detected in our proteomic analysis of rat brain tissue. Approximately one tenth of them (586 proteins) represented those involved in cell death processes or regulation of oxidative stress balance. Prolonged maternal separation caused changes in less than half of these proteins (271). The observed alterations in protein expression levels were age-, sex- and brain region-dependent. Interestingly, the proteins detected by mass spectrometry that are known to be involved in the maintenance of redox state were not markedly altered. Accordingly, we did not observe any significant differences between selected oxidative stress markers, such as the levels of hydrogen peroxide, reduced glutathione, protein carbonylation and lipid peroxidation in brain samples from rats that underwent maternal separation and from the corresponding controls. On the other hand, a number of changes were found in cell death-associated proteins, mainly in those involved in the apoptotic and autophagic pathways. However, there were no detectable alterations in the levels of cleaved products of caspases or Bcl-2 family members. Taken together, these data indicate that the apoptotic and autophagic cell death pathways were not activated by maternal separation either in adolescent or young adult rats. Conclusion Prolonged maternal separation can distinctly modulate expression profiles of proteins associated with cell death pathways in prefrontal cortex, hippocampus and cerebellum of juvenile rats and the consequences of early-life stress may last into adulthood and likely participate in variations in stress reactivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00327-5.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gergely Pallag
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
30
|
Transcriptome Analysis of Porcine Granulosa Cells in Healthy and Atretic Follicles: Role of Steroidogenesis and Oxidative Stress. Antioxidants (Basel) 2020; 10:antiox10010022. [PMID: 33379347 PMCID: PMC7824097 DOI: 10.3390/antiox10010022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
One of the main causes of female infertility is a deregulated antral follicular atresia, a process of which the underlying molecular mechanisms are largely unknown. Our objective was therefore to characterize the complex transcriptome changes in porcine granulosa cells of healthy antral (HA) and advanced antral atretic (AA) follicles, using ELISA and RNA-Seq followed by qRT-PCR and immunohistochemistry. Granulosa cell RNA-Seq data revealed 2160 differentially expressed genes, 1483 with higher and 677 with lower mRNA concentrations in AA follicles. Bioinformatic analysis showed that the upregulated genes in AA follicles were highly enriched in inflammation and apoptosis processes, while the downregulated transcripts were mainly highlighted in the steroid biosynthesis pathway and response to oxidative stress processes including antioxidant genes (e.g., GSTA1, GCLC, GCLM, IDH1, GPX8) involved in the glutathione metabolism pathway and other redox-related genes (e.g., RRM2B, NDUFS4). These observations were confirmed by RT-qPCR and immunohistochemistry. Additionally, the granulosa cells of AA follicles express significantly stronger 8-OHdG immunostaining, a marker of oxidative DNA damage, implicating that oxidative stress may participate in follicular atresia. We hypothesize that the decrease in anti-apoptotic factors and steroid hormones coincides with increased oxidative stress markers and the expression of pro-apoptotic factors, all contributing to antral follicular atresia.
Collapse
|
31
|
Lin S, Wan Z, Zhang J, Xu L, Han B, Sun D. Genome-Wide Association Studies for the Concentration of Albumin in Colostrum and Serum in Chinese Holstein. Animals (Basel) 2020; 10:ani10122211. [PMID: 33255903 PMCID: PMC7759787 DOI: 10.3390/ani10122211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Albumin can be of particular benefit in fighting infections for newborn calves due to its anti-inflammatory and anti-oxidative stress properties. To identify the candidate genes related to the concentration of albumin in colostrum and serum, we collected the colostrum and blood samples from 572 Chinese Holstein cows within 24 h after calving and measured the concentration of albumin in the colostrum and serum using the ELISA methods. The cows were genotyped with GeneSeek 150 K chips (containing 140,668 single nucleotide polymorphisms; SNPs). After quality control, we performed GWASs via GCTA software with 91,620 SNPs and 563 cows. Consequently, 9 and 7 genome-wide significant SNPs (false discovery rate (FDR) at 1%) were identified. Correspondingly, 42 and 206 functional genes that contained or were approximate to (±1 Mbp) the significant SNPs were acquired. Integrating the biological process of these genes and the reported QTLs for immune and inflammation traits in cattle, 3 and 12 genes were identified as candidates for the concentration of colostrum and serum albumin, respectively; these are RUNX1, CBR1, OTULIN,CDK6, SHARPIN, CYC1, EXOSC4, PARP10, NRBP2, GFUS, PYCR3, EEF1D, GSDMD, PYCR2 and CXCL12. Our findings provide important information for revealing the genetic mechanism behind albumin concentration and for molecular breeding of disease-resistance traits in dairy cattle.
Collapse
Affiliation(s)
- Shan Lin
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Zihui Wan
- Stae Key Laboratory of Agriobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Lingna Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
- Correspondence:
| |
Collapse
|
32
|
Ould Amer Y, Hebert-Chatelain E. Insight into the Interactome of Intramitochondrial PKA Using Biotinylation-Proximity Labeling. Int J Mol Sci 2020; 21:ijms21218283. [PMID: 33167377 PMCID: PMC7663848 DOI: 10.3390/ijms21218283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are fully integrated in cell signaling. Reversible phosphorylation is involved in adjusting mitochondrial physiology to the cellular needs. Protein kinase A (PKA) phosphorylates several substrates present at the external surface of mitochondria to maintain cellular homeostasis. However, few targets of PKA located inside the organelle are known. The aim of this work was to characterize the impact and the interactome of PKA located inside mitochondria. Our results show that the overexpression of intramitochondrial PKA decreases cellular respiration and increases superoxide levels. Using proximity-dependent biotinylation, followed by LC-MS/MS analysis and in silico phospho-site prediction, we identified 21 mitochondrial proteins potentially targeted by PKA. We confirmed the interaction of PKA with TIM44 using coimmunoprecipitation and observed that TIM44-S80 is a key residue for the interaction between the protein and the kinase. These findings provide insights into the interactome of intramitochondrial PKA and suggest new potential mechanisms in the regulation of mitochondrial functions.
Collapse
Affiliation(s)
- Yasmine Ould Amer
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Correspondence:
| |
Collapse
|
33
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
34
|
Guo L, Cui C, Wang J, Yuan J, Yang Q, Zhang P, Su W, Bao R, Ran J, Wu C. PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nat Commun 2020; 11:4913. [PMID: 33004813 PMCID: PMC7529891 DOI: 10.1038/s41467-020-18753-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Reprograming of proline metabolism is critical for tumor growth. Here we show that PINCH-1 is highly expressed in lung adenocarcinoma and promotes proline synthesis through regulation of mitochondrial dynamics. Knockout (KO) of PINCH-1 increases dynamin-related protein 1 (DRP1) expression and mitochondrial fragmentation, which suppresses kindlin-2 mitochondrial translocation and interaction with pyrroline-5-carboxylate reductase 1 (PYCR1), resulting in inhibition of proline synthesis and cell proliferation. Depletion of DRP1 reverses PINCH-1 deficiency-induced defects on mitochondrial dynamics, proline synthesis and cell proliferation. Furthermore, overexpression of PYCR1 in PINCH-1 KO cells restores proline synthesis and cell proliferation, and suppresses DRP1 expression and mitochondrial fragmentation. Finally, ablation of PINCH-1 from lung adenocarcinoma in mouse increases DRP1 expression and inhibits PYCR1 expression, proline synthesis, fibrosis and tumor growth. Our results identify a signaling axis consisting of PINCH-1, DRP1 and PYCR1 that regulates mitochondrial dynamics and proline synthesis, and suggest an attractive strategy for alleviation of tumor growth.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qingyang Yang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ping Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wen Su
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
| | - Ruolu Bao
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
| | - Jingchao Ran
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
35
|
Recurrent sequence evolution after independent gene duplication. BMC Evol Biol 2020; 20:98. [PMID: 32770961 PMCID: PMC7414715 DOI: 10.1186/s12862-020-01660-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Convergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa. Results We develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3. Conclusions The presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.
Collapse
|
36
|
Xiao S, Li S, Yuan Z, Zhou L. Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to gastric cancer progression and indicates poor survival outcome. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:937. [PMID: 32953737 PMCID: PMC7475402 DOI: 10.21037/atm-19-4402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Proline levels are significantly increased in tumor specimens and urine samples from gastric cancer (GC) patients, and we previously showed that intracellular proline levels significantly differ between human GC cell lines and normal gastric epithelial cells. Pyrroline-5-carboxylate reductase 1 (PYCR1) is the key enzyme in intracellular proline synthesis, but its role in GC remains largely unknown. Methods Bioinformatic analysis and immunohistochemical (IHC) staining with a tissue microarray were conducted to assess the association between PYCR1 expression and clinical parameters. PYCR1 downregulation and overexpression were then established in two GC cell lines (AGS and MKN28 cells) to determine whether PYCR1 promotes malignant behavior in GC. Gene set enrichment analysis (GSEA) was further performed to investigate the pathway regulating PYCR1 in GC. Results PYCR1 expression was up-regulated in different GC cohorts. High PYCR1 protein expression was correlated with advanced tumor stage, aggressive histological type and high Ki-67 index. High PYCR1 expression in GC tissues was an indicator of poor outcome in GC patients. In vitro, PYCR1 knockdown markedly attenuated GC cells growth and promoted apoptosis, while overexpression produced the opposite effects. GSEA analysis indicated PI3K/Akt axis was strongly correlated with PYCR1 expression and that PIK3CB and AKT1 mRNA expression was positively associated with PYCR1 in GC tissues. PI3K inhibition further significantly reduced PYCR1 mRNA and protein expression. Moreover, as PYCR1 is a mitochondrial endomembrane protein, nutrient stress induced by glucose deprivation also regulated PYCR1 expression. Conclusions PYCR1 is highly expressed in GC and acts as a mitochondrial oncogene to induce cancer progression by enhancing tumor proliferation and responding to metabolic stress. PYCR1 is a novel prognostic marker and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Sizhu Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Ziying Yuan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
37
|
Escande-Beillard N, Loh A, Saleem SN, Kanata K, Hashimoto Y, Altunoglu U, Metoska A, Grandjean J, Ng FM, Pomp O, Baburajendran N, Wong J, Hill J, Beillard E, Cozzone P, Zaki M, Kayserili H, Hamada H, Shiratori H, Reversade B. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron 2020; 107:82-94.e6. [PMID: 32330411 DOI: 10.1016/j.neuron.2020.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients.
Collapse
Affiliation(s)
- Nathalie Escande-Beillard
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey.
| | - Abigail Loh
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sahar N Saleem
- Radiology Department, Kasr Al Ainy Faculty of Medicine - Cairo University, El Manial, Cairo 11956, Egypt
| | - Kohei Kanata
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yui Hashimoto
- Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Artina Metoska
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Fui Mee Ng
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Oz Pomp
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore
| | | | - Joyner Wong
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, A(∗)STAR, Singapore 138669, Singapore
| | | | - Patrick Cozzone
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, A(∗)STAR, Singapore 138667, Singapore
| | - Maha Zaki
- Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Division of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Bruno Reversade
- Institute of Medical Biology, Human Genetics and Embryology Laboratory, A(∗)STAR, Singapore 138648, Singapore; Genome Institute of Singapore, A∗STAR, Singapore 138672, Singapore; Institute of Molecular and Cellular Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Istanbul, Turkey; Department of Paediatrics, National University of Singapore, Singapore 119260, Singapore.
| |
Collapse
|
38
|
Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, Yoo JS, Yu C, Feng P, Gao SJ, Chen S, Eoh H, Jung JU. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:8083-8093. [PMID: 32213586 PMCID: PMC7149499 DOI: 10.1073/pnas.1918607117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesis PYCR gene and proline degradation PRODH gene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion of PYCR expression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, 30019 Sejong, South Korea
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ji-Seung Yoo
- Department of Immunology, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Claire Yu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- University of Pittsburgh Medical Center (UPMC), Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
- Laboratory of Human Virology and Oncology, Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
39
|
Yan K, Xu X, Wu T, Li J, Cao G, Li Y, Ji Z. Knockdown of PYCR1 inhibits proliferation, drug resistance and EMT in colorectal cancer cells by regulating STAT3-Mediated p38 MAPK and NF-κB signalling pathway. Biochem Biophys Res Commun 2019; 520:486-491. [PMID: 31606203 DOI: 10.1016/j.bbrc.2019.10.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
PYCR1 exerts an important role in various cancers, but its effect on colorectal cancer (CRC) and the potential mechanism remain to be clarified. In this study, we aimed to explore the effect of PYCR1 on CRC and further explore the special molecular mechanism. The expression of PYCR1 in CRC tissues and cells was analysed by RT-PCR assay. Cell proliferation was explored using an MTT assay. A CoIP assay was performed to determine the binding activity of PYCR1 and STAT3. Western blot was used to measure the protein expression of P-gp, MRP1, E-cadherin and vimentin. The results revealed that PYCR1 is highly expressed in CRC tissues and cells. PYCR1-siRNA inhibited the proliferation, drug resistance and epithelial-mesenchymal transition (EMT) of CRC cells. The CoIP assay result demonstrated that PYCR1 interacts directly with STAT3, and STAT3 overexpression partly reverses the effect of PYCR1 on proliferation, drug resistance and EMT of CRC cells. What is more, si-PYCR1 inhibited STAT3-mediated p38 MAPK and NF-κB signalling pathways. Collectively, it suggests that knockdown of PYCR1 inhibits proliferation, drug resistance and EMT potentially by regulating STAT3-mediated p38 MAPK and NF-κB signalling pathways in CRC cells.
Collapse
Affiliation(s)
- Kun Yan
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xin Xu
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tao Wu
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Gang Cao
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zongzheng Ji
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
40
|
Kesäniemi J, Jernfors T, Lavrinienko A, Kivisaari K, Kiljunen M, Mappes T, Watts PC. Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Mol Ecol 2019; 28:4620-4635. [PMID: 31498518 PMCID: PMC6900138 DOI: 10.1111/mec.15241] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Wildlife inhabiting environments contaminated by radionuclides face putative detrimental effects of exposure to ionizing radiation, with biomarkers such as an increase in DNA damage and/or oxidative stress commonly associated with radiation exposure. To examine the effects of exposure to radiation on gene expression in wildlife, we conducted a de novo RNA sequencing study of liver and spleen tissues from a rodent, the bank vole Myodes glareolus. Bank voles were collected from the Chernobyl Exclusion Zone (CEZ), where animals were exposed to elevated levels of radionuclides, and from uncontaminated areas near Kyiv, Ukraine. Counter to expectations, we did not observe a strong DNA damage response in animals exposed to radionuclides, although some signs of oxidative stress were identified. Rather, exposure to environmental radionuclides was associated with upregulation of genes involved in lipid metabolism and fatty acid oxidation in the livers - an apparent shift in energy metabolism. Moreover, using stable isotope analysis, we identified that fur from bank voles inhabiting the CEZ had enriched isotope values of nitrogen: such an increase is consistent with increased fatty acid metabolism, but also could arise from a difference in diet or habitat between the CEZ and elsewhere. In livers and spleens, voles inhabiting the CEZ were characterized by immunosuppression, such as impaired antigen processing, and activation of leucocytes involved in inflammatory responses. In conclusion, exposure to low dose environmental radiation impacts pathways associated with immunity and lipid metabolism, potentially as a stress-induced coping mechanism.
Collapse
Affiliation(s)
- Jenni Kesäniemi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Toni Jernfors
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Anton Lavrinienko
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C Watts
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
41
|
Chen YF, Lin IH, Guo YR, Chiu WJ, Wu MS, Jia W, Yen Y. Rrm2b deletion causes mitochondrial metabolic defects in renal tubules. Sci Rep 2019; 9:13238. [PMID: 31519977 PMCID: PMC6744457 DOI: 10.1038/s41598-019-49663-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Renal diseases impose considerable health and economic burdens on health systems worldwide, and there is a lack of efficient methods for the prevention and treatment due to their complexity and heterogeneity. Kidneys are organs with a high demand for energy produced by mitochondria, in which Rrm2b has critical functions as reported. The Rrm2b kidney-specific knockout mice we generated exhibited age-dependent exacerbated features, including mitochondrial dysfunction and increased oxidative stress; additionally, resulted in severe disruption of mitochondria-related metabolism. Rrm2b is vital not only to supply dNTPs for DNA replication and repair, but also to maintain structural integrity and metabolic homeostasis in mitochondria. Thence, Rrm2b deletion might induce chronic kidney defects in mice. This model can facilitate exploration of novel mechanisms and targeted therapies in the kidney diseases and has important translational and clinical implications.
Collapse
Affiliation(s)
- Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Yu-Ru Guo
- Ph.D. Program of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - Wei-Jun Chiu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - Mai-Szu Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, 23561, New Taipei City, Taiwan
| | - Wei Jia
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan. .,Ph.D. Program of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan.
| |
Collapse
|
42
|
Wang QL, Liu L. PYCR1 is Associated with Papillary Renal Cell Carcinoma Progression. Open Med (Wars) 2019; 14:586-592. [PMID: 31428683 PMCID: PMC6698050 DOI: 10.1515/med-2019-0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023] Open
Abstract
Objective We aimed to determine the function of pyrroline-5-carboxylate reductase 1 (PYCR1) on progression of papillary renal cell carcinoma (PRCC) and related mechanism. Methods The TCGA database provided us expression profiles of PYCR1 and overall survival rates. Small interfering RNA (siRNA) was used to knockdown PYCR1; quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were conducted to identify the expression levels of mRNA and protein. The cell counting kit-8 (CCK-8) and colony formation assays were used to explore cell viability in Ketr-3 cells. The migration and invasion of Ketr-3 cells were investigated by transwell assays. Results We found that PYCR1 was over-expressed in PRCC tissues and cells, causing poor outcomes. Moreover, reduction of PYCR1 played a negative role on cell proliferation, migration and invasion in tumor cells. The important Akt/mTOR pathway proteins, phosphorylated Akt (p-Akt) and phosphorylated mTOR (p-mTOR), also showed lower levels compared with control groups. Conclusion These findings showed that disordered expression of PYCR1 could modulate PRCC progression through the Akt/mTOR pathway, implying a theoretical basis for PYCR1 as a potential therapeutic target in future clinical PRCC treatment.
Collapse
Affiliation(s)
- Qiu-Li Wang
- Department of Nephrology, Jining NO.1 People's Hospital, Jining, 272100, Shandong, China
| | - Ling Liu
- Department of Nephrology, Jining NO.1 People's Hospital , No.6 Jiankang Road, Jining, 272100, Shandong, China
| |
Collapse
|
43
|
Weijin F, Zhibin X, Shengfeng Z, Xiaoli Y, Qijian D, Jiayi L, Qiumei L, Yilong C, Hua M, Deyun L, Jiwen C. The clinical significance of PYCR1 expression in renal cell carcinoma. Medicine (Baltimore) 2019; 98:e16384. [PMID: 31305441 PMCID: PMC6641676 DOI: 10.1097/md.0000000000016384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/20/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022] Open
Abstract
Pyrroline-5-carboxylate reductase 1 (PYCR1) is an enzyme involved in cell metabolism and is upregulated in cancer. However, the correlations of PYCR1 expression with the clinicopathological features and prognosis of renal cell carcinoma (RCC) remain unclear. The purpose of this study was to identify the expression of PYCR1 and its clinical relevance in RCC patients.PYCR1 mRNA expression differences between RCC and the adjacent normal renal tissues were assessed using the Cancer Genome Atlas database (TCGA). Subsequently, the expression of PYCR1 mRNA and protein were evaluated by quantitative real-time polymerase chain reaction, Western blot, and immunochemistry using 30 paired frozen samples of RCC and the adjacent normal renal tissues. The protein expression of PYCR1 was evaluated by immunostaining formalin-fixed, paraffin-embedded sections of RCC samples from 96 patients who underwent radical nephrectomy, and its relationship with clinical features were analyzed. Nonpaired t tests were used to statistically analyze the differences between the 2 groups. Cox univariable and multivariable analyses of overall survival (OS) among RCC patients were performed.The expression of PYCR1 mRNA was significantly upregulated in RCC tissues compared to adjacent normal renal tissues in the TCGA database (P < .01). The area under the receiver operating characteristic curve value was 0.748. The expression of PYCR1 mRNA and protein was significantly upregulated in RCC compared with that in paired normal renal tissues (P < .01). Higher PYCR1 levels were associated with metastasis (P < .01). Kaplan-Meier survival curves indicated that higher PYCR1 expression was correlated with poorer OS. Therefore, PYCR1 may act as a novel prognostic marker and therapeutic target in the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Fu Weijin
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Xie Zhibin
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Zheng Shengfeng
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Yang Xiaoli
- Scientific Research Center, GuiLin Medical University, GuiLin
| | - Ding Qijian
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Liu Jiayi
- Department of Pathology, The First Affiliated Hospital of Guang, Xi Medical University, NanNing, GuangXi, China
| | - Liang Qiumei
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Chen Yilong
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Mi Hua
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Liu Deyun
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| | - Cheng Jiwen
- Department of Urology, The First Affiliated Hospital of GuangXi Medical University, NanNing
| |
Collapse
|
44
|
Nguyen C, Pandey S. Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells. Cancers (Basel) 2019; 11:E916. [PMID: 31261935 PMCID: PMC6678564 DOI: 10.3390/cancers11070916] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
The transformation of normal cells to the cancerous stage involves multiple genetic changes or mutations leading to hyperproliferation, resistance to apoptosis, and evasion of the host immune system. However, to accomplish hyperproliferation, cancer cells undergo profound metabolic reprogramming including oxidative glycolysis and acidification of the cytoplasm, leading to hyperpolarization of the mitochondrial membrane. The majority of drug development research in the past has focused on targeting DNA replication, repair, and tubulin polymerization to induce apoptosis in cancer cells. Unfortunately, these are not cancer-selective targets. Recently, researchers have started focusing on metabolic, mitochondrial, and oxidative stress vulnerabilities of cancer cells that can be exploited as selective targets for inducing cancer cell death. Indeed, the hyperpolarization of mitochondrial membranes in cancer cells can lead to selective importing of mitocans that can induce apoptotic effects. Herein, we will discuss recent mitochondrial-selective anticancer compounds (mitocans) that have shown selective toxicity against cancer cells. Increased oxidative stress has also been shown to be very effective in selectively inducing cell death in cancer cells. This oxidative stress could lead to mitochondrial dysfunction, which in turn will produce more reactive oxygen species (ROS). This creates a vicious cycle of mitochondrial dysfunction and ROS production, irreversibly leading to cell suicide. We will also explore the possibility of combining these compounds to sensitize cancer cells to the conventional anticancer agents. Mitocans in combination with selective oxidative-stress producing agents could be very effective anticancer treatments with minimal effect on healthy cells.
Collapse
Affiliation(s)
- Christopher Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada.
| |
Collapse
|
45
|
Liang ST, Audira G, Juniardi S, Chen JR, Lai YH, Du ZC, Lin DS, Hsiao CD. Zebrafish Carrying pycr1 Gene Deficiency Display Aging and Multiple Behavioral Abnormalities. Cells 2019; 8:cells8050453. [PMID: 31091804 PMCID: PMC6562453 DOI: 10.3390/cells8050453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is a natural process that internal gene control and external stimuli mediate. Clinical data pointed out that homozygotic or heterozygotic mutation in the pyrroline-5-carboxylate reductase 1 (PYCR1) gene in humans caused cutis laxa (ARCL) disease, with progeroid appearance, lax and wrinkled skin, joint laxity, osteopenia, and mental retardation phenotypes. In this study, we aimed to generate pycr1 knockout (KO) zebrafish and carried out biochemical characterizations and behavior analyses. Marked apoptosis and senescence were detected in pycr1 KO zebrafish, which started from embryos/larvae stage. Biochemical assays showed that adult pycr1 KO fish have significantly reduced proline and extracellular matrix contents, lowered energy, and diminished superoxide dismutase (SOD) and telomerase activity when compared to the wild type fish, which suggested the pycr1 KO fish may have dysfunction in mitochondria. The pycr1 KO fish were viable; however, displayed progeria-like phenotype from the 4 months old and reach 50% mortality around six months old. In adult stage, we found that pycr1 KO fish showed reduced locomotion activity, aggression, predator avoidance, social interaction interest, as well as dysregulated color preference and circadian rhythm. In summary, we have identified multiple behavioral alterations in a novel fish model for aging with pycr1 gene loss-of-function by behavioral tests. This animal model may not only provide a unique vertebrate model to screen potential anti-aging drugs in the future, but also be an excellent in vivo model towards a better understanding of the corresponding behavioral alterations that accompany aging.
Collapse
Affiliation(s)
- Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Zheng-Cai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
46
|
Spagnoli C, Pavlidis E, Salerno GG, Koskinen L, Kääriäinen H, Frattini D, Koskenvuo JW, Fusco C. Prolonged survival in a patient with a novel pyrroline‐5‐carboxylase reductase 2 genetic variant. Eur J Neurol 2019; 26:e45-e46. [DOI: 10.1111/ene.13817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- C. Spagnoli
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | - E. Pavlidis
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | - G. G. Salerno
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | | | - H. Kääriäinen
- National Institute for Health and Welfare Helsinki Finland
| | - D. Frattini
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | | | - C. Fusco
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
47
|
Guo L, Cui C, Zhang K, Wang J, Wang Y, Lu Y, Chen K, Yuan J, Xiao G, Tang B, Sun Y, Wu C. Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun 2019; 10:845. [PMID: 30783087 PMCID: PMC6381112 DOI: 10.1038/s41467-019-08772-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cell metabolism is strongly influenced by mechano-environment. We show here that a fraction of kindlin-2 localizes to mitochondria and interacts with pyrroline-5-carboxylate reductase 1 (PYCR1), a key enzyme for proline synthesis. Extracellular matrix (ECM) stiffening promotes kindlin-2 translocation into mitochondria and its interaction with PYCR1, resulting in elevation of PYCR1 level and consequent increase of proline synthesis and cell proliferation. Depletion of kindlin-2 reduces PYCR1 level, increases reactive oxygen species (ROS) production and apoptosis, and abolishes ECM stiffening-induced increase of proline synthesis and cell proliferation. In vivo, both kindlin-2 and PYCR1 levels are markedly increased in lung adenocarcinoma. Ablation of kindlin-2 in lung adenocarcinoma substantially reduces PYCR1 and proline levels, and diminishes fibrosis in vivo, resulting in marked inhibition of tumor growth and reduction of mortality rate. Our findings reveal a mechanoresponsive kindlin-2-PYCR1 complex that links mechano-environment to proline metabolism and signaling, and suggest a strategy to inhibit tumor growth.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yilin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixuan Lu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ka Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Bin Tang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ying Sun
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
48
|
Abstract
SIGNIFICANCE It is increasingly clear that proline metabolism plays an important role in metabolic reprogramming, not only in cancer but also in related fields such as aging, senescence, and development. Although first focused on proline catabolism, recent studies from a number of laboratories have emphasized the regulatory effects of proline synthesis and proline cycling. Recent Advances: Although proline dehydrogenase/proline oxidase (PRODH/POX) has been known as a tumor protein 53 (P53)-activated source of redox signaling for initiating apoptosis and autophagy, senescence has been added to the responses. On the biosynthetic side, two well-recognized oncogenes, c-MYC and phosphoinositide 3-kinase (PI3K), markedly upregulate enzymes of proline synthesis; mechanisms affected include augmented redox cycling and maintenance of pyridine nucleotides. The reprogramming has been shown to shift in clonogenesis and/or metastasis. CRITICAL ISSUES Although PRODH/POX generates reactive oxygen species (ROS) for signaling, the cellular endpoint is variable and dependent on metabolic context; the switches for these responses remain unknown. On the synthetic side, the enzymes require more complete characterization in various cancers, and demonstration of coupling of proline metabolites to other pathways may require studies of protein-protein interactions, membrane transporters, and shuttles. FUTURE DIRECTIONS The proline metabolic axis can serve as a scaffold on which a variety of regulatory mechanisms are integrated. Once understood as a central mechanism in cancer metabolism, proline metabolism may be a good target for adjunctive cancer therapy.
Collapse
Affiliation(s)
- James M Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH , Frederick, Maryland
| |
Collapse
|
49
|
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W, Lin DS. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018; 9:1043-1057. [PMID: 30574417 PMCID: PMC6284769 DOI: 10.14336/ad.2018.0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Aging is a complex biological process. A study of pyrroline-5-carboxylate reductase 1 (PYCR1) deficiency, which causes a progeroid syndrome, may not only shed light on its genetic contribution to autosomal recessive cutis laxa (ARCL) but also help elucidate the functional mechanisms associated with aging. In this study, we used RNA-Seq technology to examine gene expression changes in primary skin fibroblasts from healthy controls and patients with PYCR1 mutations. Approximately 22 and 32 candidate genes were found to be up- and downregulated, respectively, in fibroblasts from patients. Among the downregulated candidates in fibroblasts with PYCR1 mutations, a strong reduction in the expression of 17 genes (53.1%) which protein products are localized in the extracellular space was detected. These proteins included several important ECM components, periostin (POSTN), elastin (ELN), and decorin (DCN); genetic mutations in these proteins are associated with different phenotypes of aging, such as cutis laxa and joint and dermal manifestations. The differential expression of ten selected extracellular space genes was further validated using quantitative RT-PCR. Ingenuity Pathway Analysis revealed that some of the affected genes may be associated with cardiovascular system development and function, dermatological diseases and conditions, and cardiovascular disease. POSTN, one of the most downregulated gene candidates in affected individuals, is a matricellular protein with pivotal functions in heart valvulogenesis, skin wound healing, and brain development. Perturbation of PYCR1 expression revealed that it is positively correlated with the POSTN levels. Taken together, POSTN might be one of the key molecules that deserves further investigation for its role in this progeroid neurocutaneous syndrome.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory and Department of Parasitology, Chang Gung University, Taoyuan, Taiwan.
| | - Wailap Victor Ng
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Dar-Shong Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
50
|
Xue L, Liu X, Wang Q, Liu CQ, Chen Y, Jia W, Hsie R, Chen Y, Luh F, Zheng S, Yen Y. Ribonucleotide reductase subunit M2B deficiency leads to mitochondrial permeability transition pore opening and is associated with aggressive clinicopathologic manifestations of breast cancer. Am J Transl Res 2018; 10:3635-3649. [PMID: 30662615 PMCID: PMC6291710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Ribonucleotide reductase small subunit M2B (RRM2B) plays an essential role in maintaining mitochondrial homeostasis. Mitochondrial permeability transition pore (MPTP) is a key regulator of mitochondrial homeostasis. MPTP contributes to cell death and is crucial in cancer progression. RRM2B's relation to MPTP is not well known, and the role of RRM2B in cancer progression is controversial. Here, our aim was to study the role of RRM2B in regulating MPTP and the association between RRM2B and clinicopathological manifestations in breast cancer. Analysis of Rrm2b-/- mice cells found changes consistent with MPTP opening, including mitochondrial swelling and upregulation of cyclophilin D (CypD), a protein that activates MPTP opening. Silencing of RRM2B gene expression in MCF7 and KB cell lines led to MPTP opening. Accordingly, dysfunctional oxidative phosphorylation and elevated superoxide levels were also detected in RRM2B-silenced MCF7 and KB cell lines, which was consistent with the findings by gene set enrichment analysis of 159 breast cancer cases that genes involving respiratory electron transport were enriched in high-RRM2B breast cancer, and genes involving biologic oxidation were enriched in low-RRM2B breast cancers. A metabolomic study revealed that spermine levels in RRM2B-silenced MCF7 and KB cells were only 5% and 8% of control levels, respectively. Addition of exogenous spermine to RRM2B-silenced MCF7 and KB cells was able to reverse the MPTP opening induced by RRM2B deficiency. These results suggest that RRM2B may induce MPTP opening through reducing spermine levels. Immunohistochemical analysis of 148 breast cancer cases showed that RRM2B and CypD protein levels were inversely correlated in breast cancer specimens (P<0.05), so were their associated clinicopathologic parameters that high-level RRM2B expression was associated with better clinicopathological features. We conclude that RRM2B deficiency leads to MPTP opening mediated by spermine. Coupling of low RRM2B and high CypD expression is associated with aggressive manifestations of breast cancer.
Collapse
Affiliation(s)
- Lijun Xue
- Department of Pathology, Loma Linda University Medical CenterLoma Linda, CA 92354, USA
| | - Xiyong Liu
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Qinchuan Wang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
- Surgical Oncology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Charlie Q Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Yunru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Wei Jia
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Ronhong Hsie
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Yifan Chen
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Frank Luh
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Shu Zheng
- Cancer Institute, Zhejiang UniversityHangzhou 310009, Zhejiang, China
| | - Yun Yen
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| |
Collapse
|