1
|
Kim HY, Lee JD, Kim H, Kim Y, Park JJ, Oh SB, Goo H, Cho KJ, Kim KB. Mass spectrometry (MS)-based metabolomics of plasma and urine in dry eye disease (DED)-induced rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:122-135. [PMID: 39185961 DOI: 10.1080/15287394.2024.2393770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Dry eye disease (DED) is an ophthalmic disease associated with poor quality and quantity of tears, and the number of patients is steadily increasing. The aim of this study was to determine plasma and urine metabolites obtained from DED scopolamine animal model where dry eye conditions (DRY) are induced. It was also of interest to examine whether DED (scopolamine) rat model was exacerbated by treatment with benzalkonium chloride (BAC). Subsequently, plasma and urine metabolites were analyzed using liquid chromatography (LC) and gas chromatography (GC)-mass spectrometry (MS), respectively. Data demonstrated that DED indicators such as tear volume, tear breakup time (TBUT), and corneal damage in the DED groups (DRY and BAC group) differed from those of control (CON). Similar results were noted in inflammatory factors such as interleukin (IL-1β), IL-6, and tumor necrosis factor (TNF)-α. In the partial least squares-discriminant analysis (PLS-DA) score plots, the three groups were distinctly separated from each other. In addition, the related metabolites were also associated with these distinct separations as evidenced by 9 and 14 in plasma and urine, respectively. Almost all of the selected metabolites were decreased in the DRY group compared to CON, and the BAC group was lower than the DRY. In plasma and urine, lysophosphatidylcholine/lysophosphatidylethanolamine, organic acids, amino acids, and sugars varied between three groups, and these metabolites were related to inflammation and oxidative stress. Data suggest that treatment with scopolamine with/without BAC-induced DED and affected the level of systemic metabolites involved in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - HongYoon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - YuJin Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jin Ju Park
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Soo Bean Oh
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyeyoon Goo
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, Zúñiga EI. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617124. [PMID: 39416134 PMCID: PMC11483027 DOI: 10.1101/2024.10.07.617124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex STEM ), a subset that generates effector-like Tex INT which directly limit viral replication. Notably, only Tex STEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved Tex STEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced Tex INT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence Tex STEM and viral control during a protracted infection. Significance This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.
Collapse
|
3
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection. Nat Microbiol 2024; 9:2323-2343. [PMID: 38977907 PMCID: PMC11811839 DOI: 10.1038/s41564-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.
Collapse
Affiliation(s)
| | - Kenneth J Wei
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Madeline A Farringer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Raina W Thomas
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Wang Q, Song YX, Wu XD, Luo YG, Miao R, Yu XM, Guo X, Wu DZ, Bao R, Mi WD, Cao JB. Gut microbiota and cognitive performance: A bidirectional two-sample Mendelian randomization. J Affect Disord 2024; 353:38-47. [PMID: 38417715 DOI: 10.1016/j.jad.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
PURPOSE Previous studies have suggested a potential association between gut microbiota and neurological and psychiatric disorders. However, the causal relationship between gut microbiota and cognitive performance remains uncertain. METHODS A two-sample Mendelian randomization (MR) study used SNPs linked to gut microbiota (n = 18,340) and cognitive performance (n = 257,841) from recent GWAS data. Inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode were employed. Heterogeneity was assessed via Cochran's Q test for IVW. Results were shown with funnel plots. Outliers were detected through leave-one-out method. MR-PRESSO and MR-Egger intercept tests were conducted to address horizontal pleiotropy influence. LIMITATIONS Limited to European populations, generic level, and potential confounding factors. RESULTS IVW analysis revealed detrimental effects on cognitive perfmance associated with the presence of genus Blautia (P = 0.013, 0.966[0.940-0.993]), Catenibacterium (P = 0.035, 0.977[0.956-0.998]), Oxalobacter (P = 0.043, 0.979[0.960-0.999]). Roseburia (P < 0.001, 0.935[0.906-0.965]), in particular, remained strongly negatively associated with cognitive performance after Bonferroni correction. Conversely, families including Bacteroidaceae (P = 0.043, 1.040[1.001-1.081]), Rikenellaceae (P = 0.047, 1.026[1.000-1.053]), along with genera including Paraprevotella (P = 0.044, 1.020[1.001-1.039]), Ruminococcus torques group (P = 0.016, 1.062[1.011-1.115]), Bacteroides (P = 0.043, 1.040[1.001-1.081]), Dialister (P = 0.027, 1.039[1.004-1.074]), Paraprevotella (P = 0.044, 1.020[1.001-1.039]) and Ruminococcaceae UCG003 (P = 0.007, 1.040[1.011-1.070]) had a protective effect on cognitive performance. CONCLUSIONS Our results suggest that interventions targeting specific gut microbiota may offer a promising avenue for improving cognitive function in diseased populations. The practical application of these findings has the potential to enhance cognitive performance, thereby improving overall quality of life.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yu-Xiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Dong Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun-Gen Luo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Ran Miao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Meng Yu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Guo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - De-Zhen Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Bao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei-Dong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Lu H, Zheng S, Ma C, Gao X, Ji J, Luo J, Hua H, Cui J. Integrated Omics Analysis Reveals Key Pathways in Cotton Defense against Mirid Bug ( Adelphocoris suturalis Jakovlev) Feeding. INSECTS 2024; 15:254. [PMID: 38667384 PMCID: PMC11049813 DOI: 10.3390/insects15040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
The recent dominance of Adelphocoris suturalis Jakovlev as the primary cotton field pest in Bt-cotton-cultivated areas has generated significant interest in cotton pest control research. This study addresses the limited understanding of cotton defense mechanisms triggered by A. suturalis feeding. Utilizing LC-QTOF-MS, we analyzed cotton metabolomic changes induced by A. suturalis, and identified 496 differential positive ions (374 upregulated, 122 downregulated) across 11 categories, such as terpenoids, alkaloids, phenylpropanoids, flavonoids, isoflavones, etc. Subsequent iTRAQ-LC-MS/MS analysis of the cotton proteome revealed 1569 differential proteins enriched in 35 metabolic pathways. Integrated metabolome and proteome analysis highlighted significant upregulation of 17 (89%) proteases in the α-linolenic acid (ALA) metabolism pathway, concomitant with a significant increase in 14 (88%) associated metabolites. Conversely, 19 (73%) proteases in the fructose and mannose biosynthesis pathway were downregulated, with 7 (27%) upregulated proteases corresponding to the downregulation of 8 pathway-associated metabolites. Expression analysis of key regulators in the ALA pathway, including allene oxidase synthase (AOS), phospholipase A (PLA), allene oxidative cyclase (AOC), and 12-oxophytodienoate reductase3 (OPR3), demonstrated significant responses to A. suturalis feeding. Finally, this study pioneers the exploration of molecular mechanisms in the plant-insect relationship, thereby offering insights into potential novel control strategies against this cotton pest.
Collapse
Affiliation(s)
- Hui Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Green Agricultural Products Safety and Warning Laboratory, Research Center of Soil Resource Comprehensive Utilization and Ecological Environment in Western Inner Mongolia, Hetao College, Bayannur 015000, China
| | - Shuaichao Zheng
- Henan Institute of Science and Technology, College of Life Science, Hualan St. 90, Xinxiang 453003, China;
| | - Chao Ma
- Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China;
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| |
Collapse
|
6
|
Han RX, Jiang PC, Han B, Zhou HY, Wang YL, Guan JY, Liu ZR, He SY, Zhou CX. Anti-Toxoplasma gondii effect of tylosin in vitro and in vivo. Parasit Vectors 2024; 17:59. [PMID: 38341599 PMCID: PMC10858492 DOI: 10.1186/s13071-024-06157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an important protozoan pathogen with medical and veterinary importance worldwide. Drugs currently used for treatment of toxoplasmosis are less effective and sometimes cause serious side effects. There is an urgent need for the development of more effective drugs with relatively low toxicity. METHODS The effect of tylosin on the viability of host cells was measured using CCK8 assays. To assess the inhibition of tylosin on T. gondii proliferation, a real-time PCR targeting the B1 gene was developed for T. gondii detection and quantification. Total RNA was extracted from parasites treated with tylosin and then subjected to transcriptome analysis by RNA sequencing (RNA-seq). Finally, murine infection models of toxoplasmosis were used to evaluate the protective efficacy of tylosin against T. gondii virulent RH strain or avirulent ME49 strain. RESULTS We found that tylosin displayed low host toxicity, and its 50% inhibitory concentration was 175.3 μM. Tylsoin also inhibited intracellular T. gondii tachyzoite proliferation, with a 50% effective concentration of 9.759 μM. Transcriptome analysis showed that tylosin remarkably perturbed the gene expression of T. gondii, and genes involved in "ribosome biogenesis (GO:0042254)" and "ribosome (GO:0005840)" were significantly dys-regulated. In a murine model, tylosin treatment alone (100 mg/kg, i.p.) or in combination with sulfadiazine sodium (200 mg/kg, i.g.) significantly prolonged the survival time and raised the survival rate of animals infected with T. gondii virulent RH or avirulent ME49 strain. Meanwhile, treatment with tylosin significantly decreased the parasite burdens in multiple organs and decreased the spleen index of mice with acute toxoplasmosis. CONCLUSIONS Our findings suggest that tylosin exhibited potency against T. gondii both in vitro and in vivo, which offers promise for treatment of human toxoplasmosis.
Collapse
Affiliation(s)
- Ru-Xia Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Pi-Cheng Jiang
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yong-Liang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jing-Yu Guan
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Zhi-Rong Liu
- Shandong Public Health Clinical Center, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Shen-Yi He
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Sun XM, Hao CY, Wu AQ, Luo ZN, El-Ashram S, Alouffi A, Gu Y, Liu S, Huang JJ, Zhu XP. Trichinella spiralis -induced immunomodulation signatures on gut microbiota and metabolic pathways in mice. PLoS Pathog 2024; 20:e1011893. [PMID: 38166140 PMCID: PMC10786400 DOI: 10.1371/journal.ppat.1011893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.
Collapse
Affiliation(s)
- Xi-Meng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chun-Yue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - An-Qi Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ze-Ni Luo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong province, China
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing-Jing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Ping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Feng TY, Melchor SJ, Zhao XY, Ghumman H, Kester M, Fox TE, Ewald SE. Tricarboxylic acid (TCA) cycle, sphingolipid, and phosphatidylcholine metabolism are dysregulated in T. gondii infection-induced cachexia. Heliyon 2023; 9:e17411. [PMID: 37456044 PMCID: PMC10344712 DOI: 10.1016/j.heliyon.2023.e17411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cachexia is a life-threatening disease characterized by chronic, inflammatory muscle wasting and systemic metabolic impairment. Despite its high prevalence, there are no efficacious therapies for cachexia. Mice chronically infected with the protozoan parasite Toxoplasma gondii represent a novel animal model recapitulating the chronic kinetics of cachexia. To understand how perturbations to metabolic tissue homeostasis influence circulating metabolite availability we used mass spectrometry analysis. Despite the significant reduction in circulating triacylglycerides, non-esterified fatty acids, and glycerol, sphingolipid long-chain bases and a subset of phosphatidylcholines (PCs) were significantly increased in the sera of mice with T. gondii infection-induced cachexia. In addition, the TCA cycle intermediates α-ketoglutarate, 2-hydroxyglutarate, succinate, fumarate, and malate were highly depleted in cachectic mouse sera. Sphingolipids and their de novo synthesis precursors PCs are the major components of the mitochondrial membrane and regulate mitochondrial function consistent with a causal relationship in the energy imbalance driving T. gondii-induced chronic cachexia.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie J. Melchor
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Haider Ghumman
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd E. Fox
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
9
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
10
|
Guo XD, Zhou CX, Li LY, Ai K, Wang YL, Zhou DH. Comprehensive analysis of mRNA-lncRNA co-expression profiles in mouse brain during infection with Toxoplasma gondii. Acta Trop 2023; 237:106722. [DOI: 10.1016/j.actatropica.2022.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
11
|
Nie LB, Cong W, He JJ, Zheng WB, Zhu XQ. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection. Infect Dis Poverty 2022; 11:96. [PMID: 36104766 PMCID: PMC9473462 DOI: 10.1186/s40249-022-01022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Toxoplasma gondii is a protozoan parasite which can infect almost all warm-blooded animals and humans. Understanding the differential expression of proteins and transcripts associated with T. gondii infection in its definitive host (cat) may improve our knowledge of how the parasite manipulates the molecular microenvironment of its definitive host. The aim of this study was to explore the global proteomic alterations in the major organs of cats during acute T. gondii infection. Methods iTRAQ-based quantitative proteomic profiling was performed on six organs (brain, liver, lung, spleen, heart and small intestine) of cats on day 7 post-infection by cysts of T. gondii PRU strain (Genotype II). Mascot software was used to conduct the student’s t-test. Proteins with P values < 0.05 and fold change > 1.2 or < 0.83 were considered as differentially expressed proteins (DEPs). Results A total of 32,657 proteins were identified in the six organs, including 2556 DEPs; of which 1325 were up-regulated and 1231 were down-regulated. The brain, liver, lung, spleen, heart and small intestine exhibited 125 DEPs, 463 DEPs, 255 DEPs, 283 DEPs, 855 DEPs and 575 DEPs, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of all proteins and DEPs in all organs showed that many proteins were enriched in binding, cell part, cell growth and death, signal transduction, translation, sorting and degradation, extracellular matrix remodeling, tryptophan catabolism, and immune system. Correlations between differentially expressed proteins and transcripts were detected in the liver (n = 19), small intestine (n = 17), heart (n = 9), lung (n = 9) and spleen (n = 3). Conclusions The present study identified 2556 DEPs in six cat tissues on day 7 after infection by T. gondii PRU strain, and functional enrichment analyses showed that these DEPs were associated with various cellular and metabolic processes. These findings provide a solid base for further in-depth investigation of the complex proteotranscriptomic reprogramming that mediates the dynamic interplays between T. gondii and the different feline tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01022-7.
Collapse
|
12
|
Chienwichai P, Nogrado K, Tipthara P, Tarning J, Limpanont Y, Chusongsang P, Chusongsang Y, Tanasarnprasert K, Adisakwattana P, Reamtong O. Untargeted serum metabolomic profiling for early detection of Schistosoma mekongi infection in mouse model. Front Cell Infect Microbiol 2022; 12:910177. [PMID: 36061860 PMCID: PMC9433908 DOI: 10.3389/fcimb.2022.910177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mekong schistosomiasis is a parasitic disease caused by blood flukes in the Lao People’s Democratic Republic and in Cambodia. The standard method for diagnosis of schistosomiasis is detection of parasite eggs from patient samples. However, this method is not sufficient to detect asymptomatic patients, low egg numbers, or early infection. Therefore, diagnostic methods with higher sensitivity at the early stage of the disease are needed to fill this gap. The aim of this study was to identify potential biomarkers of early schistosomiasis using an untargeted metabolomics approach. Serum of uninfected and S. mekongi-infected mice was collected at 2, 4, and 8 weeks post-infection. Samples were extracted for metabolites and analyzed with a liquid chromatography-tandem mass spectrometer. Metabolites were annotated with the MS-DIAL platform and analyzed with Metaboanalyst bioinformatic tools. Multivariate analysis distinguished between metabolites from the different experimental conditions. Biomarker screening was performed using three methods: correlation coefficient analysis; feature important detection with a random forest algorithm; and receiver operating characteristic (ROC) curve analysis. Three compounds were identified as potential biomarkers at the early stage of the disease: heptadecanoyl ethanolamide; picrotin; and theophylline. The levels of these three compounds changed significantly during early-stage infection, and therefore these molecules may be promising schistosomiasis markers. These findings may help to improve early diagnosis of schistosomiasis, thus reducing the burden on patients and limiting spread of the disease in endemic areas.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanthi Tanasarnprasert
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Onrapak Reamtong,
| |
Collapse
|
13
|
Zhou CX, Li LY, Huang CQ, Guo XD, An XD, Luo FF, Cong W. Investigation of urine metabolome of BALB/c mouse infected with an avirulent strain of Toxoplasma gondii. Parasit Vectors 2022; 15:271. [PMID: 35906695 PMCID: PMC9338554 DOI: 10.1186/s13071-022-05408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background The protozoan parasite Toxoplasma gondii is a major concern for human and animal health. Although the metabolic understanding of toxoplasmosis has increased in recent years, the analysis of metabolic alterations through noninvasive methodologies in biofluids remains limited. Methods Here, we applied liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics and multivariate statistical analysis to analyze BALB/c mouse urine collected from acutely infected, chronically infected and control subjects. Results In total, we identified 2065 and 1409 metabolites in the positive electrospray ionization (ESI +) mode and ESI − mode, respectively. Metabolomic patterns generated from principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) score plots clearly separated T. gondii-infected from uninfected urine samples. Metabolites with altered levels in urine from T. gondii-infected mice revealed changes in pathways related to amino acid metabolism, fatty acid metabolism, and nicotinate and nicotinamide metabolism. Conclusions This is the first study to our knowledge on urine metabolic profiling of BALB/c mouse with T. gondii infection. The urine metabolome of infected mouse is distinctive and has value in the understanding of Toxoplasmosis pathogenesis and improvement of treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05408-2.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ling-Yu Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Cui-Qin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University & College of Life Science, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xu-Dong Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xu-Dian An
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Fang-Fang Luo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Zhai B, He JJ, Xie SC, Qiu Y, Miao Z, Liu Y, Zhu XQ, Zhang J. Metabolomics study of cat small intestine during the early stage of Toxoplasma gondii oocyst formation identifies potential biomarkers. Vet Parasitol 2022; 309:109764. [PMID: 35870221 DOI: 10.1016/j.vetpar.2022.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic intracellular protozoan parasite that can invade, replicate and survive in almost all cells of warm-blooded animals. T. gondii infection threatens the life of the fetus or can cause morbidity in the infant. As the only definitive host of T. gondii, felids spread the pathogen mainly by forming oocysts in the small intestines and discharging the oocysts into the ambient environment, consequently polluting water, vegetables, and meat products. In this study, we used untargeted metabolomics technology to study the changes in metabolites that occurred during the early stage of oocyst formation in the cat small intestine following T. gondii infection and attempted to identify metabolic biomarkers that could potentially be used as diagnostic molecular markers in the future. Domestic cats (Felis catus) were infected with T. gondii Pru tissue cysts, and samples of their small intestinal epithelium were collected at 2 and 4 days post-infection (DPI) for metabolic analysis. LC-MS/MS and multivariate statistical analysis were employed to detect metabolomic signatures that discriminated between the infected and control groups. A total of 1673 ions and 1201 ions were obtained in the positive and negative modes, respectively. Of these ions, 175 were up-regulated and 127 were down-regulated in the positive ion mode; whereas, 123 were up-regulated and 81 were down-regulated in the negative ion mode. Three commonly altered ions (0.74_313.0414 m/z, 8.82_615.2621 m/z and 8.16_325.2362 m/z) were determined to have potential research value. Seventy common metabolic pathways were enriched at two time points, with arginine biosynthesis, pyrimidine metabolism, pantothenate and CoA biosynthesis being the three most significant pathways related to T. gondii. The area under the curve (AUC) of differential metabolites combined with relevant literature analysis showed that N-Methylpelletierine and 3,3-Difluoro-17-methyl-5alpha-androstan-17beta-ol have higher predictability and better potential application value than other metabolites. Our analysis of metabolic markers during the early stage of T. gondii oocyst formation in the small intestine of the definitive host (cat) provided novel insight for understanding oocyst development and a theoretical basis for the application of potential biomarkers.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province 730050, People's Republic of China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, People's Republic of China
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province 730050, People's Republic of China
| | - Zengqiang Miao
- Medical College of Qinghai University, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province 650201, People's Republic of China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province 730050, People's Republic of China.
| |
Collapse
|
15
|
Histopathological, Immunohistochemical and Biochemical Studies of Murine Hepatosplenic Tissues Affected by Chronic Toxoplasmosis. J Parasitol Res 2022; 2022:2165205. [PMID: 35755604 PMCID: PMC9225867 DOI: 10.1155/2022/2165205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a serious health problem in humans and animals resulting from obligatory intracellular invasion of reticuloendothelial tissue by Toxoplasma gondii. The profound pathologic effect of toxoplasmosis is confined to nervous tissue, but many other organs, including the liver and spleen, are insulted. Many molecules like caspase-3, CD3, and CD138 are implicated in the tissue immune response in a trial to alleviate hazardous toxoplasmosis impact. This study aimed to investigate the effect of chronic toxoplasmosis on the liver and spleen tissues of mice using biochemical and histopathological techniques and to detect the activity and level of expression of caspase-3, CD3, and CD138 in these tissues using immunohistochemical labeling. Compared with normal control, altered normal histological features accompanied by inflammatory reaction were recorded in hepatosplenic reticuloendothelial tissues in chronically infected mice. The biochemical profile of the liver has been changed in the form of increased liver enzymes, and oxidative stress has been evidenced by elevated nitric oxide (NO) concentration in liver homogenate. The levels of caspase3, CD3, and CD138 were markedly expressed in the liver and spleen of infected mice. Our findings revealed the persistent effect of latent toxoplasmosis on the host's histological architecture, metabolic, and immunological profile, creating a continued challenging host-parasite relationship.
Collapse
|
16
|
Qin H, Zhang J, Dong K, Chen D, Yuan D, Chen J. Metabolic characterization and biomarkers screening for visceral leishmaniasis in golden hamsters. Acta Trop 2022; 225:106222. [PMID: 34757045 DOI: 10.1016/j.actatropica.2021.106222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
A better understanding of the changes in metabolic molecules during visceral leishmaniasis (VL) is essential to develop new strategies for diagnosis and treatment. Previous metabolomics studies on Leishmania have increased our knowledge of leishmaniasis and its causative pathogen. As these studies were mainly carried out in vitro, to go further, we conducted this global metabolomics analysis on the serum of golden hamsters. Serum samples were detected over a time course of 2, 4, 8 and 12 weeks post infection. Our results revealed that under extensively disturbed metabolomes between the infection group and controls, glycerophospholipid (GPL) metabolism was most affected over the infection time, followed by α-linoleic acid metabolism and arachidonic acid metabolism. Within GPLs, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were found to be significantly increased, while their enzyme-catalysed metabolites lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) showed no significant changes. Moreover, eight differential metabolites were selected. The ability of these metabolites to be used as a diagnostic biomarker panel was supported by receiver operating characteristic (ROC) analysis. Our findings revealed that GPL metabolism might play an important role in the response of the host to Leishmania infection. The metabolism of PC and PE might be crucial in the in vivo progression of VL. The panel of eight potential biomarkers might contribute to the diagnosis of VL.
Collapse
Affiliation(s)
- Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Dong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Ma J, He JJ, Wang M, Hou JL, Elsheikha HM, Zhu XQ. Toxoplasma gondii induces metabolic disturbances in the hippocampus of BALB/c mice. Parasitol Res 2021; 120:2805-2818. [PMID: 34219189 DOI: 10.1007/s00436-021-07222-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse hippocampus during T. gondii infection. The potential relevance of the identified metabolites and pathways to the pathogenesis of cognitive impairment and psychiatric disorders are discussed.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, People's Republic of China.
| |
Collapse
|
18
|
Wu XM, Yang X, Fan XC, Chen X, Wang YX, Zhang LX, Song JK, Zhao GH. Serum metabolomics in chickens infected with Cryptosporidium baileyi. Parasit Vectors 2021; 14:336. [PMID: 34174965 PMCID: PMC8235856 DOI: 10.1186/s13071-021-04834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cryptosporidium baileyi is an economically important zoonotic pathogen that causes serious respiratory symptoms in chickens for which no effective control measures are currently available. An accumulating body of evidence indicates the potential and usefulness of metabolomics to further our understanding of the interaction between pathogens and hosts, and to search for new diagnostic or pharmacological biomarkers of complex microorganisms. The aim of this study was to identify the impact of C. baileyi infection on the serum metabolism of chickens and to assess several metabolites as potential diagnostic biomarkers for C. baileyi infection. Methods Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and subsequent multivariate statistical analysis were applied to investigate metabolomics profiles in the serum samples of chickens infected with C. baileyi, and to identify potential metabolites that can be used to distinguish chickens infected with C. baileyi from non-infected birds. Results Multivariate statistical analysis identified 138 differential serum metabolites between mock- and C. baileyi-infected chickens at 5 days post-infection (dpi), including 115 upregulated and 23 downregulated compounds. These metabolites were significantly enriched into six pathways, of which two pathways associated with energy and lipid metabolism, namely glycerophospholipid metabolism and sphingolipid metabolism, respectively, were the most enriched. Interestingly, some important immune-related pathways were also significantly enriched, including the intestinal immune network for IgA production, autophagy and cellular senescence. Nine potential C. baileyi-responsive metabolites were identified, including choline, sirolimus, all-trans retinoic acid, PC(14:0/22:1(13Z)), PC(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), phosphocholine, SM(d18:0/16:1(9Z)(OH)) and sphinganine. Conclusions This is the first report on serum metabolic profiling of chickens with early-stage C. baileyi infection. The results provide novel insights into the pathophysiological mechanisms of C. baileyi in chickens. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04834-y.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xian-Cheng Fan
- Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, People's Republic of China
| | - Xi Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Long-Xian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
19
|
Francesca E, Kristina J, María LL, Sarah H, Jonas W, Angel CM, Maioli S. Long-term exposure to polypharmacy impairs cognitive functions in young adult female mice. Aging (Albany NY) 2021; 13:14729-14744. [PMID: 34078751 PMCID: PMC8221308 DOI: 10.18632/aging.203132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
The potential harmful effects of polypharmacy (concurrent use of 5 or more drugs) are difficult to investigate in an experimental design in humans. Moreover, there is a lack of knowledge on sex-specific differences on the outcomes of multiple-drug use. The present study aims to investigate the effects of an eight-week exposure to a regimen of five different medications (metoprolol, paracetamol, aspirin, simvastatin and citalopram) in young adult female mice. Polypharmacy-treated animals showed significant impairment in object recognition and fear associated contextual memory, together with a significant reduction of certain hippocampal proteins involved in pathways necessary for the consolidation of these types of memories, compared to animals with standard diet. The impairments in explorative behavior and spatial memory that we reported previously in young adult male mice administered the same polypharmacy regimen were not observed in females in the current study. Therefore, the same combination of medications induced different negative outcomes in young adult male and female mice, causing a significant deficit in non-spatial memory in female animals. Overall, this study strongly supports the importance of considering sex-specific differences in designing safer and targeted multiple-drug therapies.
Collapse
Affiliation(s)
- Eroli Francesca
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Johnell Kristina
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Latorre-Leal María
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Hilmer Sarah
- Kolling Institute, Royal North Shore Hospital and University of Sydney, Sydney, Australia
| | - Wastesson Jonas
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Cedazo-Minguez Angel
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| |
Collapse
|
20
|
Hunter E, Wilson PB. Minireview: Applications of NMR-based metabolomics for the detection and characterisation of toxoplasmosis in felids. ANALYTICAL SCIENCE ADVANCES 2021; 2:295-298. [PMID: 38716150 PMCID: PMC10989574 DOI: 10.1002/ansa.202000117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2024]
Abstract
Toxoplasmosis is an infection caused by the intercellular protozoan parasite Toxoplasma gondii. The parasite has the three-stage life cycle: oocysts, tachyzoites, and bradyzoites. Felids are the only known hosts for the sexual reproduction of T. gondii and, therefore, play a crucial role in the transmission of toxoplasmosis. A single cat could spread the parasite to many hosts. Due to the intercellular nature of the parasite, T. gondii strongly depends on a host's metabolism in order to leverage carbon and nutrient sources. Therefore, the parasite could be detected in body fluids via observation and analysis of metabolic alterations. A range of analytical techniques such as nuclear magnetic resonance (NMR), mass spectrometry coupled with liquid chromatography, and Raman spectroscopy could be applied for the analysis of body fluids of infected animals. However, NMR consists of highly specific analytical techniques due to high reproducibility, availability of a variety of databases, and the ability to obtain the structures of unknown compounds. We present the current extent of NMR-based metabolomics on felid toxoplasmosis and suggest future considerations.
Collapse
Affiliation(s)
- Elena Hunter
- School of AnimalRural and Environmental SciencesNottingham Trent UniversitySouthwellUK
| | - Philippe B. Wilson
- School of AnimalRural and Environmental SciencesNottingham Trent UniversitySouthwellUK
| |
Collapse
|
21
|
Cui LL, Zhou CX, Han B, Wang SS, Li SY, Xie SC, Zhou DH. Urine proteomics for profiling of mouse toxoplasmosis using liquid chromatography tandem mass spectrometry analysis. Parasit Vectors 2021; 14:211. [PMID: 33879238 PMCID: PMC8056516 DOI: 10.1186/s13071-021-04713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. Urine is an easily obtained clinical sample that has been widely applied for diagnostic purposes. However, changes in the urinary proteome during T. gondii infection have never been investigated. METHODS Twenty four-hour urine samples were obtained from BALB/c mice with acute infection [11 days post infection (DPI)], mice with chronic infection (35 DPI) and healthy controls, and were analyzed using a label-free liquid chromatography tandem mass spectrometry analysis. RESULTS We identified a total of 13,414 peptides on 1802 proteins, of which 169 and 47 proteins were significantly differentially expressed at acute and chronic infection phases, respectively. Clustering analysis revealed obvious differences in proteome profiles among all groups. Gene ontology analysis showed that a large number of differentially expressed proteins (DEPs) detected in acute infection were associated with biological binding activity and single-organism processes. KEGG pathway enrichment analysis showed that the majority of these DEPs were involved in disease-related and metabolic pathways. CONCLUSIONS Our findings revealed global reprogramming of the urine proteome following T. gondii infection, and data obtained in this study will enhance our understanding of the host responses to T. gondii infection and lead to the identification of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Si-Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shi-Chen Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
22
|
Acetylome analysis of the feline small intestine following Toxoplasma gondii infection. Parasitol Res 2020; 119:3649-3657. [PMID: 32951143 PMCID: PMC7502155 DOI: 10.1007/s00436-020-06880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is a protozoan parasite capable of infecting a large number of warm-blooded animals and causes serious health complications in immunocompromised patients. T. gondii infection of the feline small intestine is critical for the completion of the life cycle and transmission of T. gondii. Protein acetylation is an important posttranslational modification, which plays roles in the regulation of various cellular processes. Therefore, understanding of how T. gondii reprograms the protein acetylation status of feline definitive host can help to thwart the production and spread of T. gondii. Here, we used affinity enrichment and high-resolution liquid chromatography with tandem mass spectrometry to profile the alterations of the acetylome in cat small intestine 10 days after infection by T. gondii Prugniuad (Pru) strain. Our analysis showed that T. gondii induced significant changes in the acetylation of proteins in the cat intestine. We identified 2606 unique lysine acetylation sites in 1357 acetylated proteins. The levels of 334 acetylated peptides were downregulated, while the levels of 82 acetylated peptides were increased in the infected small intestine. The proteins with differentially acetylated peptides were particularly enriched in the bioenergetics-related processes, such as tricarboxylic acid cycle, oxidative phosphorylation, and oxidation-reduction. These results provide the first baseline of the global acetylome of feline small intestine following T. gondii infection and should facilitate further analysis of the role of acetylated protein in the pathogenesis of T. gondii infection in its definitive host.
Collapse
|
23
|
Structural, Functional, and Metabolic Alterations in Human Cerebrovascular Endothelial Cells during Toxoplasma gondii Infection and Amelioration by Verapamil In Vitro. Microorganisms 2020; 8:microorganisms8091386. [PMID: 32927732 PMCID: PMC7564162 DOI: 10.3390/microorganisms8091386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii), the causative agent of toxoplasmosis, is a frequent cause of brain infection. Despite its known ability to invade the brain, there is still a dire need to better understand the mechanisms by which this parasite interacts with and crosses the blood–brain barrier (BBB). The present study revealed structural and functional changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. T. gondii proliferated within the BMECs and disrupted the integrity of the cerebrovascular barrier through diminishing the cellular viability, disruption of the intercellular junctions and increasing permeability of the BMEC monolayer, as well as altering lipid homeostasis. Proton nuclear magnetic resonance (1H NMR)-based metabolomics combined with multivariate data analysis revealed profiles that can be attributed to infection and variations in the amounts of certain metabolites (e.g., amino acids, fatty acids) in the extracts of infected compared to control cells. Notably, treatment with the Ca2+ channel blocker verapamil rescued BMEC barrier integrity and restricted intracellular replication of the tachyzoites regardless of the time of treatment application (i.e., prior to infection, early- and late-infection). This study provides new insights into the structural and functional changes that accompany T. gondii infection of the BMECs, and sheds light upon the ability of verapamil to inhibit the parasite proliferation and to ameliorate the adverse effects caused by T. gondii infection.
Collapse
|
24
|
Huang Y, Wu Q, Zhao L, Xiong C, Xu Y, Dong X, Wen Y, Cao J. UHPLC-MS-Based Metabolomics Analysis Reveals the Process of Schistosomiasis in Mice. Front Microbiol 2020; 11:1517. [PMID: 32760365 PMCID: PMC7371968 DOI: 10.3389/fmicb.2020.01517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolomics, as an emerging technology, has been demonstrated to be a very powerful tool in the study of the host metabolic responses to infections by parasites. Schistosomiasis is a parasitic infection caused by schistosoma worm via the direct contact with the water containing cercaria, among which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to characterize the schistosome-induced changes in the host metabolism and further to develop the strategy for early diagnosis of schistosomiasis, we performed comprehensive LC-MS-based metabolomics analysis of serum from mice infected by S. japonicum for 5 weeks. With the developed diagnosis strategy based on our metabolomics data, we were able to successfully detect schistosomiasis at the first week post-infection, which was 3 weeks earlier than "gold standard" methods and 2 weeks earlier than the methods based on 1H NMR spectroscopy. Our metabolomics study revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, DNA and RNA biosynthesis, phospholipid metabolism, depression of energy metabolism, glucose uptake and metabolism, and disruption of gut microbiota metabolism. In addition, we identified seventeen specific metabolites whose down-regulated profiles were closely correlated with the time-course of schistosomiasis progression and can also be used as an indicator for the worm-burdens. Interestingly, the decrease of these seventeen metabolites was particularly remarkable at the first week post-infection. Thus, our findings on mechanisms of host-parasite interaction during the disease process pave the way for the development of an early diagnosis tool and provide more insightful understandings of the potential metabolic process associated with schistosomiasis in mice. Furthermore, the diagnosis strategy developed in this work is cost-effective and is superior to other currently used diagnosis methods.
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translation Medicine, Shanghai University, Shanghai, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Ma J, He JJ, Hou JL, Zhou CX, Elsheikha HM, Zhu XQ. Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry-Based Metabolomics Reveals Metabolic Alterations in the Mouse Cerebellum During Toxoplasma gondii Infection. Front Microbiol 2020; 11:1555. [PMID: 32765450 PMCID: PMC7381283 DOI: 10.3389/fmicb.2020.01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite with a remarkable neurotropism. We recently showed that T. gondii infection can alter the global metabolism of the cerebral cortex of mice. However, the impact of T. gondii infection on the metabolism of the cerebellum remains unknown. Here we apply metabolomic profiling to discover metabolic changes associated with T. gondii infection of the mouse cerebellum using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Multivariate statistics revealed differences in the metabolic profiles between the infected and control mouse groups and between the infected mouse groups as infection advanced. We also detected 10, 22, and 42 significantly altered metabolites (SAMs) in the infected cerebellum at 7, 14, and 21 days post infection (dpi), respectively. Four metabolites [tabersonine, arachidonic acid (AA), docosahexaenoic acid, and oleic acid] were identified as potential biomarker or responsive metabolites to T. gondii infection in the mouse cerebellum. Three of these metabolites (AA, docosahexaenoic acid, and oleic acid) play roles in the regulation of host behavior and immune response. Pathway analysis showed that T. gondii infection of the cerebellum involves reprogramming of amino acid and lipid metabolism. These results showcase temporal metabolomic changes during cerebellar infection by T. gondii in mice. The study provides new insight into the neuropathogenesis of T. gondii infection and reveals new metabolites and pathways that mediate the interplay between T. gondii and the mouse cerebellum.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Xue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
26
|
Zhao XY, Ewald SE. The molecular biology and immune control of chronic Toxoplasma gondii infection. J Clin Invest 2020; 130:3370-3380. [PMID: 32609097 PMCID: PMC7324197 DOI: 10.1172/jci136226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii is an incredibly successful parasite owing in part to its ability to persist within cells for the life of the host. Remarkably, at least 350 host species of T. gondii have been described to date, and it is estimated that 30% of the global human population is chronically infected. The importance of T. gondii in human health was made clear with the first reports of congenital toxoplasmosis in the 1940s. However, the AIDS crisis in the 1980s revealed the prevalence of chronic infection, as patients presented with reactivated chronic toxoplasmosis, underscoring the importance of an intact immune system for parasite control. In the last 40 years, there has been tremendous progress toward understanding the biology of T. gondii infection using rodent models, human cell experimental systems, and clinical data. However, there are still major holes in our understanding of T. gondii biology, including the genes controlling parasite development, the mechanisms of cell-intrinsic immunity to T. gondii in the brain and muscle, and the long-term effects of infection on host homeostasis. The need to better understand the biology of chronic infection is underscored by the recent rise in ocular disease associated with emerging haplotypes of T. gondii and our lack of effective treatments to sterilize chronic infection. This Review discusses the cell types and molecular mediators, both host and parasite, that facilitate persistent T. gondii infection. We highlight the consequences of chronic infection for tissue-specific pathology and identify open questions in this area of host-Toxoplasma interactions.
Collapse
|
27
|
Eroli F, Johnell K, Latorre Leal M, Adamo C, Hilmer S, Wastesson JW, Cedazo-Minguez A, Maioli S. Chronic polypharmacy impairs explorative behavior and reduces synaptic functions in young adult mice. Aging (Albany NY) 2020; 12:10147-10161. [PMID: 32445552 PMCID: PMC7346056 DOI: 10.18632/aging.103315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
A major challenge in the health care system is the lack of knowledge about the possible harmful effects of multiple drug treatments in old age. The present study aims to characterize a mouse model of polypharmacy, in order to investigate whether long-term exposure to multiple drugs could lead to adverse outcomes. To this purpose we selected five drugs from the ten most commonly used by older adults in Sweden (metoprolol, paracetamol, aspirin, simvastatin and citalopram). Five-month-old wild type male mice were fed for eight weeks with control or polypharmacy diet. We report for the first time that young adult polypharmacy-treated mice showed a significant decrease in exploration and spatial working memory compared to the control group. This memory impairment was further supported by a significant reduction of synaptic proteins in the hippocampus of treated mice. These novel results suggest that already at young adult age, use of polypharmacy affects explorative behavior and synaptic functions. This study underlines the importance of investigating the potentially negative outcomes from concomitant administration of different drugs, which have been poorly explored until now. The mouse model proposed here has translatable findings and can be applied as a useful tool for future studies on polypharmacy.
Collapse
Affiliation(s)
- Francesca Eroli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - María Latorre Leal
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Chiara Adamo
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Sarah Hilmer
- Kolling Institute, Royal North Shore Hosptial and University of Sydney, Clinical Pharmacology and Aged Care, Sidney, Australia
| | - Jonas W Wastesson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| |
Collapse
|
28
|
Wang Y, Xia L, Guo T, Heng C, Jiang L, Wang D, Wang J, Li K, Zhan X. Research Note: Metabolic changes and physiological responses of broilers in the final stage of growth exposed to different environmental temperatures. Poult Sci 2020; 99:2017-2025. [PMID: 32241486 PMCID: PMC7587865 DOI: 10.1016/j.psj.2019.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
There is no information regarding the influence of heat stress (HS) on host metabolic profile. In this study, we investigated the effects of different environmental temperatures on oxidative status, hormone levels, HS indicators, and plasma metabolites in broilers. A total of 1,680 yellow-feather broilers (28 D old) were randomly allotted to 4 groups with 6 replicates. The broilers (29–57 D old) were maintained in thermostatic rooms (20°C, 25°C, 28°C, and 30°C) for 28 consecutive days. The results showed that the plasma cortisol and adrenocorticotropic hormone levels and creatine kinase and lactate dehydrogenase activities gradually increased when the temperature increased from 20°C to 30°C. However, the insulin-like growth factor-І level decreased gradually. Furthermore, heat shock protein 70 expression significantly increased in the liver and breast muscle (P < 0.01). As the temperature increased, the total anti-oxidant capacity in the plasma and liver gradually decreased, whereas the malondialdehyde level increased. The activity of plasma glutathione peroxidase and total superoxide dismutase in the liver showed a similar increasing trend (P < 0.01). In addition, 15 metabolites were identified at higher (P < 0.05) levels, whereas 2 metabolites were identified at lower (P < 0.05) levels in the 30°C treatment group than those in the 25°C treatment group. Most of these potentially diagnostic biomarkers are involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in broilers. Six candidate metabolites (tartronic acid, l-bethreine, tartaric acid, allose, glutaric acid, and neohesperidin) were selected as biomarkers, as they showed high sensitivity, specificity, and accuracy in diagnosing broilers under HS (P < 0.01). In conclusion, in the final stage of growth, we identified 6 plasma differential metabolites as potential biomarkers of HS-induced metabolic disorders in yellow-feathered broilers. This work offers new insights into the metabolic alterations of broilers exposed to HS and provides a new perspective for further study.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xia
- Agricultural Product Quality and Safety Management Center, Zhoushan, China
| | - Tianyu Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chianning Heng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dianchun Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangshui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaixuan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Sinjab F, Elsheikha HM, Dooley M, Notingher I. Induction and measurement of the early stage of a host-parasite interaction using a combined optical trapping and Raman microspectroscopy system. JOURNAL OF BIOPHOTONICS 2020; 13:e201960065. [PMID: 31710774 PMCID: PMC7065604 DOI: 10.1002/jbio.201960065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 05/02/2023]
Abstract
Understanding and quantifying the temporal acquisition of host cell molecules by intracellular pathogens is fundamentally important in biology. In this study, a recently developed holographic optical trapping (HOT)-based Raman microspectroscopy (RMS) instrument is applied to detect, characterize and monitor in real time the molecular trafficking of a specific molecular species (isotope-labeled phenylalanine (L-Phe(D8)) at the single cell level. This approach enables simultaneous measurement of the chemical composition of human cerebrovascular endothelial cells and the protozoan parasite Toxoplasma gondii in isolation at the very start of the infection process. Using a model to decouple measurement contributions from host and pathogen sampling in the excitation volume, the data indicate that manipulating parasites with HOT coupled with RMS chemical readout was an effective method for measurement of L-Phe(D8) transfer from host cells to parasites in real-time, from the moment the parasite enters the host cell.
Collapse
Affiliation(s)
- Faris Sinjab
- School of Physics and Astronomy, University Park NottinghamUniversity of NottinghamNottinghamUK
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and ScienceUniversity of NottinghamLoughboroughUK
| | - Max Dooley
- School of Physics and Astronomy, University Park NottinghamUniversity of NottinghamNottinghamUK
| | - Ioan Notingher
- School of Physics and Astronomy, University Park NottinghamUniversity of NottinghamNottinghamUK
| |
Collapse
|
30
|
Zhang C, Feng C, Zheng Y, Wang J, Wang F. Root Exudates Metabolic Profiling Suggests Distinct Defense Mechanisms Between Resistant and Susceptible Tobacco Cultivars Against Black Shank Disease. FRONTIERS IN PLANT SCIENCE 2020; 11:559775. [PMID: 33013978 PMCID: PMC7511587 DOI: 10.3389/fpls.2020.559775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
There is increasing evidence that root exudates play important roles in plant disease resistance. Black shank, caused by Phytophthora nicotianae, is a destructive soil-borne disease in tobacco (Nicotiana tabacum L.). The aim of the present study was to investigate the activity and composition of the root exudates from resistant and susceptible tobacco cultivars. The root exudates of the resistant cultivar Gexin 3 showed inhibitory activity against P. nicotianae, while the exudates of susceptible cultivar Xiaohuangjin 1025 stimulated the colony growth but had no effect on spore germination. Metabolic profiling using liquid chromatography/electrospray ionization-quadrupole-time-of-flight mass spectrometry depicted differing metabolic patterns of root exudates between Gexin 3 and Xiaohuangjin 1025. The activity and composition of root exudates was altered by P. nicotianae inoculation. Multivariate analysis showed that root exudates (including organic acids, alkaloids, fatty acids, and esters) were different between the two varieties. The defense substances in root exudates, such as tartaric acid, ferulic acid, and lauric acid, may represent a pre-infection prevention strategy for tobacco. Phenylpropanoids as well as inducers of salicylic acid, fatty acids, 6-hydroxyhexanoic acid, and hydrojasmonate may be involved in tobacco defense responses. Compared to the susceptible cultivar, the roots of the resistant cultivar exhibited high enzyme activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-coumarate-CoA ligase, which may prompt the synthesis and secretion of phenylpropanoids. Our results indicated that the root exudates not only provide a pre-infection prevention strategy by exuding antimicrobial substances, but also increase tobacco disease resistance by eliciting plant defense responses. In addition, some defense compounds as well as compounds that play a role in inducing plant defense responses, showed potential for disease control application. This study provides an insight into possible disease resistance mechanisms of root exudates, and attempts the beneficial utilization of these secondary metabolites of plants.
Collapse
Affiliation(s)
- Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Qingdao Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
- *Correspondence: Fenglong Wang, ; Chengsheng Zhang,
| | - Chao Feng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Qingdao Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fenglong Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
- *Correspondence: Fenglong Wang, ; Chengsheng Zhang,
| |
Collapse
|
31
|
Comparative serum metabolomics between SCID mice and BALB/c mice with or without Schistosoma japonicum infection: Clues to the abnormal growth and development of schistosome in SCID mice. Acta Trop 2019; 200:105186. [PMID: 31542371 DOI: 10.1016/j.actatropica.2019.105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.
Collapse
|
32
|
Ma J, He JJ, Hou JL, Zhou CX, Zhang FK, Elsheikha HM, Zhu XQ. Metabolomic signature of mouse cerebral cortex following Toxoplasma gondii infection. Parasit Vectors 2019; 12:373. [PMID: 31358041 PMCID: PMC6664753 DOI: 10.1186/s13071-019-3623-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protozoan parasite Toxoplasma gondii infects and alters the neurotransmission in cerebral cortex and other brain regions, leading to neurobehavioral and neuropathologic changes in humans and animals. However, the molecules that contribute to these changes remain largely unknown. METHODS We have investigated the impact of T. gondii infection on the overall metabolism of mouse cerebral cortex. Mass-spectrometry-based metabolomics and multivariate statistical analysis were employed to discover metabolomic signatures that discriminate between cerebral cortex of T. gondii-infected and uninfected control mice. RESULTS Our results identified 73, 67 and 276 differentially abundant metabolites, which were involved in 25, 37 and 64 pathways at 7, 14 and 21 days post-infection (dpi), respectively. Metabolites in the unsaturated fatty acid biosynthesis pathway were upregulated as the infection progressed, indicating that T. gondii induces the biosynthesis of unsaturated fatty acids to promote its own growth and survival. Some of the downregulated metabolites were related to pathways, such as steroid hormone biosynthesis and arachidonic acid metabolism. Nine metabolites were identified as T. gondii responsive metabolites, namely galactosylsphingosine, arachidonic acid, LysoSM(d18:1), L-palmitoylcarnitine, calcitetrol, 27-Deoxy-5b-cyprinol, L-homophenylalanine, oleic acid and ceramide (d18:1/16:0). CONCLUSIONS Our data provide novel insight into the dysregulation of the metabolism of the mouse cerebral cortex during T. gondii infection and have important implications for studies of T. gondii pathogenesis.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, 250012, Shandong, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
33
|
Melchor SJ, Ewald SE. Disease Tolerance in Toxoplasma Infection. Front Cell Infect Microbiol 2019; 9:185. [PMID: 31245299 PMCID: PMC6563770 DOI: 10.3389/fcimb.2019.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a successful protozoan parasite that cycles between definitive felid hosts and a broad range of intermediate hosts, including rodents and humans. Within intermediate hosts, this obligate intracellular parasite invades the small intestine, inducing an inflammatory response. Toxoplasma infects infiltrating immune cells, using them to spread systemically and reach tissues amenable to chronic infection. An intact immune system is necessary to control life-long chronic infection. Chronic infection is characterized by formation of parasite cysts, which are necessary for survival through the gastrointestinal tract of the next host. Thus, Toxoplasma must evade sterilizing immunity, but still rely on the host's immune response for survival and transmission. To do this, Toxoplasma exploits a central cost-benefit tradeoff in immunity: the need to escalate inflammation for pathogen clearance vs. the need to limit inflammation-induced bystander damage. What are the consequences of sustained inflammation on host biology? Many studies have focused on aspects of the immune response that directly target Toxoplasma growth and survival, commonly referred to as "resistance mechanisms." However, it is becoming clear that a parallel arm of the immune response has evolved to mitigate damage caused by the parasite directly (for example, egress-induced cell death) or bystander damage due to the inflammatory response (for example, reactive nitrogen species, degranulation). These so-called "disease tolerance" mechanisms promote tissue function and host survival without directly targeting the pathogen. Here we review changes to host metabolism, tissue structure, and immune function that point to disease tolerance mechanisms during Toxoplasma infection. We explore the impact tolerance programs have on the health of the host and parasite biology.
Collapse
Affiliation(s)
| | - Sarah E. Ewald
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
34
|
Guo J, Zhou A, Sun X, Sha W, Ai K, Pan G, Zhou C, Zhou H, Cong H, He S. Immunogenicity of a Virus-Like-Particle Vaccine Containing Multiple Antigenic Epitopes of Toxoplasma gondii Against Acute and Chronic Toxoplasmosis in Mice. Front Immunol 2019; 10:592. [PMID: 30984177 PMCID: PMC6449433 DOI: 10.3389/fimmu.2019.00592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
There is no effective protective vaccine against human toxoplasmosis, which is a potential threat to nearly a third of the world population. Vaccines based on virus-like particles (VLPs) have been highly successful in humans for many years, but have rarely been applied against Toxoplasma gondii infection. In this study, we inserted a B cell epitope (SAG182−102 or SAG1301−320), a CD8+ cell epitope (HF10 or ROP7), and a CD4+ cell epitope (AS15) of T. gondii into a truncated HBcΔ(amino acids1–149) particle to construct four chimeric VLP vaccine formulations, i.e., HBcΔH82, HBcΔH301, HBcΔ R82, and HBcΔ R301. When these chimeric HBc particles were expressed in Escherichia coli, they showed icosahedral morphology similar to that of the original VLPs and were evaluated as vaccine formulations against acute and chronic toxoplasmosis in a mouse model (BALB/c mice (H-2d). All these chimeric HBc VLPs induced strong humoral and cellular immune responses with high IgG antibody titers and interferon(IFN)-γ production. Only the mice immunized with HBcΔH82 showed prolonged survival time (15.6 ± 3.8 vs. 5.6 ± 0.8 days) against acute infection with RH tachyzoites and decrease in brain parasite load (1,454 ± 239 vs. 2,091 ± 263) against chronic infection with Prugniuad cysts, as compared to the findings for the control group. These findings suggest that HBc VLPs would act as an effective carrier for delivering effective multiple antigenic epitopes and would be beneficial for developing a safe and long-acting vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, School of Medicine, Shandong University, Jinan, China
| | - Xiahui Sun
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenchao Sha
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kang Ai
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ge Pan
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hua Cong
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shenyi He
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
35
|
Liu R, Cheng WJ, Tang HB, Zhong QP, Ming ZP, Dong HF. Comparative Metabonomic Investigations of Schistosoma japonicum From SCID Mice and BALB/c Mice: Clues to Developmental Abnormality of Schistosome in the Immunodeficient Host. Front Microbiol 2019; 10:440. [PMID: 30915055 PMCID: PMC6423161 DOI: 10.3389/fmicb.2019.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/20/2019] [Indexed: 12/04/2022] Open
Abstract
The growth and development of schistosome has been affected in the immunodeficient hosts. But it remains unresolved about the molecular mechanisms involved in the development and reproduction regulation of schistosomes. This study tested and compared the metabolic profiles of the male and female Schistosoma japonicum worms collected from SCID mice and BALB/c mice at 5 weeks post infection using liquid chromatography tandem mass spectrometry (LC-MS/MS) platform, in which the worms from SCID mice were the investigated organisms and the worms from BALB/c mice were used as the controls. There were 1015 ion features in ESI+ mode and 342 ion features in ESI- mode were identified after filtration by false discovery rate. Distinct metabolic profiles were found to clearly differentiate both male and female worms in SCID mice from those in BALB/c mice using multivariate modeling methods including the Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). There were more differential metabolites in female worms than in male worms between SCID mice and BALB/c mice. And common and uniquely perturbed metabolites and pathways were identified among male and female worms from SCID mice when compared with BALB/c mice. The enriched metabolite sets of the differential metabolites in male worms between SCID mice and BALB/c mice included bile acid biosynthesis, taurine and hypotaurine metabolism, sphingolipid metabolism, retinol metabolism, purine metabolism, etc. And the enriched metabolite sets of differential metabolites in female worms included retinol metabolism, alpha linolenic acid and linoleic acid metabolism, purine metabolism, sphingolipid metabolism, glutamate metabolism, etc. Further detection and comparison in transcript abundance of genes of the perturbed retinol metabolism and its associated meiosis process in worms identified clues suggesting accumulated retinyl ester and perturbed meiotic process. These findings suggested an association between the schistosome with retarded growth and development in SCID mice and their perturbed metabolites and metabolic pathways, and provided a new insight into the growth and development regulation of S. japonicum worms from the metabolic level, which indicated great clues for discovery of drugs or vaccines against the parasites and disease with more researches.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhen-Ping Ming
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Zhang NZ, Gao Q, Wang M, Elsheikha HM, Wang B, Wang JL, Zhang FK, Hu LY, Zhu XQ. Immunization With a DNA Vaccine Cocktail Encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 Genes Protects Mice Against Chronic Toxoplasmosis. Front Immunol 2018; 9:1505. [PMID: 30008721 PMCID: PMC6033959 DOI: 10.3389/fimmu.2018.01505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/18/2018] [Indexed: 01/29/2023] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the intracellular protozoan Toxoplasma gondii; and a major source of infection in humans is via ingestion of T. gondii tissue cysts. Ultimately, the goal of anti-toxoplasmosis vaccines is to elicit a sustainable immune response, capable of preventing formation of the parasite tissue cysts-or, at least, to restrain its growth. In this study, we formulated a cocktail DNA vaccine and investigated its immunologic efficacy as a protection against the establishment of T. gondii cysts in the mouse brain. This multicomponent DNA vaccine, encoded the TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, which play key roles in the pathogenesis of T. gondii infection. Results showed that mice immunized via intramuscular injection three times, at 2-week intervals with this multicomponent DNA vaccine, mounted a strong humoral and cellular immune response, indicated by significantly high levels of total IgG, CD4+ and CD8+ T lymphocytes, and antigen-specific lymphocyte proliferation when compared with non-immunized mice. Immunization also induced a mixed Th1/Th2 response, with a slightly elevated IgG2a to IgG1 ratio. The increased production of proinflammatory cytokines gamma-interferon, interleukin-2, and interleukin-12 (p < 0.0001) correlated with increased expression of p65/RelA and T-bet genes of the NF-κB pathway. However, no significant difference was detected in level of interleukin-4 (p > 0.05). The number of brain cysts in immunized mice was significantly less than those in non-immunized mice (643.33 ± 89.63 versus 3,244.33 ± 96.42, p < 0.0001), resulting in an 80.22% reduction in the parasite cyst burden. These findings indicate that a multicomponent DNA vaccine, encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, shows promise as an immunization strategy against chronic toxoplasmosis in mice, and calls for a further evaluation in food-producing animals.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha, China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Bo Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ling-Ying Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
37
|
Chen XQ, Elsheikha HM, Hu RS, Hu GX, Guo SL, Zhou CX, Zhu XQ. Hepatic Metabolomics Investigation in Acute and Chronic Murine Toxoplasmosis. Front Cell Infect Microbiol 2018; 8:189. [PMID: 29922602 PMCID: PMC5996072 DOI: 10.3389/fcimb.2018.00189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii poses a great threat to human health, with no approved vaccine available for the treatment of T. gondii infection. T. gondii infections are not limited to the brain, and may also affect other organs especially the liver. Identification of host liver molecules or pathways involved in T. gondii replication process may lead to the discovery of novel anti-T. gondii targets. Here, we analyzed the metabolic profile of the liver of mice on 11 and 30 days postinfection (dpi) with type II T. gondii Pru strain. Global metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 389 significant metabolites from acutely infected mice; and 368 from chronically infected mice, when compared with control mice. Multivariate statistical analysis revealed distinct metabolic signatures from acutely infected, chronically infected and control mice. Infection influenced several metabolic processes, in particular those for lipids and amino acids. Metabolic pathways, such as steroid hormone biosynthesis, primary bile acid biosynthesis, bile secretion, and biosynthesis of unsaturated fatty acids were perturbed during the whole infection process, particularly during the acute stage of infection. The present results provide insight into hepatic metabolic changes that occur in BALB/c mice during acute and chronic T. gondii infection.
Collapse
Affiliation(s)
- Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gui-Xue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shu-Ling Guo
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
38
|
Guo J, Sun X, Yin H, Wang T, Li Y, Zhou C, Zhou H, He S, Cong H. Chitosan Microsphere Used as an Effective System to Deliver a Linked Antigenic Peptides Vaccine Protect Mice Against Acute and Chronic Toxoplasmosis. Front Cell Infect Microbiol 2018; 8:163. [PMID: 29876322 PMCID: PMC5974094 DOI: 10.3389/fcimb.2018.00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple antigenic peptide (MAP) vaccines have advantages over traditional Toxoplasma gondii vaccines, but are more susceptible to enzymatic degradation. As an effective delivery system, chitosan microspheres (CS) can overcome this obstacle and act as a natural adjuvant to promote T helper 1 (Th1) cellular immune responses. In this study, we use chitosan microparticles to deliver multiple antigenic epitopes from GRA10 (G10E), containing three dominant epitopes. When G10E was entrapped within chitosan microparticles (G10E-CS), adequate peptides for eliciting immune response were loaded in the microsphere core and this complex released G10E peptides stably. The efficiency of G10E-CS was detected both in vitro, via cell culture, and through in vivo mouse immunization. In vitro, G10E-CS activated Dendritic Cells (DC) and T lymphocytes by upregulating the secretion of costimulatory molecules (CD40 and CD86). In vivo, Th1 biased cellular and humoral immune responses were activated in mice vaccinated with G10E-CS, accompanied by significantly increased production of IFN-γ, IL-2, and IgG, and decreases in IL-4, IL-10, and IgG1. Immunization with G10E-CS conferred significant protection with prolonged survival in mice model of acute toxoplasmosis and statistically significant decreases in cyst burden in murine chronic toxoplasmosis. The results from this study indicate that chitosan microspheres used as an effective system to deliver a linked antigenic peptides is a promising strategy for the development of efficient vaccine against T. gondii.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Xiahui Sun
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Huiquan Yin
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Ting Wang
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Yan Li
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Chunxue Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Huaiyu Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Shenyi He
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Hua Cong
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| |
Collapse
|
39
|
Influence of Eimeria falciformis Infection on Gut Microbiota and Metabolic Pathways in Mice. Infect Immun 2018; 86:IAI.00073-18. [PMID: 29440368 DOI: 10.1128/iai.00073-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease of poultry and livestock worldwide. Here we report previously unknown alterations in the gut microbes and metabolism of BALB/c mice infected with Eimeria falciformis Specifically, we observed a significant shift in the abundance of cecal bacteria and disrupted metabolism in parasitized animals. The relative abundances of Lachnospiraceae bacterium NK4A136, Ruminiclostridium, Alistipes, and Lactobacillus declined in response to E. falciformis infection, whereas Escherichia, Shigella, Helicobacter, Klebsiella, and Bacteroides were increased. Carbohydrate and amino acid metabolites in the serum samples of infected mice were significantly altered compared to naïve controls. Levels of amino acids, including asparagine, histidine, l-cysteine, tryptophan, lysine, glycine, serine, alanine, proline, ornithine, methionine, and valine, decreased on day 7 postinfection before returning to baseline on day 14. In addition, increased levels of indolelactate and mannitol and a reduced amount of oxalic acid indicated impaired carbon metabolism upon parasitic infection. These data demonstrate that intestinal coccidial infection perturbs the microbiota and disrupts carbon and nitrogen metabolism.
Collapse
|
40
|
Steinberg HE, Russo P, Angulo N, Ynocente R, Montoya C, Diestra A, Ferradas C, Schiaffino F, Florentini E, Jimenez J, Calderón M, Carruthers VB, Gilman RH, Liotta L, Luchini A. Toward detection of toxoplasmosis from urine in mice using hydro-gel nanoparticles concentration and parallel reaction monitoring mass spectrometry. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:461-469. [PMID: 29203146 PMCID: PMC5844831 DOI: 10.1016/j.nano.2017.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 11/30/2022]
Abstract
Diagnosis of clinical toxoplasmosis remains a challenge, thus limiting the availability of human clinical samples. Though murine models are an approximation of human response, their definitive infection status and tissue availability make them critical to the diagnostic development process. Hydrogel mesh nanoparticles were used to concentrate antigen to detectable levels for mass spectrometry. Seven Toxoplasma gondii isolates were used to develop a panel of potential peptide sequences for detection by parallel reaction monitoring (PRM) mass spectrometry. Nanoparticles were incubated with decreasing concentrations of tachyzoite lysate to explore the limits of detection of PRM. Mice whose toxoplasmosis infection status was confirmed by quantitative real-time PCR had urine tested by PRM after hydrogel mesh concentration for known T. gondii peptides. Peptides from GRA1, GRA12, ROP4, ROP5, SAG1, and SAG2A proteins were detected by PRM after nanoparticle concentration of urine, confirming detection of T. gondii antigen in the urine of an infected mouse.
Collapse
Affiliation(s)
- Hannah E Steinberg
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, VA, USA
| | - Noelia Angulo
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Raúl Ynocente
- Laboratorio de Parasitología de Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Cristina Montoya
- Laboratorio de Parasitología de Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Andrea Diestra
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Schiaffino
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Florentini
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Jimenez
- Laboratorio de Parasitología de Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Maritza Calderón
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, VA, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, VA, USA
| |
Collapse
|
41
|
Zhou CX, Cong W, Chen XQ, He SY, Elsheikha HM, Zhu XQ. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Front Microbiol 2018; 8:2612. [PMID: 29354104 PMCID: PMC5761440 DOI: 10.3389/fmicb.2017.02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI- mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Wei Cong
- Department of Prevention and Treatment of Animal Diseases, College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shen-Yi He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
42
|
Metabolomics reveals the mechanism of (−)-hydroxycitric acid promotion of protein synthesis and inhibition of fatty acid synthesis in broiler chickens. Animal 2018; 12:774-783. [DOI: 10.1017/s175173111700221x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
43
|
Cesur MF, Abdik E, Güven-Gülhan Ü, Durmuş S, Çakır T. Computational Systems Biology of Metabolism in Infection. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:235-282. [PMID: 30535602 DOI: 10.1007/978-3-319-74932-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A systems approach to elucidate the effect of infection on cell metabolism provides several opportunities from a better understanding of molecular mechanisms to the identification of potential biomarkers and drug targets. This is obvious from the fact that we have witnessed the accelerated use of computational systems biology in the last five years to study metabolic changes in pathogen and/or host cells in response to infection. In this chapter, we aim to present a comprehensive review of the recent research by focusing on genome-scale metabolic network models of pathogen-host systems and genome-wide metabolomics and fluxomics analysis of infected cells.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ünzile Güven-Gülhan
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
44
|
Ma Q, Li PL, Hua YL, Ji P, Yao WL, Zhang XS, Zhong LJ, Wei YM. Effects of Tao-Hong-Si-Wu decoction on acute blood stasis in rats based on a LC-Q/TOF-MS metabolomics and network approach. Biomed Chromatogr 2017; 32. [PMID: 29149492 DOI: 10.1002/bmc.4144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao-Hong-Si-Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice-cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l-glutamate, l-phenylalanine, N-acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.
Collapse
Affiliation(s)
- Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng-Ling Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Li-Jia Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
45
|
Chen XQ, Zhou CX, Elsheikha HM, He S, Hu GX, Zhu XQ. Profiling of the perturbed metabolomic state of mouse spleen during acute and chronic toxoplasmosis. Parasit Vectors 2017; 10:339. [PMID: 28720125 PMCID: PMC5516376 DOI: 10.1186/s13071-017-2282-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/10/2017] [Indexed: 01/13/2023] Open
Abstract
Background Toxoplasma gondii, a common opportunistic protozoan, is a leading cause of illness and mortality among immunosuppressed individuals and during congenital infections. Current therapeutic strategies for toxoplasmosis are not fully effective at curtailing disease progression in these cases. Given the parasite ability to influence host immunity and metabolism, understanding of the metabolic alterations in the host’s immune organs during T. gondii infection may enhance the understanding of the molecular mechanisms that define the pathophysiology of T. gondii infection. Methods We investigated the global metabolic changes in the spleen of BALB/c mice at early and late stage of infection with T. gondii using LC-MS/MS-based metabolomics. Multivariate data analysis methods, principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were used to identify metabolites that are influenced by T. gondii infection. Results Multivariate analyses clearly separated the metabolites of spleen of infected and control mice. A total of 132 differential metabolites were identified, 23 metabolites from acutely infected versus control mice and 109 metabolites from chronically infected versus control mice. Lipids, hormones, lactones, acids, peptides, antibiotics, alkaloids and natural toxins were the most influenced chemical groups. There were 12 shared differential metabolites between acutely infected versus control mice and chronically infected versus control mice, of which 4,4-Dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol was significantly upregulated and ubiquinone-8 was significantly downregulated. Major perturbed metabolic pathways included primary bile acid biosynthesis, steroid hormone biosynthesis, biotin metabolism, and steroid biosynthesis, with arachidonic acid metabolism being the most significantly impacted pathway. These metabolic changes suggest a multifactorial nature of the immunometabolic responses of mouse spleen to T. gondii infection. Conclusions This study demonstrated that T. gondii infection can cause significant metabolomic alterations in the spleen of infected mice. These findings provide new insights into the molecular mechanisms that underpin the pathogenesis of T. gondii infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2282-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Qing Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Department of Parasitology, Shandong University School of Basic Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Shuai He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, People's Republic of China
| | - Gui-Xue Hu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
46
|
Wang JL, Elsheikha HM, Zhu WN, Chen K, Li TT, Yue DM, Zhang XX, Huang SY, Zhu XQ. Immunization with Toxoplasma gondii GRA17 Deletion Mutant Induces Partial Protection and Survival in Challenged Mice. Front Immunol 2017; 8:730. [PMID: 28706518 PMCID: PMC5489627 DOI: 10.3389/fimmu.2017.00730] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 01/10/2023] Open
Abstract
Toxoplasmosis remains a world-threatening disease largely because of the lack of a fully effective vaccine. Here, we created a ΔGRA17 mutant by disrupting the virulence factor GRA17 using CRISPR-Cas9 method. Then, we tested whether ΔGRA17 tachyzoites can be used as a live-attenuated vaccine against acute, chronic, and congenital Toxoplasma gondii infection in mice. Immune response evoked by ΔGRA17 immunization suggested a sequential Th1 and Th2 T cell response, indicated by high levels of Th1 and a mixed Th1/Th2 cytokines at 28 and 70 days after immunization, respectively. ΔGRA17-mediated immunity fully protected mice against lethal infection with wild-type (wt) RH strain, heterologous challenge with PYS, and TgC7 strains of the Chinese ToxoDB#9 genotype, and T. gondii Pru strain. Although parasite cysts were detected in 8 out of 10 immunized mice, cyst burden in the brain was significantly reduced (P < 0.05) in immunized mice (53 ± 15 cysts/brain) compared to non-immunized mice (4,296 ± 687 cysts/brain). In respect to congenital infection, the litter size, survival rate, and body weight (BW) of pups born to ΔGRA17-immunized dams were not different compared to pups born to naïve control dams (P = 0.24). However, a marked reduction in the litter size (P < 0.001), survival rate, and BW (P < 0.01) of pups born to non-immunized and infected dams was detected. Also, immunized dams infected with type II Pru strain had significantly (P < 0.001) less cyst burden in the brain compared with non-immunized and infected dams. These findings show that immunization with ΔGRA17 strain evokes cell-mediated and neutralizing antibody responses and confers some degree of protection against challenge with homologous and heterologous virulent T. gondii strains.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Ning Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong-Mei Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
47
|
Yu Z, Miller HC, Puzon GJ, Clowers BH. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4210-4219. [PMID: 28290675 DOI: 10.1021/acs.est.6b05969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite comparatively low levels of infection, primary amoebic meningoencephalitis (PAM) induced by Naegleria fowleri is extremely lethal, with mortality rates above 95%. As a thermophile, this organism is often found in moderate-to-warm climates and has the potential to colonize drinking water distribution systems (DWDSs). Current detection approaches require days to obtain results, whereas swift corrective action can maximize the benefit of public health. Presently, there is little information regarding the underlying in situ metabolism for this amoeba but the potential exists to exploit differentially expressed metabolic signatures as a rapid detection technique. This research outlines the biochemical profiles of selected pathogenic and nonpathogenic Naegleria in vitro using an untargeted metabolomics approach to identify a panel of diagnostically meaningful compounds that may enable rapid detection of viable pathogenic N. fowleri and augment results from traditional monitoring approaches.
Collapse
Affiliation(s)
- Zhihao Yu
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164, United States
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences , Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences , Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Brian H Clowers
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164, United States
| |
Collapse
|
48
|
Yang Z, Hou Y, Hao T, Rho HS, Wan J, Luan Y, Gao X, Yao J, Pan A, Xie Z, Qian J, Liao W, Zhu H, Zhou X. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18. Mol Cell Proteomics 2017; 16:469-484. [PMID: 28087594 DOI: 10.1074/mcp.m116.063602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.
Collapse
Affiliation(s)
- Zhaoshou Yang
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongheng Hou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Taofang Hao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hee-Sool Rho
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun Wan
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yizhao Luan
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.,the **School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Gao
- ‡‡The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; and
| | - Jianping Yao
- §§The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Pan
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Xie
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiang Qian
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Wanqin Liao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Heng Zhu
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xingwang Zhou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
49
|
Elsheikha HM, Büsselberg D, Zhu XQ. The known and missing links between Toxoplasma gondii and schizophrenia. Metab Brain Dis 2016; 31:749-59. [PMID: 27041387 DOI: 10.1007/s11011-016-9822-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/20/2016] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, has a striking predilection for infecting the Central Nervous System and has been linked to an increased incidence of a number of psychiatric diseases. Several in vitro and in vivo studies have shown that T. gondii infection can affect the structure, bioenergetics and function of brain cells, and alters several host cell processes, including dopaminergic, tryptophan-kynurenine, GABAergic, AKT1, Jak/STAT, and vasopressinergic pathways. These mechanisms underlying the neuropathology of latent toxoplasmosis seem to operate also in schizophrenia, supporting the link between the two disorders. Better understanding of the intricate parasite-neuroglial communications holds the key to unlocking the mystery of T. gondii-mediated schizophrenia and offers substantial prospects for the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, P.O. Box: 24144, Doha, Qatar
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| |
Collapse
|
50
|
Tang X, Yin G, Qin M, Tao G, Suo J, Liu X, Suo X. Transgenic Eimeria tenella as a vaccine vehicle: expressing TgSAG1 elicits protective immunity against Toxoplasma gondii infections in chickens and mice. Sci Rep 2016; 6:29379. [PMID: 27387302 PMCID: PMC4937369 DOI: 10.1038/srep29379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
The surface antigen 1 of Toxoplasma gondii (TgSAG1) is a major immunodominant antigen and is widely considered an ideal candidate for the development of an effective recombinant vaccine against toxoplasmosis. Eimeria tenella, an affinis apicomplexan parasite with T. gondii, is a potential vaccine vector carrying exogenous antigens that stimulates specific immune responses. Here, we engineered TgSAG1 into E. tenella and obtained a stably transfected E. tenella line (Et-TgSAG1). We found TgSAG1 localized on the cell surface of Et-TgSAG1, which is similar to its native distribution in T. gondii tachyzoites. We immunized the chickens with Et-TgSAG1 orally and detected TgSAG1-specific immune responses, which partly reduced T. gondii infection. In the mouse model, we immunized the mice with Et-TgSAG1 sporozoites intraperitoneally and challenged them with T. gondii tachyzoites RH strain. We found that the mice immunized with Et-TgSAG1 showed a TgSAG1 specific Th 1-dominant immune response and a prolonged survival time compared with wild-type E. tenella and non-immunized mice. Collectively, our results demonstrated that Et-TgSAG1, utilized as a recombinant vaccine against toxoplasmosis, could be applied in both chickens and mice. Our findings also provide a promising persuasion for the development of transgenic Eimeria as vaccine vectors for use in birds and mammals.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Mei Qin
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|