1
|
Huang Z, Mahmood N, Lacaille J, Wiebe S, Sonenberg N. Hippocampal Inhibitory Interneuron-Specific DREADDs Treatment Alters mTORC1-4E-BP Signaling and Impairs Memory Formation. J Neurochem 2025; 169:e70048. [PMID: 40123570 PMCID: PMC11931476 DOI: 10.1111/jnc.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Control of protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) is essential for learning and memory. However, the cell-type-specific and spatiotemporal regulation of this pathway during memory formation is not well understood. In this study, we expressed artificial human muscarinic M3 [hM3D(Gq)] or M4 [hM4D(Gi)] designer receptors exclusively activated by designer drugs (DREADDs) in hippocampal CA1 excitatory or inhibitory neurons of adult mice. We studied the impact of clozapine-N-oxide (CNO), a synthetic DREADDs agonist, on the mTORC1 pathway and long-term memory. hM3D(Gq) and hM4D(Gi) activate or inactivate, respectively, mTORC1 signaling in hippocampal interneurons, as indicated by the phosphorylation of its targets, eukaryotic initiation factor 4E-binding proteins (4E-BP1/2) and ribosomal protein S6 (S6). Activation of either hM3D(Gq) or hM4D(Gi) in mice immediately after training in memory tasks impaired long-term memory formation in inhibitory, but not in excitatory neurons. The findings underscore the importance of activity-dependent mTORC1-4E-BP1/2 signaling in hippocampal inhibitory interneurons for memory formation.
Collapse
Affiliation(s)
- Ziying Huang
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Goodman Cancer InstituteMontrealQuebecCanada
| | - Niaz Mahmood
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Goodman Cancer InstituteMontrealQuebecCanada
| | | | - Shane Wiebe
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Goodman Cancer InstituteMontrealQuebecCanada
| | - Nahum Sonenberg
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Goodman Cancer InstituteMontrealQuebecCanada
- Integrated Program in NeuroscienceMcGill University, Montreal Neurological InstituteMontrealQuebecCanada
| |
Collapse
|
2
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
3
|
Greig LC, Woodworth MB, Poulopoulos A, Lim S, Macklis JD. BEAM: A combinatorial recombinase toolbox for binary gene expression and mosaic genetic analysis. Cell Rep 2024; 43:114650. [PMID: 39159043 PMCID: PMC11415793 DOI: 10.1016/j.celrep.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.
Collapse
Affiliation(s)
- Luciano C Greig
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mollie B Woodworth
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stephanie Lim
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Borisova E, Newman AG, Couce Iglesias M, Dannenberg R, Schaub T, Qin B, Rusanova A, Brockmann M, Koch J, Daniels M, Turko P, Jahn O, Kaplan DR, Rosário M, Iwawaki T, Spahn CMT, Rosenmund C, Meierhofer D, Kraushar ML, Tarabykin V, Ambrozkiewicz MC. Protein translation rate determines neocortical neuron fate. Nat Commun 2024; 15:4879. [PMID: 38849354 PMCID: PMC11161512 DOI: 10.1038/s41467-024-49198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.
Collapse
Affiliation(s)
- Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Couce Iglesias
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bo Qin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Marisa Brockmann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Janina Koch
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marieatou Daniels
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Takao Iwawaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Matthew L Kraushar
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Han H, Yang Y, Jiao Y, Qi H, Han Z, Wang L, Dong L, Tian J, Vanhaesebroeck B, Li X, Liu J, Ma G, Lei H. Leverage of nuclease-deficient CasX for preventing pathological angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:738-748. [PMID: 37662968 PMCID: PMC10469388 DOI: 10.1016/j.omtn.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, People’s Republic of China
| | - Yunjuan Jiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | | | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hetian Lei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
6
|
Nakamura S, Inada E, Saitoh I, Sato M. Recent Genome-Editing Approaches toward Post-Implanted Fetuses in Mice. BIOTECH 2023; 12:biotech12020037. [PMID: 37218754 DOI: 10.3390/biotech12020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Genome editing, as exemplified by the CRISPR/Cas9 system, has recently been employed to effectively generate genetically modified animals and cells for the purpose of gene function analysis and disease model creation. There are at least four ways to induce genome editing in individuals: the first is to perform genome editing at the early preimplantation stage, such as fertilized eggs (zygotes), for the creation of whole genetically modified animals; the second is at post-implanted stages, as exemplified by the mid-gestational stages (E9 to E15), for targeting specific cell populations through in utero injection of viral vectors carrying genome-editing components or that of nonviral vectors carrying genome-editing components and subsequent in utero electroporation; the third is at the mid-gestational stages, as exemplified by tail-vein injection of genome-editing components into the pregnant females through which the genome-editing components can be transmitted to fetal cells via a placenta-blood barrier; and the last is at the newborn or adult stage, as exemplified by facial or tail-vein injection of genome-editing components. Here, we focus on the second and third approaches and will review the latest techniques for various methods concerning gene editing in developing fetuses.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho-shi 501-0296, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
7
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
8
|
Assessment of Dynein-Mediated Nuclear Migration in the Developing Cortex by Live-Tissue Microscopy. Methods Mol Biol 2023; 2623:61-71. [PMID: 36602679 DOI: 10.1007/978-1-0716-2958-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During development of the cerebral cortex, neuroepithelial and radial glial cells undergo an oscillatory nuclear movement throughout their cell cycle, termed interkinetic nuclear migration. The nucleus of postmitotic neurons derived from these neural stem cells also translocates in a saltatory manner to enable neuronal migration toward the cortical plate. In these processes, various molecular motors, including cytoplasmic dynein, myosin II, and kinesins, are the driving force for nuclear migration at different stages. Despite efforts made to understand the mechanism regulating cortical development over decades, novel gene mutations discovered in neurodevelopmental disorders indicate that missing pieces still remain. Gene manipulation by in utero electroporation combined with live microscopy of neural stem cells in brain slices provides a powerful method to capture their detailed behaviors during proliferation and migration. The procedures described in this chapter enable the monitoring of cell cycle progression, mitosis, morphological changes, and migratory patterns in situ. This approach facilitates the elucidation of gene functions in cortical development and neurodevelopmental disorders.
Collapse
|
9
|
Hanson MA, Wester JC. Advances in approaches to study cell-type specific cortical circuits throughout development. Front Cell Neurosci 2022; 16:1031389. [PMID: 36324861 PMCID: PMC9618604 DOI: 10.3389/fncel.2022.1031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons in the neocortex and hippocampus are diverse and form synaptic connections that depend on their type. Recent work has improved our understanding of neuronal cell-types and how to target them for experiments. This is crucial for investigating cortical circuit architecture, as the current catalog of established cell-type specific circuit motifs is small relative to the diversity of neuronal subtypes. Some of these motifs are found throughout the cortex, suggesting they are canonical circuits necessary for basic computations. However, the extent to which circuit organization is stereotyped across the brain or varies by cortical region remains unclear. Cortical circuits are also plastic, and their organization evolves throughout each developmental stage. Thus, experimental access to neuronal subtypes with temporal control is essential for studying cortical structure and function. In this mini review, we highlight several recent advances to target specific neuronal subtypes and study their synaptic connectivity and physiology throughout development. We emphasize approaches that combine multiple techniques, provide examples of successful applications, and describe potential future applications of novel tools.
Collapse
Affiliation(s)
- Meretta A. Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | | |
Collapse
|
10
|
Braun CJ, Adames AC, Saur D, Rad R. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 2022; 17:1903-1925. [PMID: 35840661 DOI: 10.1038/s41596-022-00700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Here we provide a detailed tutorial on CRISPR in vivo screening. Using the mouse as the model organism, we introduce a range of CRISPR tools and applications, delineate general considerations for 'transplantation-based' or 'direct in vivo' screening design, and provide details on technical execution, sequencing readouts, computational analyses and data interpretation. In vivo screens face unique pitfalls and limitations, such as delivery issues or library bottlenecking, which must be counteracted to avoid screening failure or flawed conclusions. A broad variety of in vivo phenotypes can be interrogated such as organ development, hematopoietic lineage decision and evolutionary licensing in oncogenesis. We describe experimental strategies to address various biological questions and provide an outlook on emerging CRISPR applications, such as genetic interaction screening. These technological advances create potent new opportunities to dissect the molecular underpinnings of complex organismal phenotypes.
Collapse
Affiliation(s)
- Christian J Braun
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany. .,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andrés Carbonell Adames
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dieter Saur
- Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
13
|
Zagoskin AA, Zakharova MV, Nagornykh MO. Structural Elements of DNA and RNA Eukaryotic Expression Vectors for In Vitro and In Vivo Genome Editor Delivery. Mol Biol 2022; 56:950-962. [PMCID: PMC9735121 DOI: 10.1134/s0026893322060218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
Gene editing with programmable nucleases opens new perspectives in important practice areas, such as healthcare and agriculture. The most challenging problem for the safe and effective therapeutic use of gene editing technologies is the proper delivery and expression of gene editors in cells and tissues of different organisms. Virus-based and nonviral systems can be used for the successful delivery of gene editors. Here we have reviewed structural elements of nonviral DNA- and RNA-based expression vectors for gene editing and delivery methods in vitro and in vivo.
Collapse
Affiliation(s)
- A. A. Zagoskin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - M. V. Zakharova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - M. O. Nagornykh
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia ,Sirius University of Science and Technology, Sirius, 354349 Sochi, Russia
| |
Collapse
|
14
|
Yan J, Kang DD, Turnbull G, Dong Y. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv Drug Deliv Rev 2022; 180:114042. [PMID: 34767864 PMCID: PMC8724402 DOI: 10.1016/j.addr.2021.114042] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in RNA metabolism, regulating the stability, localization, and functional dynamics of RNAs. Alternation in the RBP-RNA network has profound implications in cellular physiology, and is related to the development and spread of cancer in certain cases. To regulate the expression of specific genes and their biological activities, various strategies have been applied to target RBPs for cancer treatments, including small-molecule inhibitors, small-interfering RNA, peptides, and aptamers. Recently, the deployment of the CRISPR-Cas9 technology has provided a new platform for RBP screening and regulation. This review summarizes the delivery systems of the CRISPR-Cas9 system and their role in RBP-based cancer therapeutics, including identification of novel RBPs and regulation of cancer-associated RBPs. The efficient delivery of the CRISPR-Cas9 system is important to the profound understanding and clinical transition of RBPs as cancer therapeutic targets.
Collapse
Affiliation(s)
- Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Diana D. Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gillian Turnbull
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States,Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Gleeson D, Sethi D, Platte R, Burvill J, Barrett D, Akhtar S, Bruntraeger M, Bottomley J, Mouse Genetics Project S, Bussell J, Ryder E. High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing. Methods 2021; 191:78-86. [PMID: 33096238 PMCID: PMC8205115 DOI: 10.1016/j.ymeth.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 11/05/2022] Open
Abstract
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.
Collapse
Affiliation(s)
- Diane Gleeson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Debarati Sethi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Radka Platte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Burvill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Shaheen Akhtar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Michaela Bruntraeger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Joanna Bottomley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - James Bussell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
16
|
Kawasaki H. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets]. YAKUGAKU ZASSHI 2021; 141:349-357. [PMID: 33642503 DOI: 10.1248/yakushi.20-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folds of the cerebral cortex, which are called gyri and sulci, are one of the most prominent features of the mammalian brain. However, the mechanisms underlying the development and malformation of cortical folds are largely unknown, mainly because they are difficult to investigate in mice, whose brain do not have cortical folds. To investigate the mechanisms underlying the development and malformation of cortical folds, we developed a genetic manipulation technique for the cerebral cortex of gyrencephalic carnivore ferrets. Genes-of-interest can be expressed in the ferret cortex rapidly and efficiently. We also demonstrated that genes-of-interest can be knocked out in the ferret cortex by combining in utero electroporation and the CRISPR/Cas9 system. Using our technique, we found that fibroblast growth factor (FGF) signaling and sonic hedgehog (Shh) signaling are crucial for cortical folding. In addition, we found that FGF signaling and Shh signaling preferentially increased outer radial glial cells and the thickness of upper layers of the cerebral cortex. Furthermore, over-activation of FGF signaling and Shh signaling resulted in polymicrogyria. Our findings provide in vivo data about the mechanisms of cortical folding in gyrencephalic mammals. Our technique for the ferret cerebral cortex should be useful for investigating the mechanisms underlying the development and diseases of the cerebral cortex that cannot be investigated using mice.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University
| |
Collapse
|
17
|
Tiruneh G/Medhin M, Chekol Abebe E, Sisay T, Berhane N, Bekele T, Asmamaw Dejenie T. Current Applications and Future Perspectives of CRISPR-Cas9 for the Treatment of Lung Cancer. Biologics 2021; 15:199-204. [PMID: 34103894 PMCID: PMC8178582 DOI: 10.2147/btt.s310312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins are referred to as CRISPR-Cas9. Bacteria and archaea have an adaptive (acquired) immune system. As a result, developing the best single regulated RNA and Cas9 endonuclease proteins and implementing the method in clinical practice would aid in the treatment of diseases of various origins, including lung cancers. This seminar aims to provide an overview of CRISPR-Cas9 technology, as well as current and potential applications and perspectives for the method, as well as its mechanism of action in lung cancer therapy. This technology can be used to treat lung cancer in two different ways. The first approach involves creating single directed RNA and Cas9 proteins and then distributing them to cancer cells using suitable methods. Single directed RNA looks directly at the lung's mutated epidermal growth factor receptor and makes a complementary match, which is then cleaved with Cas9 protein, slowing cancer progression. The second method is to manipulate the expression of ligand-receptors on immune lymphocytic cells. For example, if the CRISPR-Cas9 system disables the expression of cancer receptors on lymphocytes, it decreases the contact between the tumor cell and its ligand-receptor, thus slowing cancer progression.
Collapse
Affiliation(s)
- Markeshaw Tiruneh G/Medhin
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tekeba Sisay
- Institute of Biotechnology, College of Natural Science, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, College of Natural Science, University of Gondar, Gondar, Ethiopia
| | - Tesfahun Bekele
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
19
|
Glial cell type-specific gene expression in the mouse cerebrum using the piggyBac system and in utero electroporation. Sci Rep 2021; 11:4864. [PMID: 33649472 PMCID: PMC7921133 DOI: 10.1038/s41598-021-84210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glial cells such as astrocytes and oligodendrocytes play crucial roles in the central nervous system. To investigate the molecular mechanisms underlying the development and the biological functions of glial cells, simple and rapid techniques for glial cell-specific genetic manipulation in the mouse cerebrum would be valuable. Here we uncovered that the Gfa2 promoter is suitable for selective gene expression in astrocytes when used with the piggyBac system and in utero electroporation. In contrast, the Blbp promoter, which has been used to induce astrocyte-specific gene expression in transgenic mice, did not result in astrocyte-specific gene expression. We also identified the Plp1 and Mbp promoters could be used with the piggyBac system and in utero electroporation to induce selective gene expression in oligodendrocytes. Furthermore, using our technique, neuron-astrocyte or neuron-oligodendrocyte interactions can be visualized by labeling neurons, astrocytes and oligodendrocytes differentially. Our study provides a fundamental basis for specific transgene expression in astrocytes and/or oligodendrocytes in the mouse cerebrum.
Collapse
|
20
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Palanki R, Peranteau WH, Mitchell MJ. Delivery technologies for in utero gene therapy. Adv Drug Deliv Rev 2021; 169:51-62. [PMID: 33181188 PMCID: PMC7855052 DOI: 10.1016/j.addr.2020.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Advances in prenatal imaging, molecular diagnostic tools, and genetic screening have unlocked the possibility to treat congenital diseases in utero prior to the onset of clinical symptoms. While fetal surgery and in utero stem cell transplantation can be harnessed to treat specific structural birth defects and congenital hematological disorders, respectively, in utero gene therapy allows for phenotype correction of a wide range of genetic disorders within the womb. However, key challenges to realizing the broad potential of in utero gene therapy are biocompatibility and efficiency of intracellular delivery of transgenes. In this review, we outline the unique considerations to delivery of in utero gene therapy components and highlight advances in viral and non-viral delivery platforms that meet these challenges. We also discuss specialized delivery technologies for in utero gene editing and provide future directions to engineer novel delivery modalities for clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Rohan Palanki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Kunii M, Noguchi Y, Yoshimura SI, Kanda S, Iwano T, Avriyanti E, Atik N, Sato T, Sato K, Ogawa M, Harada A. SNAP23 deficiency causes severe brain dysplasia through the loss of radial glial cell polarity. J Cell Biol 2021; 220:e201910080. [PMID: 33332551 PMCID: PMC7754684 DOI: 10.1083/jcb.201910080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 08/23/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the developing brain, the polarity of neural progenitor cells, termed radial glial cells (RGCs), is important for neurogenesis. Intercellular adhesions, termed apical junctional complexes (AJCs), at the apical surface between RGCs are necessary for cell polarization. However, the mechanism by which AJCs are established remains unclear. Here, we show that a SNARE complex composed of SNAP23, VAMP8, and Syntaxin1B has crucial roles in AJC formation and RGC polarization. Central nervous system (CNS)-specific ablation of SNAP23 (NcKO) results in mice with severe hypoplasia of the neocortex and no hippocampus or cerebellum. In the developing NcKO brain, RGCs lose their polarity following the disruption of AJCs and exhibit reduced proliferation, increased differentiation, and increased apoptosis. SNAP23 and its partner SNAREs, VAMP8 and Syntaxin1B, are important for the localization of an AJC protein, N-cadherin, to the apical plasma membrane of RGCs. Altogether, SNARE-mediated localization of N-cadherin is essential for AJC formation and RGC polarization during brain development.
Collapse
Affiliation(s)
- Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Yuria Noguchi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoshi Kanda
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Erda Avriyanti
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology and Venereology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Takashi Sato
- Laboratory of Developmental Biology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | | | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| |
Collapse
|
23
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
24
|
MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci Rep 2020; 10:21969. [PMID: 33319811 PMCID: PMC7738482 DOI: 10.1038/s41598-020-77714-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.
Collapse
|
25
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
26
|
Wang Z, Cui Y, Shan Y, Kang B, Shi L, Geng K, Han J. Generation of a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 technology. Stem Cell Res 2020; 49:102105. [PMID: 33370873 DOI: 10.1016/j.scr.2020.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Human MCPH1 (Microcephalin 1) encodes a DNA damage response protein. Mutations in this gene have been associated with Primary Autosomal Recessive Microcephaly and premature chromosome condensation syndrome. To further understand the roles of MCPH1 in neural differentiation and brain development, here we generated a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 genome editing technology. This cell line maintained a normal karyotype and typical undifferentiated state in terms of morphology, pluripotent gene expression, and had differentiation potential in vitro. This cell line provides a good resource to study the role of MCPH1 gene in neurogenesis and regulation of the size of the cerebral cortex in vitro.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062, Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, Shandong, China
| | - Yazhou Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062, Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, Shandong, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative of Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative of Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liang Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062, Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, Shandong, China
| | - Kaiyue Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062, Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, Shandong, China
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062, Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, Shandong, China.
| |
Collapse
|
27
|
Nishizono H, Yasuda R, Laviv T. Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Front Genome Ed 2020; 2:602970. [PMID: 34713226 PMCID: PMC8525404 DOI: 10.3389/fgeed.2020.602970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Hirofumi Nishizono
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | | |
Collapse
|
28
|
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. NANO TODAY 2020; 34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Steinecke A, Kurabayashi N, Hayano Y, Ishino Y, Taniguchi H. In Vivo Single-Cell Genotyping of Mouse Cortical Neurons Transfected with CRISPR/Cas9. Cell Rep 2020; 28:325-331.e4. [PMID: 31291570 DOI: 10.1016/j.celrep.2019.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/15/2019] [Accepted: 06/08/2019] [Indexed: 10/26/2022] Open
Abstract
CRISPR/Cas-based technologies have revolutionized genetic approaches to addressing a wide range of neurobiological questions. The ability of CRISPR/Cas to introduce mutations into target genes allows us to perform in vivo loss-of-function experiments without generating genetically engineered mice. However, the lack of a reliable method to determine genotypes of individual CRISPR/Cas-transfected cells has made it impossible to unambiguously identify the genetic cause of their phenotypes in vivo. Here, we report a strategy for single-cell genotyping in CRISPR/Cas-transfected neurons that were phenotypically characterized in vivo. We show that re-sectioning of cortical slices and subsequent laser microdissection allow us to isolate individual CRISPR/Cas-transfected neurons. Sequencing of PCR products containing a CRISPR/Cas-targeted genomic region in single reference neurons provided genotypes that completely correspond with those deduced from their target protein expression and phenotypes. Thus, our study establishes a powerful strategy to determine the causality between genotypes and phenotypes in CRISPR/Cas-transfected neurons.
Collapse
Affiliation(s)
- André Steinecke
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Nobuhiro Kurabayashi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA; Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Yasufumi Hayano
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Yugo Ishino
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
30
|
Otsuka H, Kimura T, Ago Y, Nakama M, Aoyama Y, Abdelkreem E, Matsumoto H, Ohnishi H, Sasai H, Osawa M, Yamaguchi S, Mitchell GA, Fukao T. Deficiency of 3-hydroxybutyrate dehydrogenase (BDH1) in mice causes low ketone body levels and fatty liver during fasting. J Inherit Metab Dis 2020; 43:960-968. [PMID: 32279332 DOI: 10.1002/jimd.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023]
Abstract
d-3-Hydroxy-n-butyrate dehydrogenase (BDH1; EC 1.1.1.30), encoded by BDH1, catalyzes the reversible reduction of acetoacetate (AcAc) to 3-hydroxybutyrate (3HB). BDH1 is the last enzyme of hepatic ketogenesis and the first enzyme of ketolysis. The hereditary deficiency of BDH1 has not yet been described in humans. To define the features of BDH1 deficiency in a mammalian model, we generated Bdh1-deficient mice (Bdh1 KO mice). Under normal housing conditions, with unrestricted access to food, Bdh1 KO mice showed normal growth, appearance, behavior, and fertility. In contrast, fasting produced marked differences from controls. Although Bdh1 KO mice survive fasting for at least 48 hours, blood 3HB levels remained very low in Bdh1 KO mice, and despite AcAc levels moderately higher than in controls, total ketone body levels in Bdh1 KO mice were significantly lower than in wild-type (WT) mice after 16, 24, and 48 hours fasting. Hepatic fat content at 24 hours of fasting was greater in Bdh1 KO than in WT mice. Systemic BDH1 deficiency was well tolerated under normal fed conditions but manifested during fasting with a marked increase in AcAc/3HB ratio and hepatic steatosis, indicating the importance of ketogenesis for lipid energy balance in the liver.
Collapse
Affiliation(s)
- Hiroki Otsuka
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Department of Neonatology, Gifu Prefectural General Medical Center, Gifu City, Japan
| | - Takeshi Kimura
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
| | - Mina Nakama
- Clinical Genetics Center, Gifu University Hospital, Gifu City, Japan
| | - Yuka Aoyama
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Education and Training Center of Medical Technology, Chubu University, Kasugai City, Japan
| | - Elsayed Abdelkreem
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Department of Pediatrics, Faculty of Medicine, Sohag University, Nasser City, Egypt
| | - Hideki Matsumoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Clinical Genetics Center, Gifu University Hospital, Gifu City, Japan
| | - Masatake Osawa
- Department of Regenerative Medicine and Applied Medical Sciences, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences (G-CHAIN), Gifu University, Gifu City, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Graduate School of Medicine, Shimane University, Izumo City, Japan
| | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montréal, Quebec, Canada
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu City, Japan
- Clinical Genetics Center, Gifu University Hospital, Gifu City, Japan
| |
Collapse
|
31
|
Abstract
The cerebral cortex is composed of an exquisitely complex network of interconnected neurons supporting the higher cognitive functions of the brain. Here, we provide a fully detailed, step-by-step protocol to perform in utero cortical electroporation of plasmids, a simple surgical procedure designed to manipulate gene expression in a subset of glutamatergic pyramidal cortical neurons in vivo. This method has been used to visualize defects in neuronal migration, axon projections, terminal axon branching, or dendrite and synapse development. For complete details on the use and execution of this protocol, please refer to Courchet et al., 2013, Mairet-Coello et al., 2013 or Shimojo et al. (2015).
Collapse
Affiliation(s)
- Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008 Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008 Lyon, France
| |
Collapse
|
32
|
Paolino A, Fenlon LR, Kozulin P, Haines E, Lim JWC, Richards LJ, Suárez R. Differential timing of a conserved transcriptional network underlies divergent cortical projection routes across mammalian brain evolution. Proc Natl Acad Sci U S A 2020; 117:10554-10564. [PMID: 32312821 PMCID: PMC7229759 DOI: 10.1073/pnas.1922422117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique combination of transcription factor expression and projection neuron identity demarcates each layer of the cerebral cortex. During mouse and human cortical development, the transcription factor CTIP2 specifies neurons that project subcerebrally, while SATB2 specifies neuronal projections via the corpus callosum, a large axon tract connecting the two neocortical hemispheres that emerged exclusively in eutherian mammals. Marsupials comprise the sister taxon of eutherians but do not have a corpus callosum; their intercortical commissural neurons instead project via the anterior commissure, similar to egg-laying monotreme mammals. It remains unknown whether divergent transcriptional networks underlie these cortical wiring differences. Here, we combine birth-dating analysis, retrograde tracing, gene overexpression and knockdown, and axonal quantification to compare the functions of CTIP2 and SATB2 in neocortical development, between the eutherian mouse and the marsupial fat-tailed dunnart. We demonstrate a striking degree of structural and functional homology, whereby CTIP2 or SATB2 of either species is sufficient to promote a subcerebral or commissural fate, respectively. Remarkably, we reveal a substantial delay in the onset of developmental SATB2 expression in mice as compared to the equivalent stage in dunnarts, with premature SATB2 overexpression in mice to match that of dunnarts resulting in a marsupial-like projection fate via the anterior commissure. Our results suggest that small alterations in the timing of regulatory gene expression may underlie interspecies differences in neuronal projection fate specification.
Collapse
Affiliation(s)
- Annalisa Paolino
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth Haines
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
33
|
Abstract
In utero electroporation is a rapid and powerful technique to study the development of many brain regions. This approach presents several advantages over other methods to study specific steps of brain development in vivo, from proliferation to synaptic integration. Here, we describe in detail the individual steps necessary to carry out the technique. We also highlight the variations that can be implemented to target different cerebral structures and to study specific steps of development.
Collapse
|
34
|
Benati D, Patrizi C, Recchia A. Gene editing prospects for treating inherited retinal diseases. J Med Genet 2019; 57:437-444. [PMID: 31857428 DOI: 10.1136/jmedgenet-2019-106473] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Retinal diseases (RD) include inherited retinal dystrophy (IRD), for example, retinitis pigmentosa and Leber's congenital amaurosis, or multifactorial forms, for example, age-related macular degeneration (AMD). IRDs are clinically and genetically heterogeneous in nature. To date, more than 200 genes are known to cause IRDs, which perturb the development, function and survival of rod and cone photoreceptors or retinal pigment epithelial cells. Conversely, AMD, the most common cause of blindness in the developed world, is an acquired disease of the macula characterised by progressive visual impairment. To date, available therapeutic approaches for RD include nutritional supplements, neurotrophic factors, antiangiogenic drugs for wet AMD and gene augmentation/interference strategy for IRDs. However, these therapies do not aim at correcting the genetic defect and result in inefficient and expensive treatments. The genome editing technology based on clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) and an RNA that guides the Cas protein to a predetermined region of the genome, represents an attractive strategy to tackle IRDs without available cure. Indeed, CRISPR/Cas system can permanently and precisely replace or remove genetic mutations causative of a disease, representing a molecular tool to cure a genetic disorder. In this review, we will introduce the mechanism of CRISPR/Cas system, presenting an updated panel of Cas variants and delivery systems, then we will focus on applications of CRISPR/Cas genome editing in the retina, and, as emerging treatment options, in patient-derived induced pluripotent stem cells followed by transplantation of retinal progenitor cells into the eye.
Collapse
Affiliation(s)
- Daniela Benati
- Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clarissa Patrizi
- Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
35
|
Raikwar SP, Kikkeri NS, Sakuru R, Saeed D, Zahoor H, Premkumar K, Mentor S, Thangavel R, Dubova I, Ahmed ME, Selvakumar GP, Kempuraj D, Zaheer S, Iyer SS, Zaheer A. Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. J Neuroimmune Pharmacol 2019; 14:608-641. [PMID: 31011884 PMCID: PMC8211357 DOI: 10.1007/s11481-019-09849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Nidhi S Kikkeri
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Ragha Sakuru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Daniyal Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Haris Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Keerthivaas Premkumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shireen Mentor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Republic of South Africa
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Govindhasamy P Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA.
| |
Collapse
|
36
|
Artyukhova MA, Tyurina YY, Chu CT, Zharikova TM, Bayır H, Kagan VE, Timashev PS. Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radic Biol Med 2019; 144:279-292. [PMID: 31201850 PMCID: PMC6832799 DOI: 10.1016/j.freeradbiomed.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.
Collapse
Affiliation(s)
- M A Artyukhova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA
| | - C T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - T M Zharikova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - H Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Department of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, I.M. Sechenov Moscow State Medical University, Russian Federation; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA.
| | - P S Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, Russian Federation; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, Russian Federation
| |
Collapse
|
37
|
Matsuda T, Oinuma I. Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9. Mol Biol Cell 2019; 30:2838-2855. [PMID: 31509485 PMCID: PMC6789158 DOI: 10.1091/mbc.e19-04-0223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fluorescence imaging at single-cell resolution is a crucial approach to analyzing the spatiotemporal regulation of proteins within individual cells of complex neural networks. Here we present a nonviral strategy that enables the tagging of endogenous loci by CRISPR/Cas9-mediated genome editing combined with a nucleofection technique. The method allowed expression of fluorescently tagged proteins at endogenous levels, and we successfully achieved tagging of a presynaptic protein, synaptophysin (Syp), and a postsynaptic protein, PSD-95, in cultured postmitotic neurons. Superresolution fluorescence microscopy of fixed neurons confirmed the identical localization patterns of the tagged proteins to those of endogenous ones verified by immunohistochemistry. The system is also applicable for multiplexed labeling and live-cell imaging. Live imaging with total internal reflection fluorescence microscopy of a single dendritic process of a neuron double-labeled with Syp-mCherry and PSD-95-EGFP revealed the previously undescribed dynamic localization of the proteins synchronously moving along dendritic shafts. Our convenient and versatile strategy is potent for analysis of proteins whose ectopic expressions perturb cellular functions.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone 2019; 127:488-498. [PMID: 31325654 PMCID: PMC6708767 DOI: 10.1016/j.bone.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.
Collapse
Affiliation(s)
- Todd Dowrey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Julieann Duong
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
39
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
40
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
41
|
Matsuda T, Oinuma I. Optimized CRISPR/Cas9-mediated in vivo genome engineering applicable to monitoring dynamics of endogenous proteins in the mouse neural tissues. Sci Rep 2019; 9:11309. [PMID: 31383899 PMCID: PMC6683140 DOI: 10.1038/s41598-019-47721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
To analyze the expression, localization, and functional dynamics of target proteins in situ, especially in living cells, it is important to develop a convenient, versatile, and efficient method to precisely introduce exogenous genes into the genome, which is applicable for labeling and engineering of the endogenous proteins of interest. By combining the CRISPR/Cas9 genome editing technology with an electroporation technique, we succeeded in creating knock-in alleles, from which GFP (RFP)-tagged endogenous proteins are produced, in neurons and glial cells in vivo in the developing mouse retina and brain. Correct gene targeting was confirmed by single-cell genotyping and Western blot analysis. Several gene loci were successfully targeted with high efficiency. Moreover, we succeeded in engineering the mouse genome to express foreign genes from the endogenous gene loci using a self-cleaving 2A peptide. Our method could be used to monitor the physiological changes in localization of endogenous proteins and expression levels of both mRNA and protein at a single cell resolution. This work discloses a powerful and widely applicable approach for visualization and manipulation of endogenous proteins in neural tissues.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
42
|
Nakamura S, Ishihara M, Ando N, Watanabe S, Sakurai T, Sato M. Transplacental delivery of genome editing components causes mutations in embryonic cardiomyocytes of mid-gestational murine fetuses. IUBMB Life 2019; 71:835-844. [PMID: 30635953 DOI: 10.1002/iub.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
Genome editing, as exemplified by CRISPR/Cas9, is now recognized as a powerful tool for the engineering of endogenous target genes. It employs only two components, namely, Cas9 in the form of DNA, mRNA, or protein; and guide RNA (gRNA), which is specific to a target gene. When these components are transferred to cells, they create insertion/deletion mutations (indels) within a target gene. Therefore, when fetuses within the uteri of pregnant murine females are exposed to these reagents, fetal cells incorporating them should show mutations in the target gene. To examine a possible genome editing of fetal cells in vivo, we intravenously administered a solution containing plasmid DNA-FuGENE complex to pregnant wild-type female mice [which had been successfully mated with enhanced green fluorescent protein (EGFP)-expressing male transgenic mice] on day 12.5 of gestation. The plasmid DNA induces the expression of gRNA, which was targeted at the EGFP cDNA, and that of the Cas9 gene. All fetuses in the pregnant females should express EGFP systemically, since they are heterozygous (Tg/+) for the transgene. Thus, the delivery of CRISPR system targeted at EGFP in the fetuses will cause a reduced expression of EGFP as a result of the genome editing of EGFP genomic sequence. Of the 24 fetuses isolated from three pregnant females 2 days after gene delivery, 3 were found to have reduced fluorescence in their hearts. Genotyping of the dissected hearts revealed the presence of the transgene construct (Cas9 gene) in all the samples. Furthermore, all the three samples exhibited mutations at the target loci, although normal cells were also present. Thus, transplacental delivery of gene editing components may be a useful tool for developing animal models with heart disorder for heart-related disease research, and gene therapy in congenital heart defects such as hypertrophic cardiomyopathy (HCM). © 2019 IUBMB Life, 9999(9999):1-10, 2019.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0901, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
43
|
Li C, Wang Q, Peng Z, Lin Y, Liu H, Yang X, Li S, Liu X, Chen J. Generation of FOS gene knockout lines from a human embryonic stem cell line using CRISPR/Cas9. Stem Cell Res 2019; 39:101479. [PMID: 31229900 DOI: 10.1016/j.scr.2019.101479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/11/2019] [Accepted: 06/01/2019] [Indexed: 11/27/2022] Open
Abstract
FOS is component of the AP-1 complex and has been reported to be involved in many cellular functions, including cell proliferation, differentiation, survival, angiogenesis, hematopoiesis and cancer progress. To further understand the exact role of FOS in these processes, here we created two FOS knockout human embryonic stem cell lines by CRISPR/Cas9 mediated gene targeting. These cell lines retained normal morphology and karyotype, normal expression of pluripotent markers, and differentiation potential both in vivo and in vitro. These cell lines can be used to verify whether the FOS mutated produces any affect on endothelial cells and hematopoietic progenitor cells during the hematopoietic differentiation.
Collapse
Affiliation(s)
- Chunfu Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China.
| | - Qing Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology &Oncology Taixin Hospital, China
| | - Yuchen Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Huaying Liu
- Nanfang-Chunfu Children's Institute of Hematology &Oncology Taixin Hospital, China
| | - Xiuling Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Shan Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - XiaoTing Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jingru Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
44
|
Abstract
CRISPR gene editing is poised to transform the therapeutic landscape for diseases of genetic origin. The ease and agility by which CRISPR can make specific changes to DNA holds great promise not only for the treatment of heritable diseases, but also their prevention through germline editing. CRISPR-based therapeutic strategies are currently under development for numerous monogenic diseases. These strategies range from proof of concept studies demonstrating pre-fertilization gamete editing to recently initiated clinical trials for postnatal ex vivo therapies. The promise of CRISPR's human genome editing potential has captivated the public's attention. It is of paramount importance that medical professionals who work with patients who may have or carry a monogenic heritable disease understand CRISPR technology in order to have informed and compassionate discussions with their patients. Understanding CRISPR means understanding its evolving therapeutic applications' nuances, limitations, and barriers to access as well as the regulatory landscape they inhabit. In this piece we provide a review of the promises and pitfalls of CRISPR germline gene editing and their implications for patient decision-making throughout various stages of the reproductive process.
Collapse
Affiliation(s)
- Natalie Kofler
- Founder, Editing Nature and Associate Research Scientist, Yale Institute of Biospheric Studies, Yale Interdisciplinary Center for Bioethics, 21 Sachem St., New Haven, CT 06511, United States.
| | - Katherine L Kraschel
- Executive Director, Solomon Center for Health Law and Policy; Lecturer in Law; and Research Scholar, Yale Law School, 127 Wall Street, New Haven, CT 06511, United States
| |
Collapse
|
45
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
46
|
Vaid S, Camp JG, Hersemann L, Eugster Oegema C, Heninger AK, Winkler S, Brandl H, Sarov M, Treutlein B, Huttner WB, Namba T. A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex. Development 2018; 145:dev.169276. [PMID: 30266827 DOI: 10.1242/dev.169276] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023]
Abstract
A specific subpopulation of neural progenitor cells, the basal radial glial cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of the mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that the developing mouse medial neocortex (medNcx), in contrast to the canonically studied lateral neocortex (latNcx), exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse latNcx, the bRGCs in medNcx exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medNcx and forced Hopx expression in mouse embryonic latNcx demonstrate that Hopx is required and sufficient, respectively, for bRGC abundance as found in the developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medNcx that is highly related to bRGCs of developing gyrencephalic neocortex.
Collapse
Affiliation(s)
- Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Anne-Kristin Heninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
47
|
Kawasaki H. Molecular Investigations of the Development and Diseases of Cerebral Cortex Folding using Gyrencephalic Mammal Ferrets. Biol Pharm Bull 2018; 41:1324-1329. [DOI: 10.1248/bpb.b18-00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
48
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
49
|
Nishiyama J. Genome editing in the mammalian brain using the CRISPR-Cas system. Neurosci Res 2018; 141:4-12. [PMID: 30076877 DOI: 10.1016/j.neures.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
Recent advances in genome editing technologies such as the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 have enabled the rapid and efficient modification of endogenous genomes in a variety of cell types, accelerating biomedical research. In particular, precise genome editing in somatic cells in vivo allows for the rapid generation of genetically modified cells in living animals and holds great promise for the possibility of directly correcting genetic defects associated with human diseases. However, because of the limited efficiency and suitability of these technologies in the brain, especially in postmitotic neurons, the practical application of genome editing technologies has been largely limited in the field of neuroscience. Recent technological advances overcome significant challenges facing genome editing in the brain and have enabled us to precisely edit the genome in both mitotic cells and mature postmitotic neurons in vitro and in vivo, providing powerful means for studying gene function and dysfunction in the brain. This review highlights the development of genome editing technologies for the brain and discusses their applications, limitations, and future challenges.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
50
|
Vesikansa A. Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. J Cent Nerv Syst Dis 2018; 10:1179573518787469. [PMID: 30013417 PMCID: PMC6043941 DOI: 10.1177/1179573518787469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022] Open
Abstract
The complex structure and highly variable gene expression profile of the brain makes it among the most challenging fields to study in both basic and translational biological research. Most of the brain diseases are multifactorial and despite the rapidly increasing genomic data, molecular pathways and causal links between genes and central nervous system (CNS) diseases are largely unknown. The advent of an easy and flexible CRISPR-Cas genome editing technology has rapidly revolutionized the field of functional genomics and opened unprecedented possibilities to dissect the mechanisms of CNS disease. CRISPR-Cas allows a plenitude of applications for both gene-focused and genome-wide approaches, ranging from original “gene scissors” making permanent modifications in the genome to the regulation of gene expression and epigenetics. CRISPR technology provides a unique opportunity to establish new cellular and animal models of CNS diseases and holds potential for breakthroughs in the CNS research and drug development.
Collapse
Affiliation(s)
- Aino Vesikansa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|