1
|
Arulnangai R, Asia Thabassoom H, Vajiha Banu H, Thirugnanasambandham K, Ganesamoorthy R. Recent developments on ursolic acid and its potential biological applications. Toxicol Rep 2025; 14:101900. [PMID: 39897400 PMCID: PMC11786699 DOI: 10.1016/j.toxrep.2025.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
A naturally occurring pentacyclic triterpenoid, ursolic acid (UA) has attracted a lot of interest due to its various pharmacological characteristics and its medical uses. The goal of this thorough review is to present a thorough examination of the therapeutic benefits of UA, including its anti-inflammatory, antioxidant, anticancer, antibacterial, and metabolic-regulating properties. We go over its origins, pharmacological characteristics, and advantages in the treatment of several illnesses, including cancer, neurological disorders, metabolic disorders, and cardiovascular diseases. We further emphasize its potential to improve exercise capacity and its growing function as an exercise mimic. UA's therapeutic potential is thoroughly explained in this review, which highlights the compound's potential as a natural remedy for several illnesses.
Collapse
Affiliation(s)
- R. Arulnangai
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Asia Thabassoom
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Vajiha Banu
- PG and Research Department of Microbiology, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - K. Thirugnanasambandham
- Nammazhvar Organic Farming Research centre, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, Tamil Nadu 641 003, India
| | - R. Ganesamoorthy
- Department of Chemistry, Vinayaka Mission’s Kirupananda Variyar Arts and Science College, Salem, Tamil Nadu, India
| |
Collapse
|
2
|
Rathor P, Gorim LY, Chen G, Thilakarathna MS. The Effect of Humalite on Improving Soil Nitrogen Availability and Plant Nutrient Uptake for Higher Yield and Oil Content in Canola. PHYSIOLOGIA PLANTARUM 2025; 177:e70201. [PMID: 40207787 PMCID: PMC11984079 DOI: 10.1111/ppl.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Over the last half-century, the widespread use of synthetic chemical fertilizers has boosted crop yields but caused noticeable environmental damage. In recent years, the application of humic substances to increase plant growth and crop yield has gained considerable interest, largely due to their organic origin and their ability to reduce nutrient losses while enhancing plant nutrient use efficiency. Humalite, found exclusively in large deposits in southern Alberta, Canada, is rich in humic substances and has low levels of unwanted ash and heavy metals, which makes it particularly valuable for agricultural applications. However, its effects on canola, the largest oilseed crop in Canada and the second-largest in the world, have yet to be evaluated. This study investigated the effects of five Humalite rates (0, 200, 400, 800, and 1600 kg ha-1) in combination with nitrogen, phosphorus, and potassium (NPK) applied at recommended levels, on canola growth, soil nitrogen availability, plant nutrient uptake, photosynthesis, seed yield, seed oil content, and nitrogen use efficiency under controlled environmental conditions. The results demonstrated that Humalite application significantly enhanced soil nitrogen availability, uptake of macro- and micronutrients (N, P, K, S, Mg, Mn, B, Fe and Zn), shoot and root biomass, net photosynthesis, and water use efficiency as compared to the NPK alone treatment. The application of Humalite also led to increased seed yield, seed oil content, and nitrogen use efficiency. Taken together, Humalite could serve as an effective organic soil amendment to enhance canola growth and yield while enhancing fertilizer use efficiency.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
3
|
Hassan HS, Feleafel MN, El-Lahot MSRA, El-Hefny M, Rahman TFMA, Mohamed AA, Abd-Elkader DY, Mahdy RM. Biostimulants for enhancing productivity, bioactive components, and the essential oils of garlic with the potential antifungal activity. AMB Express 2024; 14:130. [PMID: 39604786 PMCID: PMC11602910 DOI: 10.1186/s13568-024-01790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To feed the world's growing population, the agriculture sector has recently had to strike a balance between reducing its detrimental effects on ecosystems and human health and boosting resource efficiency and production. In reality, pesticides and fertilizers are vital to agriculture and are useful instruments that farmers can employ to increase yield and guarantee steady productivity throughout the seasons under both favorable and unfavorable conditions. Therefore, in the present study, fertilizing with potassium citrate as a foliar spray and humic acid (HA) as a soil application allowed for the evaluation of vegetative growth parameters (plant height, number of leaves/plant), total phenolic content, total carbohydrate, antioxidant activity, the essential oil (EO) composition, and bulb yield of garlic (Allium sativum L.). These were carried out in two field experiments throughout the 2020-2021 and 2021-2022 growth seasons. A gas chromatography-mass spectroscopy (GC-MS) apparatus was performed to determine the chemical composition of the isolated EOs. The antifungal activity of the EOs was assessed against two fungi, Fusarium proliferatum and Macrophomina phaseolina, that cause geranium plants to wilt and decay. The findings indicated that applying HA at a rate of 2 g/L with potassium citrate at a rate of 5 or 10 mL/L produced garlic bulbs with the highest levels of productivity and diameter. The diverse treatments between HA with potassium citrate resulted in significant variations in the bioactive components, such as total phenol content, antioxidant activity, total carbohydrate, and sulfur content. The analysis of the EOs revealed the presence of dimethyl trisulfide, diallyl disulfide, methyl 2-propenyl trisulfide, allitridin, and methyl allyl disulfide and allyl tetrasulfide as main compounds. By gradually increasing the concentration of the garlic EO to 4000 µg/mL compared to the control, the inhibition percentage of fungal growth of F. proliferatum and M. phaseolina was increased. In conclusion, a high concentration of HA with potassium citrate (5 or 10 mL/L), may be suitable and highly appreciated as a fertilizer application to enhance the productivity and EOs content of garlic plants.
Collapse
Affiliation(s)
- Hanaa S Hassan
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mostafa N Feleafel
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mina S R Abd El-Lahot
- Department of Food Science and Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Taghreed F M Abdel Rahman
- Department of Ornamental, Medicinal and Aromatic Plant Diseases, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Abeer A Mohamed
- Plant Pathology Institute, Agricultural Research Center (ARC), Alexandria, 21616, Egypt
| | - Doaa Y Abd-Elkader
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - R M Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Zhou H, Dang Y, Chen X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, Yang B, Zhang X, Sun Y, He X, Ren Y, Su X. Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52582-52595. [PMID: 39153068 DOI: 10.1007/s11356-024-34514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yan Dang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xulong Zhang
- China Customs Science and Technology Research Center, Beijing, 100026, People's Republic of China
| | - Yiwei Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoyan He
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Environmental Sciences, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yanjie Ren
- Xinjiang Qinghua Energy Group Co., Ltd, Xinjiang, 844500, Yining, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
5
|
Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn 2024; 42:5799-5816. [PMID: 37394807 DOI: 10.1080/07391102.2023.2229440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigün
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Başar
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - İbrahim Demirtaş
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Lamar RT, Gralian J, Hockaday WC, Jerzykiewicz M, Monda H. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. FRONTIERS IN PLANT SCIENCE 2024; 15:1328006. [PMID: 38751833 PMCID: PMC11095639 DOI: 10.3389/fpls.2024.1328006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2024]
Abstract
Introduction Humic substances (HS) are increasingly being applied as crop plant biostimulants because they have been shown to increase plant productivity, especially under environmentally stressful conditions. There has been intense interest in elucidating the HS molecular structures responsible for eliciting the plant biostimulant response (PBR). The polar and weakly acidic carboxylic (COOH) and phenolic hydroxyl (ArOH) functional groups play major roles in the acid nature, pH dependent solubilities, conformation, and metal- and salt-binding capabilities of HS. Reports on the role played by these groups in the PBR of HS found growth parameters being both positively and negatively correlated with COOH and ArOH functionalities. Materials and methods To investigate the role of COOH and ArOH in HS biostimulant activity we used a humic acid (HA), purified from an oxidized sub bituminous coal to prepare HAs with COOH groups methylated (AHA), ArOH groups acetylated (OHA), and with both COOH and ArOH groups methylated (FHA). The original HA was designated (NHA). The four HAs were subjected to elemental, 13C-NMR, FTIR, and EPR analyses and their antioxidant properties were assessed using the trolox equivalents antioxidant capacity assay (TEAC). 13C-NMR and FTIR analysis revealed significant alkylation/acetylation. To determine the effects of alkylating/acetylating these functional groups on the HA elicited PBR, the HAs were evaluated in a plant bioassay on corn (Zea mays L.) seedling under nutrient and non-nutrient stressed conditions. Treatments consisted of the four HAs applied to the soil surface at a concentration of 80 mg C L-1, in 50 ml DI H2O with the control plants receiving 50ml DI H2O. Results The HA-treated plants, at both fertilization rates, were almost always significantly larger than their respective control plants. However, the differences produced under nutrient stress were always much greater than those produced under nutrient sufficiency, supporting previous reports that HA can reduce the effects of stress on plant growth. In addition, for the most part, the HAs with the alkylated/acetylated groups produced plants equal to or larger than plants treated with NHA. Conclusion These results suggests that COOH and ArOH groups play a limited or no role in the HA elicited PBR. Alternatively, the HA pro-oxidant to antioxidant ratio may play a role in the magnitude of the biostimulant response.
Collapse
Affiliation(s)
| | - Jason Gralian
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| | | | | | - Hiarhi Monda
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| |
Collapse
|
7
|
da Silva HFO, de Oliveira Torchia DF, van Tol de Castro TA, de Abreu Lopes S, Cantarino RE, Tavares OCH, de Moura OVT, Rodrigues NF, Berbara RLL, Santos LA, García AC. Role of the molecular structure of humified organic matter in rice plant response to environmental lead pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27203-27220. [PMID: 38507164 DOI: 10.1007/s11356-024-32898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Humified organic matter has been shown to decrease Pb toxicity in plants. However, there are still gaps in our understanding of the mechanism by which this phenomenon occurs. In this study, we aimed to assess the ability of humic substances (HSs), humic acids (HAs), and fulvic acids (FAs) to enhance defense mechanisms in rice plants under lead (Pb)-stressed conditions. HS fractions were isolated from vermicompost using the chemical fractionation methodology established by the International Humic Substances Society. These fractions were characterized by solid-state NMR and FTIR. Chemometric analysis was used to compare humic structures and correlate them with bioactivity. Three treatments were tested to evaluate the protective effect of humic fractions on rice plants. The first experiment involved the application of humic fractions along with Pb. The second comprised pretreatment with humic fractions followed by subsequent exposure to Pb stress. The third experiment involved Pb stress and subsequent treatment with humic fractions. The root morphology and components of the antioxidative defense system were evaluated and quantified. The results showed that HS + Pb, HA + Pb, and FA + Pb treatment preserved root growth and reduced the levels of O2- and malondialdehyde (MDA) in the roots by up to 5% and 2%, respectively. Pretreatment of the plants with humic fractions promoted the maintenance of root growth and reduced the contents of O2-, H2O2, and MDA by up to 48%, 22%, and 20%, respectively. Combined application of humic fractions and Pb reduced the Pb content in plant tissues by up to 60%, while pretreatment reduced it by up to 80%. The protective capacity of humic fractions is related to the presence of peptides, lignin, and carbohydrate fragments in their molecular structures. These results suggest that products could be developed that can mitigate the adverse effects of heavy metals on agricultural crops.
Collapse
Affiliation(s)
- Hellen Fernanda Oliveira da Silva
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | - Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Samuel de Abreu Lopes
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Raphaella Esterque Cantarino
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Octávio Vioratti Telles de Moura
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Natália Fernandes Rodrigues
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Leandro Azevedo Santos
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Andrés Calderin García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|
8
|
Zhao S, Chen D, Yao Y, Liu C, Gao B, Liu Y, Liu J, Wang S, Gao N, Yang M, Shi G, Zhang S, Xie J, Yang Y. Ammonium Sulfite Slurry from Ammonia-Based Desulfurization Activates Water-Soluble Humic Substances from Lignite: Performance, Application, and Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13633-13644. [PMID: 37671478 DOI: 10.1021/acs.jafc.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Both ammonium sulfite slurry (ASS) from ammonia-based desulfurization and lignite are waste materials with low value. In this work, an innovative method was developed by applying ASS in lignite activation to produce water-soluble humic substances (WHSs) with a high bioactivity and economic value. The optimal activation method was to mix lignite and ASS at a 4:1-liquid-solid ratio by vortex blender and then oscillate it for 30 min at 25 °C. Compared with that of the unactivated lignite (UAL), the yield of WHSs from activated lignite (AL) increased by 42.72%. WHSs from AL consisted of a large number of aliphatic carbons with low molecular weight and functional groups such as amides, amines, sulfonic acid groups, C-O, and so forth. Moreover, WHSs from AL at lower concentrations (2 mg/L) has a more obvious root-elongation-promoting effect than WHSs from UAL (10 mg/L). Activation experiment with the lignite-related model compounds revealed that ASS caused the breakage of Caliph-O, Caliph-Caliph, and Carom-Caliph linkages between aromatic rings. These findings provide a theoretical basis for the development of green and sustainable technologies for the beneficial reuse of ASS and lignite in agriculture.
Collapse
Affiliation(s)
- Shanshan Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Denglun Chen
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chenghao Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiahui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Songyuan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ni Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Mingchuan Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Guifang Shi
- Taian Academy of Agricultural Sciences, Taian 271000, Shandong, China
| | - Shugang Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazhuo Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| |
Collapse
|
9
|
Ore OT, Adeola AO, Fapohunda O, Adedipe DT, Bayode AA, Adebiyi FM. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59106-59127. [PMID: 37022547 DOI: 10.1007/s11356-023-26809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.
Collapse
Affiliation(s)
- Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, 001, Ondo State, Nigeria
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Demilade T Adedipe
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ajibola A Bayode
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, Ede, PMB 230, Osun State, Nigeria
| | - Festus M Adebiyi
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
- Management and Toxicology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, 002, Nigeria
| |
Collapse
|
10
|
Verrillo M, Koellensperger G, Puehringer M, Cozzolino V, Spaccini R, Rampler E. Evaluation of Sustainable Recycled Products to Increase the Production of Nutraceutical and Antibacterial Molecules in Basil Plants by a Combined Metabolomic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:513. [PMID: 36771598 PMCID: PMC9919386 DOI: 10.3390/plants12030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND An important goal of modern medicine is the development of products deriving from natural sources to improve environmental sustainability. In this study, humic substances (HS) and compost teas (CTs) extracted from artichoke (ART) and coffee grounds (COF) as recycled biomasses were employed on Ocimum basilicum plants to optimize the yield of specific metabolites with nutraceutical and antibacterial features by applying sustainable strategies. METHODS The molecular characteristics of compost derivates were elucidated by Nuclear Magnetic Resonance spectroscopy to investigate the structure-activity relationship between organic extracts and their bioactive potential. Additionally, combined untargeted and targeted metabolomics workflows were applied to plants treated with different concentrations of compost extracts. RESULTS The substances HS-ART and CT-COF improved both antioxidant activity (TEAC values between 39 and 55 μmol g-1) and the antimicrobial efficacy (MIC value between 3.7 and 1.3 μg mL-1) of basil metabolites. The metabolomic approach identified about 149 metabolites related to the applied treatments. Targeted metabolite quantification further highlighted the eliciting effect of HS-ART and CT-COF on the synthesis of aromatic amino acids and phenolic compounds for nutraceutical application. CONCLUSIONS The combination of molecular characterization, biological assays, and an advanced metabolomic approach, provided innovative insight into the valorization of recycled biomass to increase the availability of natural compounds employed in the medical field.
Collapse
Affiliation(s)
- Mariavittoria Verrillo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlene Puehringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Vincenza Cozzolino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Riccardo Spaccini
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
11
|
Aranaz J, de Hita D, Olaetxea M, Urrutia O, Fuentes M, Baigorri R, Garnica M, Movila M, Zamarreño AM, Erro J, Baquero E, Gonzalez-Gaitano G, Alvarez JI, Garcia-Mina JM. The molecular conformation, but not disaggregation, of humic acid in water solution plays a crucial role in promoting plant development in the natural environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1180688. [PMID: 37206971 PMCID: PMC10190593 DOI: 10.3389/fpls.2023.1180688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Many studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear. Some studies suggest the hypothesis that the interaction of HS with root exudates involves relevant modification of the molecular conformation of humic self-assembled aggregates, including disaggregation, which might be directly involved in the activation of root responses. To investigate this hypothesis, we have prepared two humic acids. A natural humic acid (HA) and a transformed humic acid obtained from the treatment of HA with fungal laccase (HA enz). We have tested the capacity of the two humic acids to affect plant growth (cucumber and Arabidopsis) and complex Cu. Laccase-treatment did not change the molecular size but increased hydrophobicity, molecular compactness and stability, and rigidity of HA enz. Laccase-treatment avoided the ability of HA to promote shoot- and root-growth in cucumber and Arabidopsis. However, it does not modify Cu complexation features. There is no molecular disaggregation upon the interaction of HA and HA enz with plant roots. The results indicate that the interaction with plant roots induced in both HA and laccase-treated HA (HA enz), changes in their structural features that showed higher compactness and rigidity. These events might result from the interaction of HA and HA enz with specific root exudates that can promote intermolecular crosslinking. In summary, the results indicate that the weakly bond stabilized aggregated conformation (supramolecular-like) of HA plays a crucial role in its ability to promote root and shoot growth. The results also indicate the presence of two main types of HS in the rhizosphere corresponding to those non-interacting with plant roots (forming aggregated molecular assemblies) and those produced after interacting with plant root exudates (forming stable macromolecules).
Collapse
Affiliation(s)
- Javier Aranaz
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - David de Hita
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Maite Olaetxea
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Oscar Urrutia
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Marta Fuentes
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Roberto Baigorri
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Maria Garnica
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Maria Movila
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Angel M. Zamarreño
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Javier Erro
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | - Enrique Baquero
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
| | | | - Jose Ignacio Alvarez
- Department of Chemistry, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Jose M. Garcia-Mina
- Institute for Biodiversity and Environment BIOMA, University of Navarra, Pamplona, Spain
- *Correspondence: Jose M. Garcia-Mina,
| |
Collapse
|
12
|
Rehman JU, Joe EN, Yoon HY, Kwon S, Oh MS, Son EJ, Jang KS, Jeon JR. Lignin Metabolism by Selected Fungi and Microbial Consortia for Plant Stimulation: Implications for Biologically Active Humus Genesis. Microbiol Spectr 2022; 10:e0263722. [PMID: 36314978 PMCID: PMC9769858 DOI: 10.1128/spectrum.02637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Plant lignin is regarded as an important source for soil humic substances (HSs). Nonetheless, it remains unclear whether microbial metabolism on lignin is related to the genesis of unique HS biological activities (e.g., direct plant stimulation). Here, selected white-rot fungi (i.e., Ganoderma lucidum and Irpex lacteus) and plant litter- or mountain soil-derived microbial consortia were exploited to structurally modify lignin, followed by assessing the plant-stimulatory activity of the lignin-derived products. Parts solubilized by microbial metabolism on lignin were proven to exhibit organic moieties of phenol, carboxylic acid, and aliphatic groups and the enhancement of chromogenic features (i.e., absorbance at 450 nm), total phenolic contents, and radical-scavenging capacities with the cultivation times. In addition, high-resolution mass spectrometry revealed the shift of lignin-like molecules toward those showing either more molar oxygen-to-carbon or more hydrogen-to-carbon ratios. These results support the findings that the microbes involved, solubilize lignin by fragmentation, oxygenation, and/or benzene ring opening. This notion was also substantiated by the detection of related exoenzymes (i.e., peroxidases, copper radical oxidases, and hydrolases) in the selected fungal cultures, while the consortia treated with antibacterial agents showed that the fungal community is a sufficient condition to induce the lignin biotransformation. Major families of fungi (e.g., Nectriaceae, Hypocreaceae, and Saccharomycodaceae) and bacteria (e.g., Burkholderiaceae) were identified in the lignin-enriched cultures. All the microbially solubilized lignin products were likely to stimulate plant root elongation in the order selected white-rot fungi > microbial consortia > antibacterial agent-treated microbial consortia. Overall, this study supports the idea that microbial transformation of lignin can contribute to the formation of biologically active organic matter. IMPORTANCE Structurally stable humic substances (HSs) in soils are tightly associated with soil fertility, and it is thus important to understand how soil HSs are naturally formed. It is believed that microbial metabolism on plant matter contributes to natural humification, but detailed microbial species and their metabolisms inducing humic functionality (e.g., direct plant stimulation) need to be further investigated. Our findings clearly support that microbial metabolites of lignin could contribute to the formation of biologically active humus. This research direction appears to be meaningful not only for figuring out the natural processes, but also for confirming natural microbial resources useful for artificial humification that can be linked to the development of high-quality soil amendments.
Collapse
Affiliation(s)
- Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Nam Joe
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Sumin Kwon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Min Seung Oh
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Republic of Korea
- IALS, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
13
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
14
|
Furtado E Silva JAM, García AC, Lima ESA, Souza CCB, Amaral Sobrinho NMB. Effect of short-term pig slurry amendment of soil on humified organic matter and its relationship with the dynamics of heavy metals and metals uptake by plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:958-969. [PMID: 36226697 DOI: 10.1080/10934529.2022.2132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The impact of pig slurry (PS) application on the structural dynamics of humic substances (HS) and on the mobility of Cu, Zn, Ni, and Pb in a dystrophic Red Nitosol planted with winter forage grasses was evaluated. After four PS applications, the humic acids (HA) and fulvic acids (FA) were characterized by spectroscopy techniques allied to chemometrics methods. The metals contents in soil, in HS and in the tissues of plant were quantified. PS application increases the total organic carbon, especially the nonhumic carbon, which contribute to increase FA content. The carbon in FA and HA increases with the highest PS dose applied, especially aliphatic structures in FA and aromatic structures in HA. The amount of Pb and Cu in FA and HA increases respectively, as well as Cu, Zn, Ni, and Pb bioavailable. PS applications increase the biomass production in grasses and the metals content accumulated in the tissues. Our study shows that the PS application modifies the structure of SOM, incorporating fragments, and modifying its dynamics, which regulates the dynamics and the accumulation of metals in soils and plants. The association of metals with soluble structures seems to inactivate their toxicity and does not affect plant growth.
Collapse
Affiliation(s)
- João A M Furtado E Silva
- Laboratory of Soil Chemistry, Department of Soil Science, Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Agronomy, Seropédica, Brazil
| | - Andrés C García
- Laboratory of Soil Biological Chemistry, Department of Soil Science, Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Agronomy, Seropédica, Brazil
| | - Erica S A Lima
- Laboratory of Soil Chemistry, Department of Soil Science, Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Agronomy, Seropédica, Brazil
| | | | - Nelson M B Amaral Sobrinho
- Laboratory of Soil Chemistry, Department of Soil Science, Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Agronomy, Seropédica, Brazil
| |
Collapse
|
15
|
Baranov V, Karpinets L, Banya A, Semeniuk I, Karpenko E. Electro-Hydraulic Effect as a Factor of Increasing the Efficiency of Organic Fertilizers in Agro-Industrial Production. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2022. [DOI: 10.20535/ibb.2022.6.2.265327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background. The development of the agro-industrial complex, the intensification of crop production cause soil pollution with the remains of fertilizers and herbicides. Therefore, reducing the amount of mineral fertilizers used, application of modern ecologically safe agricultural technologies is an urgent task. Among promising methods of obtaining organic fertilizers and soil treatment, the method of electrohydraulic effect (EHE) is especially noteworthy. This approach contributes to enriching soils with nitrogen and phosphorus, improving their structure and fertility.
Objective. The aim of the work is evaluation of the effect of EHE on the qualitative and quantitative composition of organic extracts (cattle manure, earthworm coprolites, chicken droppings) and the effect of the obtained fertilizers on the morphometric indicators of corn seedlings and the content of photosynthetic pigments.
Methods. The processing of organic substrates by EHE was carried out on a pulse generator with a power of 5 kW. Ammonia content in fertilizers was determined with the Nesler reagent, phosphates – with the Lowry–Lopez method, nitrates – with the Griess reagent, humic acids – with UV/Vis spectroscopy. Morphometric indicators, the content of photosynthetic pigments of corn seedlings were determined on the 7th day.
Results. EHE treatment contributed to an increase in the content of phosphates, nitrates (by 15–60%), ammonium (8–14%) and humic acids (50–58%) in fertilizers. As a result, the morphometric indicators of seedlings increased compared to variants without EHE treatment (root mass – by 160–200%) under the action of processed fertilizers from chicken droppings and coprolites. Under the influence of all organic fertilizers, the content of photosynthesis pigments in plants also increased after the action of EHE: the content of carotenoids increased by 8.7% when using chicken manure and by 10% for coprolites.
Conclusions. The treatment of organic waste from cattle manure, earthworm coprolites and chicken droppings by the EHE method is an effective approach to obtaining environmentally safe fertilizers characterized by a high content of phosphates, nitrates and ammonium, which is a favorable factor in growing plants, in particular in the early stages. Under the action of organic fertilizers from extracts of chicken droppings and coprolites, the morphometric indicators of corn seedlings significantly increased compared to the control. Our results show promising research on the effectiveness of the EHE method in various fields, in particular for cleaning and enriching soils, decontamination of industrial wastes, etc.
Collapse
Affiliation(s)
| | | | - Andriy Banya
- Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko, NAS of Ukraine, Ukraine
| | - Ihor Semeniuk
- Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko, NAS of Ukraine, Ukraine
| | - Elena Karpenko
- Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko, NAS of Ukraine; Lviv Polytechnic National University, Ukraine
| |
Collapse
|
16
|
Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
de Aguiar TC, de Oliveira Torchia DF, van Tol de Castro TA, Tavares OCH, de Abreu Lopes S, de Souza da Silva L, Castro RN, Berbara RLL, Pereira MG, García AC. Spectroscopic-chemometric modeling of 80 humic acids confirms the structural pattern identity of humified organic matter despite different formation environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155133. [PMID: 35427620 DOI: 10.1016/j.scitotenv.2022.155133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The structure of humic substances (HSs) and the humification process are critical topics for understanding the dynamics of carbon on the planet. This study aimed to assess the structural patterns of 80 humic acid (HA) samples isolated from different soils, namely, Histosols, Ferralsols, Cambisols, Mollisols, Planosols and vermicompost, by spectroscopic characterization using solid-state 13C nuclear magnetic resonance cross-polarization/magic angle spinning combined with chemometric techniques. All 80 HAs had a similar structural pattern, regardless of their source of origin, but they had different relative quantities of organic C species. The different structural amounts of the various organic C fractions generated different properties in each of the HAs. This explains why there were similarities in the HS functions but why the intensities of these functions varied among the samples from the different soil types and environments, confirming that HSs are a group of compounds with a structural identity distinct from the molecules that give rise to them. There appears to be no single definition for the humification process; therefore, for the soils from each source of origin, a specific humification process occurs that depends on the characteristics of the local environment. Humification can be understood as a process that is similar to a chemical reaction, where the key factor that determines the formation of the products is the structural characteristics of the reactants (organic substrates deposited in the soil). The degree to which the reaction progresses is governed by the reaction conditions (chemical, physical, and biological properties of the soil). The structural patterns for HSs obtained in this study justify the existence of HSs structured as self-assembled, hydrophilic and hydrophobic domains that, under certain conditions, can undergo transformations, altering the balance of organic carbon in the environment.
Collapse
Affiliation(s)
- Tamiris Conceição de Aguiar
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | - Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Samuel de Abreu Lopes
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Lucas de Souza da Silva
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Rosane Nora Castro
- Department of Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Marcos Gervasio Pereira
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|
18
|
Raguraj S, Kasim S, Jaafar NM, Nazli MH, Amali RKA. A comparative study of tea waste derived humic-like substances with lignite-derived humic substances on chemical composition, spectroscopic properties and biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60631-60640. [PMID: 35426561 DOI: 10.1007/s11356-022-20060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Emerging demand for humic substances escalated the short supply of coal-related resources from which humic substances are extracted in large quantities for various applications. Production of humic-like substances from lignocellulosic waste materials similar in structural and functional properties to humic substances has gained interest recently. Tea waste is a by-product from tea manufacturing factories enriched in lignocellulose is used to extract two types of humic fractions. One fraction has purified humic-like acid (HLA), and the other has unpurified humic and fulvic acids called as humic-like substances (HLS). Elemental composition, spectroscopic (13C CPMAS NMR and FTIR) properties, and biological activity of tea waste derived humic-like substances (TWDHLS) were compared with commercially available humic acid (CHA) extracted from lignite. Elemental analysis and FTIR characterization showed slight differences between HLA and HLS, while NMR results revealed that both have similar carbon distribution and are abundant in cellulosic polysaccharides and lignin derivatives. The presence of more stable compounds in TWDHLS contribute to its recalcitrant nature. NMR spectra of CHA significantly varied with TWDHLS and were rich in aliphatic compounds. The biological activity of TWDHLS and CHA was studied at five different concentrations (0, 20, 40, 80, and 160 mg L-1). The results show that soil application TWDHLS at 80 mg L-1 concentration showed better results on the growth of tea nursery plants similar to CHA, contrasting to the variation in their structural properties. Our findings revealed that TWDHLS could be used not only as a potential plant biostimulant but also as a better substitute for humic substances.
Collapse
Affiliation(s)
- Sriharan Raguraj
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
- Soils and Plant Nutrition Division, Tea Research Institute of Sri Lanka, Talawakelle, 22100, Sri Lanka
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia.
| | - Noraini Md Jaafar
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
| | - Muhamad Hazim Nazli
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
| | | |
Collapse
|
19
|
Jing J, Zhang S, Yuan L, Li Y, Zhang Y, Wen Y, Zhao B. Humic acid complex formation with urea alters its structure and enhances biomass production in hydroponic maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3636-3643. [PMID: 34888881 DOI: 10.1002/jsfa.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humic acid (HA)-enhanced urea (HAU) is the top-selling efficiency-enhanced urea in China. Comprehensive investigation into the structure and efficacy of HA complex formation with urea (HACU) - the main reaction product during HAU's production - is required to clarify the reaction mechanism between HA and urea, and to provide guidance for the development of high-efficiency HAU. RESULTS HACU showed discrepant structural and compositional features from raw HA. Nitrogen (N) content in HACU was 7.3 times greater than that of HA. Several high-resolution analytical methods showed a sharp increase of ammonia in the gaseous product during HACU pyrolysis, suggesting that urea contributed N to HACU. HACU was characterized with significantly fewer carboxyl groups than in raw HA, implying that the carboxyl group was the main group in HA to participate in the reaction between HA and urea. The presence of amide-N in HACU verified the structure of the reaction product. Furthermore, both HACU and HA could enhance the biomass in hydroponically grown maize seedlings, but the highest stimulation for HACU came about when its carbon concentrations were 50-100 mg L-1 , higher than the optimal carbon concentration for HA (25 mg L-1 ), attributed to the lower carboxyl group content for HACU to some extent. CONCLUSION During HAU's production, reaction with N derived from urea to form amide-N decreased the carboxyl groups in HA, leading to higher concentrations for HACU required to achieve the similar bioefficacy of HA. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingqiang Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchen Wen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation. SUSTAINABILITY 2022. [DOI: 10.3390/su14137977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water-saving irrigation occasionally causes an inconsequential yield loss in rice; thereby, biochar incorporation in this context has great scope due to its properties, including the release of nutrients and improving soil physicochemical properties. An experiment was conducted to investigate the effect of biochar combined with fertilizer on physiological response, water and nutrient efficiency of rice and changes in biochemical properties of soil under AWD (alternate wetting and drying) irrigation system. Two types of irrigation practice, such as AWD and CF (continuous flooding), and four types of fertilizer combination, namely T1: 25% Rice husk biochar (RHB) + 75% of recommended fertilizer dose (RFD); T2: 25% oil palm empty fruit bunch biochar (EFBB) + 75% of RFD; T3: 100% RFD; and T0: 0% biochar and fertilizer, were assigned to assess their impacts. The AWD irrigation produced a sharply reduced grain yield (210.58 g pot−1) compared to CF irrigation (218.04 g pot−1), whereas the biochar combination treatments T1 and T2 produced greater yields (260.27 and 252.12 g pot−1, respectively), which were up to 12.5% higher than RFD. Within AWD, irrigation water usage by T1 and T2 (98.50 and 102.37 g L−1, respectively) was profoundly reduced by up to 28.8%, with improved water use efficiency (WUE). The main effect of biochar treatment T1 and T2 also increased photosynthesis rate during vegetative and maturing stage (up to 17.6 and 24.4%, respectively), in addition to boosting agronomic efficiency of nitrogen (N), phosphorous (P) and potassium (K) compared to RFD (T3). Nevertheless, T1 and T2 significantly enhanced the total carbon and nitrogen; dehydrogenase and urease enzyme activities also increased in both irrigation regimes. The results reveal that the integrated application of RHB and EFBB with fertilizer in the AWD regime significantly reduces irrigation water usage and improves nutrient use efficiency, WUE and soil biochemical properties with a minimum yield penalty for rice.
Collapse
|
21
|
Biochar-based fertilizers and their applications in plant growth promotion and protection. 3 Biotech 2022; 12:136. [PMID: 35646504 DOI: 10.1007/s13205-022-03195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/28/2022] [Indexed: 11/01/2022] Open
Abstract
Soil is an integral part of the ecosystem because it serves as a habitat for various microorganisms and lays the foundation for supporting plant growth and development. Therefore, factors such as increased anthropogenic activities hand by hand with other natural processes that harm the ecosystem may eventually lead to a decline in soil quality and fertility, hindering the growth of plants and soil microbial communities. Given the current global scenario of increasing human intervention, it is essential to find effective measures and reliable technologies to restore soil quality. Biochar is an emerging soil ameliorant employed for soil health restoration and is primarily generated through the anoxygenic pyrolysis of biomass. The biochar application in soil remediation may be beneficial due to biochar's unique physicochemical properties, including high carbon and metal fixation abilities. In addition, biochar possesses abilities to reduce the plant's environmental stress injuries. This review briefly overviewed the ingredients and mechanism of biochar productions. We then emphatically reviewed the advances in biochar applications in soil bioremediation, soil microflora growth stimulation, and the alleviation of various biotic and abiotic stresses in plants.
Collapse
|
22
|
Jing J, Zhang S, Yuan L, Li Y, Chen C, Zhao B. Humic Acid Modified by Being Incorporated Into Phosphate Fertilizer Increases Its Potency in Stimulating Maize Growth and Nutrient Absorption. FRONTIERS IN PLANT SCIENCE 2022; 13:885156. [PMID: 35665178 PMCID: PMC9161291 DOI: 10.3389/fpls.2022.885156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Humic acid-enhanced phosphate fertilizer (HAP) is widely applied in Chinese agriculture due to its high efficiency. Although the structural composition and physicochemical properties of humic acid (HA) are significantly altered during HAP production, a clear understanding of the mechanisms underlying the biological effects of HA extracted from HAP fertilizer (PHA) on plant growth is still lacking. In the current study, we extracted PHA from HAP and assessed its effects on the dry biomass, phosphorus (P) and nitrogen (N) uptake, and P absorption rate of maize seedlings when supplied at different concentrations (2.5, 5, 10, and 25 mg C L-1) in the hydroponic culture. The root vigor, root plasma membrane H+-ATPase activity, and root nitrate reductase activity were also determined as the representative indicators of the root capacity for nutrient absorption, and used to clarify the mechanism by which PHA affects the maize growth and nutrient absorption. The results showed that the dry biomass, phosphorus uptake, nitrogen uptake, and average phosphorus absorption rates were significantly higher by 14.7-27.9%, 9.6-35.1%, 17.9-22.4%, and 22.1-31.0%, respectively, in plants treated with 2.5-5 mg C L-1 PHA compared to untreated controls. Application of 10-25 mg C L-1 raw HA resulted in similar stimulatory effects on plant growth and nutrient absorption. However, higher levels of PHA (10-25 mg C L-1) negatively impacted these indicators of plant growth. Furthermore, low PHA or high raw HA concentrations similarly improved root vigor and root plasma membrane H+-ATPase and nitrate reductase (NR) activities. These results indicate that lower concentrations of PHA can stimulate maize seedling growth and nutrient absorption to an extent that is comparable to the effect of higher concentrations of raw HA. Thus, the proportion of HA incorporated into HAP could be lower than the theoretical amount estimated through assays evaluating the biological effects of raw HA.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengrong Chen
- School of Environment and Science, Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Elaboration of a Phytoremediation Strategy for Successful and Sustainable Rehabilitation of Disturbed and Degraded Land. MINERALS 2022. [DOI: 10.3390/min12020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans are dependent upon soil which supplies food, fuel, chemicals, medicine, sequesters pollutants, purifies and conveys water, and supports the built environment. In short, we need soil, but it has little or no need of us. Agriculture, mining, urbanization and other human activities result in temporary land-use and once complete, used and degraded land should be rehabilitated and restored to minimize loss of soil carbon. It is generally accepted that the most effective strategy is phyto-remediation. Typically, phytoremediation involves re-invigoration of soil fertility, physicochemical properties, and its microbiome to facilitate establishment of appropriate climax cover vegetation. A myco-phytoremediation technology called Fungcoal was developed in South Africa to achieve these outcomes for land disturbed by coal mining. Here we outline the contemporary and expanded rationale that underpins Fungcoal, which relies on in situ bio-conversion of carbonaceous waste coal or discard, in order to explore the probable origin of humic substances (HS) and soil organic matter (SOM). To achieve this, microbial processing of low-grade coal and discard, including bio-liquefaction and bio-conversion, is examined in some detail. The significance, origin, structure, and mode of action of coal-derived humics are recounted to emphasize the dynamic equilibrium, that is, humification and the derivation of soil organic matter (SOM). The contribution of plant exudate, extracellular vesicles (EV), extra polymeric substances (EPS), and other small molecules as components of the dynamic equilibrium that sustains SOM is highlighted. Arbuscular mycorrhizal fungi (AMF), saprophytic ectomycorrhizal fungi (EMF), and plant growth promoting rhizobacteria (PGPR) are considered essential microbial biocatalysts that provide mutualistic support to sustain plant growth following soil reclamation and restoration. Finally, we posit that de novo synthesis of SOM is by specialized microbial consortia (or ‘humifiers’) which use molecular components from the root metabolome; and, that combinations of functional biocatalyst act to re-establish and maintain the soil dynamic. It is concluded that a bio-scaffold is necessary for functional phytoremediation including maintenance of the SOM dynamic and overall biogeochemistry of organic carbon in the global ecosystem
Collapse
|
24
|
Rabbani M, Kazemi F. Water need and water use efficiency of two plant species in soil-containing and soilless substrates under green roof conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113950. [PMID: 34735835 DOI: 10.1016/j.jenvman.2021.113950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Despite the significance of urban landscapes, there are limiting factors like spaces and water resources to expand them across the world. These limitations necessitate the development of water-conserving strategies in vertical infrastructures such as green roofs. One water-conserving strategy is precise irrigation regimes based on the plant species' water needs. We investigated the water need of Carpobrotus edulis and Aptenia cordifolia under treatments with different soil-containing and soil-less water-absorbing substrate amenders and humic acid applications. The experiment was factorial based on a randomized complete block design with three replications and was conducted from May to September 2020. The first factor was the substrates with different green roof substrate compositions including soil-containing and soilless substrates with varying bentonite percentages. The second factor was humic acid levels (zero, 100, and 200 mg/l), which were applied as fertigation every 15 days during the experiment. Water needs were determined using the lysimetric method. The results showed that despite the soil-containing substrate with bentonite, the soilless substrate alone could not lead to optimal plant growth. The highest water use efficiency and the least evapotranspiration were obtained from the substrate containing 20%Soil +20% leca +20% perlite +20% mineral pumice +20% leaf litter plus 12% w bentonite, combined with A. cordifolia. This plant species showed a better performance compared with C. edulis. During the spring and summer months, the soil-containing substrate with bentonite and A. cordifolia can create a sustainable green roof system by creating better coverage, more water conservation, and a more aesthetic appearance. Based on the results, the application of the highest concentration level of humic acid (200 mg/l) increased the water use efficiency by about 40% after the establishment of the plants. Also, using this level of humic acid reduced the evapotranspiration rate in A. cordifolia up to 10 ml/day and in C. edulis up to 15 ml/day.
Collapse
Affiliation(s)
- Maliheh Rabbani
- Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
| | - Fatemeh Kazemi
- Department of Horticulture and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
25
|
Šimanský V, Jonczak J, Chlpík J, Polláková N. The status of heavy metals in arable soils of contrasting texture treated by biochar - an experiment from Slovakia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 57:1-17. [PMID: 34962449 DOI: 10.1080/10934529.2021.2020503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, many soils are impacted by degradation processes, which impose a risk to sustainable food production. There is a pressing need to limit these negative impact constraints to sustain the proper functioning of the soil-biota system and soil productivity. Biochar can be a nature-friendly solution for soil remediation; however, knowledge is incomplete in many aspects in this field, like the potential of biochar and biochar-based products as agents to immobilize toxic substances, including heavy metals (HMs) found in the soil. In this study, we investigated the effect of two biochar substrates (BSs) (1. biochar blended with farmyard manure as BS1, and 2. biochar blended with farmyard manure and digestate as BS2) at rates of 10 and 20 t ha-1 applied without or with fertilization (BS + F) on the immobilization of HMs in texturally different soils (1. sandy Arenosol, 2. loamy Chernozem, Slovakia). The results showed that application of BS had different effects in relation to soil textures. In sandy soil, BS improved soil properties, such as cation exchange capacity (an increase from 20 to 93%), soil organic carbon content (SOC) (an increase from 3 to 26%) and humic substances (HSs) stability (an increase from 12 to 20%). In loamy soil, SOC increased due to BS and BS + F in the range 3-19% and 12-55%, respectively. In both soils, the total content of HMs did not exceed the threshold limits for individual soils after BS and BS + F application. In sandy soil, the immobilization of HMs was due to a higher SOC content and a fulvic acids (FAs) content, while in loamy soil their elimination depended on a higher available phosphorus content.
Collapse
Affiliation(s)
- Vladimír Šimanský
- Department of Soil Science, Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Jerzy Jonczak
- Department of Soil Science, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Juraj Chlpík
- Department of Soil Science, Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Nora Polláková
- Department of Soil Science, Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
26
|
Lamar RT, Monda H, Sleighter R. Use of Ore-Derived Humic Acids With Diverse Chemistries to Elucidate Structure-Activity Relationships (SAR) of Humic Acids in Plant Phenotypic Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:758424. [PMID: 34925408 DOI: 10.3389/fpls.2021.758424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.
Collapse
Affiliation(s)
| | - Hiarhi Monda
- Bio Huma Netics, Inc., Gilbert, AZ, United States
| | | |
Collapse
|
27
|
Klein OI, Kulikova NA, Konstantinov AI, Zykova MV, Perminova IV. A Systematic Study of the Antioxidant Capacity of Humic Substances against Peroxyl Radicals: Relation to Structure. Polymers (Basel) 2021; 13:3262. [PMID: 34641078 PMCID: PMC8512611 DOI: 10.3390/polym13193262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humic substances (HS) are natural supramolecular systems of high- and low-molecular-weight compounds with distinct immunomodulatory and protective properties. The key beneficial biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental analysis and quantitative 13C solution-state NMR. The Folin-Ciocalteu method was used to quantify total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31-2.56 μmol Trolox eqv. mg-1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their structure, including carbohydrate fragments.
Collapse
Affiliation(s)
- Olga I. Klein
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
| | - Natalia A. Kulikova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
- Department of Soil Science, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| | - Maria V. Zykova
- Department of Chemistry, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| |
Collapse
|
28
|
Production and characterization of biochar obtained from different biomass and pyrolysis temperature. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Baltazar M, Correia S, Guinan KJ, Sujeeth N, Bragança R, Gonçalves B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021; 11:biom11081096. [PMID: 34439763 PMCID: PMC8394449 DOI: 10.3390/biom11081096] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
As the world develops and population increases, so too does the demand for higher agricultural output with lower resources. Plant biostimulants appear to be one of the more prominent sustainable solutions, given their natural origin and their potential to substitute conventional methods in agriculture. Classified based on their source rather than constitution, biostimulants such as humic substances (HS), protein hydrolysates (PHs), seaweed extracts (SWE) and microorganisms have a proven potential in improving plant growth, increasing crop production and quality, as well as ameliorating stress effects. However, the multi-molecular nature and varying composition of commercially available biostimulants presents challenges when attempting to elucidate their underlying mechanisms. While most research has focused on the broad effects of biostimulants in crops, recent studies at the molecular level have started to unravel the pathways triggered by certain products at the cellular and gene level. Understanding the molecular influences involved could lead to further refinement of these treatments. This review comprises the most recent findings regarding the use of biostimulants in plants, with particular focus on reports of their molecular influence.
Collapse
Affiliation(s)
- Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Correspondence:
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Kieran J. Guinan
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 County Kerry, Ireland; (K.J.G.); (N.S.)
| | - Neerakkal Sujeeth
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 County Kerry, Ireland; (K.J.G.); (N.S.)
| | - Radek Bragança
- BioComposites Centre, Bangor University, Bangor LL57 2UW, UK;
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
30
|
Adamiano A, Fellet G, Vuerich M, Scarpin D, Carella F, Piccirillo C, Jeon JR, Pizzutti A, Marchiol L, Iafisco M. Calcium Phosphate Particles Coated with Humic Substances: A Potential Plant Biostimulant from Circular Economy. Molecules 2021; 26:molecules26092810. [PMID: 34068646 PMCID: PMC8126095 DOI: 10.3390/molecules26092810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
Nowadays, the use of biostimulants to reduce agrochemical input is a major trend in agriculture. In this work, we report on calcium phosphate particles (CaP) recovered from the circular economy, combined with natural humic substances (HSs), to produce a plant biostimulant. CaPs were obtained by the thermal treatment of Salmo salar bones and were subsequently functionalized with HSs by soaking in a HS water solution. The obtained materials were characterized, showing that the functionalization with HS did not sort any effect on the bulk physicochemical properties of CaP, with the exception of the surface charge that was found to get more negative. Finally, the effect of the materials on nutrient uptake and translocation in the early stages of development (up to 20 days) of two model species of interest for horticulture, Valerianella locusta and Diplotaxis tenuifolia, was assessed. Both species exhibited a similar tendency to accumulate Ca and P in hypogeal tissues, but showed different reactions to the treatments in terms of translocation to the leaves. CaP and CaP–HS treatments lead to an increase of P accumulation in the leaves of D. tenuifolia, while the treatment with HS was found to increase only the concentration of Ca in V. locusta leaves. A low biostimulating effect on both plants’ growth was observed, and was mainly scribed to the low concentration of HS in the tested materials. In the end, the obtained material showed promising results in virtue of its potential to elicit phosphorous uptake and foliar translocation by plants.
Collapse
Affiliation(s)
- Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
- Correspondence: ; Tel.: +39-054-669-9724
| | - Guido Fellet
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Marco Vuerich
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Dora Scarpin
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
| | - Clara Piccirillo
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy;
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry, Food Science & Technology, IALS, Gyeongsang National University, Jinju 52828, Korea;
| | - Alessia Pizzutti
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 10, 34127 Trieste, Italy
| | - Luca Marchiol
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
| |
Collapse
|
31
|
van Tol de Castro TA, Berbara RLL, Tavares OCH, Mello DFDG, Pereira EG, Souza CDCBD, Espinosa LM, García AC. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:171-184. [PMID: 33684776 DOI: 10.1016/j.plaphy.2021.02.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Chemical eustressors induce a eustress state "positive stress" increasing the resistance and improve the plant growth. The potentiality of humic acids (HA) to act as a eustressor has been scarcely explored. The present study aims to evaluate how HA with different structural characteristics induce differently, a eustress state in rice plants through the regulation of photosynthesis. The photosynthetic performance index showed an initial eustress state in plant by HA application characterized by reduction in photosynthesis followed by an increase in photosynthetic efficiency. The HA as a chemical eustressor triggering changes in plant metabolism indicate that the interaction of HA with root system induces a roots growth stimulus preceded by an initial positive stress. The eustress caused by HA is differentiated and is related to its chemical-physics characteristics. The HAVC, with a predominance of CAlkyl-(O,N), CAlkyl-di-O, CAromatic-O structures and greater polarity, stimulated the accumulation of N-NO3- and of soluble sugars in the sheath, increase carbohydrates content in the root and the root emission, resulting in higher total biomass production. The HASOIL, with a predominance of CCOOH-(H,R), CAlkyl-O, CAromatic-H,R structures and greater hydrophobicity caused a decrease in N-NH4+ and N-amine. The HARN, with a predominance of CAlkyl-O, CAlkyl-H,R, and CO, characterized by average polarity, caused an increase in photosynthetic pigment and N-NH4+ content. These results are keys to understand that quality of soil organic matter is related to plant development and that HA are efficient proxies for elucidate its function in natural environments.
Collapse
Affiliation(s)
- Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Débora Fernandes da Graça Mello
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Erinaldo Gomes Pereira
- Laboratory of Plant Mineral Nutrition, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Luis Maqueira Espinosa
- Laboratory of Physical-Chemistry of Surfactants (LASURF), Pontifical Catholic University of Rio de Janeiro, Brazil
| | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
32
|
Nardi S, Schiavon M, Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021; 26:molecules26082256. [PMID: 33924700 PMCID: PMC8070081 DOI: 10.3390/molecules26082256] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.
Collapse
Affiliation(s)
- Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, V.le dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Michela Schiavon
- Department of di of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2 (già Via Leonardo da Vinci, 44), 10095 Grugliasco, Italy
- Correspondence:
| | - Ornella Francioso
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy;
| |
Collapse
|
33
|
Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep 2021; 11:6092. [PMID: 33731746 PMCID: PMC7971063 DOI: 10.1038/s41598-021-85633-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023] Open
Abstract
The individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.
Collapse
|
34
|
Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules 2021; 26:molecules26030760. [PMID: 33540638 PMCID: PMC7867258 DOI: 10.3390/molecules26030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Humic substances (HSs) are chromogenic organic assemblies that are widespread in the environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities have led to the rapid market growth of agronomical HSs. However, there are still several technical issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)–function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should be detailed to identify practical crop treatment methodologies. These trials must then be accompanied by means to upgrade crop marketability to help the growers. Second, structural differences of HSs depending on extraction sources should be compared to develop quality control and assurance measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts for large farmland applications should be structurally and functionally distinguishable from other natural HSs. The diversity of organic structures and components in coal-based HSs must thus be examined thoroughly to provide practical information to growers. Overall, there is a consensus amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but appropriate research directions should be explored for growers’ needs and farmland applications.
Collapse
|
35
|
Jeong HJ, Oh MS, Rehman JU, Yoon HY, Kim JH, Shin J, Shin SG, Bae H, Jeon JR. Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:805-814. [PMID: 33249847 DOI: 10.1021/acs.jafc.0c05474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, coal-related humic substances (HSs) were examined to confirm whether sterilization treatments induce their inferior ability to stimulate lettuce in hydroponic cultivations. Interestingly, a drastic reduction in both lettuce biomass and microbial colony-forming units of the crop culture solutions was observed when the autoclaved HSs were treated. Some microbial genera (i.e., Bacillus and Aspergillus) identifiable in the bare HS-treated hydroponic systems were able to be isolated by direct inoculation of bare HS powders on conventional microbial nutrients, supporting that flourishing microbes in the hydroponic cultivations derive from bare HSs-treated. Moreover, coincubation of some isolated bacterial and fungal strains (i.e., Bacillus and Aspergillus genera) from HSs with lettuce resulted in a significant increase in plant biomass and enhanced resistance to NaCl-related abiotic stresses. Microbial volatile organic compounds renowned for plant stimulation were detected by using solid-phase microextraction coupled with gas chromatography-mass spectrometry. It was finally confirmed that the isolates are capable of utilizing carbon substrates such as pectin and tween 20 or 40, which are relevant to those of microbes isolated from peat and leonardite (i.e., HS extraction sources). Overall, our results suggest that microbiological factors could be considered when commercial coal-related HSs are applied in hydroponic crop cultivations.
Collapse
Affiliation(s)
- Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Korea Institute of Geoscience and Mineral Resources, Pohang Branch, Pohang 37559, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Hyomin Bae
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
36
|
Dos Santos OAQ, Tavares OCH, García AC, Rossi CQ, de Moura OVT, Pereira W, da Silva Rodrigues Pinto LA, Berbara RLL, Pereira MG. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140063. [PMID: 32758952 DOI: 10.1016/j.scitotenv.2020.140063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane burning has been widely practiced in Brazil and worldwide. In the long term, this farming practice can cause soil erosion, reduction in organic carbon (OC) and consequently, changes in the structure of soil organic matter (SOM). Such changes may be difficult to reverse. This study aimed to assess the medium- and long-term effects of sugarcane burning on SOM characteristics, both in terms of quantity and structural quality and evaluate the application of vinasse as a strategy to attenuate fire-induced changes in burned soil. The experiment was conducted in a 50-year-old sugarcane field on soils classed as Cambissolo Háplico (Inceptisol). Four plots were sampled: a) burning of sugarcane for harvest for 37 years (SCB37); b) renewal of the sugarcane field and burning for harvest for 3 years (SCB3); c) renewal of the sugarcane field without burning for harvest for 3 years (SCWB), and d) renewal of the sugarcane field and burning for harvest with the application of vinasse for 3 years (SCV). Chemical and physical characterization of SOM was performed by solid-state spectroscopy (UV-vis, ATR-FTIR e 13C NMR CP/MAS) and chemometric techniques. The results showed that sugarcane burning drastically impacts SOM content and its chemical structure, however, the application of vinasse preserves and restores the soil from the fire effects. Content of soil OC, particulate OC, mineral-associated OC, humic acid, humin and light fraction OM that were affected by fire, had an increase and recovery of contents by the vinasse application. Solid state spectroscopy showed that labile structures were lost in humic acids (HA) by fire and recalcitrant structures were preserved. The application of vinasse incorporated fragments of lipids and carbohydrates in HA structure. Burning sugar cane straw affects the integrity of soil organic matter but can be restored by applying vinasse.
Collapse
Affiliation(s)
- Otavio Augusto Queiroz Dos Santos
- Laboratory of Soil Genesis and Classification, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Brazil
| | | | | | - William Pereira
- Federal Rural University of Rio de Janeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Brazil
| | - Marcos Gervasio Pereira
- Laboratory of Soil Genesis and Classification, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
37
|
Jing J, Zhang S, Yuan L, Li Y, Lin Z, Xiong Q, Zhao B. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci Rep 2020; 10:17502. [PMID: 33060730 PMCID: PMC7562911 DOI: 10.1038/s41598-020-74349-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/10/2020] [Indexed: 11/27/2022] Open
Abstract
This paper analyzed the compositional and structural changes of humic acid (HA) after combined with phosphate fertilizer (PHA), and investigated its effects on the growth of maize seedlings with four humic acid concentrations. The results showed that the atomic ratios of O/C and (O + N)/N of PHA were significantly lower than those of HA, which indicated that PHA had poor hydrophilicity compared with HA. The spectra of FTIR and NMR results suggested that the relative content of carboxyl group in PHA was higher than that in HA. X-ray photoelectron spectroscopy technology showed that the relative amount of C-C in PHA was lower than that in HA, while C-H was the opposite. The above changes were attributed to the crack of HA structure during the preparation of humic acid enhanced phosphate fertilizer, which was verified by the results from the determination of gel permeation chromatography that there were more low molecular weight components in PHA than that in HA. However, compared with HA, PHA showed a worse effect in promoting growth and the uptake of nitrogen, phosphorus and potassium by maize seedlings. This worse effect might be attributed to the poor hydrophilicity and unsuitable addition amount of PHA.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhian Lin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qizhong Xiong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10101553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significant benefit of soil organic matter (SOM) to crop productivity is scientifically well documented. The main constituents and active fractions of SOM are humic substances (HS) and phenolic compounds. Since both these two components strongly impact plant–soil relationship, it is importantly from an ecological point of view to discriminate their biological effects and relating them to their composition. In this study we compared the biological effects of HS, and the soil water soluble phenols (SWSP) on growth, antioxidant activities, carbohydrates, proteins, phenols, and vitamins of Pinus laricio callus. Each extract was assessed for the content of low molecular weight organic acids, soluble carbohydrates, fatty acids, and phenolic acids. Moreover, Fourier transform infrared (FT-IR) and surface-enhanced Raman scattering (SERS) spectroscopies were applied to study their molecular structure. The results showed that HS produced better callus growth compared to the control and SWSP. Carbohydrates decreased in presence of HS while proteins, vitamin C and E increased. In contrast, in callus treated with SWSP the amount of glucose and fructose increased as well as all the antioxidant activities. The data evidenced that HS rich in tartaric and fatty acids had beneficial effects on callus growth contrary to soil water-soluble phenols rich in aldehydes, and syringic, ferulic, and benzoic acids.
Collapse
|
39
|
Yoon HY, Jeong HJ, Cha JY, Choi M, Jang KS, Kim WY, Kim MG, Jeon JR. Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138409. [PMID: 32464747 DOI: 10.1016/j.scitotenv.2020.138409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Here, five aromatic monomers, one bearing a long alkyl chain [3-pentadecylphenol (3-PP)], the second bearing a polycyclic aromatic hydrocarbon [dihydroxynaphthalene (DHN)], the third bearing an organic amine [l-3,4-dihydroxyphenylalanine (l-DOPA)], the fourth bearing a carboxylic acid [vanillic acid (VA)], and the fifth bearing a phenol [catechol (CA)] were oxidatively coupled to produce four humic-like substances (3-PP, DHN, l-DOPA, and CAVA products) to mimic the diverse organic architectures of natural humus. Analysis using several methods, including SEM, EPR, elemental analysis, FT-IR-ATR, 13C NMR and anti-oxidant capability, revealed that each of the monomeric structures was well incorporated into the corresponding humic-like substances. Seed germination acceleration and NaCl-involved abiotic stress resistance of Arabidopsis thaliana were then tested to determine whether the different structures resulted in different levels of plant stimulation. The l-DOPA, CAVA and DHN-based materials showed enhanced stimulatory activities compared with no treatment, whereas the effects of the 3-PP-based materials were meager. Interestingly, high-resolution (15 T) ESI FT-ICR mass spectrometry-based van Krevelen diagrams clearly showed that the presence of molecules with H/C and O/C ratios ranging from 0.5 to 1.0 and 0.2 to 0.4, respectively, could be connected with such biological actions. Here, the l-DOPA sample showed the highest content of such molecules, followed by the CAVA, DHN and 3-PP samples. Next, the ability of l-DOPA and CAVA products to induce resistance in A. thaliana to a pathogen-related biotic stress was tested to confirm whether the proposed molecular features are associated with multi-stimulatory actions on plants. The expression level of pathogenesis-related protein 1 and inspection of plant morphology clearly revealed that both the l-DOPA and CAVA products stimulate plants to respond to biotic stresses. Size-exclusion chromatography together with NMR and IR data of both the materials strongly suggests that lignin-like supramolecular assemblages play an important role in versatile biological activities of humus.
Collapse
Affiliation(s)
- Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mira Choi
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Woe-Yeon Kim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
40
|
Effect of Microalgal Extracts from Chlorella vulgaris and Scenedesmus quadricauda on Germination of Beta vulgaris Seeds. PLANTS 2020; 9:plants9060675. [PMID: 32466497 PMCID: PMC7355607 DOI: 10.3390/plants9060675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
Sugar beet (Beta vulgaris subsp. vulgaris) is a commercially important biennial root crop, providing about 20% of the world's annual sugar production. Seed quality is crucial for adequate plant growth and production. The productivity of sugar beet is often limited by heterogeneous germination in the field. In order to improve the sugar beet germination process, the effect of different concentrations of microalgal extracts from Chlorella vulgaris or Scenedesmus quadricauda was investigated by calculating several indices useful to evaluate the germination performance. Moreover, root morphological analysis was performed by using WinRHIZO software. B. vulgaris seeds were soaked with five different concentrations (from 0.1 to 10 mg Corg/L) of the microalgal extracts, considering the amount of organic carbon (Corg) in each extract. Our results show that these microalgal extracts exert a positive effect on sugar beet germination, by increasing efficiency and regularity of this critical process for B. vulgaris seeds. The best results, in terms of germination indices as well as root morphological traits, were reached by using C. vulgaris extract at the concentrations C2 (1 mg Corg/L) and C3 (2 mg Corg/L).
Collapse
|
41
|
De Hita D, Fuentes M, Fernández V, Zamarreño AM, Olaetxea M, García-Mina JM. Discriminating the Short-Term Action of Root and Foliar Application of Humic Acids on Plant Growth: Emerging Role of Jasmonic Acid. FRONTIERS IN PLANT SCIENCE 2020; 11:493. [PMID: 32411165 PMCID: PMC7199506 DOI: 10.3389/fpls.2020.00493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/01/2020] [Indexed: 05/24/2023]
Abstract
Humic substances (HS, fulvic and humic acids) are widely used as fertilizers or plant growth stimulants, although their mechanism of action still remains partially unknown. Humic substances may be applied either directly to the soil or as foliar sprays. Despite both kind of application are commonly used in agricultural practices, most of the studies regarding the elicited response in plants induced by HS are based on the root-application of these substances. The present work aimed at discriminating between the mechanisms of action of foliar application versus root application of a sedimentary humic acid (SHA) on plant development. For this purpose, six markers related to plant phenotype, plant morphology, hormonal balance and root-plasma membrane H+-ATPase were selected. Both application strategies improved the shoot and root growth. Foliar applied- and root applied-SHA shared the capacity to increase the concentration of indole-3-acetic acid in roots and cytokinins in shoots. However, foliar application did not lead to short-term increases in either abscisic acid root-concentration or root-plasma membrane H+-ATPase activity which are, however, two crucial effects triggered by SHA root-application. Both application modes increased the root concentrations of jasmonic acid and jasmonoyl-isoleucine. These hormonal changes caused by foliar application could be a stress-related symptom and connected to the loss of leaves trichomes and the diminution of chloroplasts size seen by scanning electron microscopy. These results support the hypothesis that the beneficial effects of SHA applied to roots or leaves may result from plant adaptation to a mild transient stress caused by SHA application.
Collapse
Affiliation(s)
- David De Hita
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Marta Fuentes
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Angel M. Zamarreño
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Maite Olaetxea
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Jose M. García-Mina
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
- Centre Mondial de I’lnnovation Roullier, Saint-Malo, France
| |
Collapse
|
42
|
Yoon HY, Lee JG, Esposti LD, Iafisco M, Kim PJ, Shin SG, Jeon JR, Adamiano A. Synergistic Release of Crop Nutrients and Stimulants from Hydroxyapatite Nanoparticles Functionalized with Humic Substances: Toward a Multifunctional Nanofertilizer. ACS OMEGA 2020; 5:6598-6610. [PMID: 32258895 PMCID: PMC7114695 DOI: 10.1021/acsomega.9b04354] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 05/03/2023]
Abstract
The use of salt- or macro-sized NPK fertilizers is typically associated with low nutrient use efficiency and water eutrophication. Nanotechnology can overcome such drawbacks, but its practical application on a large scale is limited by (i) high costs and difficult scale-up of nanoparticle synthesis, (ii) questionable advantages over traditional methods, and (iii) health hazards related to nanomaterial introduction in the food stream and the environment. Here, we report on a novel biocompatible and multifunctional P nanofertilizer obtained by self-assembling natural or synthetic humic substances and hydroxyapatite nanoparticles using a simple and straightforward dipping process, exploiting the interaction between the polyphenolic groups of humic substances and the surface of nanohydroxyapatite. Pot tests using the as-prepared materials were performed on Zea mays as a model crop, and the results were compared to those obtained using commercial fused superphosphate and bare nanohydroxyapatites. A significant improvement, in terms of early plant growth, corn productivity, rhizosphere bacteria, and the resistance to NaCl-induced abiotic stresses, was achieved using hydroxyapatite nanoparticles assembled with humic substances. These effects were ascribed to the synergistic co-release of phosphate ions and humic substances, which are two types of plant-beneficial agents for crop nutrition and stimulation, respectively. The release patterns were proven to be tunable with the amount of humic substances adsorbed on the nanoparticles, inducing competition between humic-substance-driven phosphorous dissolution and block of water contact. Such positive effects on plant growth in association with its intrinsic biocompatibility, simple synthesis, and multifunctionality qualify this novel nanofertilizer as a promising material for large-scale use in the agronomic field.
Collapse
Affiliation(s)
- Ho Young Yoon
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Jeong Gu Lee
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Lorenzo Degli Esposti
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Pil Joo Kim
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Seung Gu Shin
- Department
of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jong-Rok Jeon
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Alessio Adamiano
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
43
|
Panova IG, Khaidapova DD, Ilyasov LO, Kiushov AA, Umarova AB, Sybachin AV, Yaroslavov AA. Polyelectrolyte Complexes of Potassium Humates and Poly(dialyldimethylammonium chloride) for Fixing Sand Soil. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090419060101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Savy D, Brostaux Y, Cozzolino V, Delaplace P, du Jardin P, Piccolo A. Quantitative Structure-Activity Relationship of Humic-Like Biostimulants Derived From Agro-Industrial Byproducts and Energy Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:581. [PMID: 32528492 PMCID: PMC7264396 DOI: 10.3389/fpls.2020.00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 05/13/2023]
Abstract
Humic-like substances (HLSs) isolated by alkaline oxidative hydrolysis from lignin-rich agro-industrial residues have been shown to exert biostimulant activity toward maize (Zea mays L.) germination and early growth. The definition of a quantitative structure-activity relationship (QSAR) between HLS and their bioactivity could be useful to predict their biological properties and tailor plant biostimulants for specific agronomic and industrial uses. Here, we created several projection on latent structure (PLS) regression by using published analytical data on the molecular composition of lignin-derived HLS obtained by both 13C-CPMAS-NMR spectra directly on samples and 31P-NMR spectra after derivatization of hydroxyl functions with a P-containing reagent (2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). These spectral data were used to model the effect of HLS on the elongation of primary root, lateral seminal roots, total root apparatus, and coleoptile of maize. The 13C-CPMAS-NMR data suggested that methoxyl and aromatic moieties positively affected plant growth, while the carboxyl/esterified functions showed a negative impact on the overall seedling development. Alkyl C seems to promote Col elongation while concomitantly reducing that of the root system. Additionally, 31P-NMR-derived spectra revealed that the elongation of roots and Col were enhanced by the occurrence of aliphatic hydroxyl groups, and guaiacyl and p-Hydroxyphenyl lignin monomers. The PLS models based on raw dataset from 13C-CPMAS-NMR spectra explained more than 74% of the variance for the length of lateral seminal roots, total root system and coleoptile, while other parameters derived from 13C-CPMAS-NMR spectra, namely the Hydrophobicity and Hydrophilicity of materials were necessary to explain 83% of the variance of the primary root length. The results from 31P-NMR spectra explained the observed biological variance by 90, 96, 96, and 93% for the length of primary root, lateral seminal roots, total root system and coleoptile, respectively. This work shows that different NMR spectroscopy techniques can be used to build up PLS models which can predict the bioactivity of lignin-derived HLS toward early growth of maize plants. The established QSAR may also be exploited to enhance by chemical techniques the bioactive properties of HLS and enhance their plant stimulation capacity.
Collapse
Affiliation(s)
- Davide Savy
- Plant Sciences, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
- *Correspondence: Davide Savy,
| | - Yves Brostaux
- Statistical Modelling and Development, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Vincenza Cozzolino
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials, University of Naples Federico II, Naples, Italy
- Department of Agricultural Sciences, Università di Napoli Federico II, Naples, Italy
| | - Pierre Delaplace
- Plant Sciences, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Patrick du Jardin
- Plant Sciences, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Alessandro Piccolo
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials, University of Naples Federico II, Naples, Italy
- Department of Agricultural Sciences, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
45
|
Yao Y, Wang X, Yang Y, Shen T, Wang C, Tang Y, Wang Z, Xie J, Liu L, Hou S, Gao B, Li YC, Wan Y. Molecular Composition of Size-Fractionated Fulvic Acid-Like Substances Extracted from Spent Cooking Liquor and Its Relationship with Biological Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14752-14760. [PMID: 31747513 DOI: 10.1021/acs.est.9b02359] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.
Collapse
Affiliation(s)
- Yuanyuan Yao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Xiaoqi Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Tianlin Shen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Chun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Yafu Tang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Zhonghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Jiazhuo Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Shanmin Hou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, IFAS , University of Florida , Gainesville , Florida 32611 , United States
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Yongshan Wan
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| |
Collapse
|
46
|
Lee JG, Yoon HY, Cha JY, Kim WY, Kim PJ, Jeon JR. Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnol Adv 2019; 37:107416. [PMID: 31323257 DOI: 10.1016/j.biotechadv.2019.107416] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/10/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022]
Abstract
Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea; RILS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
47
|
Barone V, Bertoldo G, Magro F, Broccanello C, Puglisi I, Baglieri A, Cagnin M, Concheri G, Squartini A, Pizzeghello D, Nardi S, Stevanato P. Molecular and Morphological Changes Induced by Leonardite-based Biostimulant in Beta vulgaris L. PLANTS 2019; 8:plants8060181. [PMID: 31216763 PMCID: PMC6630732 DOI: 10.3390/plants8060181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
Abstract
Humic substances extracted from leonardite are widely considered to be bioactive compounds, influencing the whole-plant physiology and the crop yield. The aim of this work was to evaluate the effect of a new formulate based on leonardite in the early stage of growth of sugar beet (Beta vulgaris L.). A commercial preparation of leonardite (BLACKJAK) was characterized by ionomic analysis, solid-state 13C MAS NMR spectroscopy. Seedlings of sugar beet were grown in Hoagland's solution under controlled conditions. After five days of growth, an aliquot of the concentrated BLACKJAK was added to the solution to obtain a final dilution of 1:1000 (0.5 mg C L-1). The sugar beet response in the early stage of growth was determined by evaluating root morphological traits as well as the changes in the expression of 53 genes related to key morphophysiological processes. Root morphological traits, such as total root length, fine root length (average diameter < 0.5 mm), and number of root tips, were significantly (p < 0.001) increased in plants treated with BLACKJAK, compared to the untreated plants at all sampling times. At the molecular level, BLACKJAK treatment upregulated many of the evaluated genes. Moreover, both Real Time PCR and digital PCR showed that genes involved in hormonal response, such as PIN, ARF3, LOGL 10, GID1, and BRI1, were significantly (p < 0.05) upregulated by treatment with BLACKJAK. Our study provides essential information to understand the effect of a leonardite-based formulate on plant growth hormone metabolism, although the molecular and physiological basis for these complicated regulatory mechanisms deserve further investigations.
Collapse
Affiliation(s)
- Valeria Barone
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | | | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 98, 95123 Catania, Italy.
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 98, 95123 Catania, Italy.
| | - Massimo Cagnin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Diego Pizzeghello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| |
Collapse
|
48
|
Zhou L, Yuan L, Zhao B, Li Y, Lin Z. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS One 2019; 14:e0217469. [PMID: 31150428 PMCID: PMC6544225 DOI: 10.1371/journal.pone.0217469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Humic acids derived from Chinese weathered coal were oxidized with hydrogen peroxide (H2O2) under various conditions, and their chemical composition and structure were examined. The raw material humic acids (HA) and oxidized humic acids (OHAs) were characterized by elemental analysis and ultraviolet visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Our results show that aromatic functional groups accounted for more than 70% of the HA and OHAs and there were significant differences in their structures and compositions. Compared to the HA, the average H and N contents of the OHAs decreased by 5.15% and 2.52%, respectively, and the average O content of those of the OHAs increased by 5.30%. The hydrophobicity index (HI) of HA is higher than those of the OHAs. Importantly, in the hypothesis test between the properties and preparation conditions of humic acid using SPSS, the partial η2 of the temperature, hydrogen peroxide concentration, liquid-solid ratio, and time were 0.809, 0.771, 0.748 and 0.729, respectively; thus, among the preparation conditions, temperature is the most important factor affecting the humic acids properties.
Collapse
Affiliation(s)
- Liping Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhian Lin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R. Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:675. [PMID: 31178884 PMCID: PMC6538904 DOI: 10.3389/fpls.2019.00675] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
Improvement of plant iron nutrition as a consequence of metal complexation by humic substances (HS) extracted from different sources has been widely reported. The presence of humified fractions of the organic matter in soil sediments and solutions would contribute, depending on the solubility and the molecular size of HS, to build up a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS complexes directly usable by plant Fe uptake mechanisms. It has also been shown that HS can promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and post-transcriptional level. Furthermore, the distribution and allocation of Fe within the plant could be modified when plants were supplied with water soluble Fe-HS complexes as compared with other natural or synthetic chelates. These effects are in line with previous observations showing that treatments with HS were able to induce changes in root morphology and modulate plant membrane activities related to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS complexes, either naturally present in the soil or exogenously supplied to the plants, can promote Fe acquisition in a complex way by providing a readily available iron form in the rhizosphere and by directly affecting plant physiology. Furthermore, the possibility to use Fe-HS of different sources, size and solubility may be considered as an environmental-friendly tool for Fe fertilization of crops.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Zeno Varanini
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Roberto Pinton
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
50
|
Xu Q, Duan D, Cai Q, Shi J. Influence of Humic Acid on Pb Uptake and Accumulation in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12327-12334. [PMID: 30388006 DOI: 10.1021/acs.jafc.8b03556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hydroponic experiment combined with synchronous radiation X-ray fluorescence (SRXRF) analysis was designed to understand the influence of humic acid (HA) in tea plants under lead stress. The results showed that the quantitative relationship (QR) between humic acid and Pb is an important factor affecting the regulation of humic acid with respect to the accumulation of Pb in tea plants. Besides, excess humic acid might stimulate the accumulation of Pb in the root cell wall and transfer to the shoot organs through undifferentiated casparian band structure. This study could provide a theoretical basis for the scientific evaluation of the effect of humic acid on tea uptake and the accumulation of Pb and the practical application of humic acid in reducing Pb pollution in the field.
Collapse
Affiliation(s)
| | - Dechao Duan
- Zhejiang Bestwa EnviTech Company, Ltd , Hangzhou 310015 , China
| | | | | |
Collapse
|