1
|
Yang D, Yang C, Huang L, Guan M, Song C. Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy. Semin Cancer Biol 2025; 110:17-35. [PMID: 39929409 DOI: 10.1016/j.semcancer.2025.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, the James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
You D, Kang S. JMJD8 Regulates Adipocyte Hypertrophy Through the Interaction With Perilipin 2. Diabetes 2025; 74:458-471. [PMID: 39787420 PMCID: PMC11926275 DOI: 10.2337/db23-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS New research builds on previous findings that JMJD8 mediates insulin resistance by promoting adipocyte hypertrophy. We identified PLIN2 as a binding partner of JMJD8 using proteomics approaches. This study reveals a physical interaction between JMJD8 and PLIN2, which plays a crucial role in driving adipocyte hypertrophy and insulin resistance. JMJD8 suppresses fasting-induced lipophagy and reduces energy production by inhibiting PLIN2 phosphorylation. These findings highlight the importance of JMJD8 and PLIN2 in regulating lipid droplet homeostasis and suggest a potential mechanism for controlling fat mobilization during energy deprivation.
Collapse
Affiliation(s)
- Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
3
|
Dubiel D, Naumann M, Dubiel W. CSN-CRL Complexes: New Regulators of Adipogenesis. Biomolecules 2025; 15:372. [PMID: 40149914 PMCID: PMC11940434 DOI: 10.3390/biom15030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions.
Collapse
Affiliation(s)
- Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | | | - Wolfgang Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| |
Collapse
|
4
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
5
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
6
|
Sorokina M, Bobkov D, Khromova N, Vilchinskaya N, Shenkman B, Kostareva A, Dmitrieva R. Fibro-adipogenic progenitor cells in skeletal muscle unloading: metabolic and functional impairments. Skelet Muscle 2024; 14:31. [PMID: 39639402 PMCID: PMC11622572 DOI: 10.1186/s13395-024-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Skeletal muscle resident fibro-adipogenic progenitor cells (FAPs) control skeletal muscle regeneration providing a supportive role for muscle stem cells. Altered FAPs characteristics have been shown for a number of pathological conditions, but the influence of temporary functional unloading of healthy skeletal muscle on FAPs remains poorly studied. This work is aimed to investigate how skeletal muscle disuse affects the functionality and metabolism of FAPs. METHODS Hindlimb suspension (HS) rat model employed to investigate muscle response to decreased usage. FAPs were purified from m. soleus functioning muscle (Contr) and after functional unloading for 7 and 14 days (HS7 and HS14). FAPs were expanded in vitro, and tested for: immunophenotype; in vitro expansion rate, and migration activity; ability to differentiate into adipocytes in vitro; metabolic changes. Crosstalk between FAPs and muscle stem cells was estimated by influence of medium conditioned by FAP's on migration and myogenesis of C2C12 myoblasts. To reveal the molecular mechanisms behind unloading-induced alterations in FAP's functionality transcriptome analysis was performed. RESULTS FAPs isolated from Contr and HS muscles exhibited phenotype of MSC cells. FAPs in vitro expansion rate and migration were altered by functional unloading conditions. All samples of FAPs demonstrated the ability to adipogenic differentiation in vitro, however, HS FAPs formed fat droplets of smaller volume and transcriptome analysis showed fatty acids metabolism and PPAR signaling suppression. Skeletal muscle unloading resulted in metabolic reprogramming of FAPs: decreased spare respiratory capacity, decreased OCR/ECAR ratio detected in both HS7 and HS14 samples point to reduced oxygen consumption, decreased potential for substrate oxidation and a shift to glycolytic metabolism. Furthermore, C2C12 cultures treated with medium conditioned by FAPs showed diverse alterations: while the HS7 FAPs-derived paracrine factors supported the myoblasts fusion, the HS14-derived medium stimulated proliferation of C2C12 myoblasts; these observations were supported by increased expression of cytokines detected by transcriptome analysis. CONCLUSION the results obtained in this work show that the skeletal muscle functional unloading affects properties of FAPs in time-dependent manner: in atrophying skeletal muscle FAPs act as the sensors for the regulatory signals that may stimulate the metabolic and transcriptional reprogramming to preserve FAPs properties associated with maintenance of skeletal muscle homeostasis during unloading and in course of rehabilitation.
Collapse
Affiliation(s)
| | - Danila Bobkov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Khromova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Boris Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renata Dmitrieva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.
| |
Collapse
|
7
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
8
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Perilipins: A family of five fat-droplet storing proteins that play a significant role in fat homeostasis. J Cell Biochem 2024; 125:e30579. [PMID: 38747370 DOI: 10.1002/jcb.30579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Lipid droplets are organelles with unique spherical structures. They consist of a hydrophobic neutral lipid core that varies depending on the cell type and tissue. These droplets are surrounded by phospholipid monolayers, along with heterogeneous proteins responsible for neutral lipid synthesis and metabolism. Additionally, there are specialized lipid droplet-associated surface proteins. Recent evidence suggests that proteins from the perilipin family (PLIN) are associated with the surface of lipid droplets and are involved in their formation. These proteins have specific roles in hepatic lipid droplet metabolism, such as protecting the lipid droplets from lipase action and maintaining a balance between lipid storage and utilization in specific cells. Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of lipid droplets in more than 5% of the hepatocytes. This accumulation can progress into metabolic dysfunction-associated steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The accumulation of hepatic lipid droplets in the liver is associated with the progression of MASLD and other diseases such as sarcopenic obesity. Therefore, it is crucial to understand the role of perilipins in this accumulation, as these proteins are key targets for developing novel therapeutic strategies. This comprehensive review aims to summarize the structure and characteristics of PLIN proteins, as well as their pathogenic role in the development of hepatic steatosis and fatty liver diseases.
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
10
|
Gao WC, Yang TH, Wang BB, Liu Q, Li Q, Zhou XH, Zheng CB, Chen P. Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation. Clin Exp Pharmacol Physiol 2024; 51:e13845. [PMID: 38382550 DOI: 10.1111/1440-1681.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wen-Cong Gao
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Tie-Hua Yang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bin-Bao Wang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Qian Liu
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing Li
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Huan Zhou
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Chang-Bo Zheng
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
- Yunnan Vaccine Laboratory, Kunming, China
| | - Peng Chen
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
| |
Collapse
|
11
|
Li P, Mei C, Raza SHA, Cheng G, Ning Y, Zhang L, Zan L. Arginine (315) is required for the PLIN2-CGI-58 interface and plays a functional role in regulating nascent LDs formation in bovine adipocytes. Genomics 2024; 116:110817. [PMID: 38431031 DOI: 10.1016/j.ygeno.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, Xi'an, Shaanxi, 710032, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Cheng
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Kuboyama-Sasaki A, Takahashi Y, Xia C, Hiro K, Kobayashi T, Ohdan H, Shimizu M, Yamauchi Y, Kiyono H, Sato R. Establishment of a cell culture platform for human liver organoids and its application for lipid metabolism research. Biotechnol J 2024; 19:e2300365. [PMID: 37920068 DOI: 10.1002/biot.202300365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Human liver organoids (HLOs) are reliable tools to represent physiological human liver biology. However, their use is limited especially in basic sciences. One of the reasons for this would be the insufficient systematic methodology to handle HLOs, including culture system, functional assessment, and gene transduction. Here, we generated and characterized mouse L cells stably and simultaneously overexpressing R-spondin1, hepatocyte growth factor, fibroblast growth factor (FGF) 7, and FGF10 via lentiviral transduction. The conditioned medium of the cells contributed to HLO growth as a replacement of commercially available recombinant proteins, which leads to a significant reduction of their culture cost. Proliferative and maturation phases of the cells were controlled by switching the medium to facilitate the evaluation of hepatocyte function, including insulin responsiveness and intracellular lipid accumulation. Gene expression analysis revealed that HLOs highly expressed genes involved in lipid metabolism. Importantly, HLOs secreted physiologically matured very low-density lipoprotein, which is rarely observed in mice and in established cell lines. Efficient gene transduction into HLOs was achieved via a transient 2-dimensional culture during viral infection. This study provides an invaluable platform for utilizing HLOs in various research fields, such as molecular biology, pharmacology, toxicology, and regenerative medicine.
Collapse
Affiliation(s)
- Ayane Kuboyama-Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chen Xia
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kahori Hiro
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Wang C, Gao XY, Han M, Jiang MC, Shi XY, Pu CW, Du X. Perilipin2 inhibits the replication of hepatitis B virus deoxyribonucleic acid by regulating autophagy under high-fat conditions. World J Virol 2023; 12:296-308. [PMID: 38187502 PMCID: PMC10768386 DOI: 10.5501/wjv.v12.i5.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is often associated with increased lipid deposition in hepatocytes. However, when combined with non-alcoholic fatty liver disease or hyperlipidemia, it tends to have a lower HBV deoxyribonucleic acid (DNA) load. The relationship between lipid metabolism and HBV DNA replication and its underlying mechanisms are not well understood. AIM To investigate the relationship between lipid metabolism and HBV DNA replication and its underlying mechanisms. METHODS 1603 HBsAg-seropositive patients were included in the study. We first explored the relationship between patients' lipid levels, hepatic steatosis, and HBV DNA load. Also, we constructed an HBV infection combined with a hepatic steatosis cell model in vitro by fatty acid stimulation of HepG2.2.15 cells to validate the effect of lipid metabolism on HBV DNA replication in vitro. By knocking down and overexpressing Plin2, we observed whether Plin2 regulates autophagy and HBV replication. By inhibiting both Plin2 and cellular autophagy under high lipid stimulation, we examined whether the Plin2-autophagy pathway regulates HBV replication. RESULTS The results revealed that serum triglyceride levels, high-density lipoprotein levels, and hepatic steatosis ratio were significantly lower in the HBV-DNA high load group. Logistic regression analysis indicated that hepatic steatosis and serum triglyceride levels were negatively correlated with HBV-DNA load. Stratified analysis by HBeAg showed significant negative correlations between HBV-DNA load and hepatic steatosis ratio in both HBeAg-positive and HBeAg-negative groups. An in vitro cell model was developed by stimulating HepG2.2.15 cells with palmitic acid and oleic acid to study the relationship between HBV-DNA load and lipid metabolism. The results of the in vitro experiments suggested that fatty acid treatment increased lipid droplet deposition and decreased the expression of cell supernatant HBsAg, HBeAg, and HBV DNA load. Western blot and polymerase chain reaction analysis showed that fatty acid stimulation significantly induced Plin2 protein expression and inhibited the expression of hepatocyte autophagy proteins. Inhibition of Plin2 protein expression under fatty acid stimulation reversed the reduction in HBsAg and HBeAg expression and HBV DNA load induced by fatty acid stimulation and the inhibition of cellular autophagy. Knocking down Plin2 and blocking autophagy with 3-methyladenine (3-MA) inhibited HBV DNA replication. CONCLUSION In conclusion, lipid metabolism is a significant factor affecting HBV load in patients with HBV infection. The in vitro experiments established that fatty acid stimulation inhibits HBV replication via the Plin2-autophagy pathway.
Collapse
Affiliation(s)
- Chuang Wang
- Graduate School, Graduate School of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Xiao-Yun Gao
- Department of Geriatric, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Mei Han
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Meng-Chun Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Xiao-Yi Shi
- Graduate School, Graduate School of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Chun-Wen Pu
- Dalian Public Health Clinical Center, Dalian Municipal Research Institute for Public Health, Dalian 116001, Liaoning Province, China
| | - Xuan Du
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
14
|
Doncheva AI, Li Y, Khanal P, Hjorth M, Kolset SO, Norheim FA, Kimmel AR, Dalen KT. Altered hepatic lipid droplet morphology and lipid metabolism in fasted Plin2-null mice. J Lipid Res 2023; 64:100461. [PMID: 37844775 PMCID: PMC10716011 DOI: 10.1016/j.jlr.2023.100461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Perilipin 2 (Plin2) binds to the surface of hepatic lipid droplets (LDs) with expression levels that correlate with triacylglyceride (TAG) content. We investigated if Plin2 is important for hepatic LD storage in fasted or high-fat diet-induced obese Plin2+/+ and Plin2-/- mice. Plin2-/- mice had comparable body weights, metabolic phenotype, glucose tolerance, and circulating TAG and total cholesterol levels compared with Plin2+/+ mice, regardless of the dietary regime. Both fasted and high-fat fed Plin2-/- mice stored reduced levels of hepatic TAG compared with Plin2+/+ mice. Fasted Plin2-/- mice stored fewer but larger hepatic LDs compared with Plin2+/+ mice. Detailed hepatic lipid analysis showed substantial reductions in accumulated TAG species in fasted Plin2-/- mice compared with Plin2+/+ mice, whereas cholesteryl esters and phosphatidylcholines were increased. RNA-Seq revealed minor differences in hepatic gene expression between fed Plin2+/+ and Plin2-/- mice, in contrast to marked differences in gene expression between fasted Plin2+/+ and Plin2-/- mice. Our findings demonstrate that Plin2 is required to regulate hepatic LD size and storage of neutral lipid species in the fasted state, while its role in obesity-induced steatosis is less clear.
Collapse
Affiliation(s)
- Atanaska I Doncheva
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Prabhat Khanal
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
16
|
Xia Y, Andersson E, Anand SK, Cansby E, Caputo M, Kumari S, Porosk R, Kilk K, Nair S, Marschall HU, Blüher M, Mahlapuu M. Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring. Hepatol Commun 2023; 7:02009842-202304010-00004. [PMID: 36930872 PMCID: PMC10027040 DOI: 10.1097/hc9.0000000000000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial β-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sumit K Anand
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Syam Nair
- Institute of Neuroscience and Physiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Zhao Y, Li L, Liu Q, Feng S, Zhang S, Li L. Chronic steatosis aggravates cold-storage induced acute ischemic injury in rat donor livers through the perturbation of lipophagy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166640. [PMID: 36638872 DOI: 10.1016/j.bbadis.2023.166640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In this study, we explored the effects of cold ischemia on chronic steatosis and lipid signaling in vivo. Sprague Dawley (SD) rat models of chronic steatosis were established. Pathological observations and liver indices were assessed through hematoxylin-eosin (HE)- and Oil Red O staining. Autophagy and metabolism in adipose tissue were analyzed under post-ischemia and hypoxic conditions via western blotting and immunofluorescent analysis. We found that cold ischemia treatment exacerbated hepatic steatosis and reduced lipid phagocytosis. This manifested as a loss of Microtubule-associated protein 1A/1B-light chain 3 (LC3) and Perilipin 2 (PLIN2), and lower levels of autophagy. Cold ischemia also inhibited lipophagy in transplanted rat livers, most notably in moderate-to-severe steatosis models. Ischemia and hypoxia inhibited lipid phagocytosis and increased lipid accumulation. Collectively, these data show that chronic steatosis aggravates cold storage induced acute ischemic injury in rat donor livers through the inhibition of lipophagy. Moderate-to-severe steatosis therefore influences the postoperative recovery of liver transplant recipients, which should be immediately transplanted to reduce the risk of cold ischemia.
Collapse
Affiliation(s)
- Yingpeng Zhao
- Department of Hepatobiliary Pancreatic Vascular Surgery, the First Hospital of Kunming, Kunming 650000, China
| | - Laibang Li
- Department of Hepatobiliary Pancreatic Vascular Surgery, the First Hospital of Kunming, Kunming 650000, China
| | - Qiyu Liu
- Department of General Surgery, the First Hospital of Kunming, Kunming 650000, China
| | - Shiming Feng
- Department of Hepatobiliary Pancreatic Vascular Surgery, the First Hospital of Kunming, Kunming 650000, China
| | - Shengning Zhang
- Department of Hepatobiliary Pancreatic Vascular Surgery, the First Hospital of Kunming, Kunming 650000, China.
| | - Li Li
- Department of Hepatobiliary Pancreatic Vascular Surgery, the First Hospital of Kunming, Kunming 650000, China.
| |
Collapse
|
18
|
Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock K, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman M, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman B, Fern Ndez FM, Goodyear LJ, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527012. [PMID: 36778330 PMCID: PMC9915732 DOI: 10.1101/2023.02.03.527012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.
Collapse
|
19
|
Li FZ, Fang S. Adipophilin: roles in physiology and pathology. J Clin Pathol 2023; 76:98-102. [PMID: 36600632 DOI: 10.1136/jcp-2022-208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Adipophilin (ADRP/ADPH/PLIN2), an adipocyte differentiation-related protein, is highly expressed at a very early time during the differentiation of adipocytes. It assists in the formation and maintenance of intracellular lipid droplets and plays a role in regulating the physiological functions of the body. More and more studies indicate that it is involved in the occurrence and development of a variety of glycolipid metabolic diseases and tumours. In this review, we comprehensively stated the expression and functions of adipophilin and introduced its roles in physiology and pathology.
Collapse
Affiliation(s)
- Feng-Zeng Li
- Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sheng Fang
- Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Kaushik S, Juste YR, Lindenau K, Dong S, Macho-González A, Santiago-Fernández O, McCabe M, Singh R, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy regulates adipocyte differentiation. SCIENCE ADVANCES 2022; 8:eabq2733. [PMID: 36383673 PMCID: PMC9668314 DOI: 10.1126/sciadv.abq2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Adipogenesis is a tightly orchestrated multistep process wherein preadipocytes differentiate into adipocytes. The most studied aspect of adipogenesis is its transcriptional regulation through timely expression and silencing of a vast number of genes. However, whether turnover of key regulatory proteins per se controls adipogenesis remains largely understudied. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal protein degradation that, in response to diverse cues, remodels the proteome for regulatory purposes. We report here the activation of CMA during adipocyte differentiation and show that CMA regulates adipogenesis at different steps through timely degradation of key regulatory signaling proteins and transcription factors that dictate proliferation, energetic adaptation, and signaling changes required for adipogenesis.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yves R. Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuxian Dong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Volkmar N, Gawden‐Bone CM, Williamson JC, Nixon‐Abell J, West JA, St George‐Hyslop PH, Kaser A, Lehner PJ. Regulation of membrane fluidity by RNF145-triggered degradation of the lipid hydrolase ADIPOR2. EMBO J 2022; 41:e110777. [PMID: 35993436 PMCID: PMC9531299 DOI: 10.15252/embj.2022110777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.
Collapse
Affiliation(s)
- Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Present address:
Institute for Molecular Systems Biology (IMSB)ETH ZürichZürichSwitzerland
| | - Christian M Gawden‐Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
23
|
Zhang S, Hu L, Han C, Huang R, Ooi K, Qian X, Ren X, Chu D, Zhang H, Du D, Xia C. PLIN2 Mediates Neuroinflammation and Oxidative/Nitrosative Stress via Downregulating Phosphatidylethanolamine in the Rostral Ventrolateral Medulla of Stressed Hypertensive Rats. J Inflamm Res 2021; 14:6331-6348. [PMID: 34880641 PMCID: PMC8646230 DOI: 10.2147/jir.s329230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Oxidative/nitrosative stress, neuroinflammation and their intimate interactions mediate sympathetic overactivation in hypertension. An immoderate inflammatory response is characterized not only by elevated proinflammatory cytokines (PICs) but by increases in mitochondrial dysfunction, reactive oxygen species (ROS), and nitric oxide (NO). Recent data pinpoint that both the phospholipid and lipid droplets (LDs) are potent modulators of microglia physiology. Methods Stress rats underwent compound stressors for 15 days with PLIN2-siRNA or scrambled-siRNA (SC-siRNA) administrated into the rostral ventrolateral medulla (RVLM). Lipids were analyzed by mass spectroscopy-based quantitative lipidomics. The phenotypes and proliferation of microglia, LDs, in the RVLM of rats were detected; blood pressure (BP) and myocardial injury in rats were evaluated. The anti-oxidative/nitrosative stress effect of phosphatidylethanolamine (PE) was explored in cultured primary microglia. Results Lipidomics analysis showed that 75 individual lipids in RVLM were significantly dysregulated by stress [PE was the most one], demonstrating that lipid composition changed with stress. In vitro, prorenin stress induced the accumulation of LDs, increased PICs, which could be blocked by siRNA-PLIN2 in microglia. PLIN2 knockdown upregulated the PE synthesis in microglia. Anti-oxidative/nitrosative stress effect of PE delivery was confirmed by the decrease of ROS and decrease in 3-NT and MDA in prorenin-treated microglia. PLIN2 knockdown in the RVLM blocked the number of iNOS+ and PCNA+ microglia, decreased BP, alleviated cardiac fibrosis and hypertrophy in stressed rats. Conclusion PLIN2 mediates microglial polarization/proliferation via downregulating PE in the RVLM of stressed rats. Delivery of PE is a promising strategy for combating neuroinflammation and oxidative/nitrosative stress in stress-induced hypertension.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Chengzhi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Renhui Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyi Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaorong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Dongshu Du
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
24
|
Qing Y, Jamal MA, Shi D, Zhao S, Xu K, Jiao D, Zhao H, Li H, Jia B, Wang H, Zhao HY, Wei HJ. Delayed body development with reduced triglycerides levels in leptin transgenic pigs. Transgenic Res 2021; 31:59-72. [PMID: 34741281 DOI: 10.1007/s11248-021-00288-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.
Collapse
Affiliation(s)
- Yubo Qing
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Muhammad Ameen Jamal
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Dejia Shi
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sumei Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Deling Jiao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Honghui Li
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China.,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Jiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Kunming, 650201, China. .,Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, 650201, China. .,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
25
|
Flitcroft JG, Verheyen J, Vemulkar T, Welbourne EN, Rossi SH, Welsh SJ, Cowburn RP, Stewart GD. Early detection of kidney cancer using urinary proteins: a truly non-invasive strategy. BJU Int 2021; 129:290-303. [PMID: 34570419 DOI: 10.1111/bju.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review urinary protein biomarkers as potential non-invasive, easily obtainable, early diagnostic tools in renal cell carcinoma (RCC). METHODS A PubMed database search was performed up to the year 2020 to identify primary studies reporting potential urinary protein biomarkers for RCC. Separate searches were conducted to identify studies describing appropriate methods of developing cancer screening programmes and detection of cancer biomarkers. RESULTS Several urinary protein biomarkers are under validation for RCC diagnostics, e.g. aquaporin-1, perilipin-2, carbonic anhydrase-9, Raf-kinase inhibitory protein, nuclear matrix protein-22, 14-3-3 Protein β/α and neutrophil gelatinase-associated lipocalin. However, none has yet been validated or approved for clinical use due to low sensitivity or specificity, inconsistencies in appropriate study design, or lack of external validation. CONCLUSIONS Evaluation of biomarkers' feasibility, sample preparation and storage, biomarker validation, and the application of novel technologies may provide a solution that maximises the potential for a truly non-invasive biomarker in early RCC diagnostics.
Collapse
Affiliation(s)
- Jordan G Flitcroft
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jeroen Verheyen
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Tarun Vemulkar
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Emma N Welbourne
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Sabrina H Rossi
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Sarah J Welsh
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Russell P Cowburn
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
27
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|
28
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
29
|
Stephenson RA, Thomalla JM, Chen L, Kolkhof P, White RP, Beller M, Welte MA. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development 2021; 148:271212. [PMID: 34355743 DOI: 10.1242/dev.199381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B, H2A and H2Av accumulate on lipid droplets (LDs), which are cytoplasmic fat storage organelles. Without LD binding, maternally provided H2B, H2A and H2Av are absent; however, how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.
Collapse
Affiliation(s)
- Roxan A Stephenson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Lili Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Roger P White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
30
|
de Lira MN, Bolini L, Amorim NRT, Silva-Souza HA, Diaz BL, Canetti C, Persechini PM, Bandeira-Melo C. Acute catabolism of leukocyte lipid bodies: Characterization of a nordihydroguaiaretic acid (NDGA)-induced proteasomal-dependent model. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102320. [PMID: 34303171 DOI: 10.1016/j.plefa.2021.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Cytoplasmic availability of leukocyte lipid bodies is controlled by a highly regulated cycle of opposing biogenesis- and catabolism-related events. While leukocyte biogenic machinery is well-characterized, lipid body catabolic mechanisms are yet mostly unknown. Here, we demonstrated that nordihydroguaiaretic acid (NDGA) very rapidly decreases the numbers of pre-formed lipid bodies within lipid body-enriched cytoplasm of mouse leukocytes - macrophages, neutrophils and eosinophils. NDGA mechanisms driving leukocyte lipid body disappearance were not related to loss of cell viability, 5-lipoxygenase inhibition, ATP autocrine/paracrine activity, or biogenesis inhibition. Proteasomal-dependent breakdown of lipid bodies appears to control NDGA-driven leukocyte lipid body reduction, since it was Bortezomib-sensitive in macrophages, neutrophils and eosinophils. Our findings unveil an acute NDGA-triggered lipid body catabolic event - a novel experimental model for the still neglected research area on leukocyte lipid body catabolism, additionally favoring further insights on proteasomal contribution to lipid body breakdown.
Collapse
Affiliation(s)
- Maria N de Lira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; BioMed X Institute (GmbH), Heidelberg, Germany
| | - Lukas Bolini
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália R T Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hercules A Silva-Souza
- Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Divisão de Verificação e Estudos Técnico-Científicos, Instituto Nacional de Metrologia Qualidade e Tecnologia, Duque de Caxias Rio de Janeiro, Brazil
| | - Bruno L Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro M Persechini
- Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; This paper is dedicated to the memory of our dear colleague and friend Pedro M. Persechini, who passed prematurely and whose devotion to understanding the mechanisms of action of NDGA was unsurpassed
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Conte M, Medici V, Malagoli D, Chiariello A, Cirrincione A, Davin A, Chikhladze M, Vasuri F, Legname G, Ferrer I, Vanni S, Marcon G, Poloni TE, Guaita A, Franceschi C, Salvioli S. Expression pattern of perilipins in human brain during aging and in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12756. [PMID: 34312912 PMCID: PMC9291275 DOI: 10.1111/nan.12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
AIMS Perilipins are conserved proteins that decorate intracellular lipid droplets and are essential for lipid metabolism. To date, there is limited knowledge on their expression in human brain or their involvement in brain aging and neurodegeneration. The aim of this study was to characterise the expression levels of perilipins (Plin1-Plin5) in different cerebral areas from subjects of different age, with or without signs of neurodegeneration. METHODS We performed real-time RT-PCR, western blotting, immunohistochemistry and confocal microscopy analyses in autoptic brain samples of frontal and temporal cortex, cerebellum and hippocampus from subjects ranging from 33 to 104 years of age, with or without histological signs of neurodegeneration. To test the possible relationship between Plins and inflammation, correlation analysis with IL-6 expression was also performed. RESULTS Plin2, Plin3 and Plin5, but not Plin1 and Plin4, are expressed in the considered brain areas with different intensities. Plin2 appears to be expressed more in grey matter, particularly in neurons in all the areas analysed, whereas Plin3 and Plin5 appear to be expressed more in white matter. Plin3 seems to be expressed more in astrocytes. Only Plin2 expression is higher in old subjects and patients with early tauopathy or Alzheimer's disease and is associated with IL-6 expression. CONCLUSIONS Perilipins are expressed in human brain but only Plin2 appears to be modulated with age and neurodegeneration and linked to an inflammatory state. We propose that the accumulation of lipid droplets decorated with Plin2 occurs during brain aging and that this accumulation may be an early marker and initial step of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alice Cirrincione
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Annalisa Davin
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Maia Chikhladze
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Vasuri
- Pathology Unit, S. Orsola-Malpighi Bologna Authority Hospital, Bologna, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, L'Hospilatet del Llobregat, Barcelona, Spain
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gabriella Marcon
- DAME, University of Udine, Udine, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Antonio Guaita
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Caputo M, Cansby E, Kumari S, Kurhe Y, Nair S, Ståhlman M, Kulkarni NM, Borén J, Marschall HU, Blüher M, Mahlapuu M. STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes. Hepatol Commun 2021; 5:1183-1200. [PMID: 34278168 PMCID: PMC8279465 DOI: 10.1002/hep4.1702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Sima Kumari
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
33
|
Zhang K, Chen X, Zhang P, Liu G. Perilipin2 is an Earlier Marker Than Perilipin1 for Identifying Adipocyte Regeneration in Fat Grafts. Aesthet Surg J 2021; 41:NP646-NP652. [PMID: 33319243 DOI: 10.1093/asj/sjaa360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both perilipin1 (Plin1) and perilipin2 (Plin2) play a crucial role in regulating lipid droplet (LD) formation in fat cells. Plin2 is expressed early in the adipocyte differentiation process but is replaced by Plin1 after cell maturation. In free fat grafts, only a small number of adipocytes remain alive or are replaced by newly regenerated fat cells. It is known that Plin1-positive adipocytes participate in regeneration, but the characteristics of Plin2 expression during this process are still poorly understood. OBJECTIVES The aim of this study was to investigate whether Plin2 is a more precise early marker for detecting adipocyte regeneration in fat grafts than Plin1. METHODS Autologous fat tissue (120 mg) harvested from inguinal fat pads was injected under the scalps of C57 mice. Samples were explanted at days 3, 7, 15, and 30 after transplantation. Changes in sample size and weight were evaluated. Hematoxylin-eosin staining, real-time polymerase chain reaction, and immunostaining of Plin1 and Plin2 expression were performed. RESULTS Plin1, but not Plin2, expression was detected in the freshly harvested fat, but the latter was activated after grafting. Newly regenerated Plin2-positive adipocytes increased from day 3 to day 7 and then declined, whereas the number of Plin1-positive fat cells decreased first and began to increase after day 15. The expression levels of Plin1 and Plin2 mRNA demonstrated similar changes over time. At day 30, adipocytes lost Plin2 expression and were positive for Plin1 again. CONCLUSIONS Our experiments showed convincing evidence that Plin2 expression could be used to detect early adipocyte regeneration in grafted fat tissue.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xi Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
34
|
Ibrahim M, Ayoub D, Wasselin T, Van Dorsselaer A, Le Maho Y, Raclot T, Bertile F. Alterations in rat adipose tissue transcriptome and proteome in response to prolonged fasting. Biol Chem 2021; 401:389-405. [PMID: 31398141 DOI: 10.1515/hsz-2019-0184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
Various pathophysiological situations of negative energy balance involve the intense depletion of the body's energy reserves. White adipose tissue is a central place to store energy and a major endocrine organ. As a model of choice to better understand how the white adipose tissue dynamically responds to changes in substrate availability, we used the prolonged fasting paradigm, which is characterized by successive periods of stimulated (phase 2) and then reduced (phase 3) lipid mobilization/utilization. Using omics analyses, we report a regulatory transcriptional program in rat epididymal (EPI) adipose tissue favoring lipolysis during phase 2 and repressing it during phase 3. Changes in gene expression levels of lipases, lipid droplet-associated factors, and the proteins involved in cAMP-dependent and cAMP-independent regulation of lipolysis are highlighted. The mRNA and circulating levels of adipose-secreted factors were consistent with the repression of insulin signaling during prolonged fasting. Other molecular responses are discussed, including the regulation of leptin and adiponectin levels, the specific changes reflecting an increased fibrinolysis and a possible protein catabolism-related energy saving mechanism in late fasting. Finally, some differences between internal and subcutaneous (SC) adipose tissues are also reported. These data provide a comprehensive molecular basis of adipose tissue responses when facing a major energetic challenge.
Collapse
Affiliation(s)
- Marianne Ibrahim
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Daniel Ayoub
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Thierry Wasselin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Yvon Le Maho
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Département Ecologie, Physiologie, Ethologie, 23 rue Becquerel, F-67087 Strasbourg, France
| | - Thierry Raclot
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Département Ecologie, Physiologie, Ethologie, 23 rue Becquerel, F-67087 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
35
|
Conte M, Santoro A, Collura S, Martucci M, Battista G, Bazzocchi A, Morsiani C, Sevini F, Capri M, Monti D, Franceschi C, Salvioli S. Circulating perilipin 2 levels are associated with fat mass, inflammatory and metabolic markers and are higher in women than men. Aging (Albany NY) 2021; 13:7931-7942. [PMID: 33735111 PMCID: PMC8034884 DOI: 10.18632/aging.202840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Perilipin 2 (PLIN2) is a protein involved in lipid storage and metabolism in non-adipose tissues. Detectable levels of circulating PLIN2 (cPLIN2) have been reported to be associated with some types of cancer, but no systematic analysis of age-related modifications in cPLIN2 levels has ever been performed. We measured serum cPLIN2 in a group of old people including centenarians in comparison with young subjects and tested possible correlations with parameters of body composition, fat and glucose metabolism, and inflammation. We found that: i. levels of cPLIN2 do not change with age, but women have higher levels of cPLIN2 with respect to men; ii. cPLIN2 levels strongly correlate to BMI, as well as fat and lean mass; iii. cPLIN2 levels strongly correlate with the proinflammatory adipokine leptin. Due to the adipogenic activity of leptin, it is hypothesized that cPLIN2 is affected and possibly regulated by this pleiotropic adipokine. Moreover, these results suggest that cPLIN2 (possibly together with leptin) could be assumed as a proxy for body adiposity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Dev Biol 2020; 108:33-46. [DOI: 10.1016/j.semcdb.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
37
|
Liu Q, Liang Y, Gao N, Gao J, Wang Y, Li X, Qin J, Xiang Q, Wu X, Chen H, Huang Y, Zhang Q. Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115541. [PMID: 32892022 DOI: 10.1016/j.envpol.2020.115541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl2 during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl2 for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Collapse
Affiliation(s)
- Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Ning Gao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Gao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Xiang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China.
| |
Collapse
|
38
|
Yang C, Lan W, Ye S, Zhu B, Fu Z. Transcriptomic Analyses Reveal the Protective Immune Regulation of Conjugated Linoleic Acids in Sheep Ruminal Epithelial Cells. Front Physiol 2020; 11:588082. [PMID: 33192603 PMCID: PMC7658390 DOI: 10.3389/fphys.2020.588082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ruminal epithelium is continuously challenged by antigens released by the lysis of dead microbial cells within the rumen. However, the innate immune system of the ruminal epithelium can almost always actively respond to these challenges. The cross talk between the ruminal microbiota and innate immune cells in the ruminal epithelium has been suggested to play an important role in sustaining the balance of immune tolerance and inflammatory response in the rumen. We hypothesized that conjugated linoleic acid (CLA), a functional microbial metabolite in the rumen, may contribute to the immune regulation in rumen epithelial cells (RECs); therefore, we first established an immortal REC line and then investigated the regulatory effects of CLA on the immune responses in these RECs. The results showed that long-term REC cultures were successfully established via SV40T-induced immortalization. Transcriptome analysis showed that a 100 μM CLA mixture consisting of 50:50 cis-9, trans-11:trans-10, cis-12 CLA significantly downregulated the expression of the inflammatory response-related genes TNF-α, IL-6, CX3CL1, IRF1, ICAM1 and EDN1, and upregulated the expression of the cell proliferation-related genes FGF7, FGF21, EREG, AREG and HBEGF and the lipid metabolism-related genes PLIN2, CPT1A, ANGPTL4, ABHD5 and SREBF1 in the RECs upon LPS stimulation. Correspondingly, the GO terms regulation of cell adhesion, response to stimulus and cytokine production and KEGG pathways TNF and HIF-1 signaling, ECM-receptor interaction and cell adhesion molecules were identified for the significantly downregulated genes, while the GO terms epithelial cell proliferation and regulation of epithelial cell migration and the KEGG pathways PPAR, ErbB and adipocytokine signaling were identified for the RECs with significantly upregulated CLA-pretreated genes upon LPS stimulation. These findings revealed that CLA conferred protective immunity onto the RECs by inhibiting proinflammatory processes, promoting cell proliferation and regulating lipid metabolism related to the immune response.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wei Lan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
39
|
Scott NA, Sharpe LJ, Brown AJ. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158837. [PMID: 33049405 DOI: 10.1016/j.bbalip.2020.158837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
MARCHF6 is a large multi-pass E3 ubiquitin ligase embedded in the membranes of the endoplasmic reticulum. It participates in endoplasmic reticulum associated degradation, including autoubiquitination, and many of its identified substrates are involved in sterol and lipid metabolism. Post-translationally, MARCHF6 expression is attuned to cholesterol status, with high cholesterol preventing its degradation and hence boosting MARCHF6 levels. By modulating MARCHF6 activity, cholesterol may regulate other aspects of cell metabolism beyond the known repertoire. Whilst we have learnt much about MARCHF6 in the past decade, there are still many more mysteries to be unravelled to fully understand its regulation, substrates, and role in human health and disease.
Collapse
Affiliation(s)
- Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Wang H, Wen X, Yan M, Chang M, Zhang G, Peng W, Wu Y, Shen Y, Zhou J, Li H. The role of perilipin 2 in Pseudomonas aeruginosa pulmonary infection. Respir Physiol Neurobiol 2020; 281:103497. [DOI: 10.1016/j.resp.2020.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
|
41
|
Theocharidis G, Baltzis D, Roustit M, Tellechea A, Dangwal S, Khetani RS, Shu B, Zhao W, Fu J, Bhasin S, Kafanas A, Hui D, Sui SH, Patsopoulos NA, Bhasin M, Veves A. Integrated Skin Transcriptomics and Serum Multiplex Assays Reveal Novel Mechanisms of Wound Healing in Diabetic Foot Ulcers. Diabetes 2020; 69:2157-2169. [PMID: 32763913 PMCID: PMC7506837 DOI: 10.2337/db20-0188] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Nonhealing diabetic foot ulcers (DFUs) are characterized by low-grade chronic inflammation, both locally and systemically. We prospectively followed a group of patients who either healed or developed nonhealing chronic DFUs. Serum and forearm skin analysis, both at the protein expression and the transcriptomic level, indicated that increased expression of factors such as interferon-γ (IFN-γ), vascular endothelial growth factor, and soluble vascular cell adhesion molecule-1 were associated with DFU healing. Furthermore, foot skin single-cell RNA sequencing analysis showed multiple fibroblast cell clusters and increased inflammation in the dorsal skin of patients with diabetes mellitus (DM) and DFU specimens compared with control subjects. In addition, in myeloid cell DM and DFU upstream regulator analysis, we observed inhibition of interleukin-13 and IFN-γ and dysregulation of biological processes that included cell movement of monocytes, migration of dendritic cells, and chemotaxis of antigen-presenting cells pointing to an impaired migratory profile of immune cells in DM skin. The SLCO2A1 and CYP1A1 genes, which were upregulated at the forearm of nonhealers, were mainly expressed by the vascular endothelial cell cluster almost exclusively in DFU, indicating a potential important role in wound healing. These results from integrated protein and transcriptome analyses identified individual genes and pathways that can potentially be targeted for enhancing DFU healing.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Dimitrios Baltzis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Matthieu Roustit
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ana Tellechea
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seema Dangwal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Radhika S Khetani
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bin Shu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wanni Zhao
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jianfang Fu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Swati Bhasin
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Antonios Kafanas
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Daniel Hui
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Manoj Bhasin
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
43
|
Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin Sci (Lond) 2020; 134:921-939. [PMID: 32239178 DOI: 10.1042/cs20191229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Maternal obesity determines obesity and metabolic diseases in the offspring. The white adipose tissue (WAT) orchestrates metabolic pathways, and its dysfunction contributes to metabolic disorders in a sex-dependent manner. Here, we tested if sex differences influence the molecular mechanisms of metabolic programming of WAT in offspring of obese dams. To this end, maternal obesity was induced with high-fat diet (HFD) and the offspring were studied at an early phase [postnatal day 21 (P21)], a late phase (P70) and finally P120. In the early phase we found a sex-independent increase in WAT in offspring of obese dams using magnetic resonance imaging (MRI), which was more pronounced in females than males. While the adipocyte size increased in both sexes, the distribution of WAT differed in males and females. As mechanistic hints, we identified an inflammatory response in females and a senescence-associated reduction in the preadipocyte factor DLK in males. In the late phase, the obese body composition persisted in both sexes, with a partial reversal in females. Moreover, female offspring recovered completely from both the adipocyte hypertrophy and the inflammatory response. These findings were linked to a dysregulation of lipolytic, adipogenic and stemness-related markers as well as AMPKα and Akt signaling. Finally, the sex-dependent metabolic programming persisted with sex-specific differences in adipocyte size until P120. In conclusion, we do not only provide new insights into the molecular mechanisms of sex-dependent metabolic programming of WAT dysfunction, but also highlight the sex-dependent development of low- and high-grade pathogenic obesity.
Collapse
|
44
|
Aprile M, Cataldi S, Perfetto C, Ambrosio MR, Italiani P, Tatè R, Blüher M, Ciccodicola A, Costa V. In-Vitro-Generated Hypertrophic-Like Adipocytes Displaying PPARG Isoforms Unbalance Recapitulate Adipocyte Dysfunctions In Vivo. Cells 2020; 9:cells9051284. [PMID: 32455814 PMCID: PMC7290899 DOI: 10.3390/cells9051284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Identifying molecular features of hypertrophic adipocytes requires appropriate in vitro models. We describe the generation of a model of human hypertrophic-like adipocytes directly comparable to normal adipose cells and the pathologic evolution toward hypertrophic state. We generate in vitro hypertrophic cells from mature adipocytes, differentiated from human mesenchymal stem cells. Combining optical, confocal, and transmission electron microscopy with mRNA/protein quantification, we characterize this cellular model, confirming specific alterations also in subcutaneous adipose tissue. Specifically, we report the generation and morphological/molecular characterization of human normal and hypertrophic-like adipocytes. The latter displays altered morphology and unbalance between canonical and dominant negative (PPARGΔ5) transcripts of PPARG, paralleled by reduced expression of PPARγ targets, including GLUT4. Furthermore, the unbalance of PPARγ isoforms associates with GLUT4 down-regulation in subcutaneous adipose tissue of individuals with overweight/obesity or impaired glucose tolerance/type 2 diabetes, but not with normal weight or glucose tolerance. In conclusion, the hypertrophic-like cells described herein are an innovative tool for studying molecular dysfunctions in hypertrophic obesity and the unbalance between PPARγ isoforms associates with down-regulation of GLUT4 and other PPARγ targets, representing a new hallmark of hypertrophic adipocytes.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Correspondence: (M.A.); (V.C.)
| | - Simona Cataldi
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Caterina Perfetto
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Maria Rosaria Ambrosio
- Department of Translational Medicine, University of Naples “Federico II” & URT “Genomic of Diabetes,” Institute of Experimental Endocrinology and Oncology “G. Salvatore,” CNR, Via Pansini 5, 80131 Naples, Italy;
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology CNR, Via P. Castellino 111, 80131 Naples, Italy;
| | - Rosarita Tatè
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 4289 Leipzig, Germany;
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Department of Science and Technology, University of Naples “Parthenope,” 80131 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (C.P.); (R.T.); (A.C.)
- Correspondence: (M.A.); (V.C.)
| |
Collapse
|
45
|
Dai ZW, Cai KD, Xu LC, Wang LL. Perilipin2 inhibits diabetic nephropathy-induced podocyte apoptosis by activating the PPARγ signaling pathway. Mol Cell Probes 2020; 53:101584. [PMID: 32387304 DOI: 10.1016/j.mcp.2020.101584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023]
Abstract
Podocyte apoptosis plays a pivotal role in the pathogenesis of diabetic nephropathy (DN). The main purpose of this study was to investigate the effects of perilipin2 on high glucose (HG)-induced podocyte apoptosis and associated mechanisms. Differentially expressed genes (DEGs) in BTBR ob/ob mice vs. nondiabetic mice kidneys were obtained from GSE106841 dataset and picked out using the 'limma' package. The protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) and was visualized by Cytoscape. Perilipin2 was a hub gene using the cytoHubba plug-in from Cytoscape. Gene ontology (GO) analysis revealed that the 126 overlapping DEGs were mainly enriched in 'oxidation reduction' [biological process, (BP)], metal ion binding' [molecular function, (MF)] and 'extracellular region' [cellular component, (CC)]. KEGG pathway analysis revealed that perilipin2 was mainly involved in 'PPAR signaling pathway'. DN inhibited perilipin2 expression and PPARγ expression, as by both in vitro and in vivo studies. In vitro experiments demonstrated that perilipin2 inhibition could not only reduced PPARγ expression in podocytes, it could also promote the apoptosis, and inhibit the viability in HG treated podocytes using western blot, CCK8 and flow cytometry assays. Perilipin2 overexpression reversed the effects of HG on inhibiting podocalyxin, nephrin, precursor (pro)-caspase-3/-9 and PPARγ protein expression and increasing cleaved caspase-3/-9 protein expression. Furthermore, the functions of perilipin2 overexpression reversing HG-induced podocyte apoptosis were inhibited by PPARγ inhibitor. In conclusion, the functions of DN-induced podocyte apoptosis were inhibited by activation of the PPARγ signaling pathway caused by perilipin2 overexpression.
Collapse
Affiliation(s)
- Zhi-Wei Dai
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China.
| | - Ke-Dan Cai
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| | - Ling-Cang Xu
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| | - Lai-Liang Wang
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| |
Collapse
|
46
|
Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC). Ocul Surf 2020; 18:427-437. [PMID: 32360782 DOI: 10.1016/j.jtos.2020.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to access the ability of the natural PPAR agonist, eicosapentaenoic acid (EPA), to activate PPAR gamma (γ) signaling leading to meibocyte differentiation in human meibomian gland epithelial cell (hMGEC). METHODS HMGEC were exposed to EPA, alone and in combination with the specific PPARγ antagonist, T0070907, to selectively block PPARγ signaling. Expression of PPARγ response genes were evaluated by qPCR. Effect on cell cycle was evaluated using Ki-67 labelling and western blots. During differentiation, autophagy was monitored using the Autophagy Tandem Sensor (ATS) and LysoTracker. Lipid accumulation was characterized by Stimulated Raman Scattering microscopy (SRS) and neutral lipid staining in combination with ER-Tracker, LysoTracker, and ATS. Autophagy was also investigated using western blotting. Seahorse XF analysis was performed to monitor mitochondrial function. RESULTS EPA specifically upregulated expression of genes related to lipid synthesis and induced cell cycle exit through reduced cyclin D1 expression and increased p21 and p27 expression. EPA also induced accumulation of lipid droplets in a time and dose dependent manner (P < 0.05) by specific PPARγ signaling. Lipid analysis identified both de novo synthesis and extracellular transport of lipid to form lipid droplets that were localized to the ER. PPARγ signaling also induced activation of AMPK-ULK1 signaling and autophagy, while inhibition of autophagy induced mitochondrial crisis with no effect on lipid accumulation. CONCLUSIONS EPA induces meibocyte differentiation through PPARγ activation that is characterized by cell cycle exit, de novo and transported lipid accumulation in the ER, and autophagy.
Collapse
|
47
|
Fan H, Diao H, Lu Y, Xie J, Cheng X. The relation between serum adipose differentiation-related protein and non-alcoholic fatty liver disease in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2020; 11:2042018820969025. [PMID: 33194172 PMCID: PMC7607795 DOI: 10.1177/2042018820969025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adipose differentiation-related protein (ADRP) is an adipokine. In vitro and animal studies have verified the role of ADRP in lipid metabolism and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the interaction between levels of ADRP and NAFLD in type 2 diabetes mellitus (T2DM). METHODS Cross-sectional design. A total of 142 patients with T2DM were assigned to NAFLD (Group-I) and non-NAFLD (Group-II). Anthropometric data were collected. Serum ADRP levels and biochemical parameters were also determined. t test or χ2 test was conducted to compare the data between two groups. Receiver operating characteristic (ROC) curve analysis and logistic regression models were used to assess the interaction between ADRP levels and NAFLD in T2DM. Pearson correlation analysis and linear regression model were used to assess the correlations between serum ADRP levels and other parameters. RESULTS The serum ADRP level was higher in Group-I than in Group-II. Further, binary logistic regression models demonstrated that ADRP was an independent risk factor related to NAFLD in patients with T2DM. Moreover, as the ADRP level elevated across its tertiles, the percentage of NAFLD in T2DM increased. Multivariate logistic regression models demonstrated that the odds ratio of NAFLD was 8.831 in the highest tertile of ADRP, after adjustment for potential confounders. Area under THE ROC curve of ADRP for predicting the presence of NAFLD in T2DM was 0.738. Finally, multiple stepwise regression analysis indicated that age, waist circumference (WC), homeostasis model assessment of insulin resistance index (HOMA-IR) and triglyceride (TG) were independent factors associated with ADRP levels. CONCLUSION High serum ADRP level may be used as an independent risk factor for NAFLD in T2DM. The expression of ADRP may be affected by age, WC, HOMA-IR and TG.
Collapse
Affiliation(s)
- Huaying Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongjie Diao
- XieTang Community Health Service Center, Suzhou, Jiangsu, China
| | | | | | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
48
|
Abstract
Fatty liver disease (FLD) affects more than one-third of the population in the western world and an increasing number of children in the United States. It is a leading cause of obesity and liver transplantation. Mechanistic insights into the causes of FLD are urgently needed since no therapeutic intervention has proven to be effective. A sequence variation in patatin like phospholipase domain-containing protein 3 (PNPLA3), rs 738409, is strongly associated with the progression of fatty liver disease. The resulting mutant causes a substitution of isoleucine to methionine at position 148. The underlying mechanism of this disease remains unsolved although several studies have illuminated key insights into its pathogenesis. This review highlights the progress in our understanding of PNPLA3 function in lipid droplet dynamics and explores possible therapeutic interventions to ameliorate this human health hazard.
Collapse
Affiliation(s)
- Soumik Basu Ray
- Eugene McDermott Center for Human Growth and Development, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Cai B, Zheng Y, Yan J, Wang J, Liu X, Yin G. BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Exp Cell Res 2019; 385:111647. [PMID: 31562859 DOI: 10.1016/j.yexcr.2019.111647] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
The proliferation and differentiation of hair follicle stem cells (HFSCs) is regulated by several signaling pathways, including BMP and PTEN. Therefore, this study intended to clarify the potential effects of two such regulators, BMP2 and PTEN, on HFSC differentiation. HFSCs were subjected to BMP2, noggin (BMP2 ligand inhibitor), rapamycin (Rapa, autophagy inducer), 3-methyladenine (3-MA, autophagy inhibitor), or shRNA against PTEN. The differentiation of HFSCs was evaluated using oil red O staining and autophagy was assessed using the transmission electron microscope. Then expression of epidermal differentiation marker (K10 and involucrin), adipogenic markers (PPAR-γ2, aP2, perilipin2, and Adipoq), keratinocyte-specific marker (K15), proliferation-related markers (PCNA and Ki67) and autophagy-related factors (Atg5, Atg7, Atg12, Beclin-1 and LC3-II/LC3-I) was examined by RT-qPCR and Western blot analysis. Next, HFSCs were treated with 3-MA, or shRNA against Atg5 or Atg7 to verify the effect of autophagy on differentiation of BMP2-treated HFSCs. Finally, the effect of BMP2 on HFSC differentiation was verified by a mouse wound model. HFSCs overexpressing BMP2 exhibited elevated expression of epidermal differentiation marker, adipogenic markers and autophagy-related factors but inhibited expression of keratinocyte-specific marker and proliferation-related markers. Furthermore, we found that PTEN promoted the differentiation of BMP2-treated HFSCs by inducing autophagy. In vivo experiments further confirmed the roles of BMP2/PTEN on differentiation of HFSCs. Taken together, BMP2 up-regulated PTEN and consequently induced autophagy to facilitate HFSC differentiation.
Collapse
Affiliation(s)
- Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Jiadi Yan
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Junmin Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaojun Liu
- Henan Province Medical Instrument Testing Institute, Zhengzhou, 450018, PR China
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
50
|
Wang Z, Yin ZT, Zhang F, Li XQ, Chen SR, Yang N, Porter TE, Hou Z. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks. BMC Genomics 2019; 20:688. [PMID: 31477016 PMCID: PMC6720933 DOI: 10.1186/s12864-019-6055-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pekin duck is an important animal model for its ability for fat synthesis and deposition. However, transcriptional dynamic regulation of adipose differentiation driven by complex signal cascades remains largely unexplored in this model. This study aimed to explore adipogenic transcriptional dynamics before (proliferation) and after (differentiation) initial preadipocyte differentiation in ducks. RESULTS Exogenous oleic acid alone successfully induced duck subcutaneous preadipocyte differentiation. We explored 36 mRNA-seq libraries in order to study transcriptome dynamics during proliferation and differentiation processes at 6 time points. Using robust statistical analysis, we identified 845, 652, 359, 2401 and 1933 genes differentially expressed between -48 h and 0 h, 0 h and 12 h, 12 h and 24 h, 24 h and 48 h, 48 h and 72 h, respectively (FDR < 0.05, FC > 1.5). At the proliferation stage, proliferation related pathways and basic cellular and metabolic processes were inhibited, while regulatory factors that initiate differentiation enter the ready-to-activate state, which provides a precondition for initiating adipose differentiation. According to weighted gene co-expression network analysis, pathways positively related to adipogenic differentiation are significantly activated at the differentiation stage, while WNT, FOXO and other pathways that inhibit preadipocyte differentiation are negatively regulated. Moreover, we identified and classified more than 100 transcription factors that showed significant changes during differentiation, and found novel transcription factors that were not reported to be related to preadipoctye differentiation. Finally, we manually assembled a proposed regulation network model of subcutaneous preadipocyte differentiation base on the expression data, and suggested that E2F1 may serve as an important link between the processes of duck subcutaneous preadipocyte proliferation and differentiation. CONCLUSIONS For the first time we comprehensively analyzed the transcriptome dynamics of duck subcutaneous preadipocyte proliferation and differentiation. The current study provides a solid basis for understanding the synthesis and deposition of subcutaneous fat in ducks. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of duck adipogenesis.
Collapse
Affiliation(s)
- Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Si-Rui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|