1
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
2
|
Zhao Q, Xu Y, Li X, Chen X. L-shaped association of dietary inflammatory index (DII) and chronic diarrhea: results from NHANES 2005-2010. BMC Public Health 2025; 25:81. [PMID: 39780113 PMCID: PMC11707886 DOI: 10.1186/s12889-025-21292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since diet is a known modulator of inflammation, the Dietary Inflammatory Index (DII), which quantifies the inflammatory potential of an individual's diet, becomes a significant parameter to consider. Chronic diarrhea is commonly linked to inflammatory processes within the gut. Thus, this study aimed to explore the potential link between DII and chronic diarrhea. METHODS This research utilized data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. The DII was calculated according to the average intake of 28 nutrients using information gathered from two 24-hour recall interviews. The Bristol Stool Form Scale (BSFS) was adopted to describe chronic diarrhea, identifying stool Type 6 and Type 7. Multivariate logistic regression models examined the causal connection between DII and chronic diarrhea. Additionally, subgroup analyses and interaction tests were conducted. RESULTS The study encompassed 11,219 adults, among whom 7.45% reported chronic diarrhea. Initially, multivariate logistic regression analysis revealed a positive association between DII and chronic diarrhea. Nevertheless, this connection lost statistical significance (OR = 1.00; 95% CI, 0.96-1.05; P = 0.8501) after adjusting for all confounding variables. Stratified by sex, the analysis revealed a notable rise in the risk of chronic diarrhea with increasing DII among female participants (all P for trend < 0.05). This tendency remained constant even after full adjustment (P for trend = 0.0192), whereas no significant association was noted in males (all P for trend > 0.05). Furthermore, an L-shaped association emerged between DII and chronic diarrhea, with an inflection point of -1.34. In the population with DII scores below -1.34, each unit increase in DII correlated with a 27% reduction in the probability of chronic diarrhea (OR = 0.73; 95% CI, 0.57-0.93), whereas in the population with DII scores above -1.34, the risk increased by 4% (OR = 1.04; 95% CI, 0.98-1.10). Merely, the gender interaction was shown to be statistically significant based on subgroup analyses and interaction tests. CONCLUSIONS A favorable association between DII and chronic diarrhea exists in adults in the United States. Nevertheless, additional long-term prospective studies are required to confirm and solidify those findings.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Xu
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiangrui Li
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaotian Chen
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
DePoy AN, Wall H, Tinker KA, Ottesen EA. Microbial transcriptional responses to host diet maintain gut microbiome homeostasis in the American cockroach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621369. [PMID: 39554183 PMCID: PMC11565919 DOI: 10.1101/2024.10.31.621369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diet is considered a key determinant of gut microbiome composition and function. However, studies in the American cockroach have revealed surprising stability in hindgut microbiome taxonomic composition following shifts in host diet. To discover microbial activities underlying this stability, we analyzed microbial community transcriptomes from hindguts of cockroaches fed diverse diets. We used a taxon-centric approach in which we clustered genomes based on taxonomic relatedness and functional similarity and examined the transcriptional profiles of each cluster independently. In total, we analyzed a set of 18 such "genome clusters", including key taxa within Bacteroidota, Bacillota, Desulfobacterota, and Euryarcheaeota phyla. We found that microbial transcriptional responses to diet varied across diets and microbial functional profiles, with the strongest transcriptional shifts seen in taxa predicted to be primarily focused on degradation of complex dietary polysaccharides. These groups upregulated genes associated with utilization of diet-sourced polysaccharides in response to bran and dog food diets, while they upregulated genes for degradation of potentially host-derived polysaccharides in response to tuna, butter, and starvation diets. In contrast, chemolithotrophic taxa, such as Desulfobacterota and Methanimicrococcus, exhibited stable transcriptional profiles, suggesting that compensatory changes in the metabolism of other microbial community members are sufficient to support their activities across major dietary shifts. These results provide new insight into microbial activities supporting gut microbiome stability in the face of variable diets in omnivores.
Collapse
|
4
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
5
|
Son SE, Lee YJ, Shin YJ, Kim DH, Im DS. GPR55 Antagonist CID16020046 Attenuates Obesity-Induced Airway Inflammation by Suppressing Chronic Low-Grade Inflammation in the Lungs. Int J Mol Sci 2024; 25:7358. [PMID: 39000464 PMCID: PMC11242637 DOI: 10.3390/ijms25137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
GPR55 is a receptor for lysophosphatidylinositols (LPIs) in digestive metabolites. Overnutrition leads to obesity, insulin resistance, and increased LPI levels in the plasma. The involvement of LPIs and GPR55 in adiposity, hepatic steatosis, and atherosclerosis has been previously elucidated. However, the therapeutic efficacy of GPR55 antagonists against obesity-induced airway inflammation has not been studied. The present study investigated whether CID16020046, a selective antagonist of GPR55, could modulate obesity-induced airway inflammation caused by a high-fat diet (HFD) in C57BL/6 mice. Administration of CID16020046 (1 mg/kg) inhibits HFD-induced adiposity and glucose intolerance. Analysis of immune cells in BALF showed that CID16020046 inhibited HFD-induced increase in immune cell infiltration. Histological analysis revealed the HFD induced hypersecretion of mucus and extensive fibrosis in the lungs. CID16020046 inhibited these HFD-induced pathological features. qRT-PCR revealed the HFD-induced increase in the expression of Ifn-γ, Tnf-α, Il-6, Il-13, Il-17A, Il-1β, Nlrp3, and Mpo mRNAs in the lungs. CID16020046 inhibited the HFD-induced increases in these genes. The expression levels of adipokines were regulated by the HFD and CID16020046. AdipoQ in the lungs and gonadal white adipose tissue was decreased by the HFD and reversed by CID16020046. In contrast, Lep was increased by the HFD and suppressed by CID16020046. The findings suggest the potential application of the GPR55 antagonist CID16020046 in obesity-induced airway inflammation.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Yoon-Jung Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Dong-Hyun Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
6
|
Wang JL, Chen YS, Huang KC, Yeh CH, Chen MCM, Wu LSH, Chiu YH. Resistant Starch-Encapsulated Probiotics Attenuate Colorectal Cancer Cachexia and 5-Fluorouracil-Induced Microbial Dysbiosis. Biomedicines 2024; 12:1450. [PMID: 39062024 PMCID: PMC11274618 DOI: 10.3390/biomedicines12071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) is commonly used as the primary chemotherapy for colorectal cancer (CRC). However, it can lead to unwanted chemoresistance. Resistant starch (RS), which functions similarly to fermentable dietary fiber, has the potential to reduce the risk of CRC. The effects of RS on improving CRC-associated cachectic symptoms and 5-FU chemotherapy-induced microbial dysbiosis remain unknown. Female BALB/cByJNarl mice were randomly divided into four groups: one tumor group (with CT26 colonic carcinoma but no treatment) and three CT26 colonic carcinoma-bearing groups that were administered 20 mg/kg 5-FU (T+5-FU group), a probiotic cocktail (4 × 108 CFUs) plus chemotherapy (T+5-FU+Pro), or resistant-starch-encapsulated probiotics plus chemotherapy (T+5-FU+RS-Pro). T+5-FU and T+5-FU+RS-Pro administration significantly suppressed tumor growth and activated apoptotic cell death in CT26-bearing mice. 5-FU-induced increases in inflammatory cytokines and NF-κB signaling were mitigated by the Pro or RS-Pro supplementation. A gut microbial composition comparison indicated that the abundance of intestinal bacteria in the T and T+5-FU groups decreased significantly, while the groups receiving Pro or RS-Pro maintained a greater abundance and healthy gut microbiota composition, suggesting that RS can reduce the microbial dysbiosis that occurs during 5-FU chemotherapy. The use of RS-Pro before chemotherapy should be considered for the regulation of chemotherapy-associated cachectic symptoms, inflammation, and chemotherapy-induced microbial dysbiosis.
Collapse
Affiliation(s)
- Jui-Ling Wang
- Animal Testing Division, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 744, Taiwan;
| | - Yu-Siang Chen
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Chin-Hsing Yeh
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (M.C.-M.C.)
| | | | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| |
Collapse
|
7
|
Vivek S, Shen YS, Guan W, Onyeaghala G, Oyenuga M, Staley C, Karger AB, Prizment AE, Thyagarajan B. Association between Circulating T Cells and the Gut Microbiome in Healthy Individuals: Findings from a Pilot Study. Int J Mol Sci 2024; 25:6831. [PMID: 38999941 PMCID: PMC11241708 DOI: 10.3390/ijms25136831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
Though the microbiome's impact on immune system homeostasis is well documented, the effect of circulating T cells on the gut microbiome remains unexamined. We analyzed data from 50 healthy volunteers in a pilot trial of aspirin, using immunophenotyping and 16S rRNA sequencing to evaluate the effect of baseline T cells on microbiome changes over 6 weeks. We employed an unsupervised sparse canonical correlation analysis (sCCA) and used multivariable linear regression models to evaluate the association between selected T cell subsets and selected bacterial genera after adjusting for covariates. In the cross-sectional analysis, percentages of naïve CD4+ T cells were positively associated with a relative abundance of Intestinimonas, and the percentage of activated CD8+ T cells was inversely associated with Cellulosibacter. In the longitudinal analysis, the baseline percentages of naïve CD4+ T cells and activated CD4+ T cells were inversely associated with a 6-week change in the relative abundance of Clostridium_XlVb and Anaerovorax, respectively. The baseline percentage of terminal effector CD4+ T cells was positively associated with the change in Flavonifractor. Notably, the microbiome taxa associated with T cell subsets exclusively belonged to the Bacillota phylum. These findings can guide future experimental studies focusing on the role of T cells in impacting gut microbiome homeostasis.
Collapse
Affiliation(s)
- Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - You Shan Shen
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, Abbott Northwestern Hospital, Minneapolis, MN 55407, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - Anna E Prizment
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
9
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
10
|
Rosendo-Silva D, Viana S, Carvalho E, Reis F, Matafome P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern Emerg Med 2023; 18:1287-1302. [PMID: 37014495 PMCID: PMC10412677 DOI: 10.1007/s11739-023-03262-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023]
Abstract
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Faculty of Medicine, Pole III of University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
| |
Collapse
|
11
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Wang D, Zheng Y, Fan Y, He Y, Liu K, Deng S, Liu Y. Sodium Humate-Derived Gut Microbiota Ameliorates Intestinal Dysfunction Induced by Salmonella Typhimurium in Mice. Microbiol Spectr 2023; 11:e0534822. [PMID: 37067423 PMCID: PMC10269575 DOI: 10.1128/spectrum.05348-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Salmonella is a foodborne pathogen that is one of the main causes of gastroenteric disease in humans and animals. As a natural organic substance, sodium humate (HNa) possesses antibacterial, antidiarrheal, and anti-inflammatory properties. However, it is unclear whether the HNa and HNa-derived microbiota exert alleviative effects on Salmonella enterica serovar Typhimurium-induced enteritis. We found that treatment with HNa disrupted the cell wall of S. Typhimurium and decreased the virulence gene expression. Next, we explored the effect of HNa presupplementation on S. Typhimurium-induced murine enteritis. The results revealed that HNa ameliorated intestinal pathological damage. In addition, we observed that presupplementation with HNa enhanced intestinal barrier function via modulating gut microbiota, downregulating toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3) signaling pathways, regulating intestinal mucosal immunity, and enhancing tight junction protein expression. To further validate the effect of HNa-derived microbiota on S. Typhimurium-induced enteritis, we performed fecal microbiota transplantation and found that HNa-derived microbiota also alleviated S. Typhimurium-induced intestinal damage. It is noteworthy that both HNa and HNa-derived microbiota improved the liver injury caused by S. Typhimurium infection. Collectively, this is the first study to confirm that HNa could alleviate S. Typhimurium-induced enteritis in a gut microbiota-dependent manner. This study provides a new perspective on HNa as a potential drug to prevent and treat salmonellosis. IMPORTANCE Salmonella Typhimurium is an important zoonotic pathogen, widely distributed in nature. S. Typhimurium is one of the leading causes of foodborne illnesses worldwide, and more than 350,000 people died from Salmonella infection each year, which poses a substantial risk to public health and causes a considerable economic loss. Here, we found that the S. Typhimurium infection caused severe intestinal and liver damage. In addition, we first found that sodium humate (HNa) and HNa-derived gut microbiota can alleviate S. Typhimurium infection-induced intestinal damage. These findings extend the knowledge about the public health risk and pathogenic mechanisms of S. Typhimurium.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yingce Zheng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuying Fan
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanjun He
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shouxiang Deng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Yadav J, Liang T, Qin T, Nathan N, Schwenger KJP, Pickel L, Xie L, Lei H, Winer DA, Maughan H, Robertson SJ, Woo M, Lou W, Banks K, Jackson T, Okrainec A, Hota SS, Poutanen SM, Sung HK, Allard JP, Philpott DJ, Gaisano HY. Gut microbiome modified by bariatric surgery improves insulin sensitivity and correlates with increased brown fat activity and energy expenditure. Cell Rep Med 2023; 4:101051. [PMID: 37196633 PMCID: PMC10213984 DOI: 10.1016/j.xcrm.2023.101051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice. Mice colonized by FMT from patients' post-surgery stool exhibit significant changes in microbiota composition and metabolomic profiles and, most importantly, improved insulin sensitivity compared with pre-RYGB FMT mice. Mechanistically, mice harboring the post-RYGB microbiome show increased brown fat mass and activity and exhibit increased energy expenditure. Moreover, improvements in immune homeostasis within the white adipose tissue are also observed. Altogether, these findings point to a direct role for the gut microbiome in mediating improved metabolic health post-RYGB surgery.
Collapse
Affiliation(s)
- Jitender Yadav
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tao Liang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tairan Qin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nayanan Nathan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lauren Pickel
- Department of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Li Xie
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Helena Lei
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Susan J Robertson
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital, University Health Network, Toronto, ON, Canada; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Kate Banks
- Department of Comparative Medicine, University of Toronto, Toronto, ON, Canada
| | - Timothy Jackson
- Division of General Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Susy S Hota
- Department of Medicine, University of Toronto, Toronto, ON, Canada; Infection Prevention and Control, University Health Network, Toronto, ON, Canada
| | - Susan M Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Microbiology & Division of Infectious Diseases, University Health Network and Sinai Health, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Johane P Allard
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital, University Health Network, Toronto, ON, Canada.
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Herbert Y Gaisano
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Wen C, Gou Q, Gu S, Huang Q, Sun C, Zheng J, Yang N. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Poult Sci 2023; 102:102568. [PMID: 36889043 PMCID: PMC10011826 DOI: 10.1016/j.psj.2023.102568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Intramuscular fat (IMF) content is a meat quality trait of major economic importance in animal production. Emerging evidence has demonstrated that meat quality can be improved by regulating the gut microbiota. However, the organization and ecological properties of the gut microbiota and its relationship with the IMF content remain unclear in chickens. Here, we investigated the microbial communities of 206 cecal samples from broilers with excellent meat quality. We noted that the cecal microbial ecosystem obtained from hosts reared under the same management and dietary conditions showed clear compositional stratification. Two enterotypes, in which the ecological properties, including diversity and interaction strengths, were significantly different, described the microbial composition pattern. Compared with enterotype 2, enterotype 1, distinguished by the Clostridia_vadinBB60_group, had a higher fat deposition, although no discrepancy was found in growth performance and meat yield. A moderate correlation was observed in the IMF content between 2 muscle tissues, despite the IMF content of thigh muscle was 42.76% greater than that of breast muscle. Additionally, the lower abundance of cecal vadinBE97 was related to higher IMF levels in both muscle tissues. Although vadinBE97 accounted for 0.40% of the total abundance of genera in the cecum, it exhibited significant and positive correlations with other genera (accounting for 25.3% of the tested genera). Our results highlight important insights into the cecal microbial ecosystem and its association with meat quality. Microbial interactions should be carefully considered when developing approaches to improve the IMF content by regulating the gut microbiota in broilers.
Collapse
Affiliation(s)
- Chaoliang Wen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Qinli Gou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Qiang Huang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Wu W, Lu H, Cheng J, Geng Z, Mao S, Xue Y. Undernutrition Disrupts Cecal Microbiota and Epithelium Interactions, Epithelial Metabolism, and Immune Responses in a Pregnant Sheep Model. Microbiol Spectr 2023; 11:e0532022. [PMID: 36976022 PMCID: PMC10100782 DOI: 10.1128/spectrum.05320-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Undernutrition may change cecal microbiota-epithelium interactions to influence cecal feed fermentation, nutrient absorption and metabolism, and immune function. Sixteen late-gestation Hu-sheep were randomly divided into control (normal feeding) and treatment (feed restriction) groups to establish an undernourished sheep model. Cecal digesta and epithelium were collected to analyze microbiota-host interactions based on 16S rRNA gene and transcriptome sequencing. Results showed that cecal weight and pH were decreased, volatile fatty acids and microbial proteins concentrations were increased, and epithelial morphology was changed upon undernutrition. Undernutrition reduced the diversity, richness, and evenness of cecal microbiota. The relative abundances of cecal genera involved in acetate production (Rikenellaceae dgA-11 gut group, Rikenellaceae RC9 gut group, and Ruminococcus) and negatively correlated with butyrate proportion (Clostridia vadinBB60 group_norank) were decreased, while genera related to butyrate (Oscillospiraceae_uncultured and Peptococcaceae_uncultured) and valerate (Peptococcaceae_uncultured) production were increased in undernourished ewes. These findings were consistent with the decreased molar proportion of acetate and the increased molar proportions of butyrate and valerate. Undernutrition changed the overall transcriptional profile and substance transport and metabolism in cecal epithelium. Undernutrition suppressed extracellular matrix-receptor interaction and intracellular phosphatidyl inositol 3-kinase (PI3K) signaling pathway then disrupted biological processes in cecal epithelium. Moreover, undernutrition repressed phagosome antigen processing and presentation, cytokine-cytokine receptor interaction, and intestinal immune network. In conclusion, undernutrition affected cecal microbial diversity and composition and fermentation parameters, inhibited extracellular matrix-receptor interaction and the PI3K signaling pathway, and then disrupted epithelial proliferation and renewal and intestinal immune functions. Our findings exposed cecal microbiota-host interactions upon undernutrition and contribute to their further exploration. IMPORTANCE Undernutrition is commonly encountered in ruminant production, especially during pregnancy and lactation in females. Undernutrition not only induces metabolic diseases and threatens pregnant mothers' health, but also inhibits fetal growth and development, leading to weakness or even death of fetuses. Cecum works importantly in hindgut fermentation, providing volatile fatty acids and microbial proteins to the organism. Intestinal epithelial tissue plays a role in nutrient absorption and transport, barrier function, and immune function. However, little is known about cecal microbiota and epithelium interactions upon undernutrition. Our findings showed that undernutrition affected bacterial structures and functions, which changed fermentation parameters and energy regimens, and therefore affected the substance transport and metabolism in cecal epithelium. Extracellular matrix-receptor interactions were inhibited, which repressed cecal epithelial morphology and cecal weight via the PI3K signaling pathway and lowered immune response function upon undernutrition. These findings will help in further exploring microbe-host interactions.
Collapse
Affiliation(s)
- Weibin Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Lim T, Lee K, Kim RH, Ryu J, Cha KH, Park SY, Koo SY, Hwang KT. Effects of black raspberry extract on gut microbiota, microbial metabolites, and expressions of the genes involved in cholesterol and bile acid metabolisms in rats fed excessive choline with a high-fat diet. Food Sci Biotechnol 2023; 32:577-587. [PMID: 36911337 PMCID: PMC9992478 DOI: 10.1007/s10068-023-01267-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
In our previous study, black raspberry (BR) reduced the serum levels of trimethylamine-N-oxide and cholesterol in rats fed excessive choline with a high-fat diet (HFC). We hypothesized that gut microbiota could play a crucial role in the production of trimethylamine and microbial metabolites, and BR could influence gut microbial composition. This study aimed to elucidate the role of BR on changes in gut microbiota and microbial metabolites in the rats. The phylogenetic diversity of gut microbiota was reduced in the rats fed HFC, while that in the BR-fed group was restored. The BR supplementation enriched Bifidobacterium and reduced Clostridium cluster XIVa. In the BR-fed group, most cecal bile acids and hippuric acid increased, while serum lithocholic acid was reduced. The BR supplementation upregulated Cyp7a1 and downregulated Srebf2. These results suggest that BR extract may change gut bacterial community, modulate bile acids, and regulate gene expression toward reducing cholesterol. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01267-4.
Collapse
Affiliation(s)
- Taehwan Lim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Korea
| | - Juhee Ryu
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451 Korea
| | - Sun Young Park
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Song Yi Koo
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
17
|
Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020241. [PMID: 36832370 PMCID: PMC9954755 DOI: 10.3390/children10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
In recent years, the existing relationship between excess overweight and central precocious puberty (CPP) has been reported, especially in girls. Different nutritional choices have been associated with different patterns of puberty. In particular, the involvement of altered biochemical and neuroendocrine pathways and a proinflammatory status has been described in connection with a high-fat diet (HFD). In this narrative review, we present an overview on the relationship between obesity and precocious pubertal development, focusing on the role of HFDs as a contributor to activating the hypothalamus-pituitary-gonadal axis. Although evidence is scarce and studies limited, especially in the paediatric field, the harm of HFDs on PP is a relevant problem that cannot be ignored. Increased knowledge about HFD effects will be useful in developing strategies preventing precocious puberty in children with obesity. Promoting HFD-avoiding behavior may be useful in preserving children's physiological development and protecting reproductive health. Controlling HFDs may represent a target for policy action to improve global health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Correspondence:
| | | | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | | | - Alessandra Mari
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Erika Cordaro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
18
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
19
|
Short-Chain Fatty Acids Weaken Ox-LDL-Induced Cell Inflammatory Injury by Inhibiting the NLRP3/Caspase-1 Pathway and Affecting Cellular Metabolism in THP-1 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248801. [PMID: 36557935 PMCID: PMC9786193 DOI: 10.3390/molecules27248801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1β and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.
Collapse
|
20
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
21
|
Han K, Ma J, Dou J, Hao D, Zhu W, Yu X, Zheng W, Song Y, Shi F, Li Q. A Clinical Trial of the Effects of a Dietary Pattern on Health Metrics and Fecal Metabolites in Volunteers With Risk of Cardiovascular Disease. Front Nutr 2022; 9:853365. [PMID: 35619960 PMCID: PMC9128613 DOI: 10.3389/fnut.2022.853365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
The phenomenon of longevity in Guangxi of China proved to be closely relevant to its specific dietary habits, but the exact effects of this diet on health remain to be explored. In this work, fourteen screened volunteers with cardiovascular disease (CVD) risk followed a novel dietary pattern derived from centenarians of Guangxi, China for 2 weeks, then the effects of diet on human health were explored by measuring the health metrics and fecal metabolites. The results showed that the short-term dietary intervention significantly decreased the body weight, body mass index (BMI), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), mean systolic blood pressure (SBP), and diastolic blood pressure (DBP) levels, while it significantly increased high-density lipoprotein cholesterol (HDL-c) levels. Orthogonal partial least squares discriminant analysis (OPLS-DA) indicated a distinct separation in the fecal metabolic profiles of volunteers before and after the intervention. Nine of these metabolites showed significant differences, including two metabolites increased (butyrate and citrulline), seven metabolites decreased (threonine, choline, glycine, aspartate, alanine, N-acetylglutamic acid and lysine). Pathway and enrichment analysis showed that the reduction in CVD risk by dietary intervention mainly affected five pathways, which include arginine biosynthesis; aminoacyl-tRNA biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and valine, leucine and isoleucine biosynthesis. Herein, the Guangxi longevity dietary pattern can provide a feasible healthy diet strategy for reducing the CVD risk and human beings. Clinical Trial Registration [http://www.chictr.org.cn], identifier [ChiCTR220 0058216].
Collapse
Affiliation(s)
- Kunchen Han
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jinke Ma
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Junxia Dou
- Department of Biotechnology Engineering, Taishan Polytechnic, Taian, China
| | - Dan Hao
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY, United States
| | - Wenjun Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaohan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wenxuan Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yao Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fengcui Shi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Quanyang Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Cui J, Sachaphibulkij K, Teo WS, Lim HM, Zou L, Ong CN, Alberts R, Chen J, Lim LHK. Annexin-A1 deficiency attenuates stress-induced tumor growth via fatty acid metabolism in mice: an Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Theranostics 2022; 12:3794-3817. [PMID: 35664067 PMCID: PMC9131274 DOI: 10.7150/thno.68611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.
Collapse
Affiliation(s)
- Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Karishma Sachaphibulkij
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Wen Shiun Teo
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Hong Meng Lim
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, NUS, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, NUS, Singapore
- NUS Environmental Research Institute, NUS, Singapore
| | - Rudi Alberts
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lina H. K. Lim
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| |
Collapse
|
23
|
Zhang L, Li X, Liu X, Wang X, Li X, Cheng X, Yan S, Zhu Y, Li R, Wen L, Wang J. Purified diet versus whole food diet and the inconsistent results in studies using animal models. Food Funct 2022; 13:4286-4301. [PMID: 35297926 DOI: 10.1039/d1fo04311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In animal models, purified diets (PDs) and whole food diets (WFDs) are used for different purposes. In similar studies, different dietary patterns may lead to inconsistent results. The aim of this study was to evaluate and compare the effects of WFDs and PDs on changes in the metabolism of mice. We found that different dietary patterns produced different results in lipid metabolism experiments. Compared with those of the PD-fed mice, the WFD-fed mice had higher body weights and serum glucose, serum lipid, and liver lipid levels (p < 0.01), as well as low glucose tolerance (p < 0.01) and insulin sensitivity (p < 0.05). The body weight and fasting blood glucose increased by 20% in the WFD-fed mice, and the white adipose tissue weight increased by ∼50%. The WFD-fed mice also had a comparatively higher abundance of Lactobacillus, Turicibacter, Bifidobacterium, Desulfovibrio, and Candidatus saccharimonas (p < 0.01), which were positively correlated with lipid accumulation. Dietary patterns should be chosen cautiously in studies that use rodents as models. Inappropriate selection of animal dietary patterns may lead to experimental systematic errors and paradoxical results.
Collapse
Affiliation(s)
- Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xin Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianglin Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianyu Cheng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Sisi Yan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
- Changsha Lvye Biotechnology Co., Ltd, Changsha 410100, China
| |
Collapse
|
24
|
Fu X, Zhan Y, Li N, Yu D, Gao W, Gu Z, Zhu L, Li R, Zhu C. Enzymatic Preparation of Low-Molecular-Weight Laminaria japonica Polysaccharides and Evaluation of Its Effect on Modulating Intestinal Microbiota in High-Fat-Diet-Fed Mice. Front Bioeng Biotechnol 2022; 9:820892. [PMID: 35237590 PMCID: PMC8883051 DOI: 10.3389/fbioe.2021.820892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that seaweed polysaccharides can ameliorate high-fat-diet (HFD)-induced metabolic syndromes associated with the regulatory function of gut microbiota. However, kelp, a natural source of seaweed polysaccharides, is highly viscous, making it difficult to prepare dietary fiber by simple degradation. Therefore, we developed a novel method of preparing low-molecular-weight polysaccharides from Laminaria japonica by combining high-pressure pretreatment and composite enzymatic degradation and evaluated the obesity prevention activity of these polysaccharides. Seaweed L. japonica polysaccharides (SJP) were rapidly utilized by the human fecal microbiota in vitro, resulting in the generation of short-chain fatty acids (SCFAs), specifically acetate and propionate. The in vivo effects of SJP on the intestinal microbiota were also investigated using HFD-fed C57BL/6J mice. SJP reduced weight gain and fat deposition in HFD-fed mice and increased the concentration of total SCFAs, including acetate, propionate, and butyrate in the feces. SJP ameliorated HFD-induced gut microbiota dysbiosis, resulting in increased abundance of Faecalibaculum, Romboutsia, and Clostridium sensu stricto 1 and decreased abundance of Blautia and Lactobacillus. Further, SJP enhanced the abundance of Akkermansia muciniphila in mice provided with HFD and normal chow. Single-strain culture experiments also revealed that SJP promoted the growth of A. muciniphila. This study highlights the potential use of SJP, prepared using composite enzymatic degradation (cellulase and recombinant alginate lyase), in preventing obesity and restoring intestinal homeostasis in obese individuals.
Collapse
Affiliation(s)
- Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuming Zhan
- Shandong Feed and Veterinary Drug Quality Center, Jinan, China
| | - Nannan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziqiang Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Rong Li
- Qingdao Women and Children’s Hospital, Qingdao, China
- *Correspondence: Rong Li, ; Changliang Zhu,
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Rong Li, ; Changliang Zhu,
| |
Collapse
|
25
|
Unlike Glycerophosphocholine or Choline Chloride, Dietary Phosphatidylcholine Does Not Increase Plasma Trimethylamine- N-Oxide Levels in Sprague-Dawley Rats. Metabolites 2022; 12:metabo12010064. [PMID: 35050186 PMCID: PMC8779457 DOI: 10.3390/metabo12010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Choline, betaine, and L-carnitine are transformed into trimethylamine (TMA) by gut microbiota, absorbed into the liver, and oxidized into trimethylamine-N-oxide (TMAO) by flavin-containing monooxygenases. Elevated TMAO levels may negatively affect human health. As phosphatidylcholine (PC) is the main source of dietary choline, its intake or PC-rich foods may be harmful to human health; however, quantitative comparative information among dietary choline compounds (PC, glycerophosphocholine [GPC], and choline chloride [CC]) regarding in vivo generation of TMAO is lacking. Here, we compared the effects of PC, GPC, and CC on plasma TMAO levels in rats. Furthermore, we investigated their effects on gut microbiota at the genus level. Dietary PC did not affect plasma TMAO levels, whereas dietary GPC and CC significantly increased them. At the genus level, plasma TMAO levels were significantly negatively correlated with relative abundances of Anaerotruncus, Actinomyces, Enterococcus, Dialister, Clostridium XIVa, and Granulicatella; they were significantly positively correlated with that of Coprobacter. Moreover, the relative abundances of Anaerotruncus and Coprobacter were found to predict plasma TMAO levels. Therefore, dietary PC, unlike GPC or CC, does not increase plasma TMAO levels in rats. Furthermore, several gut microbes are associated with changes in plasma TMAO levels in rats fed with choline compounds.
Collapse
|
26
|
Oulas A, Zachariou M, Chasapis CT, Tomazou M, Ijaz UZ, Schmartz GP, Spyrou GM, Vlamis-Gardikas A. Putative Antimicrobial Peptides Within Bacterial Proteomes Affect Bacterial Predominance: A Network Analysis Perspective. Front Microbiol 2021; 12:752674. [PMID: 34867874 PMCID: PMC8636115 DOI: 10.3389/fmicb.2021.752674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network-based method ("Bacterial Wars") was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter ("Die" score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres.
Collapse
Affiliation(s)
- Anastasis Oulas
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexios Vlamis-Gardikas
- Division of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
27
|
Effect of Olive Cake and Cactus Cladodes Incorporation in Goat Kids' Diet on the Rumen Microbial Community Profile and Meat Fatty Acid Composition. BIOLOGY 2021; 10:biology10121237. [PMID: 34943152 PMCID: PMC8698275 DOI: 10.3390/biology10121237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Throughout the world, the ruminant diet is based on conventional feedstuffs, which their price constantly fluctuates, and their use presents a concurrence to human nutrition. The use of alternative feed resources seems to be a solution to reduce charges and diversify ruminants’ diet. Olive cake and cactus cladodes are two alternative feed resources that are recommended to be used in ruminant feed. However, their effect on the bacterial community of ruminants is not widely investigated. This study aims to evaluate the effect of olive cake and cactus cladodes on the ruminal microbial ecosystem and meat fatty acids of goat kids. The incorporation of these feedstuffs did not change the bacterial abundance and diversity. Goat kids’ rumen liquor seemed to be able to adapt to alternative feed resources incorporation. The introduction of olive cake and cactus cladodes slightly affect meat fatty acids without a negative effect. Thus, ruminants seem to have the ability to adapt to the alternative feed resources digestion, and their use as a feed could diversify feed and reduce feed cost. Abstract The olive cake (OC) and the cactus cladodes (CC) are two alternative feed resources widely available in the southern Mediterranean region that could be used in ruminants’ diet. Their impact on the rumen bacterial ecosystem is unknown. This work aims to evaluate their effects on the microbial community and meat fatty acids of goat’s kids. Forty-four goat kids were divided into four groups receiving diets with conventional concentrate, or 35% OC, or 30% CC, or 15% OC, and 15% CC. After 3 months, these animals were slaughtered, and the rumen liquor and longissimus dorsi and semimembranosus muscles samples were collected. Animals receiving a control diet had rumen liquor with high acidity than test groups (p < 0.001). Test rumen liquor was more adapted to digest efficiently their matching diet than control liquor (p < 0.05). These feedstuffs did not affect rumen bacteria abundance and alpha diversity (richness, evenness, and reciprocal Simpson indexes), and these results were confirmed by beta-diversity tests (NMDS plot, HOMOVA, PERMANOVA). The test diets slightly affected the individual fatty acids of meat (p < 0.05) without effect on fatty acids summaries, indexes, and ratios. Thus, these alternative feed resources could take place in goat kids’ diet to diversify their feed and to reduce feed costs.
Collapse
|
28
|
Kumar V, Kumar V, Mahajan N, Kaur J, Devi K, Dharavath RN, Singh RP, Kondepudi KK, Bishnoi M. Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon. Biomed Pharmacother 2021; 145:112452. [PMID: 34808551 DOI: 10.1016/j.biopha.2021.112452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ravinder Naik Dharavath
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Ravindra Pal Singh
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Humboldt Fellow (Experienced Researcher), Klinik für Anästhesiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankanstrasse, 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 353] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
30
|
Tian J, Bai B, Gao Z, Yang Y, Wu H, Wang X, Wang J, Li M, Tong X. Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome. Front Cell Infect Microbiol 2021; 11:740236. [PMID: 34692563 PMCID: PMC8531589 DOI: 10.3389/fcimb.2021.740236] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023] Open
Abstract
Gegen Qinlian Decoction (GQD) is a Chinese herbal medicine that has been reported to significantly decrease blood glucose levels, which is suggested to be related to interactions with the gut microbiota. However, the protective effect of GQD on intestinal barrier function with regard to its influence on the gut microbiota has not been explored to date. In this study, we investigated the role of the gut microbiota in mediating the hypoglycemic mechanism of GQD in type 2 diabetes mellitus (T2DM) rats induced by a single intraperitoneal injection of streptozotocin after 4 weeks of high-fat diet feeding. The T2DM rats were randomly allocated to receive GQD, metformin (Met), or saline for 12 consecutive weeks, and changes in metabolic parameters, intestinal barrier function, and inflammation were investigated. Gut microbiota was analyzed using 16S rRNA gene sequencing from fecal samples, and statistical analyses were performed to correlate microbiota composition with phenotypes of the T2DM rats. GQD administration decreased the levels of blood glucose and inflammatory cytokines, and increased the levels of tight junction proteins. Besides, GQD had a protective effect on islet function, restoring intestinal permeability, and inhibiting inflammation, as evidenced by increases in the levels of serum C-peptide, occludin, and claudin-1 in the colon, and also improved the expression of serum inflammatory factors. In addition, GQD regulated the structure of the gut microbiota by increasing the proportions of short-chain fatty acids-producing and anti-inflammatory bacteria, and decreasing the proportions of conditioned pathogenic bacteria associated with the diabetic phenotype. Overall, these findings suggest that GQD could ameliorate hyperglycemia and protect islet function by regulating the structure of the gut microbiota, thereby restoring intestinal permeability and inhibiting inflammation in T2DM rats. Our study thus suggests that the hypoglycemic mechanism of GQD is mediated by its modulation of the gut microbiota.
Collapse
Affiliation(s)
- Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingbing Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Wu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Bhandarkar NS, Mouatt P, Majzoub ME, Thomas T, Brown L, Panchal SK. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021; 10:pathogens10111369. [PMID: 34832525 PMCID: PMC8624503 DOI: 10.3390/pathogens10111369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol. Coffee pulp decreased body weight, feed efficiency and abdominal fat; normalised systolic blood pressure, left ventricular diastolic stiffness, and plasma concentrations of triglycerides and non-esterified fatty acids; and improved glucose tolerance in rats fed high-carbohydrate, high-fat diet. Further, the gut microbiota was modulated with high-carbohydrate, high-fat diet and coffee pulp supplementation and 14 physiological parameters were correlated with the changes in bacterial community structures. This study suggested that coffee pulp, as a waste from the coffee industry, is useful as a functional food for improving obesity-associated metabolic, cardiovascular and liver structure and function, and gut microbiota.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
- Correspondence: ; Tel.: +61-2-4570-1932
| |
Collapse
|
32
|
Ke S, Yu Y, Xu Q, Zhang B, Wang S, Jin W, Wei B, Wang H. Composition-Activity Relationships of Polysaccharides from Saccharina japonica in Regulating Gut Microbiota in Short-Term High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11121-11130. [PMID: 34498470 DOI: 10.1021/acs.jafc.1c04490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Saccharina japonica polysaccharide could modulate gut microbiota composition; however, the composition-activity relationship remains unclear, thus restricting its application. In the current study, we investigated the impact of eight different S. japonica polysaccharide fractions on the gut microbiota after day 2 and day 14 treatments on high-fat diet (HFD) feeding mice. The results showed that a 2 day HFD dramatically altered gut microbiota composition, and the additional 12 day HFD further strengthened the gut microbiota dysbiosis in the HFD group. LjA-1 and LjA-3 could partially alleviate the dysbiosis of gut microbiota composition and significantly alter gut microbiota function. Multiple linear regression analysis revealed that the sulfate content and the molecular weight distributions were the main factors affecting the dominant gut bacterial genera. Our findings reveal that gut microbiota homeostasis could be disordered by HFD at day 2 and provide insights into the quantitative composition-activity relationships of polysaccharides in regulating gut microbiota.
Collapse
Affiliation(s)
- Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoli Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bo Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, California 90024, United States
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
33
|
Yang X, Gong J, Zhang X, Huang Y, Zhang W, Yang J, Lin J, Chai Y, Liu J. Evaluation of the combined toxicity of multi-walled carbon nanotubes and cadmium on earthworms in soil using multi-level biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112441. [PMID: 34174738 DOI: 10.1016/j.ecoenv.2021.112441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of multi-walled carbon nanotubes (MWCNTs) with cadmium (Cd) in soil may cause the combined biological effects, but few study reported about their joint toxic effects on earthworms. Therefore, this study investigated the effects of sub-lethal levels of MWCNTs (10, 50, 100 mg/kg) and Cd (2.0, 10 mg/kg) on earthworms Eisenia fetida for 14 days. The changes in multi-level biomarkers of growth inhibition rate, cytochrome P450 isoenzymes (CYP1A2, 2C9 and 3A4), and small molecular metabolites (metabolomics) were determined. The toxic interaction between MWCNTs and Cd was characterized by the combination of the biomarker integration index (BRI), joint effect index concentration addition index (CAI), and the effect concentration addition index (EAI). The results showed that the single MWCNTs exposure caused insignificant change in most biomarkers, while the combined exposure of MWCNTs (50-100 mg/kg) and 10 mg/kg Cd led to significant changes in ten most important metabolites identified by metabolomics and activities of CYP1A2, 2C9, and 3A4. Compared with the toxicity of Cd alone, the combined toxicity of the mixture was significantly reduced. According to the integration of BRI and CAI/EAI, a clearly antagonistic interaction at relatively low effects was observed between MWCNTs and Cd. The responses of multiple biomarkers suggest the toxic action mode of the mixture on earthworms was related to the oxidative injury, and the disruption of amino acid, purine, and pyrimidine metabolism, and the urea cycle.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Yongchuan Huang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junjie Lin
- Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| |
Collapse
|
34
|
Jo JK, Seo SH, Park SE, Kim HW, Kim EJ, Kim JS, Pyo JY, Cho KM, Kwon SJ, Park DH, Son HS. Gut Microbiome and Metabolome Profiles Associated with High-Fat Diet in Mice. Metabolites 2021; 11:metabo11080482. [PMID: 34436423 PMCID: PMC8398001 DOI: 10.3390/metabo11080482] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.
Collapse
Affiliation(s)
- Jae-Kwon Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (J.-K.J.); (S.-E.P.); (H.-W.K.)
| | | | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (J.-K.J.); (S.-E.P.); (H.-W.K.)
| | - Hyun-Woo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (J.-K.J.); (S.-E.P.); (H.-W.K.)
| | - Eun-Ju Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea; (E.-J.K.); (J.-S.K.)
| | - Jeong-Sang Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea; (E.-J.K.); (J.-S.K.)
| | - Ju-Yeon Pyo
- Department of Pathology, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Kwang-Moon Cho
- AccuGene Inc., Incheon 22006, Korea; (K.-M.C.); (S.-J.K.)
| | - Sun-Jae Kwon
- AccuGene Inc., Incheon 22006, Korea; (K.-M.C.); (S.-J.K.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea; (E.-J.K.); (J.-S.K.)
- Correspondence: (D.-H.P.); (H.-S.S.); Tel.: +82-61-330-3587 (D.-H.P.); +82-2-3290-3053 (H.-S.S.)
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (J.-K.J.); (S.-E.P.); (H.-W.K.)
- Correspondence: (D.-H.P.); (H.-S.S.); Tel.: +82-61-330-3587 (D.-H.P.); +82-2-3290-3053 (H.-S.S.)
| |
Collapse
|
35
|
Cui M, Trimigno A, Aru V, Rasmussen MA, Khakimov B, Engelsen SB. Influence of Age, Sex, and Diet on the Human Fecal Metabolome Investigated by 1H NMR Spectroscopy. J Proteome Res 2021; 20:3642-3653. [PMID: 34048241 DOI: 10.1021/acs.jproteome.1c00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human fecal metabolome is increasingly studied to explore the impact of diet and lifestyle on health and the gut microbiome. However, systematic differences and confounding factors related to age, sex, and diet remain largely unknown. In this study, absolute concentrations of fecal metabolites from 205 healthy Danes (105 males and 100 females, 49 ± 31 years old) were quantified using 1H NMR spectroscopy and the newly developed SigMa software. The largest systemic variation was found to be highly related to age. Fecal concentrations of short-chain fatty acids (SCFA) were higher in the 18 years old group, while amino acids (AA) were higher in the elderly. Sex-related metabolic differences were weak but significant and mainly related to changes in SCFA. The concentrations of butyric, valeric, propionic, and isovaleric acids were found to be higher in males compared to females. Sex differences were associated with a stronger, possibly masking, effect from differential intake of macronutrients. Dietary fat intake decreased levels of SCFA and AA of both sexes, while carbohydrate intake showed weak correlations with valeric and isovaleric acids in females. This study highlights some possible demographic confounders linked to diet, disease, lifestyle, and microbiota that have to be taken into account when analyzing fecal metabolome data.
Collapse
Affiliation(s)
- Mengni Cui
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Alessia Trimigno
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Violetta Aru
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Morten A Rasmussen
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.,COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen 2820, Denmark
| | - Bekzod Khakimov
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
36
|
Dong Y, Li X, Liu Y, Gao J, Tao J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci 2021; 278:119579. [PMID: 33961852 DOI: 10.1016/j.lfs.2021.119579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia, an independent risk factor for atherosclerosis, is regarded as a lipid metabolism disorder associated with elevated plasma triglyceride and/or cholesterol. Genetic factors and unhealthy lifestyles, such as excess caloric intake and physical inactivity, can result in hyperlipidemia. Taurine, a sulfur-containing non-essential amino acid, is abundant in marine foods and has been associated with wide-ranging beneficial physiological effects, with special reference to regulating aberrant lipid metabolism. Its anti-hyperlipidemic mechanism is complex, which is related to many enzymes in the process of fat anabolism and catabolism (e.g., HMGCR, CYP7A1, LDLR, FXR, FAS and ACC). Anti-inflammatory and antioxidant molecular targets, lipid autophagy, metabolic reprogramming and gut microbiota will also be reviewed.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Xiaoling Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Yaling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
37
|
Wu Q, Wu S, Cheng Y, Zhang Z, Mao G, Li S, Yang Y, Zhang X, Wu M, Tong H. Sargassum fusiforme fucoidan modifies gut microbiota and intestinal metabolites during alleviation of hyperglycemia in type 2 diabetic mice. Food Funct 2021; 12:3572-3585. [PMID: 33900346 DOI: 10.1039/d0fo03329d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 2 diabetic mellitus (T2DM) is a complicated metabolic disorder that is now considered as a major global public health problem. Fucoidan exhibits diverse biological activities, especially prevention of metabolic diseases. In this regard, we herein aimed to reveal the beneficial effect of Sargassum fusiforme fucoidan (SFF) on high-fat diet (HFD) and streptozotocin (STZ) induced T2DM mice. We noted that on the one hand, SFF significantly decreased fasting blood glucose, diet and water intake, and hyperlipidemia, while on the other hand, it improved glucose tolerance. Furthermore, SFF reduced epididymal fat deposition, attenuated the pathological changes in heart and liver tissues, and decreased oxidative stress in diabetic mice. To explore the underlying mechanisms of these ameliorative effects, the gut microbiota was analyzed. Notably, SFF highly enriched benign microbes including Bacteroides, Faecalibacterium and Blautia, as well as increased levels of (R)-carnitine and choline in the colon of diabetic mice. This may be a potential mechanism for alleviating T2DM, thus implying the benefits of SFF as an adjuvant agent for T2DM treatment. Taken together, this study demonstrated a promising application of fucoidan as one of the adjuvant agents for the management of T2DM in the future.
Collapse
Affiliation(s)
- Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou 313000, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Shijun Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
38
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
39
|
Xiang H, Gan J, Zeng D, Li J, Yu H, Zhao H, Yang Y, Tan S, Li G, Luo C, Xie Z, Zhao G, Li H. Specific Microbial Taxa and Functional Capacity Contribute to Chicken Abdominal Fat Deposition. Front Microbiol 2021; 12:643025. [PMID: 33815329 PMCID: PMC8010200 DOI: 10.3389/fmicb.2021.643025] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically selected chickens with better growth and early maturation show an incidental increase in abdominal fat deposition (AFD). Accumulating evidence reveals a strong association between gut microbiota and adiposity. However, studies focusing on the role of gut microbiota in chicken obesity in conventional breeds are limited. Therefore, 400 random broilers with different levels of AFD were used to investigate the gut microbial taxa related to AFD by 16S rRNA gene sequencing of 76 representative samples, and to identify the specific microbial taxa contributing to fat-related metabolism using shotgun metagenomic analyses of eight high and low AFD chickens. The results demonstrated that the richness and diversity of the gut microbiota decrease as the accumulation of chicken abdominal fat increases. The decrease of Bacteroidetes and the increase of Firmicutes were correlated with the accumulation of chicken AFD. The Bacteroidetes phylum, including the genera Bacteroides, Parabacteroides, and the species, B. salanitronis, B. fragilis, and P. distasonis, were correlated to alleviate obesity by producing secondary metabolites. Several genera of Firmicutes phylum with circulating lipoprotein lipase activity were linked to the accumulation of chicken body fat. Moreover, the genera, Olsenella and Slackia, might positively contribute to fat and energy metabolism, whereas the genus, Methanobrevibacter, was possible to enhance energy capture, and associated to accumulate chicken AFD. These findings provide insights into the roles of the gut microbiota in complex traits and contribute to the development of effective therapies for the reduction of chicken fat accumulation.
Collapse
Affiliation(s)
- Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Jiankang Gan
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China
| | - Daoshu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| | - Gen Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Chaowei Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, China.,Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.,Xianxi Biotechnology Co. Ltd, Foshan, China
| |
Collapse
|
40
|
Jiang P, Zheng W, Sun X, Jiang G, Wu S, Xu Y, Song S, Ai C. Sulfated polysaccharides from Undaria pinnatifida improved high fat diet-induced metabolic syndrome, gut microbiota dysbiosis and inflammation in BALB/c mice. Int J Biol Macromol 2021; 167:1587-1597. [PMID: 33217459 DOI: 10.1016/j.ijbiomac.2020.11.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Undaria pinnatifida was shown to reduce serum lipids and fat accumulation and produce beneficial effect on type 2 diabetes, but its effect on intestinal micro-ecology remains unclear. This study showed that sulfated polysaccharides from U. pinnatifida (UPSP) reduced weight gain, fat accumulation and metabolic disorders in mice fed with high fat diet (HFD). UPSP not only alleviated HFD-induced microbiota dysbiosis indicated as increased abundances of some Bacteroidales members that had positive correlations with the improvement of physiological indexes, but also maintained gut barrier integrity and reduced metabolic endotoxemia. A dose-effect relationship was observed between the dose of UPSP and its effect on some physiological indexes, gut microbiota community and nutrient utilization. The in vitro result showed that the use of Bacteroides species within Bacteroidales on UPSP was species-dependent, and the dose of UPSP affected the growth properties of some Bacteroides species. It implied that UPSP can be considered as prebiotic agent to prevent gut dysbiosis and obesity-related diseases in obese individuals.
Collapse
Affiliation(s)
- Pingrui Jiang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaona Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guoping Jiang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuxin Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
41
|
Alderete TL, Jones RB, Shaffer JP, Holzhausen EA, Patterson WB, Kazemian E, Chatzi L, Knight R, Plows JF, Berger PK, Goran MI. Early life gut microbiota is associated with rapid infant growth in Hispanics from Southern California. Gut Microbes 2021; 13:1961203. [PMID: 34424832 PMCID: PMC8386720 DOI: 10.1080/19490976.2021.1961203] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
We aimed to determine if the newborn gut microbiota is an underlying determinant of early life growth trajectories. 132 Hispanic infants were recruited at 1-month postpartum. The infant gut microbiome was characterized using 16S rRNA amplicon sequencing. Rapid infant growth was defined as a weight-for-age z-score (WAZ) change greater than 0.67 between birth and 12-months of age. Measures of infant growth included change in WAZ, weight-for-length z-score (WLZ), and body mass index (BMI) z-scores from birth to 12-months and infant anthropometrics at 12-months (weight, skinfold thickness). Of the 132 infants, 40% had rapid growth in the first year of life. Multiple metrics of alpha-diversity predicted rapid infant growth, including a higher Shannon diversity (OR = 1.83; 95% CI: 1.07-3.29; p = .03), Faith's phylogenic diversity (OR = 1.41, 95% CI: 1.05-1.94; p = .03), and richness (OR = 1.04, 95% CI: 1.01-1.08; p = .02). Many of these alpha-diversity metrics were also positively associated with increases in WAZ, WLZ, and BMI z-scores from birth to 12-months (pall<0.05). Importantly, we identified subsets of microbial consortia whose abundance were correlated with these same measures of infant growth. We also found that rapid growers were enriched in multiple taxa belonging to genera such as Acinetobacter, Collinsella, Enterococcus, Neisseria, and Parabacteroides. Moreover, measures of the newborn gut microbiota explained up to an additional 5% of the variance in rapid growth beyond known clinical predictors (R2 = 0.37 vs. 0.32, p < .01). These findings indicate that a more mature gut microbiota, characterized by increased alpha-diversity, at as early as 1-month of age, may influence infant growth trajectories in the first year of life.
Collapse
Affiliation(s)
- Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Roshonda B. Jones
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Justin P. Shaffer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Elham Kazemian
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jasmine F. Plows
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Xu N, Bai X, Cao X, Yue W, Jiang W, Yu Z. Changes in intestinal microbiota and correlation with TLRs in ulcerative colitis in the coastal area of northern China. Microb Pathog 2020; 150:104707. [PMID: 33352216 DOI: 10.1016/j.micpath.2020.104707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the communities of fecal microbiota and the role of Toll-like receptors in patients with ulcerative colitis in the coastal area of northern China. METHODS Stool samples from 31 patients with ulcerative colitis and 12 healthy individuals were collected. The total bacterial genomic DNA was extracted, and the V3+V4 hypervariable region in the bacterial 16S rRNA gene sequence was amplified by polymerase chain reaction (PCR). High-throughput sequencing analysis was performed on the Illumina Hiseq platform. The expression of TLR2, TLR4, Tollip, PPAR-γ, IL-6, and TNF-α in the colonic mucosa was measured by Western blots. RESULTS The diversity of the fecal microbiota in patients with ulcerative colitis was significantly less than that in healthy control individuals (p < 0.05). The proportion of Bacteroidetes was significantly reduced (p < 0.01), whereas Proteobacteria was prevalent (p < 0.01) in patients with ulcerative colitis. At the genus level, the relative abundance of Streptococcus and Anaerostipes was significantly increased (p < 0.05), whereas the proportion of Bacteroides, Lachnospira, Ruminococcus, Phascolarctobacterium, and Coprococcus was significantly decreased in patients with ulcerative colitis (p < 0.05). The diversity indexes of fecal microbiota in patients with ulcerative colitis were negatively correlated with disease severity (p < 0.05). The relative abundance of Enterobacteriaceae was positively correlated with disease severity, and the relative abundance of Phascolarctobacterium, Anaerostipes, Fusobacterium, Parabacteroides, Oscillospira, and Ochrobactrum were negatively correlated with disease severity. The expression levels of TLR2 and TLR4 in the intestinal mucosa were positively correlated with the relative abundance of Streptococcus and Enterobacteriaceae, respectively (r = 0.481, p = 0.007; r = 0.455, p = 0.017). CONCLUSION There were significant changes in the diversity and composition of the fecal microbiota in patients with ulcerative colitis compared to healthy individuals. The dysbiosis of gut microbiota and correlation with TLRs might play important roles in the pathogenesis and progression of ulcerative colitis.
Collapse
Affiliation(s)
- Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Xuelian Bai
- Department of Microbiology, College of Basic Medical Sciences, Binzhou Medical University, 264100, PR China
| | - Xiaoling Cao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Wenjing Yue
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Weiwei Jiang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, 264100, PR China.
| |
Collapse
|
43
|
Oulghazi S, Wegner SK, Spohn G, Müller N, Harenkamp S, Stenzinger A, Papayannopoulou T, Bonig H. Adaptive Immunity and Pathogenesis of Diabetes: Insights Provided by the α4-Integrin Deficient NOD Mouse. Cells 2020; 9:cells9122597. [PMID: 33291571 PMCID: PMC7761835 DOI: 10.3390/cells9122597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The spontaneously diabetic “non-obese diabetic” (NOD) mouse is a faithful model of human type-1 diabetes (T1D). Methods: Given the pivotal role of α4 integrin (CD49d) in other autoimmune diseases, we generated NOD mice with α4-deficient hematopoiesis (NOD.α4-/-) to study the role of α4 integrin in T1D. Results: NOD.α4-/- mice developed islet-specific T-cells and antibodies, albeit quantitatively less than α4+ counterparts. Nevertheless, NOD.α4-/- mice were completely and life-long protected from diabetes and insulitis. Moreover, transplantation with isogeneic α4-/- bone marrow prevented progression to T1D of pre-diabetic NOD.α4+ mice despite significant pre-existing islet cell injury. Transfer of α4+/CD3+, but not α4+/CD4+ splenocytes from diabetic to NOD.α4-/- mice induced diabetes with short latency. Despite an only modest contribution of adoptively transferred α4+/CD3+ cells to peripheral blood, pancreas-infiltrating T-cells were exclusively graft derived, i.e., α4+. Microbiota of diabetes-resistant NOD.α4-/- and pre-diabetic NOD.α4+ mice were identical. Co- housed diabetic NOD.α4+ mice showed the characteristic diabetic dysbiosis, implying causality of diabetes for dysbiosis. Incidentally, NOD.α4-/- mice were protected from autoimmune sialitis. Conclusion: α4 is a potential target for primary or secondary prevention of T1D.
Collapse
Affiliation(s)
- Salim Oulghazi
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Sarah K. Wegner
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Gabriele Spohn
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Nina Müller
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Sabine Harenkamp
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Albrecht Stenzinger
- Institute for Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany;
| | - Thalia Papayannopoulou
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +49-69-6782177
| |
Collapse
|
44
|
Wang J, Li P, Liu S, Zhang B, Hu Y, Ma H, Wang S. Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota. Food Nutr Res 2020; 64:3672. [PMID: 33281537 PMCID: PMC7681786 DOI: 10.29219/fnr.v64.3672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background In the past, most researchers paid more attention to the biological activity of tea infusion and tea polyphenols; however, the prebiotic role of tea leaf powder is still unknown. Green tea leaf powder is rich in dietary fiber and is suggested to be beneficial for human health. Only limited studies have looked at the effects of tea leaf powder (which mainly contains tea dietary fiber) on gut microbiota and health. Objective The purpose of our study was to determine the effects of green tea leaf powder in preventing hyperlipidemia and to understand its potential lipid-lowering mechanism. Design Mice in three treatment groups were fed high-fat diets (HFDs) by administering either 0.5, 1.0, or 2.0 g/kg•d dietary fiber-enriched green tea leaf powder of low, medium, or high, respectively, for 12 weeks. Serum biochemical analyses and mRNA gene expression levels of related energy and lipid metabolism biomarkers from the liver were investigated. In addition, 16S rRNA cecal microbiota and fecal short chain fatty acids (SCFAs) were tested. Results Green tea leaf powder reduced body weight and total cholesterol of HFD-fed mice in a dose-dependent manner. Green tea leaf powder also increased satiety hormone secretion and reduced systemic inflammation of HFD-fed mice. Real-time polymerase chain reaction (PCR) analyses reconfirmed that green tea leaf powder prevented dyslipidemia by enhancing hepatic mRNA expression levels of peroxisome proliferator-activated receptor alpha, cholesterol 7α-hydroxylase, and Adenosine triphosphate (ATP)-binding cassette transporter A1 and decreasing the expression of fatty acid synthase, sterol regulatory element-binding protein 1c, and liver X receptor. Green tea leaf powder promoted the growth of Blautia, Oscillibacter, Ruminiclostridium, Alloprevotella, and Butyrivibrio and inhibited the growth of Erysipelatoclostridium, Desulfovibrio, and Candidatus_Saccharimonas in the cecum of HFD-fed mice. Conclusion In summary, our results indicate that green tea leaf powder improves lipid metabolism of HFD-fed mice in a dose-dependent manner. The potential mechanism involves a synergistic role in reprogramming gut microbiota, increasing satiety hormone secretion, and reducing systemic inflammation.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X. Gut microbiota: effect of pubertal status. BMC Microbiol 2020; 20:334. [PMID: 33143658 PMCID: PMC7640488 DOI: 10.1186/s12866-020-02021-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background The make-up of gut microbiota at different puberty stages has not been reported. This cross-sectional study analyzed the bio-diversity of gut microbiota at different puberty stages. Result The subjects (aged 5–15 years) were divided into non-pubertal (n = 42, male%: 66.7%) or pubertal groups (n = 47, male%:44.68); in both groups, Firmicutes, Bacteroidetes and Proteobacteria were the dominant phylum. There was no difference of alpha- and beta-diversity among disparate puberty stages. Non-pubertal subjects had members of the order Clostridiales, family Clostridiaceae, genus Coprobacillus which were significantly more prevalent than puberty subjects. Also, the pubertal subjects had members of class Betaproteobacteria, order Burkholderiales which were significantly more prevalent than the non-pubertal subjects. Their relative abundance was independent of BMI-Z. In the pubertal subjects, the abundance of genus Adlercreutzia, Ruminococcus, Dorea, Clostridium and Parabacteroides was associated with the level of testosterone. Conclusions This is the first report of the diversity of gut microbiota at different puberty stages. The various species of gut microbiota changed gradually associated with puberty stages. Differences in gut microflora at different pubertal status may be related to androgen levels. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12866-020-02021-0.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, NO.145, 817 Middle Road, Fuzhou, 350005, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, NO.145, 817 Middle Road, Fuzhou, 350005, China.
| | - Ying Zhang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, NO.145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiangquan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, NO.145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiaohong Yang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, NO.145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
46
|
Xu J, Li M, Zhang Y, Chu S, Huo Y, Zhao J, Wan C. Huangjinya Black Tea Alleviates Obesity and Insulin Resistance via Modulating Fecal Metabolome in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2020; 64:e2000353. [PMID: 33002297 DOI: 10.1002/mnfr.202000353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/04/2020] [Indexed: 02/05/2023]
Abstract
SCOPE Huangjinya is a light-sensitive tea mutant containing low levels of tea polyphenols. Currently, most studies focused on characteristics formation, free amino acid metabolism and phytochemical purification. The biological activity of Huangjinya black tea (HJBT) on metabolic syndrome regarding fecal metabolome modulation is unavailable and is studied herein. METHODS AND RESULTS High-fat diet (HFD)-fed mice are treated with HJBT for 9 weeks, various metabolic biomarkers and fecal metabolites are determined. HJBT reduces adipogenic and lipogenic gene expression, enhances lipolytic gene expression, decreases adipocyte expansion, and prevents the development of obesity. HJBT reduces lipogenic gene expression, increases fatty acid oxidation-related genes expression, which alleviates liver steatosis. HJBT enhances glucose/insulin tolerance, increases insulin/Akt signaling, attenuates hyperlipidemia and hyperglycemia, prevents the onset of insulin resistance. HJBT modulates bile acid metabolism, promotes secondary/primary bile acid ratio; increases short-chain fatty acids production, promotes saturated and polyunsaturated fatty acids content; reduces carnitines and phosphocholines, but increases myo-inositol content; decreases branched-chain and aromatic amino acids content; increases the metabolite content related to pentose phosphate pathway. CONCLUSION This study reported the association between fecal metabolome modulation and metabolism improvement due to HJBT administration, proposes HJBT as a dietary intervention for preventing obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, P. R. China
| | - Yi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Suo Chu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yan Huo
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Jie Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, P. R. China
| |
Collapse
|
47
|
Melo-Durán D, Pérez JF, González-Ortiz G, Sala R, Villagómez-Estrada S, Bedford MR, Graham H, Solà-Oriol D. Influence of Particle Size and Xylanase in Corn-Soybean Pelleted Diets on Performance, Nutrient Utilization, Microbiota and Short-Chain Fatty Acid Production in Young Broilers. Animals (Basel) 2020; 10:E1904. [PMID: 33080855 PMCID: PMC7603045 DOI: 10.3390/ani10101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate the effects of particle size and xylanase supplementation in corn-based pellet diets on the performance and digestive traits in young broilers. A total of 512 male Ross 308 broilers were used in a 21-day study. The treatments were designed in a 4 × 2 factorial arrangement with four levels of geometric mean diameter (Dgw) of corn (540, 660, 1390, and 1700 µm), and two levels of xylanase (0 or 16,000 BXU/kg diet). Feeding coarse corn diets (1390 and 1700 µm Dgw) and xylanase supplementation showed an inferior coefficient of variation of body weight. Higher gizzard weight, microbiome alpha-diversity, and clustered separately beta-diversity (p < 0.05) were observed in birds fed coarse diets. The addition of xylanase promoted changes in relative bacteria abundance, increasing Lachnospiraceae, Defluviitaleaceae, Bacteroidaceae, Bacillaceae, Eggerthellaceae, and Streptococcaceae families in the 1700 µm group, and Christensenellaceae and Lachnospiraceae families in the 540 µm Dgw group. In conclusion, xylanase supplementation and particle size of corn interact in the intestinal environment, showing changes in microbial composition. Coarse diets and xylanase supplementation showed improved body weight homogeneity, which might be related to a better gut development and microbiota modulation.
Collapse
Affiliation(s)
- Diego Melo-Durán
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (R.S.); (S.V.-E.)
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (R.S.); (S.V.-E.)
| | | | - Roser Sala
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (R.S.); (S.V.-E.)
| | - Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (R.S.); (S.V.-E.)
| | - Michael R. Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK; (G.G.-O.); (M.R.B.); (H.G.)
| | - Hadden Graham
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK; (G.G.-O.); (M.R.B.); (H.G.)
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (R.S.); (S.V.-E.)
| |
Collapse
|
48
|
Guo J, Li P, Zhang K, Zhang L, Wang X, Li L, Zhang H. Distinct Stage Changes in Early-Life Colonization and Acquisition of the Gut Microbiota and Its Correlations With Volatile Fatty Acids in Goat Kids. Front Microbiol 2020; 11:584742. [PMID: 33162961 PMCID: PMC7581860 DOI: 10.3389/fmicb.2020.584742] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
In livestock, a comprehensive understanding of the early-life establishment and acquisition of commensal gut microbiota allow us to develop better husbandry management operations and manipulate the gut microbiota for young animals, improving the efficiency of animal production. Here, we collected 123 microbial samples of 11 healthy goat kids and their mothers to investigate the colonization and acquisition of the gut microbiota and their correlations with volatile fatty acids (VFAs) in goat kids from birth to day 56. An age-dependent increasing and more homogeneous diversity were observed for the feces of goat kids. Overall, Firmicutes, Bacteroidetes, and Proteobacteria were the predominant phyla in the fecal microbiota of goat kids, but their relative abundance varied considerably with age. Accordingly, the colonization of the fecal microbiota in goat kids was divided into three distinct stages: newborn (day 0), non-rumination stage (days 7–21), and transition stages (days 28–56). LEfSe analysis revealed a total of 49 bacterial biomarkers that are stage-specific (LDA score > 3, P < 0.05). Significant Spearman correlations (P < 0.05) were observed between the abundances of several bacterial biomarkers and the VFA concentrations. Furthermore, a substantial difference in the fecal microbiota composition was present between 56-day-old goat kids and mothers, whereas there was a moderate difference in the rumen microbiota between them. Among four body sites (i.e., feces, oral cavity, vagina, and breast milk) of mothers, the maternal vaginal and breast milk microbiota were the major source of the fecal microbiota of goat kids in the first 56 days after birth, although their contributions decreased with age and unknown sources increased after day 28. In summary, we concluded that the gut bacterial community in goat kids after birth was mainly acquired from the maternal vagina and breast milk. Its colonization showed three distinct phases with dramatic shifts of composition mainly driven by age and diet changes. Our results provide a framework for a better understanding of the roles of the gut microbiota in young ruminants.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
49
|
Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc Natl Acad Sci U S A 2020; 117:26482-26493. [PMID: 33020290 DOI: 10.1073/pnas.2006065117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.
Collapse
|
50
|
Zhou C, Zhou X, Wen Z, Liu L, Yang Z, Yang L, Li P, Guo X, Mei X. Compound Fu brick tea modifies the intestinal microbiome composition in high-fat diet-induced obesity mice. Food Sci Nutr 2020; 8:5508-5520. [PMID: 33133553 PMCID: PMC7590332 DOI: 10.1002/fsn3.1850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Compound Fu Brick Tea (CFBT), which is from Duyun city in China, is a traditional Chinese dark tea, Fu Brick Tea, mixed with six herbal medicine. It is consumed by local people for reducing weight, but the mechanism is not clear. The disorder of intestinal microbiome caused by long-term high-fat diet (HFD) is one of the inducements of obesity and related metabolic syndrome. In this study, mice were fed with HFD to establish a high-fat model. Fifty mice were randomly divided into six groups: normal control (CK), HFD model control (NK), positive control with medicine (YK), CFBT groups with low, middle, and high dose (FL, FM, FH). The V3-V4 DNA region of fecal microbiome from mouse intestine was sequenced. The results showed that the diversity of intestinal microflora was highest in CK and lowest in NK. Compared with CK, the dominant bacterium Firmicutes was increased and Bacteroidetes decreased at phylum level in NK. Compared with NK, the abundance of microbiome in CFBT groups was significantly higher and the composition was changed: Muribaculaceae, Bacteroidaceae, and Prevotellaceae increased and Lachnospiraceae decreased in CFBT groups at family level, while at the genus level, Bacteroides increased and Lactobacillus decreased. These results conclude that CFBT can increase the abundance of intestinal microbiome in mice, promote the growth of beneficial bacteria and reduce the number of pathogenic bacteria, and restore the imbalance of intestinal microbiome caused by poor diet.
Collapse
Affiliation(s)
- Caibi Zhou
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xiaolu Zhou
- College of Horticulture and Landscape ArchitectureHunan Agricultural UniversityChangshaChina
| | - Zhirui Wen
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Liming Liu
- College of Horticulture and Landscape ArchitectureHunan Agricultural UniversityChangshaChina
| | - Zaibo Yang
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Lu Yang
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Ping Li
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xiying Guo
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xin Mei
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| |
Collapse
|