1
|
Gu W, Li H, Sun L, Shen Z, Wang Y, Hu X, Wu Y, Liu W, Wan CC, Cai Y, Yan T. The RNA-binding protein CMSS1 promotes the progression of non-small cell lung cancer by regulating the telomerase protein subunit hTERT. Life Sci 2025; 361:123321. [PMID: 39710061 DOI: 10.1016/j.lfs.2024.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism. MATERIALS AND METHODS We explored the regulatory impact of CMSS1 on hTERT expression in NSCLC cells using several methods: Yeast three-hybrid system, Reporter gene assay, Western blot, RNA decay assay, and Telomere length measurement. Our analysis revealed significant overexpression of CMSS1 in NSCLC, which correlated with poor prognosis, as determined by bioinformatics and tissue microarray techniques. RNA sequencing analysis showed that CMSS1 knockdown influenced the adhesion capabilities of NSCLC cells. Additionally, potential interacting proteins with CMSS1 were identified through mass spectrometry and co-immunoprecipitation experiments. KEY FINDINGS We discovered that CMSS1 regulates hTERT expression in NSCLC cells by binding to the 5' UTR of hTERT mRNA, impacting its mRNA stability and thereby influencing NSCLC progression. RNA-Seq results and adhesion experiments indicated that CMSS1 knockdown disrupts cell adhesion. hTERT also affects cell adhesion in NSCLC, underscoring CMSS1's role as an upstream regulator of hTERT. Mass spectrometry and Co-IP studies suggest potential interactions between CMSS1, RBM34, and DDX5 that further modulate hTERT expression. SIGNIFICANCE These findings indicate that CMSS1 plays a crucial role in NSCLC progression through its interaction with hTERT, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Banjan B, Koshy AJ, Kalath H, John L, Soman S, Raju R, Revikumar A. Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions. Mol Divers 2024; 28:3377-3391. [PMID: 38509417 DOI: 10.1007/s11030-023-10768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 03/22/2024]
Abstract
Telomeric regions contain Guanine-rich sequences arranged in a planar manner and connected by Hoogsteen hydrogen bonds that can fold into G-quadruplex (G4) DNA structures, and can be stabilized by monovalent metal cations. The presence of G4 DNA holds significance in cancer-related processes, especially due to their regulatory potential at transcriptional and translational levels of oncogene and tumor suppressor genes. The objective of this current research is to explore the evolving realm of FDA-approved protein kinase inhibitors, with a specific emphasis on their capacity to stabilize the G4 DNA structures formed at the human telomeric regions. This involves investigating the possibility of repurposing FDA-approved protein kinase inhibitors as a novel approach for targeting multiple cancer types. In this context, we have selected 16 telomeric G4 DNA structures as targets and 71 FDA-approved small-molecule protein kinase inhibitors as ligands. To investigate their binding affinities, molecular docking of human telomeric G4 DNA with nuclear protein kinase inhibitors and their corresponding co-crystalized ligands were performed. We found that Ponatinib and Lapatinib interact with all the selected G4 targets, the binding free energy calculations, and molecular dynamic simulations confirm their binding efficacy and stability. Thus, it is hypothesized that Ponatinib and Lapatinib may stabilize human telomeric G4 DNA in addition to their ability to inhibit BCR-ABL and the other members of the EGFR family. As a result, we also hypothesize that the stabilization of G4 DNA might represent an additional underlying mechanism contributing to their efficacy in exerting anti-cancer effects.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
3
|
Hosseini TM, Park SJ, Guo T. The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers (Basel) 2024; 16:2904. [PMID: 39199674 PMCID: PMC11352924 DOI: 10.3390/cancers16162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) manifests through the complex interactions of UV-induced DNA damage, genetic mutations, and alterations in the tumor microenvironment. A high mutational burden is present in cSCC, as well as both cSCC precursors and normal skin, making driver genes difficult to differentiate. Despite this, several key driver genes have been identified, including TP53, the NOTCH family, CDKN2A, PIK3CA, and EGFR. In addition to mutations, the tumor microenvironment and the manipulation and evasion of the immune system play a critical role in cSCC progression. Novel therapeutic approaches, such as immunotherapy and EGFR inhibitors, have been used to target these dysregulations, and have shown promise in treating advanced cSCC cases, emphasizing the need for targeted interventions considering both genetic and microenvironmental factors for improved patient outcomes.
Collapse
Affiliation(s)
- Tara M. Hosseini
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Soo J. Park
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otolaryngology-Head & Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Tomasova K, Seborova K, Kroupa M, Horak J, Kavec M, Vodickova L, Rob L, Hruda M, Mrhalova M, Bartakova A, Bouda J, Fleischer T, Kristensen VN, Vodicka P, Vaclavikova R. Telomere length as a predictor of therapy response and survival in patients diagnosed with ovarian carcinoma. Heliyon 2024; 10:e33525. [PMID: 39050459 PMCID: PMC11268197 DOI: 10.1016/j.heliyon.2024.e33525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Impaired telomere length (TL) maintenance in ovarian tissue may play a pivotal role in the onset of epithelial ovarian cancer (OvC). TL in either target or surrogate tissue (blood) is currently being investigated for use as a predictor in anti-OvC therapy or as a biomarker of the disease progression, respectively. There is currently an urgent need for an appropriate approach to chemotherapy response prediction. We performed a monochrome multiplex qPCR measurement of TL in peripheral blood leukocytes (PBL) and tumor tissues of 209 OvC patients. The methylation status and gene expression of the shelterin complex and telomerase catalytic subunit (hTERT) were determined within tumor tissues by High-Throughput DNA methylation profiling and RNA sequencing (RNA-Seq) analysis, respectively. The patients sensitive to cancer treatment (n = 46) had shorter telomeres in PBL compared to treatment-resistant patients (n = 93; P = 0.037). In the patients with a different therapy response, transcriptomic analysis showed alterations in the peroxisome proliferator-activated receptor (PPAR) signaling pathway (q = 0.001). Moreover, tumor TL shorter than the median corresponded to better overall survival (OS) (P = 0.006). TPP1 gene expression was positively associated with TL in tumor tissue (P = 0.026). TL measured in PBL could serve as a marker of platinum therapy response in OvC patients. Additionally, TL determined in tumor tissue provides information on OvC patients' OS.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Miriam Kavec
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marcela Mrhalova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
5
|
Inoue Y, Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Telomere length determines the mitochondrial copy number in blastocyst-stage embryos. Mitochondrion 2024; 77:101887. [PMID: 38663837 DOI: 10.1016/j.mito.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Telomere length (TL) and mitochondrial DNA copy number (mt-cn) are associated with embryonic development. Here, we investigated the correlation between TL and mt-cn in bovine embryos to determine whether TL regulates mt-cn. TL and mt-cn were closely correlated in embryos derived from six bulls. Treatment of embryos with a telomerase inhibitor (TMPyP) and siTERT shortened the TL and reduced mt-cn in blastocysts. RNA-sequencing of blastocysts developed with TMPyP revealed differentially expressed genes associated with transforming growth factor-β1 signaling and inflammation. In conclusion, TL regulates mt-cn in embryos.
Collapse
Affiliation(s)
- Yuki Inoue
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Komei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan.
| |
Collapse
|
6
|
Sadiq A, Khumalo NP, Bayat A. Development and validation of novel keloid-derived immortalized fibroblast cell lines. Front Immunol 2024; 15:1326728. [PMID: 38915394 PMCID: PMC11194733 DOI: 10.3389/fimmu.2024.1326728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/09/2024] [Indexed: 06/26/2024] Open
Abstract
Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for β-galactosidase revealed a significantly lower number of β-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.
Collapse
Affiliation(s)
| | | | - Ardeshir Bayat
- MRC Wound Healing and Keloid Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Szyposzynska A, Bielawska-Pohl A, Paprocka M, Bar J, Murawski M, Klimczak A. Comparative Analysis of Primary Ovarian Cancer Cells and Established Cell Lines as a New Tool for Studies on Ovarian Cancer Cell Complexity. Int J Mol Sci 2024; 25:5384. [PMID: 38791431 PMCID: PMC11121816 DOI: 10.3390/ijms25105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Primary cancer cells reflect the genetic background and phenotype of a tumor. Immortalized cells with higher proliferation activity have an advantage over primary cells. The aim of the study was to immortalize the primary ovarian cancer (OvCa) cells using the plasmid-carrying human telomerase reverse transcriptase (hTERT) gene and compare their phenotype and biological activity with the primary cells. The primary OvCa3 A and OvCa7 A cells were isolated from the ascitic fluid of two high-grade serous ovarian cancer patients and were characterized using immunocytochemical methods, flow cytometry, real-time RT-PCR, Western blot, metabolic activity, and migratory potential. Both immortalized ovarian cancer cell lines mirrored the phenotype of primary cancer cells, albeit with modifications. The OvCa3 A hTERT cells kept the mesenchymal stem cell phenotype of CD73/CD90/CD105-positivity and were CD133-negative, whereas the cell population of OvCa7 A hTERT lost CD73 expression, but almost 90% of cells expressed the CD133 characteristic for the CSCs phenotype. Immortalized OvCa cells differed in gene expression level with respect to Sox2 and Oct4, which was associated with stemness properties. The OvCa7 A hTERT cells showed higher metabolic and migratory activity and ALDH1 expression than the corresponding primary OvCa cells. Both primary and immortalized cell lines were able to form spheroids. The newly established unique immortalized cell line OvCa7 A hTERT, with the characteristic of a serous ovarian cancer malignancy feature, and with the accumulation of the p53, Pax8, and overexpression of the CD133 and CD44 molecules, may be a useful tool for research on therapeutic approaches, especially those targeting CSCs in ovarian cancer and in preclinical 2D and 3D models.
Collapse
Affiliation(s)
- Agnieszka Szyposzynska
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marek Murawski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| |
Collapse
|
8
|
Fahim SA, ElZohairy YA, Moustafa RI. Favipiravir, an antiviral drug, in combination with tamoxifen exerts synergistic effect in tamoxifen-resistant breast cancer cells via hTERT inhibition. Sci Rep 2024; 14:1844. [PMID: 38246945 PMCID: PMC10800350 DOI: 10.1038/s41598-024-51977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Tamoxifen (TAM) is one of the most successful treatments for breast cancer; however, TAM resistance continues to be a significant barrier. TAM resistance has been reported to be associated with increased expression of human telomerase reverse transcriptase (hTERT). This enzyme shares structural similarity with RNA-dependent RNA polymerase (RdRp) enzyme of RNA viruses, suggesting that RdRp inhibitors may also inhibit hTERT. Favipiravir (FAV) is an antiviral drug that inhibits RdRp of RNA viruses. Thus, we propose that FAV may also elicit an antitumor effect by suppressing hTERT. This study aimed to investigate the effect of FAV and TAM on TAM-resistant breast cancer (TAMR-1). The cell viabilities were determined. The levels of CDK1/ hTERT, in addition to regulators of hTERT-targeted signaling pathways were measured. Apoptosis, migration, and cell cycle distribution were also determined. Our data revealed that the combination of TAM and FAV suppressed cell proliferation synergistically (CI < 1) and resulted in a significant change in cell migration and apoptosis. Indeed, this was associated with reduced levels of hTERT and CDK1 and shift in the cell cycle distribution. Our findings suggest that the TAM/FAV combination exhibits synergistic effects against TAMR-1 human breast cancer cells by targeting hTERT.
Collapse
Affiliation(s)
- Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, 6th of October, P.O. Box 12577, Giza, Egypt.
| | - Yehia A ElZohairy
- School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, P.O. Box 12577, Giza, Egypt
| | - Rehab I Moustafa
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- Microbiology Department, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, P.O. Box 12577, Giza, Egypt
| |
Collapse
|
9
|
De Felice B, Montanino C, Pinelli C, Nacca M, De Luca P. A novel Telomerase activity and microRNA-21 upregulation identified in a family with Palmoplantar keratoderma. Gene 2023:147600. [PMID: 37419429 DOI: 10.1016/j.gene.2023.147600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Palmoplantar keratoderma is a set of skin diseases with hyperkeratotic thickening of palms and soles which are characteristic of these heterogeneous group of keratinization disorders. Various genetic mutations, autosomal dominant or recessive, have been identified which may triggerpalmoplantar keratoderma, as KRT9 (Keratin 9), KRT1 (Keratin1), AQP5 (Aquaporin), SERPINB 7 (serine protease inhibitor). The identification of causal mutations is extremely important for the correct diagnosis. Here, we report the case of a family affected from Palmoplantar keratoderma caused by autosomal dominant KRT1 mutations (Unna-Thost disease). Telomerase activation and hTERT expression take a part in the process of cell proliferation and inflammation and microRNAs, as microRNA-21, are emerging as drivers in the regulation of telomerase activity. Here, the patients underwent KRT1 analysis genetic sequence, telomerase activity and miR-21 expression. Beside histopathology assay was performed. The patients presented thickening of the skin on soles of the feet and the palms of the hands, KRT1mutations and showed high expression levels of hTERT and hTR, the gene encoding for the telomeric subunits, and miR-21 (fold change >1.5 and p value =0.043), explicating the aberrant proliferation of epidermal layer and the inflammatory state characterizing palmoplantar keratoderma.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Massimo Nacca
- University Hospital Sant'Anna e San Sebastiano, Via Palasciano, 81100 Caserta, Italy
| | - Pasquale De Luca
- Department RIMAR, Sequencing and Molecular Analyses Center, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
10
|
Pyreddy S, Poddar A, Carraro F, Polash SA, Dekiwadia C, Murdoch B, Nasa Z, Reddy TS, Falcaro P, Shukla R. Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell types. BIOMATERIALS ADVANCES 2023; 149:213420. [PMID: 37062125 DOI: 10.1016/j.bioadv.2023.213420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Telomerase, a ribonucleoprotein coded by the hTERT gene, plays an important role in cellular immortalization and carcinogenesis. hTERT is a suitable target for cancer therapeutics as its activity is highly upregulated in most of cancer cells but absent in normal somatic cells. Here, by employing the two Metal-Organic Frameworks (MOFs), viz. ZIF-C and ZIF-8, based biomineralization we encapsulate Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 plasmid system that targets hTERT gene (CrhTERT) in cancer cells. When comparing the two biocomposites, ZIF-C shows the better loading capacity and cell viability. The loaded plasmid in ZIF-C is highly protected against enzymatic degradation. CrhTERT@ZIF-C is efficiently endocytosed by cancer cells and the subcellular release of CrhTERT leads to telomerase knockdown. The resultant inhibition of hTERT expression decreases cellular proliferation and causing cancer cell death. Furthermore, hTERT knockdown shows a significant reduction in tumour metastasis and alters protein expression. Collectively we show the high potential of ZIF-C-based biocomposites as a promising general tool for gene therapy of different types of cancers.
Collapse
Affiliation(s)
- Suneela Pyreddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Arpita Poddar
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Shakil Ahmed Polash
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Billy Murdoch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Zeyad Nasa
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - T Srinivasa Reddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria.
| | - Ravi Shukla
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
11
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
12
|
Ropio J, Prochazkova-Carlotti M, Batista R, Pestana A, Chebly A, Ferrer J, Idrissi Y, Cappellen D, Durães C, Boaventura P, Vinagre J, Azzi-Martin L, Poglio S, Cabeçadas J, Campos MA, Beylot-Barry M, Sobrinho-Simões M, Merlio JP, Soares P, Chevret E. Spotlight on hTERT Complex Regulation in Cutaneous T-Cell Lymphomas. Genes (Basel) 2023; 14:439. [PMID: 36833366 PMCID: PMC9956048 DOI: 10.3390/genes14020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As a major cancer hallmark, there is a sustained interest in understanding the telomerase contribution to carcinogenesis in order to therapeutically target this enzyme. This is particularly relevant in primary cutaneous T-cell lymphomas (CTCL), a malignancy showing telomerase dysregulation with few investigative data available. In CTCL, we examined the mechanisms involved in telomerase transcriptional activation and activity regulation. We analyzed 94 CTCL patients from a Franco-Portuguese cohort, as well as 8 cell lines, in comparison to 101 healthy controls. Our results showed that not only polymorphisms (SNPs) located at the promoter of human telomerase reverse transcriptase (hTERT) gene (rs2735940 and rs2853672) but also an SNP located within the coding region (rs2853676) could influence CTCL occurrence. Furthermore, our results sustained that the post-transcriptional regulation of hTERT contributes to CTCL lymphomagenesis. Indeed, CTCL cells present a different pattern of hTERT spliced transcripts distribution from the controls, mostly marked by an increase in the hTERT β+ variants proportion. This increase seems to be associated with CTCL development and progression. Through hTERT splicing transcriptome modulation with shRNAs, we observed that the decrease in the α-β+ transcript induced a decrease in the cell proliferation and tumorigenic capacities of T-MF cells in vitro. Taken together, our data highlight the major role of post-transcriptional mechanisms regulating telomerase non canonical functions in CTCL and suggest a new potential role for the α-β+ hTERT transcript variant.
Collapse
Affiliation(s)
- Joana Ropio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Institute of Biomedical Sciences of Abel Salazar, Porto University, 4050-313 Porto, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | | | - Rui Batista
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Ana Pestana
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Alain Chebly
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut 1104 2020, Lebanon
| | - Jacky Ferrer
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Yamina Idrissi
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - David Cappellen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Cecília Durães
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - Paula Boaventura
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - João Vinagre
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - Lamia Azzi-Martin
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- UFR des Sciences Médicales, Bordeaux University, 33076 Bordeaux, France
| | - Sandrine Poglio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - José Cabeçadas
- Dermatology Departement, Instituto Português de Oncologia de Lisboa (IPO-L), 1099-023 Lisbon, Portugal
| | - Manuel António Campos
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, E.P.E., Dermatology Departement, 4434-502 Vila Nova de Gaia, Portugal
| | - Marie Beylot-Barry
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Dermatology Department, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Manuel Sobrinho-Simões
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Jean-Philippe Merlio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Paula Soares
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Edith Chevret
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
13
|
Udroiu I, Marinaccio J, Sgura A. Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies. Int J Mol Sci 2022; 23:ijms232315189. [PMID: 36499514 PMCID: PMC9736166 DOI: 10.3390/ijms232315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have evidenced non-telomeric functions of "telomerase". Almost all of them, however, investigated the non-canonical effects of the catalytic subunit TERT, and not the telomerase ribonucleoprotein holoenzyme. These functions mainly comprise signal transduction, gene regulation and the increase of anti-oxidative systems. Although less studied, TERC (the RNA component of telomerase) has also been shown to be involved in gene regulation, as well as other functions. All this has led to the publication of many reviews on the subject, which, however, are often disseminating personal interpretations of experimental studies of other researchers as original proofs. Indeed, while some functions such as gene regulation seem ascertained, especially because mechanistic findings have been provided, other ones remain dubious and/or are contradicted by other direct or indirect evidence (e.g., telomerase activity at double-strand break site, RNA polymerase activity of TERT, translation of TERC, mitochondrion-processed TERC). In a critical study of the primary evidence so far obtained, we show those functions for which there is consensus, those showing contradictory results and those needing confirmation. The resulting picture, together with some usually neglected aspects, seems to indicate a link between TERT and TERC functions and cellular stemness and gives possible directions for future research.
Collapse
|
14
|
Shaev IA, Novikov VV, Yablokova EV, Fesenko EE. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Giunco S, Boscolo-Rizzo P, Rampazzo E, Tirelli G, Alessandrini L, Di Carlo R, Rossi M, Nicolai P, Menegaldo A, Carraro V, Tofanelli M, Bandolin L, Spinato G, Emanuelli E, Mantovani M, Stellin M, Bussani R, Dei Tos AP, Guido M, Morello M, Fussey J, Esposito G, Polesel J, De Rossi A. TERT Promoter Mutations and rs2853669 Polymorphism: Useful Markers for Clinical Outcome Stratification of Patients With Oral Cavity Squamous Cell Carcinoma. Front Oncol 2021; 11:782658. [PMID: 34858860 PMCID: PMC8631274 DOI: 10.3389/fonc.2021.782658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To date, no useful prognostic biomarker exists for patients with oral squamous cell carcinoma (OCSCC), a tumour with uncertain biological behaviour and subsequent unpredictable clinical course. We aim to investigate the prognostic significance of two recurrent somatic mutations (-124 C>T and -146 C>T) within the promoter of telomerase reverse transcriptase (TERT) gene and the impact of TERT single nucleotide polymorphism (SNP) rs2853669 in patients surgically treated for OCSCC. Methods The genetic frequencies of rs2853669, -124 C>T and -146 C>T as well as the telomere length were investigated in 144 tumours and 57 normal adjacent mucosal (AM) specimens from OCSCC patients. Results Forty-five tumours harboured TERT promoter mutations (31.3%), with -124 C>T and -146 C>T accounting for 64.4% and 35.6% of the alterations respectively. Patients with -124 C>T TERT promoter mutated tumours had the shortest telomeres in the AM (p=0.016) and showed higher risk of local recurrence (hazard ratio [HR]:2.75, p=0.0143), death (HR:2.71, p=0.0079) and disease progression (HR:2.71, p=0.0024) with the effect being potentiated by the co-occurrence of T/T genotype of rs2853669. Conclusion -124 C>T TERT promoter mutation as well as the T/T genotype of the rs2853669 SNP are attractive independent prognostic biomarkers in patients surgically treated for OCSCC, with the coexistence of these genetic variants showing a synergistic impact on the aggressiveness of the disease.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy.,Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Enrica Rampazzo
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Lara Alessandrini
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Roberto Di Carlo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Marco Rossi
- Unit of Oral and Maxillofacial Surgery, Treviso Regional Hospital, Treviso, Italy
| | - Piero Nicolai
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Valentina Carraro
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Luigia Bandolin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Giacomo Spinato
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Enzo Emanuelli
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Monica Mantovani
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Marco Stellin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, Section of Pathology, University of Trieste, Trieste, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Treviso, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Jonathan Fussey
- Department of ENT/Head and Neck Surgery, Queen Elizabeth University Hospital Birmingham, Birmingham, United Kingdom
| | - Giovanni Esposito
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| |
Collapse
|
16
|
A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci 2021; 22:ijms222011030. [PMID: 34681688 PMCID: PMC8538579 DOI: 10.3390/ijms222011030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The primary function of the skin is that of a physical barrier against the environment and diverse pathogens; therefore, its integrity is essential for survival. Skin regeneration depends on multiple stem cell compartments within the epidermis, which, despite their different transcriptional and proliferative capacity, as well as different anatomical location, fall under the general term of skin stem cells (SSCs). Skin wounds can normally heal without problem; however, some diseases or extensive damage may delay or prevent healing. Non-healing wounds represent a serious and life-threatening scenario that may require advanced therapeutic strategies. In this regard, increased focus has been directed at SSCs and their role in wound healing, although emerging therapeutical approaches are considering the use of other stem cells instead, such as mesenchymal stem cells (MSCs). Given its extensive and broad nature, this review supplies newcomers with an introduction to SSCs, wound healing, and therapeutic strategies for skin regeneration, thus familiarizing the reader with the subject in preparation for future in depth reading.
Collapse
|
17
|
Nogueira LS, Vasconcelos CP, Mitre GP, Bittencourt LO, Plaça JR, Kataoka MSDS, Pinheiro JDJV, Garlet GP, De Oliveira EHC, Lima RR. Gene Expression Profile in Immortalized Human Periodontal Ligament Fibroblasts Through hTERT Ectopic Expression: Transcriptome and Bioinformatic Analysis. Front Mol Biosci 2021; 8:679548. [PMID: 34141725 PMCID: PMC8204186 DOI: 10.3389/fmolb.2021.679548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Human periodontal ligament fibroblast (hPLF) cells play an important role in maintaining oral cavity homeostasis with special function in tissue regeneration and maintenance of dental alveoli. Although their primary cell cultures are considered a good experimental model with no genetic changes, the finite life span may limit some experimental designs. The immortalization process increases cell life span but may cause genetic changes and chromosomal instability, resulting in direct effects on physiological cell responses. In this way, we aimed to investigate the global gene expression of hPLFs after the immortalization process by the ectopic expression of the catalytic subunit of the enzyme telomerase reverse transcriptase (hTERT) through transcriptome analysis. The embryonic origin of the primary culture of hPLF cells and immortalized hPLF-hTERT was also tested by vimentin staining, hTERT synthesis evaluated by indirect immunocytochemistry, analysis of cell proliferation, and morphology. The results indicated that hPLFs and hPLF-hTERT were positive for vimentin. On the 20th cell passage, hPLFs were in senescence, while hPLF-hTERT maintained their proliferation and morphology characteristics. At the same passage, hPLF-hTERT presented a significant increase in hTERT synthesis, but transcriptome did not reveal overexpression of the hTERT gene. Fifty-eight genes had their expression altered (11 upregulated and 47 downregulated) with the absence of changes in the key genes related to these cell types and in the main cancer-associated genes. In addition, the increase in hTERT protein expression without the overexpression of its gene indicates posttranscriptional level regulation. Successful immortalization of hPLFs through the ectopic expression of hTERT encourages further studies to design experimental protocols to investigate clinical questions from a translational perspective.
Collapse
Affiliation(s)
- Lygia S Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carolina P Vasconcelos
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Jessica Rodrigues Plaça
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Edivaldo H C De Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rafael R Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
18
|
Bernabé-García M, Martínez-Balsalobre E, García-Moreno D, García-Castillo J, Revilla-Nuin B, Blanco-Alcaina E, Mulero V, Alcaraz-Pérez F, Cayuela ML. Telomerase reverse transcriptase activates transcription of miR500A to inhibit Hedgehog signalling and promote cell invasiveness. Mol Oncol 2021; 15:1818-1834. [PMID: 33713376 PMCID: PMC8253104 DOI: 10.1002/1878-0261.12943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/29/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) maintains telomere homeostasis, thus ensuring chromosome stability and cell proliferation. In addition, several telomere-independent functions of human TERT have been described. In this study, we report that TERT binds directly to the TCF binding elements located upstream of the oncomiR miR500A, and induces its transcription. This function was independent of the telomerase activity, as shown with experiments using catalytically inactive TERT and inhibitors of TERT and the TERT RNA component. miR500A was in turn found to target three key components of the Hedgehog signalling pathway: Patched 1; Gli family zinc finger 3; and Cullin 3, thereby promoting cell invasion. Our results point to the crucial role of the TERT-miR500A-Hedgehog axis in tumour aggressiveness and highlight the therapeutic potential of targeting noncanonical TERT functions in cancer.
Collapse
Affiliation(s)
- Manuel Bernabé-García
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Elena Martínez-Balsalobre
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Jesús García-Castillo
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | | | - Elena Blanco-Alcaina
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Francisca Alcaraz-Pérez
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Cayuela
- Telomerase, Cancer and Aging Group, Research Unit, Department of Surgery, University Hospital 'Virgen de la Arrixaca', Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Romaniuk-Drapała A, Totoń E, Konieczna N, Machnik M, Barczak W, Kowal D, Kopczyński P, Kaczmarek M, Rubiś B. hTERT Downregulation Attenuates Resistance to DOX, Impairs FAK-Mediated Adhesion, and Leads to Autophagy Induction in Breast Cancer Cells. Cells 2021; 10:cells10040867. [PMID: 33920284 PMCID: PMC8068966 DOI: 10.3390/cells10040867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Telomerase is known to contribute to telomere maintenance and to provide cancer cell immortality. However, numerous reports are showing that the function of the enzyme goes far beyond chromosome ends. The study aimed to explore how telomerase downregulation in MCF7 and MDA-MB-231 breast cancer cells affects their ability to survive. Consequently, sensitivity to drug resistance, proliferation, and adhesion were assessed. The lentiviral-mediated human telomerase reverse transcriptase (hTERT) downregulation efficiency was performed at gene expression and protein level using qPCR and Western blot, respectively. Telomerase activity was evaluated using the Telomeric Repeat Amplification Protocol (TRAP) assay. The study revealed that hTERT downregulation led to an increased sensitivity of breast cancer cells to doxorubicin which was demonstrated in MTT and clonogenic assays. During a long-term doubling time assessment, a decreased population doubling level was observed. Interestingly, it did not dramatically affect cell cycle distribution. hTERT downregulation was accompanied by an alteration in β1-integrin- and by focal adhesion kinase (FAK)-driven pathways together with the reduction of target proteins phosphorylation, i.e., paxillin and c-Src. Additionally, autophagy activation was observed in MDA-MB-231 cells manifested by alternations in Atg5, Beclin 1, LC3II/I ratio, and p62. These results provide new evidence supporting the possible therapeutic potential of telomerase downregulation leading to induction of autophagy and cancer cells elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Dagmar Kowal
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznań University of Medical Sciences, 5D Rokietnicka St., 60-806 Poznań, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
- Correspondence: ; Tel.: +48-61-869-14-27
| |
Collapse
|
20
|
Shehata MM, Sallam AAM, Naguib MG, El-Mesallamy HO. Overexpression of BAMBI and SMAD7 impacts prognosis of acute myeloid leukemia patients: A potential TERT non-canonical role. Cancer Biomark 2021; 31:47-58. [PMID: 33780363 DOI: 10.3233/cbm-200927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic homolog 7 (SMAD7) are important transforming growth factor-β (TGF-β) signaling antagonists, however their roles in acute myeloid leukemia (AML) remains unclear. Telomerase reverse transcriptase (TERT) may be involved in regulating BAMBI and SMAD7 expressions; a role beyond telomeres that is not clinically validated yet. OBJECTIVE In this study, we examined the expression levels and prognostic values of BAMBI, SMAD7 and TERT and their association with AML patients' outcomes. METHODS Blood samples were collected from 74 de-novo AML patients and 16 controls. Real-time quantitative PCR (qRT-PCR) was performed to analyze BAMBI, SMAD7 and TERT expressions. RESULTS BAMBI and SMAD7 expression in AML were significantly upregulated versus controls (p< 0.05). BAMBI, SMAD7 and TERT levels were significantly correlated together (p< 0.001). Kaplan-Meier analysis indicated that patients with high BAMBI, SMAD7 and TERT expression levels had markedly shorter event free survival (EFS) and overall survival (OS) time (p< 0.01). Furthermore, multivariate analysis revealed that only high BAMBI expression was an independent risk factor for OS (p= 0.001). CONCLUSIONS BAMBI is a novel biomarker in predicting prognosis in AML patients. Moreover, a potential interplay is found between BAMBI, SMAD7 and TERT in AML pathogenies.
Collapse
Affiliation(s)
- Miral Magdy Shehata
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt
| | - Al-Aliaa Mohamed Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt.,Biochemistry Department, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Mary Gamal Naguib
- Hematology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Hala Osman El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt.,Biochemistry Department, Dean of Faculty of Pharmacy, Sinai University (SU), Sinai, Egypt
| |
Collapse
|
21
|
Cheng X, Gu X, Xia T, Ma Z, Yang Z, Feng HL, Zhao Y, Ma W, Ju Z, Gorospe M, Yi X, Tang H, Wang W. HuB and HuD repress telomerase activity by dissociating HuR from TERC. Nucleic Acids Res 2021; 49:2848-2858. [PMID: 33589924 PMCID: PMC7969021 DOI: 10.1093/nar/gkab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous RNA-binding protein HuR (ELAVL1) promotes telomerase activity by associating with the telomerase noncoding RNA TERC. However, the role of the neural-specific members HuB, HuC, and HuD (ELAVL2-4) in telomerase activity is unknown. Here, we report that HuB and HuD, but not HuC, repress telomerase activity in human neuroblastoma cells. By associating with AU-rich sequences in TERC, HuB and HuD repressed the assembly of the TERT-TERC core complex. Furthermore, HuB and HuD competed with HuR for binding to TERC and antagonized the function of HuR that was previously shown to enhance telomerase activity to promote cell growth. Our findings reveal a novel mechanism controlling telomerase activity in human neuroblastoma cells that involves a competition between HuR and the related, neural-specific proteins HuB and HuD.
Collapse
Affiliation(s)
- Xiaolei Cheng
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Central China Fuwai Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan 450003, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department, Nanjing University, Nanjing 210000, China
| | - Tianjiao Xia
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department, Nanjing University, Nanjing 210000, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department, Nanjing University, Nanjing 210000, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Helen Lechen Feng
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Central China Fuwai Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan 450003, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.,Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
22
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
23
|
Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G. Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr Top Med Chem 2020; 20:433-457. [PMID: 31894749 DOI: 10.2174/1568026620666200102104930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Akella P Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| |
Collapse
|
24
|
The interplay between EBV and KSHV viral products and NF-κB pathway in oncogenesis. Infect Agent Cancer 2020; 15:62. [PMID: 33072180 PMCID: PMC7559203 DOI: 10.1186/s13027-020-00317-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Among the DNA tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV), account for a considerable percentage of virus-associated cancers. Deregulation of transcription factors signaling pathways is one of the most significant oncogenic characteristics of EBV and KSHV. NF-κB is a transcription factor that play a remarkable role in oncogenesis because of its function as a master regulator of a spectrum of genes involved in physiological and pathophysiological process. Constitutive activation of NF-κB is a frequent and well-described event in many human malignancies. Compelling evidence represent EBV and KSHV are capable of targeting different components of NF-κB cascade. Here, we summarized recent findings to clarify the precise relationship between dysregulation of NF-κB and EBV and KSHV-related malignancies. This essay also emphasizes on contribution of various viral products in developing cancer through alteration of NF-κB signaling pathway.
Collapse
|
25
|
Şekeroğlu ZA, Şekeroğlu V, Küçük N. Effects of Reverse Transcriptase Inhibitors on Proliferation, Apoptosis, and Migration in Breast Carcinoma Cells. Int J Toxicol 2020; 40:52-61. [PMID: 32975457 DOI: 10.1177/1091581820961498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High telomerase activity in human breast cancer is associated with aggressive tumors resulting in decreased survival. Recent studies have shown that telomerase inhibitors may display anticancer properties in some human cancer cell lines. In the present study, we examined the effects of 4 reverse transcriptase inhibitors (RTIs), used for the treatment of HIV; Abacavir (AC), Lamivudine (LV), Stavudine (SV), and Tenofovir (TF) on proliferation, apoptosis, and migration in the normal human mammary epithelial cell line, hTERT-HME1, and the human breast cancer cell line, MCF-7. Cells were treated with AC, LV, SV, or TF alone or in combination with paclitaxel (PAC), a known drug used to treat breast cancer. Conduct of the thiazolyl blue tetrazolium bromide assay demonstrated that AC, SV, and TF had stronger cytotoxic effects on MCF-7 cells than in hTERT-HME1 cells. The combined treatment of RTIs and PAC caused high rates of cell death in MCF-7 and low rates of cell death in HTERT-HME1 by apoptosis. The percentages of apoptotic cells in the treatment of AC and SV in combination with PAC for 48 and 72 hours were higher than PAC. Significantly increased apoptosis and decreased migration levels were found in MCF-7 cells treated with AC and co-treatment of AC+PAC or SV+PAC than HME1 cells. These treatments can also prevent migration capacity more than PAC. Therefore, a combination strategy based on telomerase inhibitors such as AC or SV and anticancer drugs may be more effective in the treatment of certain breast cancers.
Collapse
Affiliation(s)
- Zülal Atlı Şekeroğlu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, 187474Ordu University, Ordu, Turkey
| | - Vedat Şekeroğlu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, 187474Ordu University, Ordu, Turkey
| | - Nihan Küçük
- Faculty of Medicine, Department of Pharmacology, 63990Hitit University, Çorum, Turkey
| |
Collapse
|
26
|
A Static Magnetic Field Inhibits the Migration and Telomerase Function of Mouse Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7472618. [PMID: 32462015 PMCID: PMC7240788 DOI: 10.1155/2020/7472618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Static magnetic field (SMF) has a potential as a cancer therapeutic modality due to its specific inhibitory effects on the proliferation of multiple cancer cells. However, the underlying mechanism remains unclear, and just a few studies have examined the effects of SMF on metastasis, an important concern in cancer treatment. In this study, we evaluated the effects of moderate SMF (~150 mT) on the proliferation and migration of 4T1 breast cancer cells. Our results showed that SMF treatment accelerated cell proliferation but inhibited cell migration. Further, SMF treatment shortened the telomere length, decreased telomerase activity, and inhibited the expression of the cancer-specific marker telomerase reverse transcriptase (TERT), which may be related to expression upregulation of e2f1, a transcription repressor of TERT and positive regulator of the mitotic cell cycle. Our results revealed that SMF repressed both, cell migration and telomerase function. The telomerase network is responsive to SMF and may be involved in SMF-mediated cancer-specific effects; moreover, it may function as a therapeutic target in magnetic therapy of cancers.
Collapse
|
27
|
Thompson CA, Wong JM. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance. Curr Top Med Chem 2020; 20:498-507. [DOI: 10.2174/1568026620666200131125110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere
repeat synthesis activity, telomerase may have other biologically important functions. The canonical
roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic
stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase
(TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative
mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed
at higher levels than necessary for maintaining functional telomere length, suggesting other possible
adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric
DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics,
and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily
show cellular protective effects, and nuclear TERT has been shown to protect against cell death
following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT
has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of
gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent
RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria,
TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial
integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased
proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding
the spectrum of non-canonical functions of telomerase may have important implications for the rational
design of anti-cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Connor A.H. Thompson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Judy M.Y. Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
28
|
Talebi A, Masoodi M, Mirzaei A, Mehrad-Majd H, Azizpour M, Akbari A. Biological and clinical relevance of metastasis-associated long noncoding RNAs in esophageal squamous cell carcinoma: A systematic review. J Cell Physiol 2020; 235:848-868. [PMID: 31310341 DOI: 10.1002/jcp.29083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a foremost cancer-related death worldwide owing to rapid metastasis and poor prognosis. Metastasis, as the most important reason for death, is biologically a multifaceted process involving a range of cell signaling pathways. Long noncoding RNAs (lncRNAs), as transcriptional regulators, can regulate numerous genomic processes and cellular processes such as cell proliferation, migration, and invasion. LncRNAs have also been shown to involve in/regulate the cancer metastasis-related signaling pathways. Hence, they have increasingly been brought to international attention in molecular oncology research. A number of researchers have attempted to reveal the biological and clinical relevance of lncRNAs in ESCC tumourigenesis and metastasis. The aberrant expression of these molecules in ESCC has regularly been reported to involve in various cellular processes and clinical features, including diagnosis, prognosis, and therapeutic responses. Here, we especially consider the pathways in which lncRNAs act as metastasis-mediated effectors, mainly by interacting with epithelial-mesenchymal transition-associated factors. We review the biological roles of lncRNAs through involving in ESCC metastasis as well as the clinical significance of the metastasis-related lncRNAs in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mazaher Azizpour
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
The Potential Role of Cycloastragenol in Promoting Diabetic Wound Repair In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7023950. [PMID: 31930133 PMCID: PMC6939423 DOI: 10.1155/2019/7023950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
Background Refractory wound healing is a severe complication of diabetes with a significant socioeconomic burden. Whereas current therapies are insufficient to accelerate repair, stem cell-based therapy is increasingly recognized as an alternative that improves healing outcomes. The aim of the present study is to explore the role of cycloastragenol (CAG), a naturally occurring compound in Astragali Radix, in ameliorating refractory cutaneous wound healing in vitro, which may provide a new insight into therapeutic strategy for diabetic wounds. Methods Human epidermal stem cells (EpSCs) obtained from nine patients were exposed to CAG, with or without DKK1 (a Wnt signaling inhibitor). A lentiviral short hairpin RNA (shRNA) system was used to establish the telomerase reverse transcriptase (TERT) and β-catenin knockdown cell line. Cell counting kit-8, scratch wound healing, and transwell migration assay were used to determine the effects of CAG in cell growth and migration. The activation of TERT, β-catenin, and c-Myc was determined using real-time qPCR and western blot analysis. Chromatin immunoprecipitation (ChIP) was performed to evaluate the associations among CAG, TERT, and Wnt/β-catenin signals. Results CAG not only promoted the proliferation and migration ability of EpSCs but also increased the expression levels of TERT, β-catenin, c-Myc. These effects of CAG were most pronounced at a dose of 0.3 μM. Notably, the CAG-promoted proliferative and migratory abilities of EpSCs were abrogated in TERT and β-catenin-silenced cells. In addition, the ChIP results strongly suggested that CAG-modulated TERT was closely associated with the activation of Wnt/β-catenin signaling. Conclusion Our data indicate that CAG is a TERT activator of EpSCs and is associated with their proliferation and migration, a role it may play through the activation of Wnt/β-catenin signaling.
Collapse
|
30
|
Liu H, Yang Y, Ge Y, Liu J, Zhao Y. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res 2019; 47:8084-8095. [PMID: 31294790 PMCID: PMC6735767 DOI: 10.1093/nar/gkz584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/09/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
TERC is an RNA component of telomerase. However, TERC is also ubiquitously expressed in most human terminally differentiated cells, which don't have telomerase activity. The function of TERC in these cells is largely unknown. Here, we report that TERC enhances the expression and secretion of inflammatory cytokines by stimulating NK-κB pathway in a telomerase-independent manner. The ectopic expression of TERC in telomerase-negative cells alters the expression of 431 genes with high enrichment of those involved in cellular immunity. We perform genome-wide screening using a previously identified 'binding motif' of TERC and identify 14 genes that are transcriptionally regulated by TERC. Among them, four genes (LIN37, TPRG1L, TYROBP and USP16) are demonstrated to stimulate the activation of NK-κB pathway. Mechanistically, TERC associates with the promoter of these genes through forming RNA-DNA triplexes, thereby enhancing their transcription. In vivo, expression levels of TERC and TERC target genes (TYROBP, TPRG1L and USP16) are upregulated in patients with inflammation-related diseases such as type II diabetes and multiple sclerosis. Collectively, these results reveal an unknown function of TERC on stimulating inflammatory response and highlight a new mechanism by which TERC modulates gene transcription. TERC may be a new target for the development of anti-inflammation therapeutics.
Collapse
Affiliation(s)
- Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yiding Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yuanlong Ge
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Juanhong Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
31
|
Zhang J, Guan W, Huang C, Hu Y, Chen Y, Guo J, Zhou C, Chen R, Du B, Zhu L, Huanhan D, He G. Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice. BMC Genomics 2019; 20:682. [PMID: 31464583 PMCID: PMC6716848 DOI: 10.1186/s12864-019-6049-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The brown plant hopper (BPH), Nilaparvata lugens, is one of the major pest of rice (Oryza sativa). Plant defenses against insect herbivores have been extensively studied, but our understanding of insect responses to host plants' resistance mechanisms is still limited. The purpose of this study is to characterize transcripts of BPH and reveal the responses of BPH insects to resistant rice at transcription level by using the advanced molecular techniques, the next-generation sequencing (NGS) and the single-molecule, real-time (SMRT) sequencing. RESULTS The current study obtained 24,891 collapsed isoforms of full-length transcripts, and 20,662 were mapped to known annotated genes, including 17,175 novel transcripts. The current study also identified 915 fusion genes, 1794 novel genes, 2435 long non-coding RNAs (lncRNAs), and 20,356 alternative splicing events. Moreover, analysis of differentially expressed genes (DEGs) revealed that genes involved in metabolic and cell proliferation processes were significantly enriched in up-regulated and down-regulated sets, respectively, in BPH fed on resistant rice relative to BPH fed on susceptible wild type rice. Furthermore, the FoxO signaling pathway was involved and genes related to BPH starvation response (Nlbmm), apoptosis and autophagy (caspase 8, ATG13, BNIP3 and IAP), active oxygen elimination (catalase, MSR, ferritin) and detoxification (GST, CarE) were up-regulated in BPH responses to resistant rice. CONCLUSIONS The current study provides the first demonstrations of the full diversity and complexity of the BPH transcriptome, and indicates that BPH responses to rice resistance, might be related to starvation stress responses, nutrient transformation, oxidative decomposition, and detoxification. The current result findings will facilitate further exploration of molecular mechanisms of interaction between BPH insects and host rice.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chaomei Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yinxia Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danax Huanhan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Enhanced cardiac repair by telomerase reverse transcriptase over-expression in human cardiac mesenchymal stromal cells. Sci Rep 2019; 9:10579. [PMID: 31332256 PMCID: PMC6646304 DOI: 10.1038/s41598-019-47022-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
We have previously reported a subpopulation of mesenchymal stromal cells (MSCs) within the platelet-derived growth factor receptor-alpha (PDGFRα)/CD90 co-expressing cardiac interstitial and adventitial cell fraction. Here we further characterise PDGFRα/CD90-expressing cardiac MSCs (PDGFRα + cMSCs) and use human telomerase reverse transcriptase (hTERT) over-expression to increase cMSCs ability to repair the heart after induced myocardial infarction. hTERT over-expression in PDGFRα + cardiac MSCs (hTERT + PDGFRα + cMSCs) modulates cell differentiation, proliferation, survival and angiogenesis related genes. In vivo, transplantation of hTERT + PDGFRα + cMSCs in athymic rats significantly increased left ventricular function, reduced scar size, increased angiogenesis and proliferation of both cardiomyocyte and non-myocyte cell fractions four weeks after myocardial infarction. In contrast, transplantation of mutant hTERT + PDGFRα + cMSCs (which generate catalytically-inactive telomerase) failed to replicate this cardiac functional improvement, indicating a telomerase-dependent mechanism. There was no hTERT + PDGFRα + cMSCs engraftment 14 days after transplantation indicating functional improvement occurred by paracrine mechanisms. Mass spectrometry on hTERT + PDGFRα + cMSCs conditioned media showed increased proteins associated with matrix modulation, angiogenesis, cell proliferation/survival/adhesion and innate immunity function. Our study shows that hTERT can activate pro-regenerative signalling within PDGFRα + cMSCs and enhance cardiac repair after myocardial infarction. An increased understanding of hTERT’s role in mesenchymal stromal cells from various organs will favourably impact clinical regenerative and anti-cancer therapies.
Collapse
|
33
|
Luo Z, Wang W, Li F, Songyang Z, Feng X, Xin C, Dai Z, Xiong Y. Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes. Mol Cancer 2019; 18:106. [PMID: 31179925 PMCID: PMC6556968 DOI: 10.1186/s12943-019-1035-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Background Cancer cells become immortalized through telomere maintenance mechanisms, such as telomerase reverse transcriptase (TERT) activation. In addition to maintaining telomere length, TERT activates manifold cell survival signaling pathways. However, telomerase-associated gene signatures in cancer remain elusive. Methods We performed a systematic analysis of TERT high (TERThigh) and low (TERTlow) cancers using multidimensional data from The Cancer Genome Atlas (TCGA). Multidimensional data were analyzed by propensity score matching weight algorithm. Coexpression networks were constructed by weight gene coexpression network analysis (WGCNA). Random forest classifiers were generated to identify cancer subtypes. Results The TERThigh-specific mRNA expression signature is associated with cell cycle-related coexpression modules across cancer types. Experimental screening of hub genes in the cell cycle module suggested TPX2 and EXO1 as potential regulators of telomerase activity and cell survival. MiRNA analysis revealed that the TERThigh-specific miR-17-92 cluster can target biological processes enriched in TERTlow cancer and that its expression is negatively correlated with the tumor/normal telomere length ratio. Intriguingly, TERThigh cancers tend to have mutations in extracellular matrix organization genes and amplify MAPK signaling. By mining the clinical actionable gene database, we uncovered a number of TERThigh-specific somatic mutations, amplifications and high expression genes containing therapeutic targets. Finally, a random forest classifier integrating telomerase-associated multi-omics signatures identifies two cancer subtypes showed profound differences in telomerase activity and patient survival. Conclusions In summary, our results depict a telomerase-associated molecular landscape in cancers and provide therapeutic opportunities for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12943-019-1035-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhua Luo
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics Cincinnati, Ohio, 45229, USA
| | - Weixu Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xuyang Feng
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45230, USA.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Changchang Xin
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Konieczna N, Romaniuk-Drapała A, Lisiak N, Totoń E, Paszel-Jaworska A, Kaczmarek M, Rubiś B. Telomerase Inhibitor TMPyP4 Alters Adhesion and Migration of Breast-Cancer Cells MCF7 and MDA-MB-231. Int J Mol Sci 2019; 20:ijms20112670. [PMID: 31151281 PMCID: PMC6600420 DOI: 10.3390/ijms20112670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Human telomeres were one of the first discovered and characterized sequences forming quadruplex structures. Association of these structures with oncogenic and tumor suppressor proteins suggests their important role in cancer development and therapy efficacy. Since cationic porphyrin TMPyP4 is known as G-quadruplex stabilizer and telomerase inhibitor, the aim of the study was to analyze the anticancer properties of this compound in two different human breast-cancer MCF7 and MDA-MB-231 cell lines. The cytotoxicity of TMPyP4 alone or in combination with doxorubicin was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) and clonogenic assays, and the cell-cycle alterations were analyzed by flow cytometry. Telomerase expression and activity were evaluated using qPCR and telomeric repeat amplification protocol (TRAP) assays, respectively. The contribution of G-quadruplex inhibitor to protein pathways engaged in cell survival, DNA repair, adhesion, and migration was performed using immunodetection. Scratch assay and functional assessment of migration and cell adhesion were also performed. Consequently, it was revealed that in the short term, TMPyP4 neither revealed cytotoxic effect nor sensitized MCF7 and MDA-MB-231 to doxorubicin, but altered breast-cancer cell adhesion and migration. It suggests that TMPyP4 might substantially contribute to a significant decrease in cancer cell dissemination and, consequently, cancer cell survival reduction. Importantly, this effect might not be associated with telomeres or telomerase.
Collapse
Affiliation(s)
- Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
- Department of Medical Diagnostics, 38A Dobra St., 60-595 Poznań, Poland.
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, 5D Rokietnicka St., 60-806 Poznań, Poland.
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland.
| |
Collapse
|
35
|
Martín-Beltrán C, Sánchez-Peris M, Conesa-Milián L, Falomir E, Murga J, Carda M, Marco JA. Arylpyridines, arylpyrimidines and related compounds as potential modulator agents of the VEGF, hTERT and c-Myc oncogenes. Bioorg Med Chem 2019; 27:880-887. [PMID: 30733086 DOI: 10.1016/j.bmc.2019.01.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Twenty-four derivatives structurally related to honokiol have been synthesized and biologically evaluated. IC50 values were determined towards the HT-29, MCF-7 and HEK-293 cell lines. Some of these derivatives exhibited comparable or lower IC50 values than honokiol towards the HT-29 and MCF-7 cell lines or else higher selectivity indexes than the natural product. Twelve selected derivatives were evaluated for their ability to inhibit the expression of the VEGFA, hTERT and c-Myc genes and also to inhibit the production of total c-Myc protein and the secretion of the VEGF protein. One of the most promising compounds, 3-(2,4-dimethoxyphenyl)pyridine, may be a good candidate for further studies as an anticancer agent as it is able to improve the effect shown by honokiol in downregulating all gene expression and protein production at a safe concentration for non-tumor cells.
Collapse
Affiliation(s)
- Celia Martín-Beltrán
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - María Sánchez-Peris
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Laura Conesa-Milián
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Juan Murga
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain.
| | - Miguel Carda
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - J Alberto Marco
- Dept. de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
36
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Romaniuk A, Paszel-Jaworska A, Totoń E, Lisiak N, Hołysz H, Królak A, Grodecka-Gazdecka S, Rubiś B. The non-canonical functions of telomerase: to turn off or not to turn off. Mol Biol Rep 2018; 46:1401-1411. [PMID: 30448892 DOI: 10.1007/s11033-018-4496-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Telomerase is perceived as an immortality enzyme that enables passing the Hayflick limit. Its main function is telomere restoration but only in a limited group of cells, including cancer cells. Since it is found in a vast majority of cancer cells, it became a natural target for cancer therapy. However, it has much more functions than just altering the metabolism of telomeres-it also reveals numerous so-called non-canonical functions. Thus, a question arises whether it is always beneficial to turn it off when planning a cancer strategy and considering potential side effects? The purpose of this review is to discuss some of the recent discoveries about telomere-independent functions of telomerase in the context of cancer therapy and potential side effects.
Collapse
Affiliation(s)
- Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Hanna Hołysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Królak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland.
| |
Collapse
|
38
|
HuR regulates telomerase activity through TERC methylation. Nat Commun 2018; 9:2213. [PMID: 29880812 PMCID: PMC5992219 DOI: 10.1038/s41467-018-04617-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/07/2018] [Indexed: 01/21/2023] Open
Abstract
Telomerase consists of the catalytic protein TERT and the RNA TERC. Mutations in TERC are linked to human diseases, but the underlying mechanisms are poorly understood. Here we report that the RNA-binding protein HuR associates with TERC and promotes the assembly of the TERC/TERT complex by facilitating TERC C106 methylation. Dyskeratosis congenita (DC)-related TERC U100A mutation impair the association of HuR with TERC, thereby reducing C106 methylation. Two other TERC mutations linked to aplastic anemia and autosomal dominant DC, G107U, and GC107/108AG, likewise disrupt methylation at C106. Loss-of-HuR binding and hence lower TERC methylation leads to decreased telomerase activity and telomere shortening. Furthermore, HuR deficiency or mutation of mTERC HuR binding or methylation sites impair the renewal of mouse hematopoietic stem cells, recapitulating the bone marrow failure seen in DC. Collectively, our findings reveal a novel function of HuR, linking HuR to telomerase function and TERC-associated DC. Mutations in the RNA component TERC can cause telomerase dysfunction but the underlying mechanisms are largely unknown. Here, the authors show that RNA-binding protein HuR regulates telomerase function by enhancing the methylation of TERC, which is impaired by several disease-relevant TERC mutations.
Collapse
|
39
|
Bu R, Siraj AK, Divya SP, Kong Y, Parvathareddy SK, Al-Rasheed M, Al-Obaisi KAS, Victoria IG, Al-Sobhi SS, Al-Dawish M, Al-Dayel F, Al-Kuraya KS. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle Eastern papillary thyroid cancer. Int J Cancer 2017; 142:2028-2039. [PMID: 29266240 DOI: 10.1002/ijc.31225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/23/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Tumor recurrence occurs in ∼20% of PTCs and some reach advanced stages. Promoter mutation in the telomerase reverse transcriptase (TERT) gene is identified to be a prognostic marker in PTC. However, the contribution of TERT promoter mutation to cancer progression in PTC patients is still not fully understood. In this study, we investigated the incidence of TERT promoter mutations and TERT protein expression and their association with clinicopathological outcomes in a large cohort of PTC samples using direct sequencing technology and immunohistochemistry. Furthermore, two PTC cell lines were utilized to investigate role of TERT mutations in mediating metastasis. Two promoter hotspot mutations C228T and C250T were identified in 18.0% (167/927) of our cohort and were significantly associated with poor 5 years disease-free survival and distant metastasis of PTC. TERT protein overexpression was noted in 20.1% of our PTC cohort and was significantly associated with poor prognostic markers such as older age, extrathyroidal extension and Stage IV tumors. A significant association was also found between TERT overexpression and epithelial-mesenchymal transition (EMT) markers. Functional analysis showed that TERT inhibition reduced cell growth, invasion, migration and angiogenesis in PTC via suppression of EMT in PTC cells. Our results suggest that TERT promoter mutation is an independent predictor of disease-free survival and might drive the metastasis, and downregulation of TERT could potentiate antitumor and antimetastatic activities in PTC.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Yan Kong
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Khadija A S Al-Obaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Ingrid G Victoria
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Mohammed Al-Dawish
- Department of Diabetes and Endocrinology, Prince Sultan Military Medical City, Riyadh, 11159, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, , Riyadh, 11211, Saudi Arabia
| |
Collapse
|
40
|
Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression. Oncotarget 2017; 8:104418-104429. [PMID: 29262650 PMCID: PMC5732816 DOI: 10.18632/oncotarget.22301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
We investigated whether glioma stem-like cells (GSCs) malignantly transformed bone marrow mesenchymal stem cells (tBMSCs) in the tumor microenvironment. Transplantation of enhanced green fluorescence protein (EGFP)-labeled BMSCs into irradiated athymic nude mice was followed by intracranial injection of red fluorescent protein-expressing glioma stem-like cells (SU3-RFP-GSCs). Singly cloned EGFP-BMSCs, harvested from the intracranial tumors showed TERT overexpression, high proliferation, colony formation and invasiveness in Transwell matrigel assays. Transfection of normal BMSCs with TERT (TERT-BMSCs) enhanced proliferation, colony formation and invasiveness, though these characteristics remained lower than in tBMSCs. The tBMSCs and TERT-BMSCs showed high surface expression of CD44, CD105, CD29 and CD90 and an absence of CD31, CD34, CD45, and CD11b, as in normal BMSCs. Alizarin red S and oil red O staining confirmed tBMSCs and TERT-BMSCs transdifferentiated into osteocytes and adipocytes, respectively. When normal BMSCs were indirectly co-cultured in medium from SU3-RFP-GSCs, they exhibited increased growth and proliferation, suggesting paracrine factors from GSCs induced their malignant transformation. Tumorigenicity assays in athymic nude mice showed that transplanted tBMSCs and TERT-BMSCs generated 100% and 20% subcutaneous tumors, respectively, while normal BMSCs generated no tumors. GSCs thus induce malignant transformation of BMSCs by activating TERT expression in BMSCs.
Collapse
|
41
|
Pereira SS, Máximo V, Coelho R, Batista R, Soares P, Guerreiro SG, Sobrinho-Simões M, Monteiro MP, Pignatelli D. Telomerase and N-Cadherin Differential Importance in Adrenocortical Cancers and Adenomas. J Cell Biochem 2017; 118:2064-2071. [PMID: 27886397 DOI: 10.1002/jcb.25811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinomas (ACC) are most frequently highly aggressive tumors. We assessed the telomerase reverse transcriptase (TERT) and N-cadherin role in the biology of ACC and their potential utility as molecular biomarkers, in different types of tumoral adrenocortical tissue. A total of 48 adrenal cortex samples (39 tumoral and 9 normal adrenal glands) were studied. TERT promoter mutations were searched by PCR and Sanger sequencing in two hotspots positions (-124 and -146). Also, telomerase and N-cadherin expression were evaluated by immunohistochemistry. TERT promoter mutations were not detected in any of the samples either malignant or benign. Telomerase nuclear expression was present in 26.6% of ACC and in 45.5% of non-functioning adenomas. It was absent in benign Cushing's lesions and in normal adrenal glands. Contrarily, N-cadherin was always expressed in the cellular membranes of benign adenomas or normal adrenals but no expression was detected in the majority of ACC. Nuclear telomerase and membrane N-cadherin expression were positively correlated in ACCs. We conclude that in ACC, the loss of N-cadherin is a frequent phenomenon while the existence of TERT promoter mutations is not and nuclear telomerase expression is present in only a minority of cases. Since the loss of N-cadherin expression was identified in both high and low proliferative ACC, this marker should be considered important for diagnostic application. Our study also suggests the existence of a TERT non-canonical function in cell adhesion. J. Cell. Biochem. 118: 2064-2071, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Department of Anatomy and UMIB (Unit for Multidisciplinary Research in Biomedicine) of ICBAS, University of Porto, R. de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Coelho
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Rui Batista
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana G Guerreiro
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Pathology, Hospital S. João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mariana P Monteiro
- Department of Anatomy and UMIB (Unit for Multidisciplinary Research in Biomedicine) of ICBAS, University of Porto, R. de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Department of Endocrinology, Hospital S. João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
42
|
Ozturk MB, Li Y, Tergaonkar V. Current Insights to Regulation and Role of Telomerase in Human Diseases. Antioxidants (Basel) 2017; 6:antiox6010017. [PMID: 28264499 PMCID: PMC5384180 DOI: 10.3390/antiox6010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
The telomerase ribonucleoprotein complex has a pivotal role in regulating the proliferation and senescence of normal somatic cells as well as cancer cells. This complex is comprised mainly of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC) and other associated proteins that function to elongate telomeres localized at the end of the chromosomes. While reactivation of telomerase is a major hallmark of most cancers, together with the synergistic activation of other oncogenic signals, deficiency in telomerase and telomeric proteins might lead to aging and senescence-associated disorders. Therefore, it is critically important to understand the canonical as well as non-canonical functions of telomerase through TERT to develop a therapeutic strategy against telomerase-related diseases. In this review, we shed light on the regulation and function of telomerase, and current therapeutic strategies against telomerase in cancer and age-related diseases.
Collapse
Affiliation(s)
- Mert Burak Ozturk
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia.
| |
Collapse
|
43
|
Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer. Sci Rep 2017; 7:41670. [PMID: 28195144 PMCID: PMC5307321 DOI: 10.1038/srep41670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) is highly expressed in a variety of tumors. The transforming growth factor beta receptor type II (TGFBR2) is a downstream protein of transforming growth factor beta (TGF-β) which suppresses telomerase activity. However, the relevance of survival to the expression of TGFBR2, hTERT or TGFBR2/hTERT has not been previously investigated in cervical cancer tissues. Our study showed that patients with low level of TGFBR2 were associated with poor prognosis (HR = 1.704, P = 0.021), but no significant relevance between hTERT expression and survival (HR = 1.390, P = 0.181). However, a combination of low level of TGFBR2 and high level of hTERT was associated with a worse survival (HR = 1.892, P = 0.020), which had higher impact of hazard ratio (HR) on the overall survival (OS) than the low TGFBR2 expression alone. Knockdown of TGFBR2 expression by shRNA in Hela cells increased cell proliferation, cell invasion, G1/S transition and telomere homeostasis but decreased cell apoptosis. Overexpressing TGFBR2 and inhibiting hTERT suppressed Hela cell growth. These results would lead us to further explore whether a phenotype of TGFBR2low/hTERThigh could be considered as a predictor of poor prognosis, and whether simultaneous use of TGFBR2 agonist and hTERT inhibitor could be developed as a therapeutic strategy.
Collapse
|
44
|
Khattar E, Kumar P, Liu CY, Akıncılar SC, Raju A, Lakshmanan M, Maury JJP, Qiang Y, Li S, Tan EY, Hui KM, Shi M, Loh YH, Tergaonkar V. Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. J Clin Invest 2016; 126:4045-4060. [PMID: 27643433 DOI: 10.1172/jci86042] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Transcriptional reactivation of telomerase reverse transcriptase (TERT) reconstitutes telomerase activity in the majority of human cancers. Here, we found that ectopic TERT expression increases cell proliferation, while acute reductions in TERT levels lead to a dramatic loss of proliferation without any change in telomere length, suggesting that the effects of TERT could be telomere independent. We observed that TERT determines the growth rate of cancer cells by directly regulating global protein synthesis independently of its catalytic activity. Genome-wide TERT binding across 5 cancer cell lines and 2 embryonic stem cell lines revealed that endogenous TERT, driven by mutant promoters or oncogenes, directly associates with the RNA polymerase III (pol III) subunit RPC32 and enhances its recruitment to chromatin, resulting in increased RNA pol III occupancy and tRNA expression in cancers. TERT-deficient mice displayed marked delays in polyomavirus middle T oncogene-induced (PyMT-induced) mammary tumorigenesis, increased survival, and reductions in tRNA levels. Ectopic expression of either RPC32 or TERT restored tRNA levels and proliferation defects in TERT-depleted cells. Finally, we determined that levels of TERT and tRNA correlated in breast and liver cancer samples. Together, these data suggest the existence of a unifying mechanism by which TERT enhances translation in cells to regulate cancer cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/pathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Interaction Domains and Motifs
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Telomerase/physiology
Collapse
|
45
|
Telomerase: The Devil Inside. Genes (Basel) 2016; 7:genes7080043. [PMID: 27483324 PMCID: PMC4999831 DOI: 10.3390/genes7080043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies.
Collapse
|
46
|
Abstract
Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.
Collapse
|