1
|
Tanaka Y. Development of High-Throughput Quantitative Imaging Mass Spectrometry for Analysis of Drug Distribution in Tissues. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5135. [PMID: 40195287 DOI: 10.1002/jms.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) is applied in drug discovery and development. A high-throughput quantitative MALDI-IMS methodology was developed to confirm whether epertinib is superior to lapatinib in penetrating brain metastases using intraventricular injection mouse models (IVMs) of human EGFR2 (HER2)-positive breast or T790M-EGFR-positive lung cancer cells. A simple calibration curve was prepared for each compound via spotting standard solutions without using blank tissue sections or blank tissues onto the same glass slide as the epertinib or lapatinib brain section samples. Quantitative MALDI-IMS was performed via coating a glass slide with a MALDI matrix solution containing each internal standard solution. The samples of calibration curve and brain section were analyzed using a linear ion trap mass spectrometer with a MALDI ion source. Epertinib and lapatinib responses were strongly linear, with a wide dynamic range and low variation (relative standard deviation [RSD] < 20%) among the individual concentrations. Epertinib and lapatinib were sufficiently extracted from brain sections after oral administration in a breast cancer IVM. The quantitative MALDI-IMS results revealed that the epertinib concentrations administered to the brain sections in the lung cancer IVM were similar to those measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Quantitative MALDI-IMS, owing to its high reproducibility and throughput, is useful for selecting drug candidates in the early stages of discovery and development, enabling efficient and rapid screening of candidate compounds as well as an understanding of the mechanisms of drug efficacy, toxicity, and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Yukari Tanaka
- Drug Metabolism and Pharmacokinetics and Analytical Sciences, Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Kibbe RR, Muddiman DC. Quantitative mass spectrometry imaging (qMSI): A tutorial. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5009. [PMID: 38488849 PMCID: PMC11608390 DOI: 10.1002/jms.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Mass spectrometry imaging (MSI) is an analytical technique that enables the simultaneous detection of hundreds to thousands of chemical species while retaining their spatial information; usually, MSI is applied to biological tissues. Combining these elements can create ion images, which allows for the identification and localization of multiple chemical species within the sample. Being able to produce molecular images of biological tissues has already impacted the study of health and disease; however, the next logical step is being able to combine MSI with quantitative mass spectrometry methods to both quantify and determine the localization of disease progression or drug action. In this tutorial, we will detail the main factors to consider when designing a qMSI experiment and highlight the methods that have been developed to overcome these added complexities, specifically for those newer to the field of MSI.
Collapse
Affiliation(s)
- Russell R Kibbe
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Applications of mass spectroscopy in understanding cancer proteomics. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Wu Q. A review on quantitation-related factors and quantitation strategies in mass spectrometry imaging of small biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3932-3943. [PMID: 36164961 DOI: 10.1039/d2ay01257j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Accurate quantitative information of the analytes in mass spectrometry imaging (MSI) is fundamental for determining the accurate spatial distribution, which can provide additional insight into the living processes, disease progression or the pharmacokinetic-pharmacodynamic mechanisms. However, performing a quantitative analysis in MSI is still challenging. This review focuses on the quantitation-related factors and recent advances in the strategies of quantitative MSI (q-MSI) of small molecules. The main quantitation-related factors are discussed according to the new investigations in recent years, including the regionally varied extraction efficiencies and ionization efficiencies, signal-concentration regression functions, and the repeatability of surface sampling/ionization methods. Newly developed quantitation strategies in MSI based on aforementioned factors are introduced, including new techniques in standard curve calibration with normalization to an internal standard, kinetic calibration, and chemometric methods. Different strategies for validating q-MSI methods are discussed. Finally, the future perspectives to q-MSI are proposed.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| |
Collapse
|
5
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
6
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
7
|
Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections. Pharmaceuticals (Basel) 2022; 15:ph15060694. [PMID: 35745613 PMCID: PMC9228120 DOI: 10.3390/ph15060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used.
Collapse
|
8
|
Agrawal I, Tripathi P, Biswas S. Mass Spectrometry Based Protein Biomarkers and Drug Target Discovery and Clinical Diagnosis in Age-Related Progressing Neurodegenerative Diseases. Drug Metab Rev 2022; 54:22-36. [PMID: 35038284 DOI: 10.1080/03602532.2022.2029475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases correspond to overly complex health disorders that are driven by intersecting pathophysiology that are often trapped in vicious cycles of degeneration and cognitive decline. The usual diagnostic route of these diseases is based on postmortem examination that involves identifying pathology that is specific to the disease in the brain. However, in such cases, accurate diagnosis of the specific disease is limited because clinical disease presentations are often complex that do not easily allow to discriminate patient's cognitive, behavioral, and functional impairment profiles. Additionally, an early identification and therapeutic intervention of these diseases is pivotal to slow the progression of neurodegeneration and extend healthy life span. Mass spectrometry-based techniques have proven to be hugely promising in biological sample analysis and discovery of biomarkers including protein and peptide biomarkers for potential drug target discovery. Recent studies on these biomarkers have demonstrated their potential for applications in early diagnostics and identifying therapeutic targets to battle against neurodegenerative diseases. In this review, we have presented principles of mass spectrometry (MS) and the associated workflows in analyzing and imaging biological samples for discovery of biomarkers. We have especially focused on age- related progressing neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FTD) and the related MS-based biomarkers developments for these diseases. Finally, we present a future perspective discussing the potential research directions ahead.
Collapse
Affiliation(s)
- Ishita Agrawal
- Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pallavi Tripathi
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shyamasri Biswas
- USA Prime Biotech LLC, 1330 NW 6th St., Suite A-2, Gainesville, FL 32601, USA
| |
Collapse
|
9
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Nicol MR, McRae M. Treating viruses in the brain: Perspectives from NeuroAIDS. Neurosci Lett 2021; 748:135691. [PMID: 33524474 DOI: 10.1016/j.neulet.2021.135691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/12/2023]
Abstract
Aggressive use of antiretroviral therapy has led to excellent viral suppression within the systemic circulation. However, despite these advances, HIV reservoirs still persist. The persistence of HIV within the brain can lead to the development of HIV-associated neurocognitive disorders (HAND). Although the causes of the development of neurocognitive disorders is likely multifactorial, the inability of antiretroviral therapy to achieve adequate concentrations within the brain is likely a major contributing factor. Information about antiretroviral drug exposure within the brain is limited. Clinically, drug concentrations within the cerebrospinal fluid (CSF) are used as markers for central nervous system (CNS) drug exposure. However, significant differences exist; CSF concentration is often a poor predictor of drug exposure within the brain. This article reviews the current information regarding antiretroviral exposure within the brain in humans as well as preclinical animals and discusses the impact of co-morbidities on antiretroviral efficacy within the brain. A more thorough understanding of antiretroviral penetration into the brain is an essential component to the development of better therapeutic strategies for neuroAIDS.
Collapse
Affiliation(s)
- Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Hayashi Y, Ohuchi M, Ryu S, Yagishita S, Hamada A. A procedure for method development and protein binding ratio as the indicator of sensitivity with anticancer agents on MALDI mass spectrometry imaging. Drug Metab Pharmacokinet 2021; 38:100385. [PMID: 33878680 DOI: 10.1016/j.dmpk.2021.100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023]
Abstract
The concentration and distribution of a drug and its metabolites in tissues are key factors for elucidating both drug efficacy and toxicity in drug development. In this study we developed a pharamaco-imaging procedure for 12 agents and investigated the relationship between the properties of target compounds and the sensitivities of detection in matrix-assisted laser desorption/ionization-mass spectrometer imaging (MALDI-MSI). We prepared mock samples with mouse liver homogenates diluted with gelatin solution, limit of detection concentrations of each compound was confirmed. The correlation was evaluated between the intensities of mass signals obtained in MALDI-MSI with each test compound (the intensities of the test compounds) at a consistent concentration and the properties of each test compound. The liver homogenate diluted with gelatin solution showed easier handling and lower coefficients of variation than did liver homogenate only, and can be used as a good surrogate matrix. Based on the analysis of 12 agents, the protein binding ratios showed significant correlation to the detection sensitivities. We presented a procedure for standardization of pharmaco-imaging method development with an in-tissue method using MALDI-MS. Our results indicated the correlation between test compound's sensitivity and their protein binding ratios in plasma or serum.
Collapse
Affiliation(s)
- Yoshiharu Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Department of Medical Oncology and Translational Research, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Bioanalysis Research Department, CMIC Pharma Science Co., Ltd., 17-18 Nakahata-cho,Nishiwaki, Hyogo, 677-0032, Japan
| | - Mayu Ohuchi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Department of Medical Oncology and Translational Research, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Department of Medical Oncology and Translational Research, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
13
|
Hamada A. [Drug Development Based on Intracellular Pharmacokinetic Analysis of Molecular Target Drug in Mice Bearing Patient-derived Xenograft Model]. YAKUGAKU ZASSHI 2020; 140:641-648. [PMID: 32378664 DOI: 10.1248/yakushi.19-00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditionally, anticancer drug discovery research has been conducted based on immortalized cancer cell lines, either cultured in vitro or grown in vivo. In the USA and Europe, patient derived xenograft (PDX) model is rapidly expelling traditional in vitro and in vivo models due to the good predictability of clinical outcome and its nature of retaining characteristics and heterogeneity in the original tumor. Furthermore, a significant association was also reported between drug responses in patient and corresponding PDX as high as 87%. We are preparing a PDX model for Japanese cancer patients including drug resistance examples and rare cancers. Using the established PDX model, we confirmed the possibility that the tumor microenvironment might affect the efficacy and distribution of drugs even if the target receptor is expressed in tumor sites as compared to the cell line (CDX) model, which has been widely used in drug discovery. Interestingly, although expressing a target receptor in viable tumor cells, we also have found a PDX model with a lower distribution of molecular target drug. Therefore we will evaluate the usefulness of the PDX model in drug development by exploring new biomarkers and elucidating the mechanisms of drug resistance in target tumors. Moreover, pharmaco-imaging system will allow us to visualize the exposure and distribution of drugs in tumors at macro and micro levels. Finally, we evaluate relations between distribution of drugs in the tumor microenvironment including target tumor cells, neovessels, stromal cells, immune cells, and fibroblasts.
Collapse
Affiliation(s)
- Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| |
Collapse
|
14
|
Arai S, Takeuchi S, Fukuda K, Taniguchi H, Nishiyama A, Tanimoto A, Satouchi M, Yamashita K, Ohtsubo K, Nanjo S, Kumagai T, Katayama R, Nishio M, Zheng MM, Wu YL, Nishihara H, Yamamoto T, Nakada M, Yano S. Osimertinib Overcomes Alectinib Resistance Caused by Amphiregulin in a Leptomeningeal Carcinomatosis Model of ALK-Rearranged Lung Cancer. J Thorac Oncol 2020; 15:752-765. [PMID: 31972351 DOI: 10.1016/j.jtho.2020.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Leptomeningeal carcinomatosis (LMC) occurs frequently in anaplastic lymphoma kinase (ALK)-rearranged NSCLC and develops acquired resistance to ALK tyrosine kinase inhibitors (ALK TKIs). This study aimed to clarify the resistance mechanism to alectinib, a second-generation ALK TKI, in LMC and test a novel therapeutic strategy. METHODS We induced alectinib resistance in an LMC mouse model with ALK-rearranged NSCLC cell line, A925LPE3, by continuous oral alectinib treatment, established A925L/AR cells. Resistance mechanisms were analyzed using several assays, including Western blot and receptor tyrosine kinase array. We also measured amphiregulin (AREG) concentrations in cerebrospinal fluid from patients with ALK-rearranged NSCLC with alectinib-refractory LMC by enzyme-linked immunosorbent assay. RESULTS A925L/AR cells were moderately resistant to various ALK TKIs, such as alectinib, crizotinib, ceritinib, and lorlatinib, compared with parental cells in vitro. A925L/AR cells acquired the resistance by EGFR activation resulting from AREG overexpression caused by decreased expression of microRNA-449a. EGFR TKIs and anti-EGFR antibody resensitized A925L/AR cells to alectinib in vitro. In the LMC model with A925L/AR cells, combined treatment with alectinib and EGFR TKIs, such as erlotinib and osimertinib, successfully controlled progression of LMC. Mass spectrometry imaging showed accumulation of the EGFR TKIs in the tumor lesions. Moreover, notably higher AREG levels were detected in cerebrospinal fluid of patients with alectinib-resistant ALK-rearranged NSCLC with LMC (n = 4), compared with patients with EGFR-mutated NSCLC with EGFR TKI-resistant LMC (n = 30), or patients without LMC (n = 24). CONCLUSIONS These findings indicate the potential of novel therapies targeting both ALK and EGFR for the treatment of ALK TKI-resistant LMC in ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Sachiko Arai
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Miyako Satouchi
- Department of Thoracic Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Department of Medicine, Division of Hematology-Oncology, University of California San Francisco, San Francisco, California; Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation For Cancer Research, Tokyo, Japan
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangzhou, People's Republic of China; Guangdong Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangzhou, People's Republic of China; Guangdong Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China; Guangdong Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takushi Yamamoto
- Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, Kyoto, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
15
|
Quantification and assessment of detection capability in imaging mass spectrometry using a revised mimetic tissue model. Bioanalysis 2019; 11:1099-1116. [PMID: 31251106 DOI: 10.4155/bio-2019-0035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: A revised method of preparing the mimetic tissue model for quantitative imaging mass spectrometry (IMS) is evaluated. Concepts of assessing detection capability are adapted from other imaging or mass spectrometry (MS)-based technologies to improve upon the reliability of IMS quantification. Materials & methods: The mimetic tissue model is prepared by serially freezing spiked-tissue homogenates into a cylindrical mold to create a plug of tissue with a stepped concentration gradient of matrix-matched standards. Weighted least squares (WLS) linear regression is applied due to the heteroscedastisity (change in variance with intensity) of most MS data. Results & conclusions: Imaging poses several caveats for quantification which are unique compared with other MS-based methods. Aspects of the design, construction, application, and evaluation of the matrix-matched standard curve for the mimetic tissue model are discussed. In addition, the criticality of the ion distribution in the design of a purposeful liquid chromatography coupled to mass spectrometry (LC-MS) validation is reviewed.
Collapse
|
16
|
Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab Pharmacokinet 2019; 34:209-216. [DOI: 10.1016/j.dmpk.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
17
|
Quantitative Mass Spectrometry Imaging Reveals Mutation Status-independent Lack of Imatinib in Liver Metastases of Gastrointestinal Stromal Tumors. Sci Rep 2019; 9:10698. [PMID: 31337874 PMCID: PMC6650609 DOI: 10.1038/s41598-019-47089-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry imaging (MSI) is an enabling technology for label-free drug disposition studies at high spatial resolution in life science- and pharmaceutical research. We present the first extensive clinical matrix-assisted laser desorption/ionization (MALDI) quantitative mass spectrometry imaging (qMSI) study of drug uptake and distribution in clinical specimen, analyzing 56 specimens of tumor and corresponding non-tumor tissues from 27 imatinib-treated patients with the biopsy-proven rare disease gastrointestinal stromal tumors (GIST). For validation, we compared MALDI-TOF-qMSI with conventional UPLC-ESI-QTOF-MS-based quantification from tissue extracts and with ultra-high resolution MALDI-FTICR-qMSI. We introduced a novel generalized nonlinear calibration model of drug quantities based on computational evaluation of drug-containing areas that enabled better data fitting and assessment of the inherent method nonlinearities. Imatinib tissue spatial maps revealed striking inefficiency in drug penetration into GIST liver metastases even though the corresponding healthy liver tissues in the vicinity showed abundant imatinib levels beyond the limit of quantification (LOQ), thus providing evidence for secondary drug resistance independent of mutation status. Taken together, these findings underscore the important application of MALDI-qMSI in studying the spatial distribution of molecularly targeted therapeutics in oncology, namely to serve as orthogonal post-surgical approach to evaluate the contribution of anticancer drug disposition to resistance against treatment.
Collapse
|
18
|
Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, Mukasa A, Nishikawa R, Tamura K, Narita Y, Hamada A, Masutomi K, Ichimura K. Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci 2019; 110:2247-2257. [PMID: 31099446 PMCID: PMC6609810 DOI: 10.1111/cas.14067] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.
Collapse
Affiliation(s)
- Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunichiro Miki
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Fukuoka
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Raku Shinkyo
- Tsukuba Research Laboratory, Eisai, Tsukuba, Japan
| | | | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
19
|
Barry JA, Ait-Belkacem R, Hardesty WM, Benakli L, Andonian C, Licea-Perez H, Stauber J, Castellino S. Multicenter Validation Study of Quantitative Imaging Mass Spectrometry. Anal Chem 2019; 91:6266-6274. [PMID: 30938516 DOI: 10.1021/acs.analchem.9b01016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to assess potential sources of variability in quantitative imaging mass spectrometry (IMS) across multiple sites, analysts, and instruments. A sample from rat liver perfused with clozapine was distributed to three sites for analysis by three analysts using a predefined protocol to standardize the sample preparation, acquisition, and data analysis parameters. In addition, two commonly used approaches to IMS quantification, the mimetic tissue model and dilution series, were used to quantify clozapine and its major metabolite norclozapine in isolated perfused rat liver. The quantification was evaluated in terms of precision and accuracy with comparison to liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The results of this study showed that, across three analysts with six replicates each, both quantitative IMS methods achieved relative standard deviations in the low teens and accuracies of around 80% compared to LC-MS/MS quantification of adjacent tissue sections. The utility of a homogeneously coated stable-isotopically labeled standard (SIL) for normalization was appraised in terms of its potential to improve precision and accuracy of quantification as well as qualitatively reduce variability in the sample tissue images. SIL normalization had a larger influence on the dilution series, where the use of the internal standard was necessary to achieve accuracy and precision comparable to the non-normalized mimetic tissue model data. Normalization to the internal standard appeared most effective when the intensity ratio of the analyte to internal standard was approximately one, and thus precludes this method as a universal normalization approach for all ions in the acquisition.
Collapse
Affiliation(s)
- Jeremy A Barry
- Bioimaging , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Rima Ait-Belkacem
- Imabiotech SAS, Parc Eurasanté , 152 rue du Docteur Yersin , 59120 Loos , France
| | - William M Hardesty
- Bioimaging , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Lydia Benakli
- Imabiotech SAS, Parc Eurasanté , 152 rue du Docteur Yersin , 59120 Loos , France
| | - Clara Andonian
- Bioanalysis , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Hermes Licea-Perez
- Bioanalysis , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Jonathan Stauber
- Imabiotech SAS, Parc Eurasanté , 152 rue du Docteur Yersin , 59120 Loos , France.,Imabiotech Corp , 44 Manning Rd , Billerica , Massachusetts 01821 , United States
| | - Stephen Castellino
- Bioimaging , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| |
Collapse
|
20
|
Zhao Y, Prideaux B, Baistrocchi S, Sheppard DC, Perlin DS. Beyond tissue concentrations: antifungal penetration at the site of infection. Med Mycol 2019; 57:S161-S167. [PMID: 30816968 DOI: 10.1093/mmy/myy067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022] Open
Abstract
Despite advances in antifungal therapy, invasive fungal infections remain a significant cause of morbidity and mortality worldwide. One important factor contributing to the relative ineffectiveness of existing antifungal drugs is insufficient drug exposure at the site of infection. Despite the importance of this aspect of antifungal therapy, we generally lack a full appreciation of how antifungal drugs distribute, penetrate, and interact with their target organisms in different tissue subcompartments. A better understanding of drug distribution will be critical to guide appropriate use of currently available antifungal drugs, as well as to aid development of new agents. Herein we briefly review current perspectives of antifungal drug exposure at the site of infection and describe a new technique, matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging, which has the potential to greatly expand our understanding of drug penetration.
Collapse
Affiliation(s)
- Yanan Zhao
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Shane Baistrocchi
- Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Quebec H4A 3J1
| | - Donald C Sheppard
- Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Quebec H4A 3J1
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| |
Collapse
|
21
|
Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol 2019; 55:51-59. [DOI: 10.1016/j.copbio.2018.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
22
|
Rzagalinski I, Kovačević B, Hainz N, Meier C, Tschernig T, Volmer DA. Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix. Anal Chem 2018; 90:12592-12600. [PMID: 30260620 DOI: 10.1021/acs.analchem.8b02740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry , Saarland University , 66123 Saarbrücken , Germany
| | - Borislav Kovačević
- Group for Computational Life Sciences , Ruđer Bošković Institute , 10000 Zagreb , Croatia
| | - Nadine Hainz
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Dietrich A Volmer
- Department of Chemistry , Humboldt University of Berlin , 12489 Berlin , Germany
| |
Collapse
|
23
|
Srinivas N, Maffuid K, Kashuba ADM. Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System. Clin Pharmacokinet 2018; 57:1059-1074. [PMID: 29464550 PMCID: PMC6062484 DOI: 10.1007/s40262-018-0632-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer's disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.
Collapse
Affiliation(s)
- Nithya Srinivas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
24
|
Sparidans RW, Li W, Schinkel AH, Schellens JHM, Beijnen JH. Bioanalytical liquid chromatography-tandem mass spectrometric assay for the quantification of the ALK inhibitors alectinib, brigatinib and lorlatinib in plasma and mouse tissue homogenates. J Pharm Biomed Anal 2018; 161:136-143. [PMID: 30149189 DOI: 10.1016/j.jpba.2018.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
Abstract
Several second and third generation ALK inhibitors have been introduced in recent years. A bioanalytical assay for simultaneous quantification of alectinib, brigatinib, and lorlatinib was developed and validated for human plasma. The method was also partially validated for diluted mouse plasma and tissue homogenates of brain, liver, kidney, and spleen. Samples (40 μl) were pretreated in a 96-well plate by protein precipitation with acetonitrile containing the internal standard [2H8]-alectinib. After chromatographic separation on an ethylene bridged octadecyl silica column by gradient elution at 600 μl/min using 1% (v/v) formic acid (in water) and acetonitrile, compounds were ionized by a turbo electrospray and monitored by selected reaction monitoring on a triple quadrupole mass spectrometer. Validation was performed in a 2-2000 ng/ml concentration range for alectinib and lorlatinib and a 4-4000 ng/ml range for brigatinib. Precisions (within-day and between-day) were in the range 2.2-15.0% and accuracies were in between 87.2 and 110.2% for all matrices and levels. Compounds were sufficiently stable under most investigated conditions. Results of a pilot pharmacokinetic and tissue distribution study for brigatinib in mice are reported. Finally, successful incurred samples reanalysis of tissue homogenate samples containing brigatinib and lorlatinib is presented. Lorlatinib homogenate samples were also successfully reanalyzed using a second independent assay (cross-validation).
Collapse
Affiliation(s)
- Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Chemical Biology & Drug Development, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jan H M Schellens
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Jos H Beijnen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; MC Slotervaart, Department of Pharmacy & Pharmacology, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Nishimura M, Hayashi M, Mizutani Y, Takenaka K, Imamura Y, Chayahara N, Toyoda M, Kiyota N, Mukohara T, Aikawa H, Fujiwara Y, Hamada A, Minami H. Distribution of erlotinib in rash and normal skin in cancer patients receiving erlotinib visualized by matrix assisted laser desorption/ionization mass spectrometry imaging. Oncotarget 2018; 9:18540-18547. [PMID: 29719624 PMCID: PMC5915091 DOI: 10.18632/oncotarget.24928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Results Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm2; P = 0.009 in paired t-test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm3; P = 0.028 in paired t-test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P < 0.0001). Conclusions Focal distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. Methods We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC–MS/MS) with laser microdissection.
Collapse
Affiliation(s)
- Meiko Nishimura
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Yu Mizutani
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kei Takenaka
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshinori Imamura
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoko Chayahara
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Present Address: Department of Medical Oncology, Kobe Minimally invasive Cancer Center, Kobe, Hyogo, Japan
| | - Masanori Toyoda
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naomi Kiyota
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Mukohara
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Cancer Center, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Hiroaki Aikawa
- Division of Clinical Pharmacology and Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, National Cancer Center, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.,Department of Medical Oncology and Translational Research, Graduate school of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Cancer Center, Kobe University Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
26
|
Vallianatou T, Strittmatter N, Nilsson A, Shariatgorji M, Hamm G, Pereira M, Källback P, Svenningsson P, Karlgren M, Goodwin RJA, Andrén PE. A mass spectrometry imaging approach for investigating how drug-drug interactions influence drug blood-brain barrier permeability. Neuroimage 2018; 172:808-816. [PMID: 29329980 DOI: 10.1016/j.neuroimage.2018.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nicole Strittmatter
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Gregory Hamm
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Marcela Pereira
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Patrik Källback
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala, SE-751 23, Sweden
| | - Richard J A Goodwin
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.
| |
Collapse
|
27
|
MALDI mass spectrometry imaging of erlotinib administered in combination with bevacizumab in xenograft mice bearing B901L, EGFR-mutated NSCLC cells. Sci Rep 2017; 7:16763. [PMID: 29196706 PMCID: PMC5711937 DOI: 10.1038/s41598-017-17211-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Combination therapy of erlotinib plus bevacizumab improves progression-free survival of patients with epidermal growth factor receptor–mutated (EGFR-mutated) advanced non–small-cell lung cancer (NSCLC) compared with erlotinib alone. Although improved delivery and distribution of erlotinib to tumours as a result of the normalization of microvessels by bevacizumab is thought to be one of the underlying mechanisms, there is insufficient supporting evidence. B901L cells derived from EGFR-mutated NSCLC were subcutaneously implanted into mice, and mice were treated with bevacizumab or human IgG followed by treatment with erlotinib. The distribution of erlotinib in their tumours at different times after erlotinib administration was analysed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). We also analysed the distribution of erlotinib metabolites and the distribution of erlotinib in tumours refractory to erlotinib, which were established by long-term treatment with erlotinib. We found that erlotinib was broadly diffused in the tumours from B901L-implanted xenograft mice, independently of bevacizumab treatment. We also found that erlotinib metabolites were co-localized with erlotinib and that erlotinib in erlotinib-refractory tumours was broadly distributed throughout the tumour tissue. Multivariate imaging approaches using MALDI MSI as applied in this study are of great value for pharmacokinetic studies in drug development.
Collapse
|
28
|
Ryu S, Hayashi M, Aikawa H, Okamoto I, Fujiwara Y, Hamada A. Heterogeneous distribution of alectinib in neuroblastoma xenografts revealed by matrix-assisted laser desorption ionization mass spectrometry imaging: a pilot study. Br J Pharmacol 2017; 175:29-37. [PMID: 29027209 DOI: 10.1111/bph.14067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The penetration of the anaplastic lymphoma kinase (ALK) inhibitor alectinib in neuroblastomas and the relationship between alectinib and ALK expression are unknown. The aim of this study was to perform a quantitative investigation of the inter- and intra-tumoural distribution of alectinib in different neuroblastoma xenograft models using matrix-assisted laser desorption ionization MS imaging (MALDI-MSI). EXPERIMENTAL APPROACH The distribution of alectinib in NB1 (ALK amplification) and SK-N-FI (ALK wild-type) xenograft tissues was analysed using MALDI-MSI. The abundance of alectinib in tumours and intra-tumoural areas was quantified using ion signal intensities from MALDI-MSI after normalization by correlation with LC-MS/MS. KEY RESULTS The distribution of alectinib was heterogeneous in neuroblastomas. The penetration of alectinib was not significantly different between ALK amplification and ALK wide-type tissues using both LC-MS/MS concentrations and MSI intensities. Normalization with an internal standard increased the quantitative property of MSI by adjusting for the ion suppression effect. The distribution of alectinib in different intra-tumoural areas can alternatively be quantified from MS images by correlation with LC-MS/MS. CONCLUSION AND IMPLICATIONS The penetration of alectinib into tumour tissues may not be homogenous or influenced by ALK expression in the early period after single-dose administration. MALDI-MSI may prove to be a valuable pharmaceutical method for elucidating the mechanism of action of drugs by clarifying their microscopic distribution in heterogeneous tissues.
Collapse
Affiliation(s)
- Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Hiroaki Aikawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medical Oncology and Translational Research, Graduate school of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Evaluation of the heterogeneous tissue distribution of erlotinib in lung cancer using matrix-assisted laser desorption ionization mass spectrometry imaging. Sci Rep 2017; 7:12622. [PMID: 28974758 PMCID: PMC5626687 DOI: 10.1038/s41598-017-13025-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Although drug distribution in tumor tissues has a significant impact on efficacy, conventional pharmacokinetic analysis has some limitations with regard to its ability to provide a comprehensive assessment of drug tissue distribution. Erlotinib is a tyrosine kinase inhibitor that acts on the epidermal growth factor receptor; however, it is unclear how this drug is histologically distributed in lung cancer. We used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze erlotinib distribution in the tumor and normal lung tissues of a mouse xenograft model and patient with non-small cell lung cancer. LC-MS/MS showed that the erlotinib tissue concentration in the xenograft tumor tissue was clearly lower than that in the normal tissue at the time of maximum blood concentration. MALDI-MSI showed the heterogeneous distribution of erlotinib at various levels in the murine tissues; interestingly, erlotinib was predominantly localized in the area of viable tumor compared to the necrotic area. In the patient-derived tissue, MALDI-MSI showed that there were different concentrations of erlotinib distributed within the same tissue. For drug development and translational research, the imaging pharmacokinetic study used the combination of MALDI-MSI and LC-MS/MS analyses may be useful in tissues with heterogeneous drug distribution.
Collapse
|
30
|
Armitage EG, Ciborowski M. Applications of Metabolomics in Cancer Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:209-234. [PMID: 28132182 DOI: 10.1007/978-3-319-47656-8_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the start of metabolomics as a field of research, the number of studies related to cancer has grown to such an extent that cancer metabolomics now represents its own discipline. In this chapter, the applications of metabolomics in cancer studies are explored. Different approaches and analytical platforms can be employed for the analysis of samples depending on the goal of the study and the aspects of the cancer metabolome being investigated. Analyses have concerned a range of cancers including lung, colorectal, bladder, breast, gastric, oesophageal and thyroid, amongst others. Developments in these strategies and methodologies that have been applied are discussed, in addition to exemplifying the use of cancer metabolomics in the discovery of biomarkers and in the assessment of therapy (both pharmaceutical and nutraceutical). Finally, the application of cancer metabolomics in personalised medicine is presented.
Collapse
Affiliation(s)
- Emily Grace Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Campus Monteprincipe, Madrid, Spain. .,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK. .,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Gampa G, Vaidhyanathan S, Sarkaria JN, Elmquist WF. Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol Res 2017. [PMID: 28634084 DOI: 10.1016/j.phrs.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma has a high propensity to metastasize to the brain, and patients with melanoma brain metastases (MBM) have an extremely poor prognosis. The recent approval of several molecularly-targeted agents (e.g., BRAF, MEK inhibitors) and biologics (anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies) has brought new hope to patients suffering from this formerly untreatable and lethal disease. Importantly, there have been recent reports of success in some clinical studies examining the efficacy of both targeted agents and immunotherapies that show similar response rates in both brain metastases and extracranial disease. While these studies are encouraging, there remains significant room for improvement in the treatment of MBM, given the lack of durable response and the development of resistance to current therapies. Critical questions remain regarding mechanisms that lead to this lack of durable response and development of resistance, and how those mechanisms may differ in systemic sites versus brain metastases. One issue that may not be fully appreciated is that the delivery of several small molecule molecularly-targeted therapies to the brain is often restricted due to active efflux at the blood-brain barrier (BBB) interface. Inadequate local drug concentrations may be partially responsible for the development of unique patterns of resistance at metastatic sites in the brain. It is clear that there can be local, heterogeneous BBB breakdown in MBM, as exemplified by contrast-enhancement on T1-weighted MR imaging. However, it is possible that the successful treatment of MBM with small molecule targeted therapies will depend, in part, on the ability of these therapies to penetrate an intact BBB and reach the protected micro-metastases (so called "sub-clinical" disease) that escape early detection by contrast-enhanced MRI, as well as regions of tumor within MRI-detectable metastases that may have a less compromised BBB. The emergence of resistance in MBM may be related to several diverse, yet interrelated, factors including the distinct microenvironment of the brain and inadequate brain penetration of targeted therapies to specific regions of tumor. The tumor microenvironment has been ascribed to play a key role in steering the course of disease progression, by dictating changes in expression of tumor drivers and resistance-related signaling mechanisms. Therefore, a key issue to consider is how changes in drug delivery, and hence local drug concentrations within a metastatic microenvironment, will influence the development of resistance. Herein we discuss our perspective on several critical questions that focus on many aspects relevant to the treatment of melanoma brain metastases; the answers to which may lead to important advances in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Shruthi Vaidhyanathan
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
32
|
Arentz G, Mittal P, Zhang C, Ho YY, Briggs M, Winderbaum L, Hoffmann MK, Hoffmann P. Applications of Mass Spectrometry Imaging to Cancer. Adv Cancer Res 2017; 134:27-66. [PMID: 28110654 DOI: 10.1016/bs.acr.2016.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathologists play an essential role in the diagnosis and prognosis of benign and cancerous tumors. Clinicians provide tissue samples, for example, from a biopsy, which are then processed and thin sections are placed onto glass slides, followed by staining of the tissue with visible dyes. Upon processing and microscopic examination, a pathology report is provided, which relies on the pathologist's interpretation of the phenotypical presentation of the tissue. Targeted analysis of single proteins provide further insight and together with clinical data these results influence clinical decision making. Recent developments in mass spectrometry facilitate the collection of molecular information about such tissue specimens. These relatively new techniques generate label-free mass spectra across tissue sections providing nonbiased, nontargeted molecular information. At each pixel with spatial coordinates (x/y) a mass spectrum is acquired. The acquired mass spectrums can be visualized as intensity maps displaying the distribution of single m/z values of interest. Based on the sample preparation, proteins, peptides, lipids, small molecules, or glycans can be analyzed. The generated intensity maps/images allow new insights into tumor tissues. The technique has the ability to detect and characterize tumor cells and their environment in a spatial context and combined with histological staining, can be used to aid pathologists and clinicians in the diagnosis and management of cancer. Moreover, such data may help classify patients to aid therapy decisions and predict outcomes. The novel complementary mass spectrometry-based methods described in this chapter will contribute to the transformation of pathology services around the world.
Collapse
Affiliation(s)
- G Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - C Zhang
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Y-Y Ho
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M Briggs
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia; ARC Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA, Australia
| | - L Winderbaum
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M K Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
33
|
Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. J Proteomics 2017; 152:243-253. [DOI: 10.1016/j.jprot.2016.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
|
34
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
35
|
Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:726-739. [PMID: 28012871 DOI: 10.1016/j.bbapap.2016.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) permits label-free in situ analysis of chemical compounds directly from the surface of two-dimensional biological tissue slices. It links qualitative molecular information of compounds to their spatial coordinates and distribution within the investigated tissue. MALDI-MSI can also provide the quantitative amounts of target compounds in the tissue, if proper calibration techniques are performed. Obviously, as the target molecules are embedded within the biological tissue environment and analysis must be performed at their precise locations, there is no possibility for extensive sample clean-up routines or chromatographic separations as usually performed with homogenized biological materials; ion suppression phenomena therefore become a critical side effect of MALDI-MSI. Absolute quantification by MALDI-MSI should provide an accurate value of the concentration/amount of the compound of interest in relatively small, well-defined region of interest of the examined tissue, ideally in a single pixel. This goal is extremely challenging and will not only depend on the technical possibilities and limitations of the MSI instrument hardware, but equally on the chosen calibration/standardization strategy. These strategies are the main focus of this article and are discussed and contrasted in detail in this tutorial review. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
36
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
37
|
King D, McGinty S. Assessing the potential of mathematical modelling in designing drug-releasing orthopaedic implants. J Control Release 2016; 239:49-61. [PMID: 27521893 DOI: 10.1016/j.jconrel.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 12/26/2022]
Abstract
Orthopaedic implants have been the subject of intense research in recent years, with academics, clinicians and industrialists seeking to broaden our understanding of their function and potential consequences within the human body. Current research is focussed on ways to improve the integration of an orthopaedic device within the body, whether it be to encourage better osseointegration, combat possible infection or stem the foreign body response. A key emerging strategy is the controlled delivery of therapeutics from the device, which may take the form of, for example, antibiotics, analgesics, anti-inflammatories or growth factors. However, the optimal device design that gives rise to the desired controlled release has yet to be defined. There are many examples in the literature of experimental approaches which attempt to tackle this issue. However, the necessity of having to conduct multiple experiments to test different scenarios is a major drawback of this approach. So enter stage left: mathematical modelling. Using a mathematical modelling approach can provide much more than experiments in isolation. For instance, a mathematical model can help identify key drug release mechanisms and uncover the rate limiting processes; allow for the estimation of values of the parameters controlling the system; quantify the effect of the interaction with the biological environment; and aid with the design of optimisation strategies for controlled drug release. In this paper we review current experimental approaches and some relevant mathematical models and suggest the future direction of such approaches in this field.
Collapse
Affiliation(s)
- David King
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|