1
|
Maia C, Sousa H, Vale F, Sousa CA, Simões M. The influence of photoperiod and organic carbon levels in parabens removal from wastewater by Chlorella vulgaris. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124391. [PMID: 39908604 DOI: 10.1016/j.jenvman.2025.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Parabens are emerging contaminants due to their abundant use as preservatives and inefficient treatment in wastewater (WW) treatment plants. To overcome the limitations of WW treatment plants in removing parabens, microalgae-based bioremediation has aroused great interest as an effective and sustainable process. Nevertheless, several factors affect the WW bioremediation capacity, which must be studied to achieve an effective biological treatment. The main objective of the present work was to evaluate the effects of photoperiod and WW composition, specifically organic carbon concentration (sourced as glucose), on the ability of the microalga Chlorella vulgaris to remove methylparaben (MetP). For that, two photoperiods (12/12 h light/dark and 24 h light) were studied and the composition of synthetic WW (SWW) was manipulated to have a glucose concentration of 0, 3, 30, or 300 mg/L. It was observed that the photoperiod significantly affects the bioremediation process. For a 12/12 h photoperiod, MetP was not removed. Removal was effective for a 24 h photoperiod, with percentages of MetP removal over 88% for glucose concentrations lower than 30 mg/L, decreasing for higher glucose levels. MetP photodegradation was negligible. For the 24 h photoperiod, it was possible to verify that higher glucose concentrations decreased microalga growth, with a decrease in the specific growth rate and the production of photosynthetic pigments. Furthermore, with the increase of the glucose concentration, the MetP constant rate of degradation decreased and its half-life time increased, taking longer to degrade the contaminant (through diauxic growth). Also, C. vulgaris exhibited strong growth ability and removed over 80% of nitrogen and phosphorous, unaffected by the presence of MetP and proportional to glucose levels, underscoring its potential for treating WW contaminated with high concentrations of parabens.
Collapse
Affiliation(s)
- Carolina Maia
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisca Vale
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ISEP/P.PORTO, School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CIETI, School of Engineering, Polytechnic of Porto, Porto, Portugal.
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
2
|
Ogielska M, Chmielewska M, Rozenblut-Kościsty B. Pregametogenesis: The Earliest Stages of Gonad and Germline Differentiation in Anuran Amphibians. BIOLOGY 2024; 13:1017. [PMID: 39765684 PMCID: PMC11673927 DOI: 10.3390/biology13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
The gonads of amphibians, like other vertebrates, consist of somatic tissues, which create a specific environment essential for the differentiation of germline cells. The earliest stages of gametogenesis still remain underexplored in anuran amphibians. We propose to introduce the term "pregametogenesis" for a specific period of gonocyte proliferation and differentiation that occurs exclusively during the early stages of gonadal development. This review shows the key steps of early gonad differentiation in anuran amphibians and further compares chromatin reorganization in gonocytes of mammals and hybridogenetic water frogs. In mammals, this phase involves resetting genomic imprinting, which is crucial for determining gene expression in offspring. In hybridogenetic Pelophylax water frogs, we highlight the unique phenomenon of genome elimination, where one parental subgenome is eliminated while the other is replicated. This process, occurring at the same developmental phase as imprinting in mammals, underscores the evolutionary importance of pregametogenesis. The study of amphibian gonocytes provides valuable insights into chromatin reorganization and genome plasticity, offering new perspectives on reproductive biology.
Collapse
Affiliation(s)
| | | | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.O.); (M.C.)
| |
Collapse
|
3
|
Seol Y, Markiewicz M, Beil S, Schubert S, Jungmann D, Wasserscheid P, Stolte S. Aquatic toxicity, bioaccumulation potential, and human estrogen/androgen activity of three oxo-Liquid Organic Hydrogen Carrier (oxo-LOHC) systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135102. [PMID: 39003805 DOI: 10.1016/j.jhazmat.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.
Collapse
Affiliation(s)
- Yohan Seol
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Dirk Jungmann
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Peter Wasserscheid
- Institute of Chemical Reaction Engineering, Friedrich Alexander University of Erlangen Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Institute for a Sustainable Hydrogen Economy, 52428 Jülich, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.
| |
Collapse
|
4
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
5
|
Kloas W, Stöck M, Lutz I, Ziková-Kloas A. Endocrine disruption in teleosts and amphibians is mediated by anthropogenic and natural environmental factors: implications for risk assessment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220505. [PMID: 38310939 PMCID: PMC10838649 DOI: 10.1098/rstb.2022.0505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental variation in the Anthropocene involves several factors that interfere with endocrine systems of wildlife and humans, presenting a planetary boundary of still unknown dimensions. Here, we focus on chemical compounds and other impacts of anthropogenic and natural origins that are adversely affecting reproduction and development. The main sink of these endocrine disruptors (EDs) is surface waters, where they mostly endanger aquatic vertebrates, like teleost fish and amphibians. For regulatory purposes, EDs are categorized into EATS modalities (oestrogenic, androgenic, thyroidal, steroidogenesis), only addressing endocrine systems being assessable by validated tests. However, there is evidence that non-EATS modalities-and even natural sources, such as decomposition products of plants or parasitic infections-can affect vertebrate endocrine systems. Recently, the disturbance of natural circadian light rhythms by artificial light at night (ALAN) has been identified as another ED. Reviewing the knowledge about EDs affecting teleosts and amphibians leads to implications for risk assessment. The generally accepted WHO-definition for EDs, which focuses exclusively on 'exogenous substances' and neglects parasitic infections or ALAN, seems to require some adaptation. Natural EDs have been involved in coevolutionary processes for ages without resulting in a general loss of biodiversity. Therefore, to address the 'One Health'-principle, future research and regulatory efforts should focus on minimizing anthropogenic factors for endocrine disruption. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Werner Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Department of Endocrinology, Institute of Biology and Albrecht Daniel Thaer Institute, Faculty of Life Sciences, Humboldt University, Unter den Linden 6, 10117 Berlin, Germany
| | - Matthias Stöck
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Ilka Lutz
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Andrea Ziková-Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| |
Collapse
|
6
|
Orton F, Roberts-Rhodes B, Whatley C, Tyler CR. A review of non-destructive biomonitoring techniques to assess the impacts of pollution on reproductive health in frogs and toads. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115163. [PMID: 37354567 DOI: 10.1016/j.ecoenv.2023.115163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
In anuran amphibians (frogs and toads), evidence linking pollution to population declines is limited, in particular through impaired reproduction. Here we review the evidence for pollutant-induced alterations on reproductive endpoints in wild anurans with a particular focus on the application of non-destructive endpoints including on sex ratios, male reproductive phenotypes (data are too scarce for females) and reproductive outputs (reflective of mating success). Data evidencing alterations in sex ratio in wild anurans are scarce, however, both feminisation and masculinisation in response to pollution have been reported (seven studies). Male nuptial pad morphology and calling behaviour display high sensitivity to pollutant-exposure and are important features determining male breeding success, however there is considerable variation in these endpoints and inconsistencies in the responses of them to pollution are reported in wild anurans. Data for clutch size are insufficient to assess sensitivity to pollutants (five studies only). However, hatch success and offspring fitness (tadpole survival/development) are sensitive to pollution, with clear linkages to population stability. In conclusion, there are a wide range of non destructive measures with good potential for application to assess/monitor reproductive health in wild anurans, however, a greater understanding of pollutant effects on these endpoints is needed. There measures deserve wider application as they are relatively simple and inexpensive to implement, and as they can be applied non-destructively are widely applicable to our declining anuran populations.
Collapse
Affiliation(s)
- Frances Orton
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK; Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS UK.
| | - Bethany Roberts-Rhodes
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Catherine Whatley
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Staufer M, Burgstaller S, Horvath A, Landler L. Temporal and spatial variations in local sex ratios in a suburban population of the European green toad Bufotes viridis. BMC Ecol Evol 2023; 23:6. [PMID: 36932330 PMCID: PMC10024452 DOI: 10.1186/s12862-023-02106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Sex ratios of animal populations are important factors of population demographics. In pond-breeding amphibians, the operational sex ratio (OSR) among the breeding population is usually male-biased. Also, in European green toads (Bufotes viridis), males usually outnumber females at breeding sites, while the sex ratio of the total adult population (ASR) is assumed to be balanced. It has been suggested that sex-specific breeding behavior causes male-predominance at the breeding sites. We used a dataset of 5 years of street patrols to test this hypothesis. For this we analyzed local sex ratios of green toads in terrestrial habitats and at two artificial breeding ponds. We expected temporal and/or spatial changes of local sex ratios which would indicate sex dependent differences in breeding behavior. RESULTS Overall observed ASR among 2111 green toads, counted in the course of street patrols from 2016 to 2020, was slightly male-biased (ASR = 0.56, annual ASRs = 0.49-0.63). Based on the data of 1631 toads (920 males, 711 females) captured within a radius of 300 m around nine main breeding sites, temporal and spatial variations in local ASRs were evaluated. Resulting values were compared to the calculated OSR at two artificial breeding ponds in 2021 (645 adult: 553 males, 92 females). Estimates predict more equally distributed females and males prior to the main breeding season. During breeding season, males predominated at both breeding sites (B1: 0.83, B2: 0.89), whereas females are estimated to outnumber males in terrestrial habitats. Proportions of females highly significantly increased with advancing time of the year and increasing distance to the breeding sites. While males tended to accumulate in proximity to water bodies, females dispersed soon after breeding to more distant areas. CONCLUSIONS Observed sex ratios in the studied green toad population changed with time and sampling site, deviating from the population-wide sex ratio. Expanding sampling effort in amphibian conservation assessments in time and space, i.e., outside the main breeding season and away from the breeding sites, would be important to encompass such variations.
Collapse
Affiliation(s)
| | - Stephan Burgstaller
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria
| | - András Horvath
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria
| | - Lukas Landler
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria.
| |
Collapse
|
8
|
Holladay SD. Environmental contaminants, endocrine disruption, and transgender: Can "born that way" in some cases be toxicologically real? Hum Exp Toxicol 2023; 42:9603271231203382. [PMID: 37751728 DOI: 10.1177/09603271231203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Gender is viewed by many as strictly binary based on a collection of body traits typical of a female or male phenotype, presence of a genotype that includes at least one copy of a Y chromosome, or ability to produce either egg or sperm cells. A growing non-binary view is that these descriptors, while compelling, may nonetheless fail to accurately capture an individual's true gender. The position of the American Psychological Association (APA) agrees with this view and is that transgender people are a defendable and real part of the human population. The considerable diversity of transgender expression then argues against any unitary or simple explanations, however, prenatal hormone levels, genetic influences, and early and later life experiences have been suggested as playing roles in development of transgender identities. The present review considers existing and emerging toxicologic data that may also support an environmental chemical contribution to some transgender identities, and suggest the possibility of a growing nonbinary brain gender continuum in the human population.
Collapse
Affiliation(s)
- Steven David Holladay
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Windle S, McMurry S, Brain R, Maul J, Wolf J, Belden J. Atrazine and estradiol effects on development of Acris blanchardi (Blanchard's cricket frog) exposed in outdoor enclosures. PEST MANAGEMENT SCIENCE 2022; 78:4963-4974. [PMID: 36054315 DOI: 10.1002/ps.7119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The herbicide atrazine has been proposed as a potential endocrine disrupting compound (EDC) for amphibians. Using atrazine concentrations below or at those typically found in surface waters (0.5, 5.0, 50 μg/L), we exposed Acris blanchardi (Blanchard's cricket frog) larvae throughout development until metamorphosis (i.e. Gosner stages 26-45). An additional 50 μg/L treatment (50s μg/L) was utilized where supplemented algae was added to control for indirect atrazine effects from reduced food sources. In addition to atrazine, experimental groups also included a negative control and two positive controls, 17β-estradiol (E2) at 2.3 and 25 μg/L. At 60 days post-metamorphosis, A. blanchardi metamorphs were euthanized for analysis of gross and histopathological development. RESULTS Atrazine did not significantly influence mortality (mean recovery of 54% across treatments), sex ratio, body mass (BM), snout-vent length (SVL), gonad size, nor gonad development of A. blanchardi. Females exposed to 50s μg/L atrazine had 29% less mass, were 10% shorter, and had a 29% lower mean ovary area (mm2 ) as compared to negative controls, suggesting algae enrichment had a significant negative effect. Males exposed to estradiol (25 μg/L) showed an increased level of oviduct development. Ovary area was also significantly influenced by estradiol treatment at 2.3 and 25 μg/L. CONCLUSION Overall, estradiol had much less effect than predicted based on other model species (e.g. Xenopus laevis). Development of A. blanchardi, overall, was not affected by long-term exposure to environmentally relevant concentrations of atrazine. However, this species also was largely insensitive to exogenous estradiol in this test system. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shauni Windle
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Scott McMurry
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | | | | | - Jeffrey Wolf
- Experimental Pathology Laboratories, Inc., Sterling, VA, USA
| | - Jason Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
10
|
Marlatt VL, Bayen S, Castaneda-Cortès D, Delbès G, Grigorova P, Langlois VS, Martyniuk CJ, Metcalfe CD, Parent L, Rwigemera A, Thomson P, Van Der Kraak G. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. ENVIRONMENTAL RESEARCH 2022; 208:112584. [PMID: 34951986 DOI: 10.1016/j.envres.2021.112584] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in aquatic and terrestrial environments. The main objective of this review was to summarize the current knowledge of the impacts of EDCs on reproductive success in wildlife and humans. The examples selected often include a retrospective assessment of the knowledge of reproductive impacts over time to discern how the effects of EDCs have changed over the last several decades. Collectively, the evidence summarized here within reinforce the concept that reproduction in wildlife and humans is negatively impacted by anthropogenic chemicals, with several altering endocrine system function. These observations of chemicals interfering with different aspects of the reproductive endocrine axis are particularly pronounced for aquatic species and are often corroborated by laboratory-based experiments (i.e. fish, amphibians, birds). Noteworthy, many of these same indicators are also observed in epidemiological studies in mammalian wildlife and humans. Given the vast array of reproductive strategies used by animals, it is perhaps not surprising that no single disrupted target is predictive of reproductive effects. Nevertheless, there are some general features of the endocrine control of reproduction, and in particular, the critical role that steroid hormones play in these processes that confer a high degree of susceptibility to environmental chemicals. New research is needed on the implications of chemical exposures during development and the potential for long-term reproductive effects. Future emphasis on field-based observations that can form the basis of more deliberate, extensive, and long-term population level studies to monitor contaminant effects, including adverse effects on the endocrine system, are key to addressing these knowledge gaps.
Collapse
Affiliation(s)
- V L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - D Castaneda-Cortès
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Delbès
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Grigorova
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - V S Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - C J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C D Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Parent
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Thomson
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
12
|
Using Sex-Linked Markers via Genotyping-by-Sequencing to Identify XX/XY Sex Chromosomes in the Spiny Frog (Quasipaa boulengeri). Genes (Basel) 2022; 13:genes13040575. [PMID: 35456381 PMCID: PMC9027009 DOI: 10.3390/genes13040575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
We used genotyping-by-sequencing (GBS) to identify sex-linked markers in 43 wild-collected spiny frog (Quasipaa boulengeri) adults from a single site. We identified a total of 1049 putatively sex-linked GBS-tags, 98% of which indicated an XX/XY system, and finally confirmed 574 XY-type sex-linked loci. The sex specificity of five markers was further validated by PCR amplification using a large number of additional individuals from 26 populations of this species. A total of 27 sex linkage markers matched with the Dmrt1 gene, showing a conserved role in sex determination and differentiation in different organisms from flies and nematodes to mammals. Chromosome 1, which harbors Dmrt1, was considered as the most likely candidate sex chromosome in anurans. Five sex-linked SNP makers indicated sex reversals, which are sparsely present in wild amphibian populations, in three out of the one-hundred and thirty-three explored individuals. The variety of sex-linked markers identified could be used in population genetics analyses requiring information on individual sex or in investigations aimed at drawing inferences about sex determination and sex chromosome evolution.
Collapse
|
13
|
Mikó Z, Nemesházi E, Ujhegyi N, Verebélyi V, Ujszegi J, Kásler A, Bertalan R, Vili N, Gál Z, Hoffmann OI, Hettyey A, Bókony V. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117464. [PMID: 34380212 DOI: 10.1016/j.envpol.2021.117464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the female-to-male sex-reversing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Fish Parasitology Research Team, Veterinary Medical Research Institute, Eötvös Loránd Research Network, Hungária körút 21, H-1143, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| |
Collapse
|
14
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
15
|
Tang Y, Chen JY, Ding GH, Lin ZH. Analyzing the gonadal transcriptome of the frog Hoplobatrachus rugulosus to identify genes involved in sex development. BMC Genomics 2021; 22:552. [PMID: 34281525 PMCID: PMC8290591 DOI: 10.1186/s12864-021-07879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tiger frog (Hoplobatrachus rugulosus) is listed as a national Class II protected species in China. In the context of global warming, the sex ratio of amphibians will be affected, and the development of the population will be limited. Therefore, considering the potential for a decrease in the number of amphibians, studying sex evolution and molecular regulation of gonadal development in H. rugulosus, phenomenon that are currently unclear, is of great significance. RESULTS Here, H. rugulosus was used to explore the mechanisms regulating gonadal development in amphibians. Illumina HiSeq 3000 was used to sequence the gonadal transcriptome of male and female H. rugulosus at two growth stages to identify genes related to gonadal development and analyze expression differences in the gonads. This analysis indicated that cyp17α, hsd3β, hsd11β1, cyp19α, and hsd17β12 perform vital functions in sex development in amphibians. Specifically, the expression of cyp3α, cyp17α, hsd3β, hsd11β1, sox2, sox9, sox30, soat, cyp19α, hsd17β12, and hspα1s was correlated with gonadal development and differentiation in H. rugulosus, as determined using the quantitative reverse transcriptase-polymerase chain reaction. CONCLUSION Significant differences were found in the gonadal gene expression levels in H. rugulosus of both sexes, and we identified a steroid hormone synthesis pathway in this species and analyzed related gene expression, but the changes during sex differentiation were still unclear. To our knowledge, this report presents the first analysis of the H. rugulosus gonadal transcriptome and lays the foundation for future research.
Collapse
Affiliation(s)
- Yun Tang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.,College of Life Sciences, Nanjing Normal University, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.
| | - Zhi-Hua Lin
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Windle S, McMurry S, Brain R, Maul J, Pickford DB, Wolf J, Belden J. Evaluating a developmental endocrine toxicity assay for Blanchard's cricket frog (Acris blanchardi) in outdoor enclosures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145444. [PMID: 33636781 DOI: 10.1016/j.scitotenv.2021.145444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
A developmental toxicity testing design was evaluated for larval and post-metamorphic Blanchard's cricket frogs (Acris blanchardi) raised in outdoor enclosures. Larvae were chronically exposed to 17β-estradiol (0.0-2.3 μg/L E2) from free swimming (Gosner stage 26) until metamorphosis. Juvenile frogs were allowed to mature within the enclosures for 60 days to assess effects of larval exposure on development, including body mass, snout-vent length (SVL), sex ratio, gonad size, and gonadal histopathology. Forty-eight percent of the initial 600 animals were recovered at the end of the study. Recovery was not influenced by E2 exposure, but larval losses were negatively impacted by unusually high spring rain events that flooded some larval tanks, and heat-related mortality of late stage larvae during summer. All surviving larvae completed metamorphosis within an average of 47 days. Overall, E2 exposure did not influence sex ratio, or the body mass, SVL, or gonad size of either males or females. Development of testes was not influenced by E2 exposure, but oviduct development in males was 4.5-fold greater in the highest treatment. Oviduct and ovary development in females exposed to the two highest E2 treatments were half that of control females. Although not treatment related and despite ad-lib feeding, variation in terminal body mass and SVL within enclosures was pronounced, with minimum - maximum differences ranging from 207 to 1442 mg for body mass and 1 mm to 15 mm for SVL. This design allowed us to assess the effects of larval exposure to a contaminant on post-metamorphic development of a native amphibian in a semirealistic field environment. With modifications to decrease flooding or overheating, this enclosure design and species is a good test system for assessing contaminant effects on development of an amphibian from early larval stages through reproductive maturity.
Collapse
Affiliation(s)
- Shauni Windle
- Department of Integrative Biology, Oklahoma State University, United States of America.
| | - Scott McMurry
- Department of Integrative Biology, Oklahoma State University, United States of America
| | - Richard Brain
- Syngenta Crop Protection LLC., Greensboro, NC, United States of America
| | - Jonathan Maul
- Syngenta Crop Protection LLC., Greensboro, NC, United States of America
| | - Daniel B Pickford
- Syngenta Crop Protection Ltd., Jealott's Hill International Research Centre, UK
| | - Jeffrey Wolf
- Experimental Pathology Laboratories, Inc., Sterling, VA, United States of America
| | - Jason Belden
- Department of Integrative Biology, Oklahoma State University, United States of America
| |
Collapse
|
17
|
Piferrer F, Anastasiadi D. Do the Offspring of Sex Reversals Have Higher Sensitivity to Environmental Perturbations? Sex Dev 2021; 15:134-147. [PMID: 33910195 DOI: 10.1159/000515192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Sex determination systems in vertebrates vary along a continuum from genetic (GSD) to environmental sex determination (ESD). Individuals that show a sexual phenotype opposite to their genotypic sex are called sex reversals. Aside from genetic elements, temperature, sex steroids, and exogenous chemicals are common factors triggering sex reversal, a phenomenon that may occur even in strict GSD species. In this paper, we review the literature on instances of sex reversal in fish, amphibians, reptiles, birds, and mammals. We focus on the offspring of sex-reversed parents in the instances that they can be produced, and show that in all cases studied the offspring of these sex-reversed parents exhibit a higher sensitivity to environmental perturbations than the offspring of non-sex-reversed parents. We suggest that the inheritance of this sensitivity, aside from possible genetic factors, is likely to be mediated by epigenetic mechanisms such as DNA methylation, since these mechanisms are responsive to environmental cues, and epigenetic modifications can be transmitted to the subsequent generations. Species with a chromosomal GSD system with environmental sensitivity and availability of genetic sex markers should be employed to further test whether offspring of sex-reversed parents have greater sensitivity to environmental perturbations. Future studies could also benefit from detailed whole-genome data in order to elucidate the underlying molecular mechanisms. Finally, we discuss the consequences of such higher sensitivity in the context of global climate change.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
18
|
Phuge S, Sequeira A, Pandit R. Effect of ethylenethiourea on metamorphosis and ovary development: A comparative study of three larval frogs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:469-476. [PMID: 33830665 DOI: 10.1002/jez.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Amphibian endocrine systems interact with each other during normal development. Interference with one of the endocrine systems may influence others. We studied the effect of a thyroid inhibitor (ethylenethiourea [ETU]) on metamorphosis and ovary development of three species, Sphaerotheca pashchima, Indosylvirana caesari, and Euphlyctis cyanophlyctis with different larval durations. We treated the tadpoles of these species with 50, 100, and 200 mg/L concentrations of ETU and studied their larval duration, size at metamorphosis, and ovary development. The results revealed that ETU affects metamorphosis, depending on the species and concentration. ETU delayed metamorphosis of E. cyanophlyctis tadpoles and did not affect metamorphosis in S. pashchima tadpoles. Lower concentrations of ETU stimulated metamorphosis in I. caesari tadpoles while high concentration delayed metamorphosis. In the tadpoles (E. cyanophlyctis) treated with higher concentrations of ETU, ovary development was advanced with an increased size of the diplotene oocytes. Oocyte size was smaller in the tadpoles (of I. caesari) treated with lower concentrations of ETU. These results demonstrated that the tadpoles of these species show different responses to the thyroid inhibitor, possibly due to the differences in the larval duration and sensitivity. Inhibition or acceleration of metamorphosis did not interfere in the ovary development of E. cyanophlyctis and I. caesari. These results will be useful in understanding the impact of endocrine disruptors on the interaction between thyroid and sex steroid hormones.
Collapse
Affiliation(s)
- Samadhan Phuge
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Andrea Sequeira
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Radhakrishna Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
19
|
Markovic M, Neale PA, Nidumolu B, Kumar A. Combined toxicity of therapeutic pharmaceuticals to duckweed, Lemna minor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111428. [PMID: 33068976 DOI: 10.1016/j.ecoenv.2020.111428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals, which are designed to be biologically active at low concentrations, are found in surface waters, meaning aquatic organisms can be exposed to complex mixtures of pharmaceuticals. In this study, the adverse effects of four pharmaceuticals, 17α-ethynylestradiol (synthetic estrogen), methotrexate (anticancer drug), diclofenac (nonsteroidal anti-inflammatory drug) and fluoxetine (antidepressant), and their binary mixtures at mg/L concentrations were assessed using the 7-day Lemna minor test, with both apical and biochemical markers evaluated. The studied biochemical markers included chlorophyll a, chlorophyll b, carotenoids and oxidative stress enzymes catalase, glutathione-S-transferase and glutathione reductase, with effects compared to solvent controls. The adverse effects on Lemna minor were dose-dependent for frond number, surface area, relative chlorophyll content and activity of glutathione S-transferase for both individual pharmaceuticals and binary mixtures. According to the individual toxicity values, all tested pharmaceuticals can be considered as toxic or harmful to aquatic organisms, with methotrexate considered highly toxic. The most sensitive endpoints for the binary mixtures were photosynthetic pigments and frond surface area, with effects observed in the low mg/L concentration range. The concentration addition model and toxic unit approach gave similar mixture toxicity predictions, with binary mixtures of methotrexate and fluoxetine or methotrexate and 17α-ethynylestradiol exhibiting synergistic effects. In contrast, mixtures of diclofenac with fluoxetine, 17α-ethynylestradiol or methotrexate mostly showed additive effects. While low concentrations of methotrexate are expected in surface water, chronic ecotoxicological data for invertebrates and fish are lacking, but this is required to better assess the environmental risk of methotrexate.
Collapse
Affiliation(s)
- Marijana Markovic
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia; Soil Science, School of Agriculture Food and Wine, University of Adelaide, PMB 1 Glen Osmond, SA 5064 Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Bhanu Nidumolu
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia
| | - Anu Kumar
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia.
| |
Collapse
|
20
|
Bernabò I, Guardia A, Macirella R, Sesti S, Tripepi S, Brunelli E. Tissues injury and pathological changes in Hyla intermedia juveniles after chronic larval exposure to tebuconazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111367. [PMID: 32971454 DOI: 10.1016/j.ecoenv.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TBZ), an azole pesticide, is one of the most frequently detected fungicides in surface water. Despite its harmful effects, mainly related to endocrine disturbance, the consequences of TBZ exposure in amphibians remain poorly understood. Here, we investigated the adverse and delayed effects of TBZ chronic exposure on a native anuran species, often inhabiting cultivated areas, the Italian tree frog (Hyla intermedia). To disclose the multiple mechanisms of action through which TBZ exerts its toxicity we exposed tadpoles over the whole larval period to two sublethal TBZ concentrations (5 and 50 μg/L), and we evaluated histological alterations in three target organs highly susceptible to xenobiotics: liver, kidney, and gonads. We also assessed morphometric and gravimetric parameters: snout-vent length (SVL), body mass (BM), liver somatic index (LSI), and gonad-mesonephros complex index (GMCI) and determined sex ratio, gonadal development, and differentiation. Our results show that TBZ induces irreversible effects on multiple target organs in H. intermedia, exerting its harmful effects through several pathological pathways, including a massive inflammatory response. Moreover, TBZ markedly affects sexual differentiation also by inducing the appearance of sexually undetermined individuals and a general delay of germ cell maturation. Given the paucity of data on the effects of TBZ in amphibians, our results will contribute to a better understanding of the environmental risk posed by this fungicide to the most endangered group of vertebrates.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
21
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
22
|
Shen Y, Li Y, Zhu M, Li J, Qin Z. Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138522. [PMID: 32335401 DOI: 10.1016/j.scitotenv.2020.138522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Our recent study revealed some early molecular and cellular events in which 17β-estradiol (E2) disrupted testis differentiation and resulted in feminization in Xenopus laevis (the African clawed frog), an ideal species for studying reproductive endocrine disruption by estrogenic endocrine disrupting chemicals (EDCs). On this basis, we aimed to develop multiple biomarkers for early detection of testis differentiation disruption by estrogenic EDCs in X. laevis. Tadpoles at stage 45/46 were exposed to four known estrogenic EDCs with different estrogenic activities, including E2, diethylstilbestrol (DES), mestranol (MES) and 4-n-nonyphenol (NP). At stage 53, gonadal morphological and histological changes as well as altered sex-dimorphic gene expression in gonad-mesonephros complexes (GMCs) showed that these estrogenic EDCs disrupted testis differentiation and caused feminization to different degrees. Then we measured transcriptional changes of 48 candidate genes, which are believed to be associated with E2-induced testis differentiation alterations, in GMCs at stage 50. As a result, 19 genes were found to be transcriptionally altered by all test chemicals and proposed as promising biomarkers for early detection of testis differentiation disruption by estrogenic EDCs. Finally, all biomarker responses were integrated as integrated biomarker response (IBR) index to characterize testis differentiation disruption by these estrogenic EDCs in X. laevis. Compared with the methods used in previous studies, the multiple biomarker test using X. laevis at early developmental stages largely shortens the exposure duration, thereby achieving the goal of rapid detection. Certainly, the biomarker test needs further validations in the future study.
Collapse
Affiliation(s)
- Yanping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Li JB, Li YY, Shen YP, Zhu M, Li XH, Qin ZF. 2,2',4,4'-tetrabromodipheny ether (BDE-47) disrupts gonadal development of the Africa clawed frog (Xenopus laevis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105441. [PMID: 32045789 DOI: 10.1016/j.aquatox.2020.105441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that BDE-47, one of the most abundant polybrominated diphenyl ethers (PBDEs) congeners, has a weak estrogenic activity, but it has remained unclear whether BDE-47 disrupts gonadal development and causes male-to-female sex reversal in lower vertebrates, with limited and controversial data. The present study aimed to determine the effects of BDE-47 on gonadal development in Xenopus laevis, a model amphibian species for studying adverse effects of estrogenic chemicals on reproductive development. X. laevis at stage 45/46 were exposed to BDE-47 (0.5, 5, 50 nM) in semi-static system, with 1 nM 17β-estradiol (E2) as the positive control. When reaching stage 53, tadpoles were examined for gonadal morphology, histology and sex-dimorphic gene expression. The phenotypic sex (gonadal morphology and histology) of each BDE-47-treated tadpole matched its genetic sex, showing no sex-reversal, whereas one half of genetic males treated with E2 displayed ovarian-like features. However, some genetic males (26%) in the 50 nM BDE-47 treatment group were found to contain more germ cells clumping together in the medulla, along with an increasing tendency of the gonad length/kidney length ratio in males, resembling feminizing outcomes of E2. These observations seem to suggest that BDE-47 exerted weak feminizing effects. However, BDE-47 induced increases in expression of both female-biased genes and male-biased genes in two sexes, which disagrees with feminizing outcomes, suggesting complicated effects of BDE-47 on gonadal development. Taken together, all results demonstrate that nanomolar BDE-47 disrupted gonadal development and exerted weak feminizing effects, but not resulted in male-to-female sex reversal in X. laevis.
Collapse
Affiliation(s)
- Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Tang Y, Chen ZQ, Lin YF, Chen JY, Ding GH, Ji X. The combined effects of temperature and aromatase inhibitor on metamorphosis, growth, locomotion, and sex ratio of tiger frog ( Hoplobatrachus rugulosus) tadpoles. PeerJ 2020; 8:e8834. [PMID: 32219039 PMCID: PMC7087491 DOI: 10.7717/peerj.8834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background The tiger frog (Hoplobatrachus rugulosus) is widely raised by many farms in southern region of China as an economically edible frog. The growth, development, and sexual differentiation of amphibians are influenced by temperature and steroid hormone level. However, the problem of hormone residues is caused by the addition of exogenous hormones in frog breeding, it is worth considering whether non-sterol aromatase inhibitors can be used instead of hormones. Methods In our study, H. rugulosus tadpoles were subjected to two water temperatures (29 °C and 34 °C) and three letrozole concentrations in the feed (0, 0.1 and 1 mg/g) to examine the effects of temperature, aromatase inhibitor and their interaction on metamorphosis, locomotion, and sex ratios. A G-test and contingency table were used to analyze the metamorphosis rate of tadpoles and the survival rate of froglets after feeding for 90 days. A G-test was also used to analyze sex ratios in different treatment groups. Results Metamorphosis time and body size (snout-vent length, body mass and condition factor) were significantly different between the two temperature treatments. Metamorphosis time was longer and body size was increased at 29 °C compared to those at 34 °C. Letrozole concentration and the temperature × letrozole interaction did not affect these variables. The jumping distance of froglets following metamorphosis was positively associated with the condition factor; when controlling for condition factor, jumping distance was not affected by temperature, letrozole concentration and their interaction. Temperature and letrozole concentration also did not affect metamorphosis and survival rate. Sex ratio of the control group (0 mg/g letrozole) was 1:1 at 29 °C, but there were more males at 34 °C. The sex ratios of H. rugulosus treated with letrozole at 29 °C and 34 °C were significantly biased toward males, and male ratio increased as letrozole concentration increased. Furthermore, more males were produced at 34 °C than at 29 °C at each letrozole concentration.
Collapse
Affiliation(s)
- Yun Tang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, P.R. China.,College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
| | - Zhi-Qiang Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, P.R. China.,College of Animal Science and Technology, Zhejiang A & F University, Lin'an, Zhejiang, P.R. China
| | - You-Fu Lin
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, P.R. China.,College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, P.R. China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, P.R. China
| | - Xiang Ji
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
25
|
Zlotnik S, Gridi-Papp M, Bernal XE. Laryngeal Demasculinization in Wild Cane Toads Varies with Land Use. ECOHEALTH 2019; 16:682-693. [PMID: 31628632 DOI: 10.1007/s10393-019-01447-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic factors, including the spread of endocrine-disrupting chemicals, have been linked to alterations in the reproductive physiology, morphology, and behavior of wildlife. Few studies of endocrine disruption, however, focus on secondary sexual traits that affect mating signals, despite their importance for reproductive success. The larynx of many anurans (frogs and toads), for example, is larger in males than in females and is crucial for producing mating calls. We aim to determine if wild populations of cane toads (Rhinella marina) near sugarcane fields in Florida have demasculinized larynges when compared to populations near urban areas. We find evidence of demasculinization in both primary and secondary sexual traits in male toads living near sugarcane. Relative to body size, the laryngeal mass, vocal cord length, and dilator muscle width are all reduced in males from sugarcane regions compared to their urban counterparts. Strong correlations between primary and secondary male sexual traits indicate that demasculinization occurs in concert both within and across diverse organs, including the testes, larynx, and skin. Our results show that anurans near sugarcane fields have demasculinized reproductive systems, that this disruption extends to secondary sexual traits like the larynx, and that it is likely due to anthropogenic causes.
Collapse
Affiliation(s)
- Sara Zlotnik
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
- School of Natural Resources and Environment, University of Florida, 103 Black Hall, Gainesville, FL, 32611, USA.
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Ximena E Bernal
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| |
Collapse
|
26
|
Sievers M, Hale R, Parris KM, Melvin SD, Lanctôt CM, Swearer SE. Contaminant-induced behavioural changes in amphibians: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133570. [PMID: 31369889 DOI: 10.1016/j.scitotenv.2019.07.376] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination contributes to the threatened status of many amphibian populations. Many contaminants alter behaviour at concentrations commonly experienced in the environment, with negative consequences for individual fitness, populations and communities. A comprehensive, quantitative evaluation of the behavioural sensitivity of amphibians is warranted to better understand the population-level and resultant ecological impacts of contaminants. We conducted a systematic review and meta-analysis evaluating behavioural changes following exposure to contaminants. Most studies were conducted in North America and Europe on larval stages, and 64% of the 116 studies focussed on the effects of insecticides. We found that a suite of contaminants influence a wide range of behaviours in amphibians, with insecticides typically invoking the strongest responses. In particular, insecticides increased rates of abnormal swimming, and reduced escape responses to simulated predator attacks. Our analysis identified five key needs for future research, in particular the need: (1) for researchers to provide more details of experimental protocols and results (2) to develop a strong research base for future quantitative reviews, (3) to broaden the suite of contaminants tested, (4) to better study and thus understand the effects of multiple stressors, and (5) to establish the ecological importance of behavioural alterations. Behavioural endpoints provide useful sub-lethal indicators of how contaminants influence amphibians, and coupled with standard ecotoxicological endpoints, can provide valuable information for population models assessing the broader ecological consequences of environmental contamination.
Collapse
Affiliation(s)
- Michael Sievers
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Australian Rivers Institute - Coast & Estuaries, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Robin Hale
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kirsten M Parris
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Chantal M Lanctôt
- Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Stephen E Swearer
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes. G3-GENES GENOMES GENETICS 2019; 9:3467-3476. [PMID: 31439718 PMCID: PMC6778777 DOI: 10.1534/g3.119.400556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systems of genetic sex determination and the homology of sex chromosomes in different taxa vary greatly across vertebrates. Much progress remains to be made in understanding systems of genetic sex determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large genomes. We used reduced representation genome sequencing to investigate genetic sex determination systems in the salamander family Cryptobranchidae (genera Cryptobranchus and Andrias), which typifies both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for sex diagnosis in Cryptobranchus and Andrias which may have great utility for conservation efforts with these endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera provides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages. These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but suggest that comparative data from other salamander families are needed. Our results further demonstrate that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the resulting data can be highly informative about sex determination systems in taxa with homomorphic sex chromosomes.
Collapse
|
28
|
Rojas-Hucks S, Gutleb AC, González CM, Contal S, Mehennaoui K, Jacobs A, Witters HE, Pulgar J. Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:390-408. [PMID: 31422435 DOI: 10.1007/s00244-019-00661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
One of the direct causes of biodiversity loss is environmental pollution resulting from the use of chemicals. Different kinds of chemicals, such as persistent organic pollutants and some heavy metals, can be endocrine disruptors, which act at low doses over a long period of time and have a negative effect on the reproductive and thyroid system in vertebrates worldwide. Research on the effects of endocrine disruptors and the use of bioindicators in neotropical ecosystems where pressure on biodiversity is high is scarce. In Chile, although endocrine disruptors have been detected at different concentrations in the environments of some ecosystems, few studies have been performed on their biological effects in the field. In this work, Xenopus laevis (African clawed frog), an introduced species, is used as a bioindicator for the presence of endocrine disruptors in aquatic systems with different degrees of contamination in a Mediterranean zone in central Chile. For the first time for Chile, alterations are described that can be linked to exposure to endocrine disruptors, such as vitellogenin induction, decreased testosterone in male frogs, and histological changes in gonads. Dioxin-like and oestrogenic activity was detected in sediments at locations where it seem to be related to alterations found in the frogs. In addition, an analysis of land use/cover use revealed that urban soil was the best model to explain the variations in frog health indicators. This study points to the usefulness of an invasive species as a bioindicator for the presence of endocrine-disruptive chemicals.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carlos M González
- Escuela de Medicina Veterinaria, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - An Jacobs
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Hilda E Witters
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
29
|
Rozenblut-Kościsty B, Ogielska M, Hahn J, Kleemann D, Kossakowski R, Tamschick S, Schöning V, Krüger A, Lutz I, Lymberakis P, Kloas W, Stöck M. Impacts of the synthetic androgen Trenbolone on gonad differentiation and development - comparisons between three deeply diverged anuran families. Sci Rep 2019; 9:9623. [PMID: 31270347 PMCID: PMC6610071 DOI: 10.1038/s41598-019-45985-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
Using a recently developed approach for testing endocrine disruptive chemicals (EDCs) in amphibians, comprising synchronized tadpole exposure plus genetic and histological sexing of metamorphs in a flow-through-system, we tested the effects of 17β-Trenbolone (Tb), a widely used growth promoter in cattle farming, in three deeply diverged anuran families: the amphibian model species Xenopus laevis (Pipidae) and the non-models Bufo(tes) viridis (Bufonidae) and Hyla arborea (Hylidae). Trenbolone was applied in three environmentally and/or physiologically relevant concentrations (0.027 µg/L (10-10 M), 0.27 µg/L (10-9 M), 2.7 µg/L (10-8 M)). In none of the species, Tb caused sex reversals or masculinization of gonads but had negative species-specific impacts on gonad morphology and differentiation after the completion of metamorphosis, independently of genetic sex. In H. arborea and B. viridis, mounting Tb-concentration correlated positively with anatomical abnormalities at 27 µg/L (10-9 M) and 2.7 µg/L (10-8 M), occurring in X. laevis only at the highest Tb concentration. Despite anatomical aberrations, histologically all gonadal tissues differentiated seemingly normally when examined at the histological level but at various rates. Tb-concentration caused various species-specific mortalities (low in Xenopus, uncertain in Bufo). Our data suggest that deep phylogenetic divergence modifies EDC-vulnerability, as previously demonstrated for Bisphenol A (BPA) and Ethinylestradiol (EE2).
Collapse
Affiliation(s)
- Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Juliane Hahn
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Denise Kleemann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ronja Kossakowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Viola Schöning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Angela Krüger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409, Heraklion, Crete, Greece
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
- Department of Endocrinology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Unter den Linden 6, 10099, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany.
| |
Collapse
|
30
|
Jackson LM, Klerks PL. Impact of Long-Term Exposure to 17α-Ethinylestradiol in the Live-Bearing Fish Heterandria formosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:51-61. [PMID: 30726505 DOI: 10.1007/s00244-019-00600-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
17α-ethinylestradiol (EE2) is a potent synthetic estrogen that is routinely detected in aquatic ecosystems and exhibits estrogenic activity. Acute and chronic toxicity have been described for oviparous and ovoviviparous fish species; however, no information is available on the impacts of EE2 on viviparous, matrotrophic fish despite their ecological importance. The present study investigated the consequences of long-term EE2 exposure in the least killifish (Heterandria formosa). Effects on growth, time-to-sexual maturity, fecundity, and offspring survival were examined in an 8-month, life-cycle experiment. Starting as 0-6-day-old fish, least killifish were continuously exposed to EE2 at nominal concentrations of 0, 5, or 25 ng/L (measured concentrations averaged 0, 4.3, and 21.5 ng/L respectively). In the F0 generation, EE2-exposure did not affect survival but resulted in increased time-to-sexual maturity and a sex-dependent effect on size; female standard length was reduced while male standard length was increased. This caused the ordinarily larger females and smaller males to become more similar in size. Condition factor was reduced for both sexes. Fecundity was reduced by 50% and 75% at 5 and 25 ng/L EE2-exposure respectively. Continued EE2-exposure in the F1 generation resulted in significantly reduced survival. These results suggest that despite their matrotrophic development, these fish experience delayed development and reduced reproductive success from EE2-exposure and that effects appear to intensify in the second generation.
Collapse
Affiliation(s)
- Latonya M Jackson
- Department of Biology, University of Cincinnati, 155B McMicken Hall, Cincinnati, OH, 45221, USA.
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Billeaud Hall, Room 108, Lafayette, LA, 70503, USA
| |
Collapse
|
31
|
Hoskins TD, Dellapina M, Papoulias DM, Boone MD. Effects of larval atrazine exposure in mesocosms on Blanchard's cricket frogs (Acris blanchardi) reared through overwintering and to reproductive age. CHEMOSPHERE 2019; 220:845-857. [PMID: 33395806 DOI: 10.1016/j.chemosphere.2018.12.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/12/2023]
Abstract
We exposed Blanchard's cricket frog (Acris blanchardi) tadpoles to atrazine in simulated aquatic communities (outdoor mesocosms) at nominal concentrations of 0, 1, 10, 100, and 200 μg/L and tracked the effects of exposure to spring emergence in the laboratory, as well as to reproductive age in outdoor, terrestrial enclosures. We tested hypotheses that 1) atrazine addition increases the prevalence and intensity of testicular ova (TO) among phenotypic males at metamorphosis and after overwintering, 2) atrazine reduces maturation of ova after overwintering among phenotypic females, and 3) atrazine alters mass, time, and survival to metamorphosis, as well as growth and survival across terrestrial life stages. Atrazine addition increased probability of TO presence at metamorphosis, but only when treatments were pooled and compared to the control, where background atrazine was detected. Atrazine did not influence the intensity of TO among metamorphs. We observed TO among males at spring emergence and at reproductive age regardless of exposure concentration. We found no evidence for effects of exposure on gonadal maturation among females after overwintering. Exposure to 200 μg/L reduced survival to metamorphosis, but atrazine did not affect mass at metamorphosis, time to metamorphosis, or survival or mass after overwintering. We demonstrate that atrazine addition can increase TO prevalence relative to background rates at metamorphosis and that TO are also present among phenotypic males after overwintering. We suggest that this non-model species is sensitive to effects of larval EDC exposures on gonadal development and morphology and that further work with cricket frogs is warranted.
Collapse
|
32
|
Lambert MR, Tran T, Kilian A, Ezaz T, Skelly DK. Molecular evidence for sex reversal in wild populations of green frogs ( Rana clamitans). PeerJ 2019; 7:e6449. [PMID: 30775188 PMCID: PMC6369831 DOI: 10.7717/peerj.6449] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
In vertebrates, sex determination occurs along a continuum from strictly genotypic (GSD), where sex is entirely guided by genes, to strictly environmental (ESD), where rearing conditions, like temperature, determine phenotypic sex. Along this continuum are taxa which have combined genetic and environmental contributions to sex determination (GSD + EE), where some individuals experience environmental effects which cause them to sex reverse and develop their phenotypic sex opposite their genotypic sex. Amphibians are often assumed to be strictly GSD with sex reversal typically considered abnormal. Despite calls to understand the relative natural and anthropogenic causes of amphibian sex reversal, sex reversal has not been closely studied across populations of any wild amphibian, particularly in contrasting environmental conditions. Here, we use sex-linked molecular markers to discover sex reversal in wild populations of green frogs (Rana clamitans) inhabiting ponds in either undeveloped, forested landscapes or in suburban neighborhoods. Our work here begins to suggest that sex reversal may be common within and across green frog populations, occurring in 12 of 16 populations and with frequencies of 2–16% of individuals sampled within populations. Additionally, our results also suggest that intersex phenotypic males and sex reversal are not correlated with each other and are also not correlated with suburban land use. While sex reversal and intersex are often considered aberrant responses to human activities and associated pollution, we found no such associations here. Our data perhaps begin to suggest that, relative to what is often suggested, sex reversal may be a relatively natural process in amphibians. Future research should focus on assessing interactions between genes and the environment to understand the molecular and exogenous basis of sex determination in green frogs and in other amphibians.
Collapse
Affiliation(s)
- Max R Lambert
- Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, CA, USA
| | - Tien Tran
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Bókony V, Üveges B, Ujhegyi N, Verebélyi V, Nemesházi E, Csíkvári O, Hettyey A. Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1335-1345. [PMID: 29710633 DOI: 10.1016/j.scitotenv.2018.03.363] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 05/24/2023]
Abstract
Many chemical pollutants have endocrine disrupting effects which can cause lifelong reproductive abnormalities in animals. Amphibians are the most threatened group of vertebrates, but there is little information on the nature and quantity of pollutants occurring in typical amphibian breeding habitats and on the reproductive capacities of amphibian populations inhabiting polluted areas. In this study we investigated the occurrence and concentrations of endocrine disrupting chemicals in the water and sediment of under-studied amphibian breeding habitats in natural, agricultural and urbanized landscapes. Also, we captured reproductively active common toads (Bufo bufo) from these habitats and let them spawn in a 'common garden' to assess among-population differences in reproductive capacity. Across 12 ponds, we detected 41 out of the 133 contaminants we screened for, with unusually high concentrations of glyphosate and carbamazepine. Levels of polycyclic aromatic hydrocarbons, nonylphenol and bisphenol-A increased with urban land use, whereas levels of organochlorine and triazine pesticides and sex hormones increased with agricultural land use. Toads from all habitats had high fecundity, fertilization rate and offspring viability, but the F1 generation originating from agricultural and urban ponds had reduced development rates and lower body mass both as larvae and as juveniles. Females with small clutch mass produced thicker jelly coat around their eggs if they originated from agricultural and urban ponds compared with natural ponds. These results suggest that the observed pollution levels did not compromise reproductive potential in toads, but individual fitness and population viability may be reduced in anthropogenically influenced habitats, perhaps due to transgenerational effects and/or costs of tolerance to chemical contaminants.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary; Institute for Biology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Olivér Csíkvári
- HPLC and HPLC-MS Group, Organic Analytical Department, Bálint Analitika Kft, Fehérvári út 144, 1116 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| |
Collapse
|
34
|
Effect of Fromestane on Gonadal Sex Differentiation and Sex Ratio in the Frog,Euphlyctis cyanophlyctis, with Undifferentiated Type of Gonadal Differentiation. J HERPETOL 2018. [DOI: 10.1670/17-019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Lambert MR, Smylie MS, Roman AJ, Freidenburg LK, Skelly DK. Sexual and somatic development of wood frog tadpoles along a thermal gradient. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:72-79. [PMID: 29791087 DOI: 10.1002/jez.2172] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/23/2023]
Abstract
All amphibian species are known to have genetic sex determination. However, a variety of environmental conditions can moderate sexual differentiation, in some cases leading to sex reversal and skewed sex ratios. While there has been a recent focus on chemically-induced sex reversal in amphibians, temperature can also influence sexual differentiation. Building upon a classic 1929 study by Emil Witschi, we assessed temperature-mediated sex reversal. Witschi found that the wood frog sex ratio is 100% male at a high temperature (32°C) compared to a 50:50 sex ratio at 20°C. This pattern is consistent with multiple models of environmentally mediated sexual differentiation in vertebrates. To better understand thermally mediated sex reversal, we raised wood frogs at temperature increments of ∼1°C between 19 and 34°C. Mirroring earlier findings, wood frog metamorph sex ratios are indistinguishable from 50:50 at the lowest temperature and entirely male at the highest temperatures. In between, sex ratios become increasingly male-dominated as temperatures increase, implying a steadily increasing tendency toward female-to-male sex reversal in warmer environments. There was no evidence of a threshold temperature effect on reversal patterns. We also show that, compared to males, females metamorphose larger and later in cooler conditions but earlier and smaller under warmer conditions. While the ecological relevance in this species is unknown, these results conform to the Charnov-Bull model of sex determination (in which female-to-male sex reversal can increase fitness to genetic females at higher temperatures), suggesting the system would reward further study.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - Meredith S Smylie
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - Amber J Roman
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - L Kealoha Freidenburg
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| |
Collapse
|
36
|
Bókony V, Kövér S, Nemesházi E, Liker A, Székely T. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0325. [PMID: 28760766 DOI: 10.1098/rstb.2016.0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Szilvia Kövér
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - András Liker
- Department of Limnology, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary.,MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
37
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Aldrich A, Berg C, Ortiz-Santaliestra M, Weir S, Streissl F, Smith RH. Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA J 2018; 16:e05125. [PMID: 32625798 PMCID: PMC7009658 DOI: 10.2903/j.efsa.2018.5125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science to support the potential development of a risk assessment scheme of plant protection products for amphibians and reptiles. The coverage of the risk to amphibians and reptiles by current risk assessments for other vertebrate groups was investigated. Available test methods and exposure models were reviewed with regard to their applicability to amphibians and reptiles. Proposals were made for specific protection goals aiming to protect important ecosystem services and taking into consideration the regulatory framework and existing protection goals for other vertebrates. Uncertainties, knowledge gaps and research needs were highlighted.
Collapse
|
38
|
Hoskins TD, Boone MD. Atrazine feminizes sex ratio in Blanchard's cricket frogs (Acris blanchardi) at concentrations as low as 0.1 μg/L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:427-435. [PMID: 29028124 DOI: 10.1002/etc.3962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/14/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
We exposed Blanchard's cricket frogs (Acris blanchardi) to ecologically relevant concentrations (0, 0.1, 1, and 10 μg/L) of a commercial formulation of atrazine throughout the larval period to determine effects on survival, somatic growth and development (time to metamorphosis and mass at metamorphosis), and gonadal development (sex ratio at metamorphosis and the prevalence of testicular ova in phenotypic males). We tested the following hypotheses: 1) atrazine feminizes the sex ratio, 2) atrazine increases the proportion of phenotypic males with testicular ova, and 3) atrazine differentially affects somatic growth (mass at metamorphosis) and development (time to metamorphosis) for males and females. Although the control sex ratio was male-biased, exposure to 0.1 and 10 μg/L atrazine feminized sex ratios, because these treatments produced 51 and 55% fewer males than the control, respectively. We did not observe testicular ova. Atrazine did not impact survival or metamorphosis, and we did not detect sexually dimorphic impacts on time to metamorphosis or mass at metamorphosis. However, males metamorphosed 2.3 d later than females, regardless of treatment. Sex biases in timing of metamorphosis are underexplored in anurans, but if prevalent, could have important implications for theory surrounding the impact of environmental factors on metamorphosis. Our data suggest that cricket frog sex ratios are sensitive to environmentally relevant concentrations of atrazine and that feminization in the field is likely. Environ Toxicol Chem 2018;37:427-435. © 2017 SETAC.
Collapse
|
39
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Aldrich A, Berg C, Ortiz-Santaliestra M, Weir S, Streissl F, Smith RH. Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA J 2018. [PMID: 32625798 DOI: 10.2903/j.efsa.2018.5125issn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science to support the potential development of a risk assessment scheme of plant protection products for amphibians and reptiles. The coverage of the risk to amphibians and reptiles by current risk assessments for other vertebrate groups was investigated. Available test methods and exposure models were reviewed with regard to their applicability to amphibians and reptiles. Proposals were made for specific protection goals aiming to protect important ecosystem services and taking into consideration the regulatory framework and existing protection goals for other vertebrates. Uncertainties, knowledge gaps and research needs were highlighted.
Collapse
|
40
|
Wedekind C. Demographic and genetic consequences of disturbed sex determination. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160326. [PMID: 28760767 PMCID: PMC5540866 DOI: 10.1098/rstb.2016.0326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness vyy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low vyy is mostly beneficial for population growth. During feminization, low vyy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low vyy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about vyy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Bernabò I, Guardia A, Macirella R, Tripepi S, Brunelli E. Chronic exposures to fungicide pyrimethanil: multi-organ effects on Italian tree frog (Hyla intermedia). Sci Rep 2017; 7:6869. [PMID: 28761072 PMCID: PMC5537256 DOI: 10.1038/s41598-017-07367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Amphibian habitats are easily contaminated by several pollutants, and in agricultural landscapes the likely exposure scenario is represented by pesticides. Many of these substances are known or suspected to act as endocrine disrupting chemicals (EDCs). The goal of the present study was to assess the effects of pyrimethanil, a common-used but also overlooked fungicide, on liver, kidney and gonadal differentiation of Hyla intermedia. Through a multi-organ evaluation, we demonstrated that a long term exposure to two environmentally relevant concentrations of pyrimethanil (5 and 50 µg/L) elicits a range of toxic responses. First we showed that pyrimethanil induces underdevelopment of ovaries and interferes with normal sexual differentiation, thus revealing the endocrine disruption potential of this fungicide. Moreover we revealed that all considered organs are seriously affected by this fungicide and both necrosis and apoptosis contribute to the histological response. This is the first report on the effects of pyrimethanil on gonads, liver and kidney histology of a non-model species and it demonstrates that the hazardous properties of this fungicide can result from several pathological processes affecting different key compartments of amphibian.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
42
|
Literman R, Radhakrishnan S, Tamplin J, Burke R, Dresser C, Valenzuela N. Development of sexing primers in Glyptemys insculpta and Apalone spinifera turtles uncovers an XX/XY sex-determining system in the critically-endangered bog turtle Glyptemys muhlenbergii. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0711-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics 2016; 17:844. [PMID: 27793086 PMCID: PMC5084323 DOI: 10.1186/s12864-016-3209-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which sex reversal is associated with transitions in sex determining systems (XX-XY, ZZ-ZW, etc.) or abnormal sexual differentiation is predominantly unexplored in amphibians. This is in large part because most amphibian taxa have homomorphic sex chromosomes, which has traditionally made it challenging to identify discordance between phenotypic and genetic sex in amphibians, despite all amphibians having a genetic component to sex determination. Recent advances in molecular techniques such as genome complexity reduction and high throughput sequencing present a valuable avenue for furthering our understanding of sex determination in amphibians and other taxa with homomorphic sex chromosomes like many fish and reptiles. RESULTS We use DArTseq as a novel approach to identify sex-linked markers in the North American green frog (Rana clamitans melanota) using lab-reared tadpoles as well as wild-caught adults from seven ponds either in undeveloped, forested habitats or suburban ponds known to be subject to contamination by anthropogenic chemicals. The DArTseq methodology identified 13 sex-linked SNP loci and eight presence-absence loci associated with males, indicating an XX-XY system. Both alleles from a single locus show partial high sequence homology to Dmrt1, a gene linked to sex determination and differentiation throughout Metazoa. Two other loci have sequence similarities to regions of the chimpanzee and human X-chromosome as well as the chicken Z-chromosome. Several loci also show geographic variation in sex-linkage, possibly indicating sex chromosome recombination. While all loci are statistically sex-linked, they show varying degrees of female heterozygosity and male homozygosity, providing further evidence that some markers are on regions of the sex chromosomes undergoing higher rates of recombination and therefore further apart from the putative sex determining locus. CONCLUSION The ease of the DArTseq platform provides a useful avenue for future research on sex reversal and sex chromosome evolution in vertebrates, particularly for non-model species with homomorphic or cryptic or nascent sex chromosomes.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA.
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
44
|
Li YY, Chen J, Qin ZF. Determining the optimal developmental stages of Xenopus laevis for initiating exposures to chemicals for sensitively detecting their feminizing effects on gonadal differentiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:134-142. [PMID: 27611864 DOI: 10.1016/j.aquatox.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Xenopus laevis is an important model for detecting feminizing effects of endocrine disrupting chemicals (EDCs) on amphibians because its genetic males can be induced to phenotypic females by estrogenic chemicals. It is crucial that chemical exposures begin at sensitive developmental stages for gonadal sex-reversal in X. laevis. To determine the optimal stages for initiating exposures, we investigated gonadal sex-reversal induced by low concentrations of 17α-ethinylestradiol (EE2) when exposures were initiated at different stages (3/4, 45/46, 48 and 50) until stage 58. We found that 0.1nM EE2 resulted in 85%, 86%, 43%, and 19% intersex, whereas 1nM EE2 caused 77%, 81%, 17%, and 8% phenotypic females, when genetic male tadpoles were exposed from stages 3/4, 45/46, 48 and 50, respectively. The data show the sensitivity of X. laevis gonads to EE2 at stages 45/46 is similar with that at stages 3/4, but the sensitivity decreases at stage 48 and stage 50, displaying a developmental stage-dependent manner. In another experiment using the offspring of another pair of frogs, we confirmed high sensitivity of X. laevis gonads at stages 45/46 to low concentrations of EE2. Considering that stages 45/46 tadpoles are easier to manipulate and have higher survival rates than earlier embryos, we propose that stages 45/46 are the optimal stages for initiating exposure for detecting feminizing effects of EDCs on gonadal differentiation in X. laevis. The developmental stages for initiating exposures we determined will guarantee the high sensitivity for detecting feminizing effects of EDCs with low estrogenic activities on gonadal differentiation in X. laevis. Also, our study suggests that gonadal differentiation in X. laevis possibly begins at stages 45/46, but not at later stages.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Kekenj D, Gajewski F, Krüger A, Kloas W, Stöck M. The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:282-291. [PMID: 27285164 DOI: 10.1016/j.envpol.2016.05.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 05/10/2023]
Abstract
Due to their terrestrial habitats and aquatic reproduction, many amphibians are both very vulnerable and highly suitable bioindicators. The plasticizer bisphenol A (BPA) is one of the most produced chemical substances worldwide, and knowledge on its impacts on humans and animals is mounting. BPA is used for the industrial production of polycarbonate plastics and epoxy resins and found in a multitude of consumer products. Studies on BPA have involved mammals, fish and the fully aquatic anuran model Xenopus laevis. However, our knowledge about the sexual development of non-model, often semi-terrestrial anuran amphibians remains poor. Using a recently developed experimental design, we simultaneously applied BPA to two non-model species (Hyla arborea, Hylidae; Bufo viridis, Bufonidae) and the model X. laevis (Pipidae), compared their genetic and phenotypic sex for detection of sex reversals, and studied sexual development, focusing on anatomical and histological features of gonads. We compared three concentrations of BPA (0.023, 2.28 and 228 μg/L) to control groups in a high-standard flow-through-system, and tested whether conclusions, drawn from the model species, can be extrapolated to non-model anurans. In contrast to previous studies on fish and Xenopus, often involving dosages much higher than most environmental pollution data, we show that BPA causes neither the development of mixed sex nor of sex-reversed individuals (few, seemingly BPA-independent sex reversals) in all focal species. However, environmentally relevant concentrations, as low as 0.023 μg/L, were sufficient to provoke species-specific anatomically and histologically detectable impairments of gonads, and affected morphological traits of metamorphs. As the intensity of these effects differed between the three species, our data imply that BPA diversely affects amphibians with different evolutionary history, sex determination systems and larval ecologies. These results highlight the role of amphibians as a sensitive group that is responsive to environmental pollution.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - David Kekenj
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Franz Gajewski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Angela Krüger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| |
Collapse
|
46
|
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Schneider RJ, Kloas W, Stöck M. Impaired gonadal and somatic development corroborate vulnerability differences to the synthetic estrogen ethinylestradiol among deeply diverged anuran lineages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:503-514. [PMID: 27434076 DOI: 10.1016/j.aquatox.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Amphibians are undergoing a global decline. One poorly investigated reason could be the pollution of aquatic habitats by endocrine disrupting compounds (EDCs). We tested the susceptibility to the synthetically stabilized estrogen 17α-ethinylestradiol (EE2) in three deeply diverged anuran species, differing in sex determination systems, types of gonadogenesis and larval ecologies. To understand whether data from the amphibian model Xenopus laevis (Pipidae) are analogous and applicable to only distantly related non-model amphibians, tadpoles of X. laevis, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae) were simultaneously exposed to 50, 500 and 5000ng/L EE2 from hatching until completion of metamorphosis, using a flow-through-system under identical experimental conditions. Comparing molecularly established genetic with histologically assessed phenotypic sex in all species, we have recently shown that EE2 provoked numerous genetic-male-to-phenotypic-female sex reversals and mixed sex individuals, confirming overall its expected feminizing effect. In the present study, we focus on the influence of EE2 on gonadal and somatic development. Anatomy and histology revealed several species-specific effects. In both non-model species, H. arborea and B. viridis, high numbers of anatomically impaired gonads were observed. In H. arborea, exposed to 5000ng/L EE2, numerous underdeveloped gonads were detected. Whereas EE2 did not alter snout-to-vent length and body weight of X. laevis metamorphs, H. arborea showed a treatment-dependent decrease, while B. viridis exhibited an increase in body weight and snout-to-vent length. Apart from a concentration-dependent occurrence of yellowish skin color in several H. arborea, no organ-specific effects were detected. Since EE2 ubiquitously occurs in many aquatic ecosystems and affects sexual and somatic development, among EDCs, it may indeed contribute to amphibian decline. The inter-species variation in developmental EE2-effects corroborates species-specific vulnerability differences towards EDCs between deeply diverged amphibian groups.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Andreas Lehmann
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409 Heraklion, Crete, Greece.
| | - Frauke Hoffmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Rudolf J Schneider
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| |
Collapse
|