1
|
Ciobanasu C. Bacterial Extracellular Vesicles and Antimicrobial Peptides: A Synergistic Approach to Overcome Antimicrobial Resistance. Antibiotics (Basel) 2025; 14:414. [PMID: 40298572 PMCID: PMC12024098 DOI: 10.3390/antibiotics14040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Antimicrobial resistance is already a major global health threat, contributing to nearly 5 million deaths annually. The rise of multidrug-resistant pathogens has made many infections increasingly difficult to treat. This growing threat has driven the search for alternative therapeutic approaches. Among the most promising candidates are bacterial extracellular vesicles (BEVs) and antimicrobial peptides (AMPs), which offer unique mechanisms of action, potential synergistic effects, and the ability to bypass conventional resistance pathways. This review summarizes the current research on synergistic effects of BEVs and AMPs to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru I. Cuza University, Bulevardul Carol I, Nr. 11, 700506 Iasi, Romania
| |
Collapse
|
2
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
3
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
4
|
Uchiyama H, Kudo T, Yamaguchi T, Obana N, Watanabe K, Abe K, Miyazaki H, Toyofuku M, Nomura N, Akeda Y, Nakao R. Mucosal adjuvanticity and mucosal booster effect of colibactin-depleted probiotic Escherichia coli membrane vesicles. Hum Vaccin Immunother 2024; 20:2337987. [PMID: 38658133 PMCID: PMC11057659 DOI: 10.1080/21645515.2024.2337987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.
Collapse
Affiliation(s)
- Hiroki Uchiyama
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Vascular Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshifumi Kudo
- Department of Vascular Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Nozomu Obana
- Tsukuba Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimihiro Abe
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hidetaka Miyazaki
- Department of Oculoplastic, Orbital and Lacrimal Surgery, Aichi Medical University, Nagakute, Japan
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masanori Toyofuku
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Velimirov B, Velimirov BA. Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development. Life (Basel) 2024; 14:1584. [PMID: 39768292 PMCID: PMC11678573 DOI: 10.3390/life14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens. However, under specific conditions, some of the inner membrane proteins can be exported into the outer membrane layer and perform as antigens. A key information was that the used purification procedures for OMVs, the induction methods to increase the production of OMVs as well as the specific mutant strains obtained via genetic engineering affect the composition of potential antigens on the surface and in the lumen of the OMVs. The available literature allowed us to list the major antigens that could be defined on OMVs. The functions of the antigens within the source bacterium are discussed for a better understanding of the various available hypotheses on the biogenesis of vesicle formation. Also, the impacts of OMV antigens on the immune system using animal models are assessed. Furthermore, information on the pathways of OMVs entering the host cell is presented. An example of a bacterial infection that causes epidemic diseases, namely via Neisseria meningitidis, is used to demonstrate that OMVs derived from this pathogen elicit protective immune responses when administered as a vaccine. Furthermore, information on OMV vaccines under development is presented. The assembled knowledge allowed us to formulate a number of reasons why OMVs are attractive as vaccine platforms, as their undesirable side effects remain small, and to provide an outlook on the potential use of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Branko Velimirov
- Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria;
| | | |
Collapse
|
6
|
Lensch V, Johnson JA, Kiessling LL. Glycoconjugate vaccines: platforms and adjuvants for directed immunity. Glycobiology 2024; 34:cwae092. [PMID: 39593193 PMCID: PMC11604072 DOI: 10.1093/glycob/cwae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024] Open
Abstract
Central to immune recognition is the glycocalyx, a glycan-rich coat on all cells that plays a crucial role in interactions that enable pathogen detection and activation of immune defenses. Pathogens and cancerous cells often display distinct glycans on their surfaces, making these saccharide antigens prime targets for vaccine development. However, carbohydrates alone generally serve as poor immunogens due to their often weak binding affinities, inability to effectively recruit T cell help, and reliance on adjuvants to iboost immune activation. The introduction of glycoconjugate vaccines, initially involving the covalent coupling of carbohydrate antigens to carrier proteins, marked a pivotal advancement by facilitating neutralizing antibody production against carbohydrate targets. Despite successes in generating glycoconjugate vaccines against certain bacterial diseases, challenges persist in creating effective vaccines against numerous intracellular pathogens and non-communicable diseases such as cancer. In this review, we highlight new developments in conjugate vaccine platforms aim to overcome these limitations by optimizing the display of glycan and T cell epitopes as well as incorporating defined carbohydrate adjuvants to direct tailored immune responses. These advancements promise to improve the effectiveness of carbohydrate-based vaccines and broaden their coverage against a wide range of diseases.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research,Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| |
Collapse
|
7
|
Casillo A, D'Amico R, Lanzetta R, Corsaro MM. Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles. Mar Drugs 2024; 22:363. [PMID: 39195479 DOI: 10.3390/md22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Raffaele D'Amico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| |
Collapse
|
8
|
Singh A, Nice JB, Wu M, Brown AC, Wittenberg NJ. Multivariate Analysis of Individual Bacterial Outer Membrane Vesicles Using Fluorescence Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:352-361. [PMID: 38817321 PMCID: PMC11134603 DOI: 10.1021/cbmi.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. OMVs have emerged as promising therapeutic agents for various biological applications such as vaccines and targeted drug delivery. However, the full potential of OMVs is currently constrained by inherent heterogeneities, such as size and cargo differences, and traditional ensemble assays are limited in their ability to reveal OMV heterogeneity. To overcome this issue, we devised an innovative approach enabling the identification of various characteristics of individual OMVs. This method, employing fluorescence microscopy, facilitates the detection of variations in size and surface markers. To demonstrate our method, we utilize the oral bacterium Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) which produces OMVs with a bimodal size distribution. As part of its virulence, A. actinomycetemcomitans secretes leukotoxin (LtxA) in two forms: soluble and surface associated with the OMVs. We observed a correlation between the size and toxin presence where larger OMVs were much more likely to possess LtxA compared to the smaller OMVs. In addition, we noted that, among the smallest OMVs (<100 nm diameter), the fractions that are toxin positive range from 0 to 30%, while the largest OMVs (>200 nm diameter) are between 70 and 100% toxin positive.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Justin B Nice
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
10
|
Børud B, Koomey M. Sweet complexity: O-linked protein glycosylation in pathogenic Neisseria. Front Cell Infect Microbiol 2024; 14:1407863. [PMID: 38808060 PMCID: PMC11130364 DOI: 10.3389/fcimb.2024.1407863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Neisseria, which colonizes mucosal surfaces, includes both commensal and pathogenic species that are exclusive to humans. The two pathogenic Neisseria species are closely related but cause quite different diseases, meningococcal sepsis and meningitis (Neisseria meningitidis) and sexually transmitted gonorrhea (Neisseria gonorrhoeae). Although obvious differences in bacterial niches and mechanisms for transmission exists, pathogenic Neisseria have high levels of conservation at the levels of nucleotide sequences, gene content and synteny. Species of Neisseria express broad-spectrum O-linked protein glycosylation where the glycoproteins are largely transmembrane proteins or lipoproteins localized on the cell surface or in the periplasm. There are diverse functions among the identified glycoproteins, for example type IV biogenesis proteins, proteins involved in antimicrobial resistance, as well as surface proteins that have been suggested as vaccine candidates. The most abundant glycoprotein, PilE, is the major subunit of pili which are an important colonization factor. The glycans attached can vary extensively due to phase variation of protein glycosylation (pgl) genes and polymorphic pgl gene content. The exact roles of glycosylation in Neisseria remains to be determined, but increasing evidence suggests that glycan variability can be a strategy to evade the human immune system. In addition, pathogenic and commensal Neisseria appear to have significant glycosylation differences. Here, the current knowledge and implications of protein glycosylation genes, glycan diversity, glycoproteins and immunogenicity in pathogenic Neisseria are summarized and discussed.
Collapse
Affiliation(s)
- Bente Børud
- Department of Bacteriology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michael Koomey
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Corona-Torres R, Vohra P, Chintoan-Uta C, Bremner A, Terra VS, Mauri M, Cuccui J, Vervelde L, Wren BW, Stevens MP. Evaluation of a FlpA Glycoconjugate Vaccine with Ten N-Heptasaccharide Glycan Moieties to reduce Campylobacter jejuni Colonisation in Chickens. Vaccines (Basel) 2024; 12:395. [PMID: 38675777 PMCID: PMC11054393 DOI: 10.3390/vaccines12040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Campylobacter is a major cause of acute gastroenteritis in humans, and infections can be followed by inflammatory neuropathies and other sequelae. Handling or consumption of poultry meat is the primary risk factor for human campylobacteriosis, and C. jejuni remains highly prevalent in retail chicken in many countries. Control of Campylobacter in the avian reservoir is expected to limit the incidence of human disease. Toward this aim, we evaluated a glycoconjugate vaccine comprising the fibronectin-binding adhesin FlpA conjugated to up to ten moieties of the conserved N-linked heptasaccharide glycan of C. jejuni or with FlpA alone. The glycan dose significantly exceeded previous trials using FlpA with two N-glycan moieties. Vaccinated birds were challenged with C. jejuni orally or by exposure to seeder-birds colonised by C. jejuni to mimic natural transmission. No protection against caecal colonisation was observed with FlpA or the FlpA glycoconjugate vaccine. FlpA-specific antibody responses were significantly induced in vaccinated birds at the point of challenge relative to mock-vaccinated birds. A slight but significant antibody response to the N-glycan was detected after vaccination with FlpA-10×GT and challenge. As other laboratories have reported protection against Campylobacter with FlpA and glycoconjugate vaccines in chickens, our data indicate that vaccine-mediated immunity may be sensitive to host- or study-specific variables.
Collapse
Affiliation(s)
- Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
- Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Vanessa S. Terra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| |
Collapse
|
12
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Szymanski CM. Bacteriophages and their unique components provide limitless resources for exploitation. Front Microbiol 2024; 15:1342544. [PMID: 38380101 PMCID: PMC10877033 DOI: 10.3389/fmicb.2024.1342544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Christine M. Szymanski
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Abstract
Outer membrane vesicles (OMVs) are spontaneously released by many gram-negative bacteria during their growth and constitute an important virulence factor for bacteria, helping them to survive through harsh environmental conditions. Native OMVs, naturally-released from bacteria, are produced at a level too low for vaccine manufacturing, requiring chemical treatment (detergent-extracted) or genetic manipulation, resulting in generalized modules for membrane antigens (GMMAs). Over the years, the nature and properties of OMVs have made them a viable platform for vaccine development. There are a few licensed OMV vaccines mainly for the prevention of meningitis caused by Neisseria meningitidis serogroup B (MenB) and Haemophilus influenzae type b (Hib). There are several candidates in clinical development against other gram-negative organisms from which the OMVs are derived, but also against heterologous targets in which the OMVs are used as carriers (e.g. coronavirus disease 2019 [COVID-19]). The use of OMVs for targets other than those from which they are derived is a major advancement in OMV technology, improving its versatility by being able to deliver protein or polysaccharide antigens. Other advances include the range of genetic modifications that can be made to improve their safety, reduce reactogenicity, and increase immunogenicity and protective efficacy. However, significant challenges remain, such as identification of general tools for high-content surface expression of heterologous proteins on the OMV surface. Here, we outline the progress of OMV vaccines to date, particularly discussing licensed OMV-based vaccines and candidates in clinical development. Recent trends in preclinical research are described, mainly focused on genetic manipulation and chemical conjugation for the use of OMVs as carriers for heterologous protein and polysaccharide antigens. Remaining challenges with the use of OMVs and directions for future research are also discussed.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy.
| | | | - Usman Nakakana
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
15
|
Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release 2023; 364:46-60. [PMID: 37866404 DOI: 10.1016/j.jconrel.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The prevalence of central nervous system (CNS) diseases is on the rise as the population ages. The presence of various obstacles, particularly the blood-brain barrier (BBB), poses a challenge for drug delivery to the CNS. An expanding body of study suggests that gut microbiota (GM) plays an important role in CNS diseases. The communication between GM and CNS diseases has received increasing attention. Accumulating evidence indicates that the GM can modulate host signaling pathways to regulate distant organ functions by delivering bioactive substances to host cells via bacterial extracellular vesicles (BEVs). BEVs have emerged as a promising platform for the treatment of CNS diseases due to their nanostructure, ability to penetrate the BBB, as well as their low toxicity, high biocompatibility, ease of modification and large-scale culture. Here, we discuss the biogenesis, internalization mechanism and engineering modification methods of BEVs. We then focus on the use and potential role of BEVs in the treatment of CNS diseases. Finally, we outline the main challenges and future prospects for the application of BEVs in CNS diseases. We hope that the comprehensive understanding of the BEVs-based gut-brain axis will provide new insights into the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510630, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
16
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
17
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
18
|
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, Kommineni N. "Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review. Pharmaceutics 2023; 15:1677. [PMID: 37376125 DOI: 10.3390/pharmaceutics15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Achieving precise cancer theranostics necessitates the rational design of smart nanosystems that ensure high biological safety and minimize non-specific interactions with normal tissues. In this regard, "bioinspired" membrane-coated nanosystems have emerged as a promising approach, providing a versatile platform for the development of next-generation smart nanosystems. This review article presents an in-depth investigation into the potential of these nanosystems for targeted cancer theranostics, encompassing key aspects such as cell membrane sources, isolation techniques, nanoparticle core selection, approaches for coating nanoparticle cores with the cell membrane, and characterization methods. Moreover, this review underscores strategies employed to enhance the multi-functionality of these nanosystems, including lipid insertion, membrane hybridization, metabolic engineering, and genetic modification. Additionally, the applications of these bioinspired nanosystems in cancer diagnosis and therapeutics are discussed, along with the recent advances in this field. Through a comprehensive exploration of membrane-coated nanosystems, this review provides valuable insights into their potential for precise cancer theranostics.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
19
|
Vohra P, Bremner A, Nicholls B, Chintoan-Uta C, Corona-Torres R, Stevens MP. Evaluation of N-glycan-decorated live attenuated Escherichia coli and outer membrane vesicles as vaccines against Campylobacter jejuni colonisation in chickens. Vaccine 2023:S0264-410X(23)00595-9. [PMID: 37277252 DOI: 10.1016/j.vaccine.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Campylobacter jejuni is a leading global cause of bacterial gastroenteritis in humans, and poultry are a major reservoir. Glycoconjugate vaccines containing the conserved C. jejuni N-glycan have previously been reported to be effective at reducing caecal colonisation of chickens by C. jejuni. These include recombinant subunit vaccines, live E. coli strains expressing the N-glycan on the surface as well as outer membrane vesicles (OMVs) derived from these E. coli strains. In this study, we evaluated the efficacy of live E. coli expressing the C. jejuni N-glycan from a plasmid and glycosylated OMVs (G-OMVs) derived from them against colonisation by different C. jejuni strains. Despite the C. jejuni N-glycan being expressed on the surface of the live strain and the OMVs, no reduction in caecal colonisation by C. jejuni was observed and N-glycan-specific responses were not detected.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Bethany Nicholls
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| |
Collapse
|
20
|
Yang J, Jia F, Qiao Y, Hai Z, Zhou X. Correlation between bacterial extracellular vesicles and antibiotics: A potentially antibacterial strategy. Microb Pathog 2023:106167. [PMID: 37224984 DOI: 10.1016/j.micpath.2023.106167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are proteoliposome nanoparticles that are secreted by both Gram-negative (G-) and Gram-positive (G+) bacteria. BEVs have significant roles in various physiological processes of bacteria, including driving inflammatory responses, regulating bacterial pathogenesis, and promoting bacterial survival in diverse environments. Recently, there has been increasing interest in the use of BEVs as a potential solution to antibiotic resistance. BEVs have shown great promise as a new approach to antibiotics, as well as a drug-delivery tool in antimicrobial strategies. In this review, we provide a summary of recent scientific advances in BEVs and antibiotics, including BEV biogenesis, ability to kill bacteria, potential for delivering antibiotics, and their role in the development of vaccines or as immune adjuvants. We propose that BEVs provide a novel antimicrobial strategy that would be beneficial against the increasing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Jiangliu Yang
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Fang Jia
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, 010058, China
| | - Yarui Qiao
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Zhenzhen Hai
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China.
| |
Collapse
|
21
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
22
|
Luo R, Chang Y, Liang H, Zhang W, Song Y, Li G, Yang C. Interactions between extracellular vesicles and microbiome in human diseases: New therapeutic opportunities. IMETA 2023; 2:e86. [PMID: 38868436 PMCID: PMC10989913 DOI: 10.1002/imt2.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 06/14/2024]
Abstract
In recent decades, accumulating research on the interactions between microbiome homeostasis and host health has broadened new frontiers in delineating the molecular mechanisms of disease pathogenesis and developing novel therapeutic strategies. By transporting proteins, nucleic acids, lipids, and metabolites in their versatile bioactive molecules, extracellular vesicles (EVs), natural bioactive cell-secreted nanoparticles, may be key mediators of microbiota-host communications. In addition to their positive and negative roles in diverse physiological and pathological processes, there is considerable evidence to implicate EVs secreted by bacteria (bacterial EVs [BEVs]) in the onset and progression of various diseases, including gastrointestinal, respiratory, dermatological, neurological, and musculoskeletal diseases, as well as in cancer. Moreover, an increasing number of studies have explored BEV-based platforms to design novel biomedical diagnostic and therapeutic strategies. Hence, in this review, we highlight the recent advances in BEV biogenesis, composition, biofunctions, and their potential involvement in disease pathologies. Furthermore, we introduce the current and emerging clinical applications of BEVs in diagnostic analytics, vaccine design, and novel therapeutic development.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Spine Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
23
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Zhang Y, Yao J, Wang LS, Liang YJ, Li DF. Emerging role of bacterial outer membrane vesicle in gastrointestinal tract. Gut Pathog 2023; 15:20. [PMID: 37106359 PMCID: PMC10133921 DOI: 10.1186/s13099-023-00543-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells. In addition, these EVs are vital in facilitating communication between microbiota and the host. Therefore, bacterial EVs play a crucial role in maintaining the GI tract's health and proper functioning. In this review, we outlined the structure and composition of bacterial EVs. Additionally, we highlighted the critical role that bacterial EVs play in immune regulation and in maintaining the balance of the gut microbiota. To further elucidate progress in the field of intestinal research and to provide a reference for future EV studies, we also discussed the clinical and pharmacological potential of bacterial EVs, as well as the necessary efforts required to understand the mechanisms of interaction between bacterial EVs and gut pathogenesis.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, No.1080, Cuizu Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| |
Collapse
|
25
|
Micoli F, Romano MR, Carboni F, Adamo R, Berti F. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj J 2023; 40:135-148. [PMID: 36652051 PMCID: PMC10027807 DOI: 10.1007/s10719-023-10100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Multivalent vaccines addressing an increasing number of Streptococcus pneumoniae types (7-, 10-, 13-, 15-, 20-valent) have been licensed over the last 22 years. The use of polysaccharide-protein conjugate vaccines has been pivotal in reducing the incidence of invasive pneumococcal disease despite the emergence of non-vaccine serotypes. Notwithstanding its undoubtable success, some weaknesses have called for continuous improvement of pneumococcal vaccination. For instance, despite their inclusion in pneumococcal conjugate vaccines, there are challenges associated with some serotypes. In particular, Streptococcus pneumoniae type 3 remains a major cause of invasive pneumococcal disease in several countries.Here a deep revision of the strengths and weaknesses of the licensed pneumococcal conjugate vaccines and other vaccine candidates currently in clinical development is reported.
Collapse
|
26
|
Niu G, Jian T, Gai Y, Chen J. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Adv Drug Deliv Rev 2023; 196:114774. [PMID: 36906231 DOI: 10.1016/j.addr.2023.114774] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
The gut is a fundamental organ in controlling human health. Recently, researches showed that substances in the intestine can alter the course of many diseases through the intestinal epithelium, especially intestinal flora and exogenously ingested plant vesicles that can be transported over long distances to various organs. This article reviews the current knowledge on extracellular vesicles in modulating gut homeostasis, inflammatory response and numerous metabolic disease that share obesity as a co-morbidity. These complex systemic diseases that are difficult to cure, but can be managed by some bacterial and plant vesicles. Vesicles, due to their digestive stability and modifiable properties, have emerged as novel and targeted drug delivery vehicles for effective treatment of metabolic diseases.
Collapse
Affiliation(s)
- Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
27
|
Passmore IJ, Faulds-Pain A, Abouelhadid S, Harrison MA, Hall CL, Hitchen P, Dell A, Heap JT, Wren BW. A combinatorial DNA assembly approach to biosynthesis of N-linked glycans in E. coli. Glycobiology 2023; 33:138-149. [PMID: 36637423 PMCID: PMC9990991 DOI: 10.1093/glycob/cwac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Glycoengineering of recombinant glycans and glycoconjugates is a rapidly evolving field. However, the production and exploitation of glycans has lagged behind that of proteins and nucleic acids. Biosynthetic glycoconjugate production requires the coordinated cooperation of three key components within a bacterial cell: a substrate protein, a coupling oligosaccharyltransferase, and a glycan biosynthesis locus. While the acceptor protein and oligosaccharyltransferase are the products of single genes, the glycan is a product of a multigene metabolic pathway. Typically, the glycan biosynthesis locus is cloned and transferred en bloc from the native organism to a suitable Escherichia coli strain. However, gene expression within these pathways has been optimized by natural selection in the native host and is unlikely to be optimal for heterologous production in an unrelated organism. In recent years, synthetic biology has addressed the challenges in heterologous expression of multigene systems by deconstructing these pathways and rebuilding them from the bottom up. The use of DNA assembly methods allows the convenient assembly of such pathways by combining defined parts with the requisite coding sequences in a single step. In this study, we apply combinatorial assembly to the heterologous biosynthesis of the Campylobacter jejuni N-glycosylation (pgl) pathway in E. coli. We engineered reconstructed biosynthesis clusters that faithfully reproduced the C. jejuni heptasaccharide glycan. Furthermore, following a single round of combinatorial assembly and screening, we identified pathway clones that outperform glycan and glycoconjugate production of the native unmodified pgl cluster. This platform offers a flexible method for optimal engineering of glycan structures in E. coli.
Collapse
Affiliation(s)
- Ian J Passmore
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | | | - Sherif Abouelhadid
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Mark A Harrison
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Catherine L Hall
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Paul Hitchen
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | - Anne Dell
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | - John T Heap
- University of Nottingham, School of Life Sciences, Nottingham, NG7 2RD, UK
| | - Brendan W Wren
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| |
Collapse
|
28
|
Arya SS, Morsy NK, Islayem DK, Alkhatib SA, Pitsalidis C, Pappa AM. Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. BIOSENSORS 2023; 13:bios13020189. [PMID: 36831955 PMCID: PMC9953710 DOI: 10.3390/bios13020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Collapse
Affiliation(s)
- Sagar S. Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nada K. Morsy
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Deema K. Islayem
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Sarah A. Alkhatib
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| |
Collapse
|
29
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
30
|
Nakao R, Kobayashi H, Iwabuchi Y, Kawahara K, Hirayama S, Ramstedt M, Sasaki Y, Kataoka M, Akeda Y, Ohnishi M. A highly immunogenic vaccine platform against encapsulated pathogens using chimeric probiotic Escherichia coli membrane vesicles. NPJ Vaccines 2022; 7:153. [PMID: 36435869 PMCID: PMC9701205 DOI: 10.1038/s41541-022-00572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022] Open
Abstract
Vaccines against infectious diseases should elicit potent and long-lasting immunity, ideally even in those with age-related decline in immune response. Here we report a rational polysaccharide vaccine platform using probiotic Escherichia coli-derived membrane vesicles (MVs). First, we constructed a probiotic E. coli clone harboring the genetic locus responsible for biogenesis of serotype 14 pneumococcal capsular polysaccharides (CPS14) as a model antigen. CPS14 was found to be polymerized and mainly localized on the outer membrane of the E. coli cells. The glycine-induced MVs displayed the exogenous CPS14 at high density on the outermost surface, on which the CPS14 moiety was covalently tethered to a lipid A-core oligosaccharide anchor. In in vivo immunization experiments, CPS14+MVs, but not a mixture of free CPS14 and empty MVs, strongly elicited IgG class-switch recombination with a Th1/Th2-balanced IgG subclass distribution without any adjuvant. In addition, CPS14+MVs were structurally stable with heat treatment and immunization with the heat-treated MVs-elicited CPS14-specific antibody responses in mouse serum to levels comparable to those of non-treated CPS14+MVs. Notably, the immunogenicity of CPS14+MVs was significantly stronger than those of two currently licensed vaccines against pneumococci. The CPS14+MV-elicited humoral immune responses persisted for 1 year in both blood and lung. Furthermore, the CPS14+MV vaccine was widely efficacious in mice of different ages. Even in aged mice, vaccination resulted in robust production of CPS14-specific IgG that bound to the pneumococcal cell surface. Taken together, the present probiotic E. coli MVs-based vaccine platform offers a promising, generalizable solution against encapsulated pathogens.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Hirotaka Kobayashi
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yusuke Iwabuchi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kazuyoshi Kawahara
- College of Science and Engineering, Kanto Gakuin University, 1-50-1, Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa, 236-8501, Japan
| | - Satoru Hirayama
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-901 87, Umeå, Sweden
| | - Yuki Sasaki
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Ohnishi
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
31
|
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 2022; 14:2134689. [PMID: 36242585 PMCID: PMC9578468 DOI: 10.1080/19490976.2022.2134689] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microenvironment dysbiosis is one of the major causes of diseases, such as obesity, diabetes, inflammatory bowel disease, and colon cancer. Microbiota-based strategies have excellent clinical potential in the treatment of repetitive and refractory diseases; however, the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria-host is essential to achieve precise control of the gut microbiome and obtain effective clinical data. Gut bacteria-derived extracellular vesicles (GBEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and are considered key players in bacteria-bacteria and bacteria-host communication. This review focusses on the role of GBEVs in gut microbiota interactions and bacteria-host communication, and the potential clinical applications of GBEVs.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China,Institute of Physical Science and Information Technology, Anhui University, Hefei, China,CONTACT Yongzhong Wang School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
32
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
33
|
Smith AA, Corona-Torres R, Hewitt RE, Stevens MP, Grant AJ. Modification of avian pathogenic Escherichia coli χ7122 lipopolysaccharide increases accessibility to glycoconjugate antigens. Microb Cell Fact 2022; 21:181. [PMID: 36071433 PMCID: PMC9449299 DOI: 10.1186/s12934-022-01903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Worldwide, an estimated 70.7 billion broilers were produced in 2020. With the reduction in use of prophylactic antibiotics as a result of consumer pressure and regulatory oversight alternative approaches, such as vaccination, are required to control bacterial infections. A potential way to produce a multivalent vaccine is via the generation of a glycoconjugate vaccine which consists of an antigenic protein covalently linked to an immunogenic carbohydrate. Protein-glycan coupling technology (PGCT) is an approach to generate glycoconjugates using enzymes that can couple proteins and glycan when produced in bacterial cells. Previous studies have used PGCT to generate a live-attenuated avian pathogenic Escherichia coli (APEC) strain capable of N-glycosylation of target proteins using a chromosomally integrated Campylobacter jejuni pgl locus. However, this proved ineffective against C. jejuni challenge. Results In this study we demonstrate the lack of surface exposure of glycosylated protein in APEC strain χ7122 carrying the pgl locus. Furthermore, we hypothesise that this may be due to the complex cell-surface architecture of E. coli. To this end, we removed the lipopolysaccharide O-antigen of APEC χ7122 pgl+ via deletion of the wecA gene and demonstrate increased surface exposure of glycosylated antigens (NetB and FlpA) in this strain. We hypothesise that increasing the surface expression of the glycosylated protein would increase the chance of host immune cells being exposed to the glycoconjugate, and therefore the generation of an efficacious immune response would be more likely. Conclusions Our results demonstrate an increase in cell surface exposure and therefore accessibility of glycosylated antigens upon removal of lipopolysaccharide antigen from the APEC cell surface.
Collapse
Affiliation(s)
- Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| | | |
Collapse
|
34
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
35
|
Kay EJ, Mauri M, Willcocks SJ, Scott TA, Cuccui J, Wren BW. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines. Microb Cell Fact 2022; 21:66. [PMID: 35449016 PMCID: PMC9026721 DOI: 10.1186/s12934-022-01792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sam J Willcocks
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy A Scott
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
36
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
37
|
Shkair L, Garanina EE, Martynova EV, Kolesnikova AI, Arkhipova SS, Titova AA, Rizvanov AA, Khaiboullina SF. Immunogenic Properties of MVs Containing Structural Hantaviral Proteins: An Original Study. Pharmaceutics 2022; 14:pharmaceutics14010093. [PMID: 35056989 PMCID: PMC8779827 DOI: 10.3390/pharmaceutics14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an emerging infectious disease that remains a global public health threat. The highest incidence rate is among zoonotic disease cases in Russia. Most cases of HFRS are reported in the Volga region of Russia, which commonly identifies the Puumala virus (PUUV) as a pathogen. HFRS management is especially challenging due to the lack of specific treatments and vaccines. This study aims to develop new approaches for HFRS prevention. Our goal is to test the efficacy of microvesicles (MVs) as PUUV nucleocapsid (N) and glycoproteins (Gn/Gc) delivery vehicles. Our findings show that MVs could deliver the PUUV N and Gn/Gc proteins in vitro. We have also demonstrated that MVs loaded with PUUV proteins could elicit a specific humoral and cellular immune response in vivo. These data suggest that an MV-based vaccine could control HFRS.
Collapse
|
38
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
39
|
Vohra P, Chintoan-Uta C, Bremner A, Mauri M, Terra VS, Cuccui J, Wren BW, Vervelde L, Stevens MP. Evaluation of a Campylobacter jejuni N-glycan-ExoA glycoconjugate vaccine to reduce C. jejuni colonisation in chickens. Vaccine 2021; 39:7413-7420. [PMID: 34799141 DOI: 10.1016/j.vaccine.2021.10.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 01/10/2023]
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and handling or consumption of contaminated poultry meat is the key source of infection. Glycoconjugate vaccines containing the C. jejuni N-glycan have been reported to be partially protective in chickens. However, our previous studies with subunit vaccines comprising the C. jejuni FlpA or SodB proteins with up to two or three C. jejuni N-glycans, respectively, failed to elicit significant protection. In this study, protein glycan coupling technology was used to add up to ten C. jejuni N-glycans onto a detoxified form of Pseudomonas aeruginosa exotoxin A (ExoA). The glycoprotein, G-ExoA, was evaluated for efficacy against intestinal colonisation of White Leghorn chickens by C. jejuni strains M1 and 11168H relative to unglycosylated ExoA. Chickens were challenged with the minimum dose required for reliable colonisation, which was 102 colony-forming units (CFU) for strain M1 and and 104 CFU for strain 11168H. Vaccine-specific serum IgY was detected in chickens vaccinated with both ExoA and G-ExoA. However, no reduction in caecal colonisation by C. jejuni was observed. While the glycan dose achieved with G-ExoA was higher than FlpA- or SodB-based glycoconjugates that were previously evaluated, it was lower than that of glycoconjugates where protection against C. jejuni has been reported, indicating that protection may be highly sensitive to the amount of glycan presented and/or study-specific variables.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Marta Mauri
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Vanessa S Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | | |
Collapse
|
40
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
41
|
Pneumococcal Vaccines: Past Findings, Present Work, and Future Strategies. Vaccines (Basel) 2021; 9:vaccines9111338. [PMID: 34835269 PMCID: PMC8620834 DOI: 10.3390/vaccines9111338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
The importance of Streptococcus pneumoniae has been well established. These bacteria can colonize infants and adults without symptoms, but in some cases can spread, invade other tissues and cause disease with high morbidity and mortality. The development of pneumococcal conjugate vaccines (PCV) caused an enormous impact in invasive pneumococcal disease and protected unvaccinated people by herd effect. However, serotype replacement is a well-known phenomenon that has occurred after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) and has also been reported for other PCVs. Therefore, it is possible that serotype replacement will continue to occur even with higher valence formulations, but the development of serotype-independent vaccines might overcome this problem. Alternative vaccines are under development in order to improve cost effectiveness, either using proteins or the pneumococcal whole cell. These approaches can be used as a stand-alone strategy or together with polysaccharide vaccines. Looking ahead, the next generation of pneumococcal vaccines can be impacted by the new technologies recently approved for human use, such as mRNA vaccines and viral vectors. In this paper, we will review the advantages and disadvantages of the addition of new polysaccharides in the current PCVs, mainly for low- and middle-income countries, and we will also address future perspectives.
Collapse
|
42
|
Mauri M, Sannasiddappa TH, Vohra P, Corona-Torres R, Smith AA, Chintoan-Uta C, Bremner A, Terra VS, Abouelhadid S, Stevens MP, Grant AJ, Cuccui J, Wren BW. Multivalent poultry vaccine development using Protein Glycan Coupling Technology. Microb Cell Fact 2021; 20:193. [PMID: 34600535 PMCID: PMC8487346 DOI: 10.1186/s12934-021-01682-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. RESULTS We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. CONCLUSIONS We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost "live-attenuated multivalent vaccine factories" with the ability to express glycoconjugates in poultry.
Collapse
Affiliation(s)
- Marta Mauri
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thippeswamy H Sannasiddappa
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Prerna Vohra
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Ricardo Corona-Torres
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Abi Bremner
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Vanessa S Terra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK.
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK.
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
43
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
44
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Oldrini D, Pitirollo O, Gasperini G, Balocchi C, Bechi N, Brunelli B, Piccioli D, Adamo R. Generalized Modules for Membrane Antigens as Carrier for Polysaccharides: Impact of Sugar Length, Density, and Attachment Site on the Immune Response Elicited in Animal Models. Front Immunol 2021; 12:719315. [PMID: 34594333 PMCID: PMC8477636 DOI: 10.3389/fimmu.2021.719315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
46
|
Bacterial Outer Membrane Vesicles as a Versatile Tool in Vaccine Research and the Fight against Antimicrobial Resistance. mBio 2021; 12:e0170721. [PMID: 34372691 PMCID: PMC8406158 DOI: 10.1128/mbio.01707-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria include a number of pathogens that cause disease in humans and animals. Although antibiotics are still effective in treating a considerable range of infections caused by Gram-negative bacteria, the alarming increase of antimicrobial resistance (AMR) induced by excessive use of antibiotics has raised global concerns. Therefore, alternative strategies must be developed to prevent and treat bacterial infections and prevent the advent of a postantibiotic era. Vaccines, one of the greatest achievements in the history of medical science, hold extraordinary potential to prevent bacterial infections and thereby reduce the need for antibiotics. Novel bacterial vaccines are urgently needed, however, and outer membrane vesicles (OMVs), naturally produced by Gram-negative bacteria, represent a promising and versatile tool that can be employed as adjuvants, antigens, and delivery platforms in the development of vaccines against Gram-negative bacteria. Here, we provide an overview of the many roles OMVs can play in vaccine development and the mechanisms behind these applications. Methods to improve OMV yields and a comparison of different strategies for OMV isolation aiming at cost-effective production of OMV-based vaccines are also reviewed.
Collapse
|
47
|
Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021; 75:609-630. [PMID: 34351789 DOI: 10.1146/annurev-micro-052821-031444] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretion of cellular components across the plasma membrane is an essential process that enables organisms to interact with their environments. Production of extracellular vesicles in bacteria is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review, we discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also discuss the growing and promising biotechnological applications of OMV. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Evan J Pardue
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - M Florencia Haurat
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA;
| |
Collapse
|
48
|
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. MICROLIFE 2021; 2:uqab006. [PMID: 37223254 PMCID: PMC10117751 DOI: 10.1093/femsml/uqab006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Budding of the bacterial surface results in the formation and secretion of outer membrane vesicles, which is a conserved phenomenon observed in Gram-negative bacteria. Recent studies highlight that these sphere-shaped facsimiles of the donor bacterium's surface with enclosed periplasmic content may serve multiple purposes for their host bacterium. These include inter- and intraspecies cell-cell communication, effector delivery to target cells and bacterial adaptation strategies. This review provides a concise overview of potential medical applications to exploit outer membrane vesicles for therapeutic approaches. Due to the fact that outer membrane vesicles resemble the surface of their donor cells, they represent interesting nonliving candidates for vaccine development. Furthermore, bacterial donor species can be genetically engineered to display various proteins and glycans of interest on the outer membrane vesicle surface or in their lumen. Outer membrane vesicles also possess valuable bioreactor features as they have the natural capacity to protect, stabilize and enhance the activity of luminal enzymes. Along these features, outer membrane vesicles not only might be suitable for biotechnological applications but may also enable cell-specific delivery of designed therapeutics as they are efficiently internalized by nonprofessional phagocytes. Finally, outer membrane vesicles are potent modulators of our immune system with pro- and anti-inflammatory properties. A deeper understanding of immunoregulatory effects provoked by different outer membrane vesicles is the basis for their possible future applications ranging from inflammation and immune response modulation to anticancer therapy.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
49
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|
50
|
Ai X, Wang S, Duan Y, Zhang Q, Chen M, Gao W, Zhang L. Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry 2021; 60:941-955. [PMID: 32452667 PMCID: PMC8507422 DOI: 10.1021/acs.biochem.0c00343] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There has been significant interest in developing cell membrane-coated nanoparticles due to their unique abilities of biomimicry and biointerfacing. As the technology progresses, it becomes clear that the application of these nanoparticles can be drastically broadened if additional functions beyond those derived from the natural cell membranes can be integrated. Herein, we summarize the most recent advances in the functionalization of cell membrane-coated nanoparticles. In particular, we focus on emerging methods, including (1) lipid insertion, (2) membrane hybridization, (3) metabolic engineering, and (4) genetic modification. These approaches contribute diverse functions in a nondisruptive fashion while preserving the natural function of the cell membranes. They also improve on the multifunctional and multitasking ability of cell membrane-coated nanoparticles, making them more adaptive to the complexity of biological systems. We hope that these approaches will serve as inspiration for more strategies and innovations to advance cell membrane coating technology.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Maggie Chen
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|