1
|
Qiu M, Li S, Li S, Sun Z, Lin H, Yang S, Cui M, Qiu Y, Qi W, Yu X, Shang S, Tian K, Meurens F, Zhu J, Chen N. The GP2a 91/97/98 amino acid substitutions play critical roles in determining PRRSV tropism and infectivity but do not affect immune responses. J Virol 2025; 99:e0004825. [PMID: 40071920 PMCID: PMC11998492 DOI: 10.1128/jvi.00048-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates share a restricted cellular tropism. Marc-145 cells derived from African green monkey are one of the few cell lines supporting PRRSV propagation in vitro and are commonly used for PRRS vaccine development. However, currently prevalent PRRSV isolates display different Marc-145 cell tropism while the exact determinant is not clarified yet. In this study, we identified for the first time that the 91/97/98 amino acid (aa) substitutions in GP2a of PRRSV play critical roles in determining Marc-145 adaptation. Specifically, multiple series of chimeric viruses were constructed based on four PRRSV infectious clones including Marc-145 adaptive HP-PRRSV-2 strain and Marc-145 non-adaptive NADC34-like PRRSV-2, NADC30-like PRRSV-2, and PRRSV-1 strains. The GP2a 91/97/98 aa substitutions are a sufficient and necessary determinant in NADC34-like and NADC30-like PRRSV-2, a sufficient but not necessary determinant in HP-PRRSV-2, a necessary but not sufficient determinant in PRRSV-1, respectively. In addition, the GP2a substitutions also influenced PRRSV infectivity in PAMs and piglets. Noticeably, the GP2a substitutions did not significantly affect the levels of neutralizing antibodies, porcine T follicular helper (Tfh) cells, and PRRSV-specific IFNγ secreting cells. Overall, our results not only provide new insights into PRRSV tropism and infectivity but also will facilitate PRRS vaccine development. IMPORTANCE Prevalent PRRSV isolates present different cell tropisms in vitro. Clarifying the exact determinant of PRRSV tropism is crucial for PRRSV isolation and vaccine development. By constructing chimeric viruses based on four representative PRRSV infectious clones, we identified for the first time that the 91/97/98 amino acid substitutions in GP2a play critical but distinct roles in determining Marc-145 cell tropism for different PRRSV strains. The GP2a 91/97/98 amino acid substitutions also affect PRRSV infectivity in PAMs and piglets but do not influence immune responses. This study not only deciphers an exact determinant of PRRSV tropism and infectivity but also has guiding significance for PRRS vaccine development.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Lertwanakarn T, Khemthong M, Setthawong P, Phaonakrop N, Roytrakul S, Ploypetch S, Surachetpong W. Proteomic and phosphoproteomic profilings reveal distinct cellular responses during Tilapinevirus tilapiae entry and replication. PeerJ 2025; 13:e18923. [PMID: 39995988 PMCID: PMC11849505 DOI: 10.7717/peerj.18923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background Tilapia Lake virus (TiLV) poses a significant threat to global tilapia aquaculture, causing high mortality rates and severe economic losses. However, the molecular mechanisms underlying TiLV-host interactions remain largely unexplored. Methodology We investigated the proteomic and phosphoproteomic changes in two piscine cell lines, E-11 and RHTiB cells, following TiLV inoculation at different time points. Differential protein expressions at 10-min and 24-h post infection were selected for constructing protein-protein interactions and analyzing enriched pathways related to the viral entry and replication. Results Our findings revealed significant alterations in protein expression and phosphorylation states, highlighting distinct responses between the cell lines. In E-11 cells, TiLV infection suppressed proteins involved in the Janus kinase-signal transducer and activator of transcription and Fas-associated death domain protein-tumor necrosis factor receptor-associated factor pathways, leading to activation of nucleotide oligomerization domain signaling and apoptosis. In RHTiB cells, TiLV suppressed host cellular metabolism by reducing protein phosphatase activity to facilitate early viral entry, while later stages of infection showed increased activity of myosin heavy chain 9 and enhanced host immune responses via phosphorylation of ribosomal protein L17 and GTPase immunity-associated protein 7 (GIMAP7). Conclusion Our study suggested that TiLV employs different strategies to manipulate host cellular pathways depending on the cell type. Further studies are essential to validate these findings and ultimately facilitate the development of effective antiviral strategies.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
4
|
Yang K, Dong J, Li J, Zhou R, Jia X, Sun Z, Zhang W, Li Z. The neonatal Fc receptor (FcRn) is required for porcine reproductive and respiratory syndrome virus uncoating. J Virol 2025; 99:e0121824. [PMID: 39651859 PMCID: PMC11784455 DOI: 10.1128/jvi.01218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Previous studies from other groups showed that CD163 is required for PRRSV uncoating and genome release. However, CD163 does not interact with nucleocapsid (N) protein. In this study, the neonatal Fc receptor (FcRn) was demonstrated to be irreplaceable for PRRSV infection by knockdown, overexpression, antibodies or IgG blocking, knockout, and replenishment assays. FcRn was further revealed to be involved in PRRSV uncoating for the first time rather than viral attachment and internalization. In detail, FcRn was determined to colocalize with CD163 and PRRSV virions in early endosomes and specially interact with N protein in early endosomes. Taken together, these results provide evidence that FcRn is an essential cellular factor for PRRSV uncoating, which will be a promising target to interfere with the viral infection.IMPORTANCEPRRSV infection results in a severe swine disease affecting pig farming in the world. Although CD163 has been implicated as the uncoating receptor for PRRSV but the uncoating mechanism of PRRSV remains unclear. Here, we identified that FcRn facilitated virion uncoating via interaction with viral N protein in early endosomes. Our work actually expands the knowledge of PRRSV infection and provides an attractive therapeutic target for the prevention and control of PRRS.
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiarui Dong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Han S, Oh D, Vanderheijden N, Xie J, Balmelle N, Tignon M, Nauwynck HJ. Monoclonal Antibodies Targeting Porcine Macrophages Are Able to Inhibit the Cell Entry of Macrophage-Tropic Viruses (PRRSV and ASFV). Viruses 2025; 17:167. [PMID: 40006922 PMCID: PMC11860747 DOI: 10.3390/v17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV) cause serious economic losses to the swine industry worldwide. Both viruses show a tropism for macrophages, based on the use of specific entry mediators (e.g., Siglec-1 and CD163). Identifying additional mediators of viral entry is essential for advancing antiviral and vaccine development. In this context, monoclonal antibodies (mAbs) are valuable tools. This study employed a library of 166 mAbs targeting porcine alveolar macrophages (PAMs) to identify candidates capable of blocking early infection stages, including viral binding, internalization, and fusion. Immunofluorescence analysis revealed 74 mAbs with cytoplasmic staining and 70 mAbs with membrane staining. Fifteen reacted with blood monocytes as determined by flow cytometry. mAb blocking assays were performed at 4 °C and 37 °C to analyze the ability of mAbs to block PRRSV and/or ASFV infections in PAMs. The mAb 28C10 significantly blocked PRRSV (96% at 4 °C and 80% at 37 °C) and ASFV (64% at 4 °C and 81% at 37 °C) infections. The mAb 28G10B6 significantly blocked PRRSV (86% at 4 °C and 74% at 37 °C) and partially blocked ASFV (35% at 4 °C and 64% at 37 °C) infections. mAb 26B8F5-I only partially blocked PRRSV infection (65% at 4 °C and 46% at 37 °C). Western blotting and mass spectrometry identified the corresponding proteins as Siglec-1 (28C10; 250 kDa), MYH9 (28G10B6; 260 kDa), and ANXA1 (26B8F5-I; 37 kDa). Our findings are indicative that Siglec-1, MYH9, and ANXA1 play a role in PRRSV/ASFV entry into macrophages.
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nathalie Vanderheijden
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jiexiong Xie
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadège Balmelle
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Marylène Tignon
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Qin Z, Liu W, Qin Z, Zhang H, Huang X. Host combats porcine reproductive and respiratory syndrome virus infection at non-coding RNAs level. Virulence 2024; 15:2416551. [PMID: 39403796 PMCID: PMC11492689 DOI: 10.1080/21505594.2024.2416551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global swine industry. The emergence of new, highly virulent strains has precipitated recurrent outbreaks worldwide, underscoring the ongoing battle between host and virus. Thus, there is an imperative to formulate a more comprehensive and effective disease control strategy. Studies have shown that host non-coding RNA (ncRNA) is an important regulator of host - virus interactions in PRRSV infection. Hence, a thorough comprehension of the roles played by ncRNAs in PRRSV infection can augment our understanding of the pathogenic mechanisms underlying PRRSV infection. This review focuses on elucidating contemporary insights into the roles of host microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in PRRSV infection, providing both theoretical foundations and fresh perspectives for ongoing research into the mechanisms driving PRRSV infection and its pathogenesis.
Collapse
Affiliation(s)
- Zhi Qin
- College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Weiye Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
8
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Jiang D, Yang L, Meng X, Xu Q, Zhou X, Liu B. Let-7f-5p Modulates Lipid Metabolism by Targeting Sterol Regulatory Element-Binding Protein 2 in Response to PRRSV Infection. Vet Sci 2024; 11:392. [PMID: 39330771 PMCID: PMC11435751 DOI: 10.3390/vetsci11090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.
Collapse
Affiliation(s)
- Dongfeng Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Li L, Cui X, Yu Y, Sun Q, Li W, Li Y, Li S, Chen L, Khan MZ, Wang C, Wang T. Blebbistatin as a novel antiviral agent targeting equid herpesvirus type 8. Front Vet Sci 2024; 11:1390304. [PMID: 38898998 PMCID: PMC11186319 DOI: 10.3389/fvets.2024.1390304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Equid herpesvirus type 8 (EqHV-8) poses a significant threat to equine health, leading to miscarriages and respiratory diseases in horses and donkeys, and results in substantial economic losses in the donkey industry. Currently, there are no effective drugs or vaccines available for EqHV-8 infection control. Methods In this study, we investigated the in vitro and in vivo antiviral efficacy of Blebbistatin, a myosin II ATPase inhibitor, against EqHV-8. Results Our results demonstrated that Blebbistatin significantly inhibited EqHV-8 infection in Rabbit kidney (RK-13) and Madin-Darby Bovine Kidney (MDBK) cells in a concentration-dependent manner. Notably, Blebbistatin was found to disrupt EqHV-8 infection at the entry stage by modulating myosin II ATPase activity. Moreover, in vivo experiments revealed that Blebbistatin effectively reduced EqHV-8 replication and mitigated lung pathology in a mouse model. Conclusion Collectively, these findings suggest that Blebbistatin holds considerable potential as an antiviral agent for the control of EqHV-8 infection, presenting a novel approach to addressing this veterinary challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Liu Y, Qin Y, Yang B, Zheng H, Qiao S, Luo Z, Li R. Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity. J Virol 2024; 98:e0048324. [PMID: 38639486 PMCID: PMC11092326 DOI: 10.1128/jvi.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yidan Qin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bingbing Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongmei Zheng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Li C, Fan A, Liu Z, Wang G, Zhou L, Zhang H, Huang L, Zhang J, Zhang Z, Zhang Y. Prevalence, Time of Infection, and Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2024; 16:774. [PMID: 38793655 PMCID: PMC11125865 DOI: 10.3390/v16050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Aihua Fan
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Gang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China;
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China;
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China;
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
| | - Yan Zhang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China;
| |
Collapse
|
13
|
Wang T, Li S, Hu X, Geng Y, Chen L, Liu W, Zhao J, Tian W, Wang C, Li Y, Li L. Heme oxygenase-1 is an equid alphaherpesvirus 8 replication restriction host protein and suppresses viral replication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathway. Microbiol Spectr 2024; 12:e0322023. [PMID: 38441979 PMCID: PMC10986571 DOI: 10.1128/spectrum.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)β/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Shuwen Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xinyao Hu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Yiqing Geng
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Juan Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenxia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
14
|
Huang X, Liu W. Role of microRNAs in host defense against porcine reproductive and respiratory syndrome virus infection: a hidden front line. Front Immunol 2024; 15:1376958. [PMID: 38590524 PMCID: PMC10999632 DOI: 10.3389/fimmu.2024.1376958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most globally devastating viruses threatening the swine industry worldwide. Substantial advancements have been achieved in recent years towards comprehending the pathogenesis of PRRSV infection and the host response, involving both innate and adaptive immune responses. Not only a multitude of host proteins actively participate in intricate interactions with viral proteins, but microRNAs (miRNAs) also play a pivotal role in the host response to PRRSV infection. If a PRRSV-host interaction at the protein level is conceptualized as the front line of the battle between pathogens and host cells, then their fight at the RNA level resembles the hidden front line. miRNAs are endogenous small non-coding RNAs of approximately 20-25 nucleotides (nt) that primarily regulate the degradation or translation inhibition of target genes by binding to the 3'-untranslated regions (UTRs). Insights into the roles played by viral proteins and miRNAs in the host response can enhance our comprehensive understanding of the pathogenesis of PRRSV infection. The intricate interplay between viral proteins and cellular targets during PRRSV infection has been extensively explored. This review predominantly centers on the contemporary understanding of the host response to PRRSV infection at the RNA level, in particular, focusing on the twenty-six miRNAs that affect viral replication and the innate immune response.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
15
|
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front Vet Sci 2023; 10:1289570. [PMID: 37929286 PMCID: PMC10623566 DOI: 10.3389/fvets.2023.1289570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and economically significant virus that causes respiratory and reproductive diseases in pigs. It results in reduced productivity and increased mortality in pigs, causing substantial economic losses in the industry. Understanding the factors affecting pig responses to PRRSV is crucial to develop effective control strategies. Genetic background has emerged as a significant determinant of susceptibility and resistance to PRRSV in pigs. This review provides an overview of the basic infection process of PRRSV in pigs, associated symptoms, underlying immune mechanisms, and roles of noncoding RNA and alternative splicing in PRRSV infection. Moreover, it emphasized breed-specific variations in these aspects that may have implications for individual treatment options.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
16
|
Shen HH, Zhao Q, Wen YP, Wu R, Du SY, Huang XB, Wen XT, Cao SJ, Zeng L, Yan QG. Porcine reproductive and respiratory syndrome virus upregulates SMPDL3B to promote viral replication by modulating lipid metabolism. iScience 2023; 26:107450. [PMID: 37583552 PMCID: PMC10424083 DOI: 10.1016/j.isci.2023.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Huan-Huan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Sen-Yan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
17
|
Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13050813. [PMID: 36899670 PMCID: PMC10000246 DOI: 10.3390/ani13050813] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute, febrile, and highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Glycoprotein 5 (GP5) is a glycosylated envelope protein encoded by the PRRSV ORF5, which has good immunogenicity and can induce the body to produce neutralizing antibodies. Therefore, study of GP5 protein is of great significance in the diagnosis, prevention, and control of PRRSV and the development of new vaccines. We reviewed GP5 protein genetic variation, immune function, interaction with viral protein and host proteins, induction of cell apoptosis, and stimulation of neutralizing antibodies. GP5 protein's influence on virus replication and virulence, as well as its use as a target for viral detection and immunization are reviewed.
Collapse
|
18
|
Zhai W, Yu S, Zhang P, Lin Y, Ge S, Zhang T, Zhang K, He S, Hu Q, Tang X, Peng Z, Wang C. Epidemiology and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in the Hunan and Hebei Provinces of China. Vet Sci 2023; 10:vetsci10010063. [PMID: 36669064 PMCID: PMC9866626 DOI: 10.3390/vetsci10010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant threat to the pig industry in China. However, the epidemiological characteristics of PRRSV after the outbreak of African swine fever in China were not thoroughly investigated. In the present study, the serological and epidemiological investigations of PRRSV in pigs from the Hunan and Hebei provinces of China were assessed. The results showed that 73.12% (95% CI 71.74-74.49) of pigs were positive for PRRSV-special antibody by enzyme-linked immunosorbent assay. Out of 5799 samples, 482 (8.31%, 95% CI 7.60-9.02) samples were positive for PRRSV nucleic acids. The positive rates of PRRSV in healthy pigs from farms and slaughterhouses were 2.27% (47/2072) and 7.70% (217/2818), which were lower than that in diseased pigs (23.98%, 218/909). Furthermore, the full-length OFR5 gene sequences of 43 PRRSV strains were sequenced and analysed. Phylogenetic analysis revealed that 43 isolates were classified into three lineages, namely lineage 1 (n = 24), lineage 8 (n = 15), and lineage 3 (n = 4). Lineage 1 could be further divided into sublineage 1.5 (n = 2) and sublineage 1.8 (n = 22), and lineage 8 was classified into sublineage 8.1 (n = 3) and sublineage 8.7 (n = 12). Collectively, our findings revealed the severe prevalence of PRRSV in the Hunan and Hebei provinces, where sublineage 1.8 and sublineage 8.7 predominated. The present study provides the update information of the epidemiological and genetic characteristics of PRRSV in the investigated regions, which will be beneficial for PRRS control.
Collapse
Affiliation(s)
- Wang Zhai
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Yu
- Technology Center of Changsha Customs, Changsha 410128, China
| | - Pengxuan Zhang
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Lin
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Shenghu Ge
- Hebei Mingzhu Biotechnology Co., Ltd., Xingtai 055700, China
| | - Taojie Zhang
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Kun Zhang
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Shicheng He
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Qiaoyun Hu
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Xiaomin Tang
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Zhi Peng
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
| | - Changjian Wang
- Hunan Provincial Center for Animal Disease Control and Prevention, Changsha 410128, China
- Correspondence: ; Fax: +86-731-89716972
| |
Collapse
|
19
|
Chaudhari J, Leme RA, Durazo-Martinez K, Sillman S, Workman AM, Vu HLX. A Single Amino Acid Substitution in Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 2 Significantly Impairs Its Infectivity in Macrophages. Viruses 2022; 14:v14122822. [PMID: 36560826 PMCID: PMC9781675 DOI: 10.3390/v14122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted tropism for macrophages and CD163 is a key receptor for infection. In this study, the PRRSV strain NCV1 was passaged on MARC-145 cells for 95 passages, and two plaque-clones (C1 and C2) were randomly selected for further analysis. The C1 virus nearly lost the ability to infect porcine alveolar macrophages (PAMs), as well as porcine kidney cells expressing porcine CD163 (PK15-pCD163), while the C2 virus replicates well in these two cell types. Pretreatment of MARC-145 cells with an anti-CD163 antibody nearly blocked C1 virus infection, indicating that the virus still required CD163 to infect cells. The C1 virus carried four unique amino acid substitutions: three in the nonstructural proteins and a K160I in GP2. The introduction of an I160K substitution in GP2 of the C1 virus restored its infectivity in PAMs and PK15-pCD163 cells, while the introduction of a K160I substitution in GP2 of the low-passaged, virulent PRRSV strain NCV13 significantly impaired its infectivity. Importantly, pigs inoculated with the rNCV13-K160I mutant exhibited lower viremia levels and lung lesions than those infected with the parental rNCV13. These results demonstrated that the K160 residue in GP2 is one of the key determinants of PRRSV tropism.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Raquel Arruda Leme
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Clinal Research Department, Dechra Pharmaceuticals, Londrina 86030, Brazil
| | - Kassandra Durazo-Martinez
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aspen M. Workman
- United State Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
20
|
Ye N, Wang B, Feng W, Tang D, Zeng Z. PRRS virus receptors and an alternative pathway for viral invasion. Virus Res 2022; 320:198885. [PMID: 35948131 DOI: 10.1016/j.virusres.2022.198885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a highly restricted cell tropism, which is closely related to the specific receptors associated with PRRSV infection. At least nine cellular molecules have been identified as putative receptors for PRRSV, including CD163, a cysteine-rich scavenger receptor. With the participation of the CD163 receptor and other cofactors, PRRSV invades cells via low pH-dependent clathrin-mediated endocytosis. In addition, PRRSV utilizes viral apoptotic mimicry to infect cells though macropinocytosis as an alternative pathway. In this review, we discuss recent advances in the studies on receptors and pathways that play an important role in PRRSV invasion, and simultaneously explore the use of specific antibodies, small molecules, and blockers targeting receptor-ligand interactions, as a potential strategy for controlling PRRSV infection. Novel antiviral strategies against PRRSV could be developed by identifying the interaction between receptors and ligands.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
22
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Li L, Sun W, Hu Q, Wang T, Zhu G, Zhao Q, Zhou EM. Identification of MYH9 Key Domain Involved in the Entry of PRRSV Into Permissive Cells. Front Microbiol 2022; 13:865343. [PMID: 35694306 PMCID: PMC9174932 DOI: 10.3389/fmicb.2022.865343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge losses economically to the pig industry worldwide. Previous research suggested that receptor dependence is necessary for PRRSV infection. MYH9 and CD163 are indispensable for PRRSV entry into a porcine alveolar macrophage. In the present study, human MYH9 (hMYH9) and mouse MYH9 (mMYH9), similar to swine MYH9, could also accelerate PRRSV infection in pCD163-mediated cell lines. Knockdown of MYH9 activity using the specific small interfering RNA or inhibitor (blebbistatin) concomitantly decreased PRRSV infection. C-terminal fragment of MYH9 (PRA) proteins from different mammalian species contains a conserved binding domain (aa1676-1791) for PRRSV binding, since the recombinant MYH91676−1791protein could inhibit the PRRSV infection significantly. Furthermore, the specific polyclonal antibody of MYH91676−1791 could block PRRSV infection in host cells. These data strongly supported that MYH9, a very important cofactor, participated in PRRSV entry into target cells, which may facilitate the development of a new therapeutic agent to control PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Liangliang Li
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Qifan Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Guang Zhu
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| |
Collapse
|
24
|
Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses 2022; 14:v14020417. [PMID: 35216010 PMCID: PMC8874825 DOI: 10.3390/v14020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.
Collapse
|
25
|
Heat Shock Protein Member 8 (HSPA8) Is Involved in Porcine Reproductive and Respiratory Syndrome Virus Attachment and Internalization. Microbiol Spectr 2022; 10:e0186021. [PMID: 35138165 PMCID: PMC8826899 DOI: 10.1128/spectrum.01860-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a porcine arterivirus, causes severe financial losses to global swine industry. Despite much research, the molecular mechanisms of PRRSV infection remains to be fully elucidated. In the current study, we uncovered the involvement of heat shock protein member 8 (HSPA8) in PRRSV attachment and internalization during infection for the first time. In detail, HSPA8 was identified to interact with PRRSV glycoprotein 4 (GP4), a major determinant for viral cellular tropism, dependent on its carboxy-terminal peptide-binding (PB) domain. Chemical inhibitors and specific small interference RNAs (siRNAs) targeting HSPA8 significantly suppressed PRRSV infection as indicated by decreased viral RNA abundance, infectivity, and titers. Especially, PRRSV attachment was inhibited by interference of its binding to HSPA8 with mouse anti-HSPA8 polyclonal antibodies (pAbs) and recombinant soluble HSPA8 protein. HSPA8 was further shown to participate in PRRSV internalization through clathrin-dependent endocytosis (CME). Collectively, these results demonstrate that HSPA8 is important for PRRSV attachment and internalization, which is a potential target to prevent and control the viral infection. IMPORTANCE PRRSV has caused huge economic losses to the pork industry around the world. Currently, safe and effective strategies are still urgently required to prevent and control PRRSV infection. As the first steps, PRRSV attachment and internalization are initiated by interactions between viral envelope proteins and host cell receptors/factors, which are not fully understood yet. Here, we identified the interaction between PRRSV GP4 and HSPA8, and demonstrated that HSPA8 was involved in PRRSV attachment and internalization. This work deepens our understanding of the molecular mechanisms involved in PRRSV infection, and provides novel insights for the development of antiviral drugs and vaccines against the virus.
Collapse
|
26
|
Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proc Natl Acad Sci U S A 2021; 118:2111011118. [PMID: 34873039 PMCID: PMC8685683 DOI: 10.1073/pnas.2111011118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.
Collapse
|
27
|
Development of a Nanobody-Based Competitive Enzyme-Linked Immunosorbent Assay for Efficiently and Specifically Detecting Antibodies against Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses. J Clin Microbiol 2021; 59:e0158021. [PMID: 34524888 PMCID: PMC8601240 DOI: 10.1128/jcm.01580-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes considerable economic loss to the global pig industry. Efficient detection assay is very important for the prevention of the virus infection. Nanobodies are the advantages of small molecular weight, simple genetic engineering, and low production cost for promising diagnostic application. In this study, to develop a nanobody-based competitive ELISA (cELISA) for specifically detecting antibodies against PRRSV, three nanobodies against PRRSV-N protein were screened by camel immunization, library construction, and phage display. Subsequently, a recombinant HEK293S cell line stably secreting nanobody-horseradish peroxidase (HRP) fusion protein against PRRSV-N protein was successfully constructed using the lentivirus transduction assay. Using the cell lines, the fusion protein was easily produced. Then, a novel cELISA was developed using the nanobody-HRP fusion protein for detecting antibodies against PRRSV in pig sera, exhibiting a cut-off value of 23.19% and good sensitivity, specificity, and reproducibility. Importantly, the cELISA specifically detect anti-genotype 2 PRRSV antibodies. The cELISA showed more sensitive than the commercial IDEXX ELISA kit by detecting the sequential sera from the challenged pigs. The compliance rate of cELISA with the commercial IDEXX ELISA kit was 96.4%. In addition, the commercial IDEXX ELISA kit can be combined with the developed cELISA for the differential detection of antibodies against genotype 1 and 2 PRRSV in pig sera. Collectively, the developed nanobody-based cELISA showed advantages of simple operation and low production cost and can be as an assay for epidemiological investigation of genotype 2 PRRSV infection in pigs and evaluation after vaccination.
Collapse
|
28
|
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843 CD163 Cell Lines and Primary Porcine Alveolar Macrophages. Viruses 2021; 13:v13112267. [PMID: 34835073 PMCID: PMC8618244 DOI: 10.3390/v13112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type Ⅰ IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection.
Collapse
|
29
|
MicroRNA ssc-miR-124a exhibits antiviral activity against porcine reproductive and respiratory syndrome virus via suppression of host genes CD163. Vet Microbiol 2021; 261:109216. [PMID: 34481271 DOI: 10.1016/j.vetmic.2021.109216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious infectious disease in the swine industry, which causes severe economic losses to current swine production worldwide. There are no effective antiviral strategies for preventing this disease. Previous studies showed that microRNAs (miRNAs) play important role in virus-host interactions. In this study, we demonstrated that the expression level of ssc-miR-124a was significantly downregulated during both high and low pathogenic PRRSV infection. Overexpression of ssc-miR-124a markedly inhibits PRRSV replication in PAMs. Luciferase reporter experiments and RISC immunoprecipitation assay were used to identify the ssc-miR-124a could directly target the 3'UTR of pig CD163 mRNA in a sequence-specific manner and that CD163 mRNA and protein levels were reduced in PAMs overexpressing ssc-miR-124a. These data not only provide new insights into virus-host interactions during PRRSV infection, but also suggest potential new antiviral strategies against PRRSV infection in the future.
Collapse
|
30
|
Glyceraldehyde-3-Phosphate Dehydrogenase Restricted in Cytoplasmic Location by Viral GP5 Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication via Its Glycolytic Activity. J Virol 2021; 95:e0021021. [PMID: 34160254 DOI: 10.1128/jvi.00210-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important endemic swine pathogens, causing enormous losses in the global swine industry. Commercially available vaccines only partially prevent or counteract the virus infection and correlated losses. PRRSV's replication mechanism has not been well understood. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was screened to bind with the viral major envelope glycoprotein 5 (GP5) after PRRSV infection. The interacting sites are located within a 13-amino-acid (aa) region (aa 93 to 105) of GP5 and at Lys227 of GAPDH. Interestingly, viral GP5 restricts the translocation of GAPDH from the cytoplasm to the nucleus. Moreover, cytoplasmic GAPDH facilitates PRRSV replication by virtue of its glycolytic activity. The results suggest that PRRSV GP5 restricts GAPDH to the nucleus and exploits its glycolytic activity to stimulate virus replication. The data provide insight into the role of GAPDH in PRRSV replication and reveal a potential target for controlling viral infection. IMPORTANCE PRRSV poses a severe economic threat to the pig industry. PRRSV GP5, the major viral envelope protein, plays an important role in viral infection, pathogenicity, and immunity. However, interactions between GP5 and host proteins have not yet been well studied. Here, we show that GAPDH interacts with GP5 through binding a 13-aa sequence (aa 93 to 105) in GP5, while GP5 interacts with GAPDH at the K277 amino acid residue of GAPDH. We demonstrate that GP5 interacts with GAPDH in the cytoplasm during PPRSV infection, inhibiting GAPDH entry into the nucleus. PRRSV exploits the glycolytic activity of GAPDH to promote viral replication. These results enrich our understanding of PRRSV infection and pathogenesis and open a new avenue for antiviral prevention and PRRSV treatment strategies.
Collapse
|
31
|
Zheng XX, Li R, Qiao S, Chen XX, Zhang L, Lu Q, Xing G, Zhou EM, Zhang G. Vimentin rearrangement by phosphorylation is beneficial for porcine reproductive and respiratory syndrome virus replication in vitro. Vet Microbiol 2021; 259:109133. [PMID: 34087674 DOI: 10.1016/j.vetmic.2021.109133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Vimentin, a member of intermediate filaments, has been documented to be involved in viral infections. Despite several studies focusing on its involvement in porcine reproductive and respiratory syndrome virus (PRRSV) infection, the detailed mechanisms by which vimentin takes effect remain to be fully elucidated. In the present study, we identified a previously unrecognized role of vimentin rearrangement in PRRSV replication. We monitored that PRRSV infection induced vimentin reorganization during post-entry stage, which was beneficial for viral replication. In detail, the serine residue of vimentin was phosphorylated at position 38 (Ser38) by calcium calmodulin-dependent protein kinase II gamma (CaMKIIγ), and vimentin filaments reorganized into cage-like structures enwrapping PRRSV replication complex (RC) at the perinuclear location. Taken together, these results expand the knowledge of PRRSV replication, and provide novel targets for prevention and control of PRRSV.
Collapse
Affiliation(s)
- Xin-Xian Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
32
|
Ma H, Li R, Jiang L, Qiao S, Chen XX, Wang A, Zhang G. Structural comparison of CD163 SRCR5 from different species sheds some light on its involvement in porcine reproductive and respiratory syndrome virus-2 infection in vitro. Vet Res 2021; 52:97. [PMID: 34193250 PMCID: PMC8246673 DOI: 10.1186/s13567-021-00969-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.
Collapse
Affiliation(s)
- Hongfang Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116 Fujian China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Xin-xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
33
|
Comparison of Primary Virus Isolation in Pulmonary Alveolar Macrophages and Four Different Continuous Cell Lines for Type 1 and Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Vaccines (Basel) 2021; 9:vaccines9060594. [PMID: 34205087 PMCID: PMC8229515 DOI: 10.3390/vaccines9060594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has a highly restricted cellular tropism. In vivo, the virus primarily infects tissue-specific macrophages in the nose, lungs, tonsils, and pharyngeal lymphoid tissues. In vitro however, the MARC-145 cell line is one of the few PRRSV susceptible cell lines that are routinely used for in vitro propagation. Previously, several PRRSV non-permissive cell lines were shown to become susceptible to PRRSV infection upon expression of recombinant entry receptors (e.g., PK15Sn-CD163, PK15S10-CD163). In the present study, we examined the suitability of different cell lines as a possible replacement of primary pulmonary alveolar macrophages (PAM) cells for isolation and growth of PRRSV. The susceptibility of four different cell lines (PK15Sn-CD163, PK15S10-CD163, MARC-145, and MARC-145Sn) for the primary isolation of PRRSV from PCR positive sera (both PRRSV1 and PRRSV2) was compared with that of PAM. To find possible correlations between the cell tropism and the viral genotype, 54 field samples were sequenced, and amino acid residues potentially associated with the cell tropism were identified. Regarding the virus titers obtained with the five different cell types, PAM gave the highest mean virus titers followed by PK15Sn-CD163, PK15S10-CD163, MARC-145Sn, and MARC-145. The titers in PK15Sn-CD163 and PK15S10-CD163 cells were significantly correlated with virus titers in PAM for both PRRSV1 (p < 0.001) and PRRSV2 (p < 0.001) compared with MARC-145Sn (PRRSV1: p = 0.22 and PRRSV2: p = 0.03) and MARC-145 (PRRSV1: p = 0.04 and PRRSV2: p = 0.12). Further, a possible correlation between cell tropism and viral genotype was assessed using PRRSV whole genome sequences in a Genome-Wide-Association Study (GWAS). The structural protein residues GP2:187L and N:28R within PRRSV2 sequences were associated with their growth in MARC-145. The GP5:78I residue for PRRSV2 and the Nsp11:155F residue for PRRSV1 was linked to a higher replication on PAM. In conclusion, PK15Sn-CD163 and PK15S10-CD163 cells are phenotypically closely related to the in vivo target macrophages and are more suitable for virus isolation and titration than MARC-145/MARC-145Sn cells. The residues of PRRSV proteins that are potentially related with cell tropism will be further investigated in the future.
Collapse
|
34
|
The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines (Basel) 2021; 9:vaccines9040364. [PMID: 33918746 PMCID: PMC8070056 DOI: 10.3390/vaccines9040364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.
Collapse
|
35
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
36
|
A broadly neutralizing monoclonal antibody induces broad protection against heterogeneous PRRSV strains in piglets. Vet Res 2021; 52:45. [PMID: 33726857 PMCID: PMC7962380 DOI: 10.1186/s13567-021-00914-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
Neutralizing antibodies (NAbs) have attracted attention as tools for achieving PRRSV control and prevention, but viral antigenic variation undermines the abilities of NAbs elicited by attenuated PRRSV vaccines to confer full protection against heterogeneous PRRSV field isolates. As demonstrated in this study, the monoclonal antibody (mAb) mAb-PN9cx3 exhibited broad-spectrum recognition and neutralizing activities against PRRSV-1 and PRRSV-2 strains in vitro. Furthermore, in vivo experiments revealed that the administration of two 10-mg doses of mAb-PN9cx3 before and after the inoculation of piglets with heterologous PRRSV isolates (HP-PRRSV-JXA1 or PRRSV NADC30-like strain HNhx) resulted in significant reduction of the PRRSV-induced pulmonary pathological changes and virus loads in porcine alveolar macrophages (PAMs) compared with the results obtained with mAb-treated isotype controls. Moreover, minimal hilar lymph node PRRSV antigen levels were observed in mAb-PN9cx3-treated piglets. A transcriptome profile analysis of PAMs extracted from lung tissues of piglets belonging to different groups (except for antibody-isotype controls) indicated that mAb-PN9cx3 treatment reversed the PRRSV infection-induced alterations in expression profiles. A gene ontology (GO) enrichment analysis of these genes traced their functions to pathways that included the immune response, inflammatory response, and response to steroid hormone, and their functions in oogenesis and positive regulation of angiogenesis have been implicated in PRRSV pathogenesis. Overall, NADC30-like HNhx infection affected more gene pathways than HP-PRRSV infection. In conclusion, our research describes a novel immunologic approach involving the use of mAbs that confer cross-protection against serious illness resulting from infection with heterogeneous PRRSV-2 isolates, which is a feat that has not yet been achieved through vaccination. Ultimately, mAb-PN9cx3 will be a powerful addition to our current arsenal for achieving PRRSV prevention and eradication.
Collapse
|
37
|
Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021; 52:25. [PMID: 33596995 PMCID: PMC7887809 DOI: 10.1186/s13567-020-00868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Lizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Shuaishuai Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Huanhuan Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingjing Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Abedi F, Rezaee R, Hayes AW, Nasiripour S, Karimi G. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle 2021; 20:143-153. [PMID: 33382348 PMCID: PMC7889196 DOI: 10.1080/15384101.2020.1867792] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
To date, proposed therapies and antiviral drugs have been failed to cure coronavirus disease 2019 (COVID-19) patients. However, at least two drug companies have applied for emergency use authorization with the United States Food and Drug Administration for their coronavirus vaccine candidates and several other vaccines are in various stages of development to determine safety and efficacy. Recently, some studies have shown the role of different human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microRNAs (miRNAs) in the pathophysiology of COVID-19. miRNAs are non-coding single-stranded RNAs, which are involved in several physiological and pathological conditions, such as cell proliferation, differentiation, and metabolism. They act as negative regulators of protein synthesis through binding to the 3' untranslated region (3' UTR) of the complementary target mRNA, leading to mRNA degradation or inhibition. The databases of Google Scholar, Scopus, PubMed, and Web of Science were searched for literature regarding the importance of miRNAs in the SARS-CoV-2 life cycle, pathogenesis, and genomic mutations. Furthermore, promising miRNAs as a biomarker or antiviral agent in COVID-19 therapy are reviewed.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- University of South Florida, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - Somayyeh Nasiripour
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Fang J, Qiao S, Wang K, Li R, Wang L, Li H, Zhang G. Quantitative Proteomic Analysis of Global Protein Acetylation in PRRSV-Infected Pulmonary Alveolar Macrophages. Proteomics 2020; 21:e2000019. [PMID: 33296138 DOI: 10.1002/pmic.202000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/14/2020] [Indexed: 01/24/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a serious viral disease affecting global swine industry. Due to the lack of effective vaccines, new antiviral strategies to compensate for the inefficacy of available vaccines are urgently required. Lysine acetylation, as an important post-translational modification during infection, plays a key regulatory role in host antiviral responses. In this study, the global acetylome is profiled using acetylation specific antibody-based enrichment and tandem mass tag label high-affinity purification liquid chromatography-mass spectrometry in PRRSV-infected pulmonary alveolar macrophages (PAMs). As a result, 3731 lysine acetylation sites on 1421 cellular proteins are identified. Bioinformatics analysis of the different acetylated proteins revealed their involvement in various biological processes, including the host immune response and energy metabolism. These findings will contribute to the understanding of PRRSV pathogenesis and identify new cellular targets for anti-PPRSV therapeutics.
Collapse
Affiliation(s)
- Jianyu Fang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Keling Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lei Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Haili Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
40
|
Morozumi T, Takenouchi T, Wada E, Uenishi H, Nishiyama Y. Susceptibility of immortalized porcine kidney macrophages to porcine reproductive and respiratory syndrome virus-2 infection. J Virol Methods 2020; 288:114026. [PMID: 33238183 DOI: 10.1016/j.jviromet.2020.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) displays restricted tropism to porcine alveolar macrophages in nature. Meanwhile, non-porcine cell lines derived from African green monkey kidney cell lines are permissive to PRRSV, resulting in their widespread use in PRRSV research. Furthermore, genetically modified cell lines expressing receptors targeted by PRRSV have been established. We previously established porcine immortalized kidney-derived macrophages (IPKMs) that maintained typical macrophage function. In the present study, we demonstrated the advantages of IPKMs for PRRSV research. IPKMs expressed receptors for PRRSV such as CD163 and CD169. The efficiency of virus isolation from field biological samples was higher for IPKMs than for MARC-145 cells. Five different clusters of North American type PRRSV were propagated in IPKMs. Four field strains continuously produced progeny viruses during 10 continuous passages. The efficiency of virus isolation from field biological samples and continuous progeny virus production in the sequential passages using IPKMs indicated that these cells are good vessels for PRRSV research.
Collapse
Affiliation(s)
- Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | - Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasutaka Nishiyama
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| |
Collapse
|
41
|
Porcine Reproductive and Respiratory Syndrome Virus Promotes SLA-DR-Mediated Antigen Presentation of Nonstructural Proteins To Evoke a Nonneutralizing Antibody Response In Vivo. J Virol 2020; 94:JVI.01423-20. [PMID: 32796065 DOI: 10.1128/jvi.01423-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The humoral immune response against porcine reproductive and respiratory syndrome virus (PRRSV) infection is characterized by a rapid induction of nonneutralizing antibodies (non-NAbs) against nonstructural proteins (NSPs). Here, we systematically investigated the potential mechanism for the induction of PRRSV NSP-specific non-NAbs. Our data suggested that PRRSV NSP-specific antibodies appeared within 10 days after PRRSV infection in vivo In the in vitro model, functional upregulation of swine leukocyte antigen (SLA)-DR was observed in bone marrow-derived dendritic cells (BMDCs) and porcine alveolar macrophages (PAMs), whereas remarkable inhibition at the mRNA level was observed after infection by both PRRSV-1 and PRRSV-2 isolates. Notably, the inconsistency in SLA-DR expression between the mRNA and protein levels resulted from deubiquitination of SLA-DR via the ovarian tumor (OTU) domain of PRRSV NSP2, which inhibited ubiquitin-mediated degradation. Moreover, mass spectrometry-based immunopeptidome analysis identified immunopeptides originating from multiple PRRSV NSPs within SLA-DR of PRRSV-infected BMDCs. Meanwhile, these PRRSV NSP-derived immunopeptides could be specifically recognized by serum from PRRSV-infected piglets. Notably, certain NSP-derived immunopeptides characterized in vitro could be identified from PAMs or hilar lymph nodes from PRRSV-infected piglets. More importantly, an in vitro neutralizing assay indicated that serum antibodies against NSP immunopeptides were unable to neutralize PRRSV in vitro Conversely, certain structural protein (SP)-derived immunopeptides were identified and could be recognize by pig hyperimmune serum against PRRSV, which further indicates that the NSP-derived antibody response is nonprotective in vivo In conclusion, our data suggested that PRRSV infection interferes with major histocompatibility complex class II (MHC-II) molecule-mediated antigen presentation in antigen-presenting cells (APCs) via promoting SLA-DR expression to present immunopeptides from PRRSV NSPs, which contributes to the induction of non-NAbs in vivo IMPORTANCE PRRSV has haunted the swine industry for over 30 years since its emergence. Besides the limited efficacy of PRRSV modified live vaccines (MLVs) against heterogeneous PRRSV isolates, rapid induction of nonneutralizing antibodies (non-NAbs) against PRRSV NSPs after MLV immunization or wild-strain infection is one of the reasons why development of an effective vaccine has been hampered. By using in vitro-generated BMDCs as models to understand the antigen presentation process of PRRSV, we obtained data indicating that PRRSV infection of BMDCs promotes functional SLA-DR upregulation to present PRRSV NSP-derived immunopeptides for evoking a non-NAb response in vivo Our work not only uncovered a novel mechanism for interference in host antigen presentation by PRRSV but also revealed a novel insight for understanding the rapid production of nonneutralizing antibodies against PRRSV NSPs, which may have benefit for developing an effective vaccine against PRRSV in the future.
Collapse
|
42
|
Porcine Reproductive and Respiratory Syndrome Virus Utilizes Viral Apoptotic Mimicry as an Alternative Pathway To Infect Host Cells. J Virol 2020; 94:JVI.00709-20. [PMID: 32522856 PMCID: PMC7431799 DOI: 10.1128/jvi.00709-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
PRRS has caused huge economic losses to pig farming worldwide. Its causative agent, PRRSV, infects host cells through low pH-dependent clathrin-mediated endocytosis and CD163 is indispensable during the process. Whether there exist alternative infection pathways for PRRSV arouses our interest. Here, we found that PRRSV exposed PS on its envelope and disguised as apoptotic debris. The PS receptor TIM-1/4 recognized PRRSV and induced the downstream signaling pathway to mediate viral infection via CD163-dependent macropinocytosis. The current work deepens our understanding of PRRSV infection and provides clues for the development of drugs and vaccines against the virus. Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), has led to enormous economic losses in global swine industry. Infection by PRRSV is previously shown to be via low pH-dependent clathrin-mediated endocytosis, and CD163 functions as an essential receptor during viral infection. Despite much research focusing on it, PRRSV infection remains to be fully elucidated. In this study, we demonstrated that PRRSV externalized phosphatidylserine (PS) on the envelope as viral apoptotic mimicry and infected host cells through T-cell immunoglobulin and mucin domain (TIM)-induced and CD163-involved macropinocytosis as an alternative pathway. In detail, we identified that PS receptor TIM-1/4 recognized and interacted with PRRSV as viral apoptotic mimicry and subsequently induced macropinocytosis by the downstream Rho GTPases Rac1, cell division control protein 42 (Cdc42), and p21-activated kinase 1 (Pak1). Altogether, these results expand our knowledge of PRRSV infection, which will support implications for the prevention and control of PRRS. IMPORTANCE PRRS has caused huge economic losses to pig farming worldwide. Its causative agent, PRRSV, infects host cells through low pH-dependent clathrin-mediated endocytosis and CD163 is indispensable during the process. Whether there exist alternative infection pathways for PRRSV arouses our interest. Here, we found that PRRSV exposed PS on its envelope and disguised as apoptotic debris. The PS receptor TIM-1/4 recognized PRRSV and induced the downstream signaling pathway to mediate viral infection via CD163-dependent macropinocytosis. The current work deepens our understanding of PRRSV infection and provides clues for the development of drugs and vaccines against the virus.
Collapse
|
43
|
Bello-Onaghise G, Wang G, Han X, Nsabimana E, Cui W, Yu F, Zhang Y, Wang L, Li Z, Cai X, Li Y. Antiviral Strategies of Chinese Herbal Medicine Against PRRSV Infection. Front Microbiol 2020; 11:1756. [PMID: 32849384 PMCID: PMC7401453 DOI: 10.3389/fmicb.2020.01756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Bioactive compounds from Traditional Chinese Medicines (TCMs) are gradually becoming an effective alternative in the control of porcine reproductive and respiratory syndrome virus (PRRSV) because most of the commercially available PRRSV vaccines cannot provide full protection against the genetically diverse strains isolated from farms. Besides, the incomplete attenuation procedure involved in the production of modified live vaccines (MLV) may cause them to revert to the more virulence forms. TCMs have shown some promising potentials in bridging this gap. Several investigations have revealed that herbal extracts from TCMs contain molecules with significant antiviral activities against the various stages of the life cycle of PRRSV, and they do this through different mechanisms. They either block PRRSV attachment and entry into cells or inhibits the replication of viral RNA or viral particles assembly and release or act as immunomodulators and pathogenic pathway inhibitors through cytokines regulations. Here, we summarized the various antiviral strategies employed by some TCMs against the different stages of the life cycle of PRRSV under two major classes, including direct-acting antivirals (DAAs) and indirect-acting antivirals (IAAs). We highlighted their mechanisms of action. In conclusion, we recommended that in making plans for the use of TCMs to control PRRSV, the pathway forward must be built on a real understanding of the mechanisms by which bioactive compounds exert their effects. This will provide a template that will guide the focus of collaborative studies among researchers in the areas of bioinformatics, chemistry, and proteomics. Furthermore, available data and procedures to support the efficacy, safety, and quality control levels of TCMs should be well documented without any breach of data integrity and good manufacturing practices.
Collapse
Affiliation(s)
- God'spower Bello-Onaghise
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal and Veterinary Science, Chengdu Agricultural College, Chengdu, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Linguang Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhengze Li
- Department of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
44
|
Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev 2020; 43:674-683. [PMID: 31584659 DOI: 10.1093/femsre/fuz023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Zhang Y, Gao F, Li L, Zhao K, Jiang S, Jiang Y, Yu L, Zhou Y, Liu C, Tong G. Porcine Reproductive and Respiratory Syndrome Virus Antagonizes PCSK9's Antiviral Effect via Nsp11 Endoribonuclease Activity. Viruses 2020; 12:v12060655. [PMID: 32560445 PMCID: PMC7354446 DOI: 10.3390/v12060655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. Our previous study had indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9) was a responsive gene in porcine alveolar macrophages (PAMs) upon PRRSV infection. However, whether PCSK9 impacts the PRRSV replication and how the PRRSV modulates host PCSK9 remains elusive. Here, we demonstrated that PCSK9 protein suppressed the replication of both type-1 and type-2 PRRSV species. More specifically, the C-terminal domain of PCSK9 was responsible for the antiviral activity. Besides, we showed that PCSK9 inhibited PRRSV replication by targeting the virus receptor CD163 for degradation through the lysosome. In turn, PRRSV could down-regulate the expression of PCSK9 in both PAMs and MARC-145 cells. By screening the nonstructural proteins (nsps) of PRRSV, we showed that nsp11 could antagonize PCSK9’s antiviral activity. Furthermore, mutagenic analyses of PRRSV nsp11 revealed that the endoribonuclease activity of nsp11 was critical for antagonizing the antiviral effect of PCSK9. Collectively, our data provide further insights into the interaction between PRRSV and the cell host and offer a new potential target for the antiviral therapy of PRRSV.
Collapse
Affiliation(s)
- Yujiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Shan Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Correspondence: (C.L.); (G.T.)
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.L.); (G.T.)
| |
Collapse
|
46
|
Oh D, Xie J, Vanderheijden N, Nauwynck HJ. Isolation and characterization of a new population of nasal surface macrophages and their susceptibility to PRRSV-1 subtype 1 (LV) and subtype 3 (Lena). Vet Res 2020; 51:21. [PMID: 32093748 PMCID: PMC7038536 DOI: 10.1186/s13567-020-00751-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sialoadhesin (Sn) and CD163 have been recognized as two important mediators for porcine reproductive and respiratory syndrome virus (PRRSV) in host macrophages. Recently, it has been demonstrated that the highly virulent Lena strain has a wider macrophage tropism than the low virulent LV strain in the nasal mucosa. Not only CD163+Sn+ macrophages are infected by Lena but also CD163+Sn− macrophages. This suggests that an alternative receptor exists for binding and internalization of PRRSV Lena in the CD163+Sn− macrophages. Further investigation to find the new entry receptor was hampered by the difficulty of isolating these macrophages from the nasal mucosa. In the present study, a new population of CD163+Sn− cells has been identified that is specifically localized in the nasal lamina propria and can be isolated by an intranasal digestion approach. Isolated nasal cells were characterized using specific cell markers and their susceptibility to two different PRRSV-1 strains (LV and Lena) was tested. Upon digestion, 3.2% (flow cytometry)—6.4% (confocal microscopy) of the nasal cells were identified as CD163+ and all (99.7%) of these CD163+ cells were Sn−. These CD163+Sn− cells, designated as “nasal surface macrophages”, showed a 4.9 times higher susceptibility to the Lena strain than to the LV strain. Furthermore, the Lena-inoculated cell cultures showed an upregulation of CD163. These results showed that our new cell isolation system is ideal for the further functional and phenotypical analysis of the new population of nasal surface macrophages and further research on the molecular pathogenesis of PRRSV in the nose.
Collapse
Affiliation(s)
- Dayoung Oh
- Department of Virology, Immunology, and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Jiexiong Xie
- Department of Virology, Immunology, and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Nathalie Vanderheijden
- Department of Virology, Immunology, and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Immunology, and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
47
|
Wu C, Gu G, Zhai T, Wang Y, Yang Y, Li Y, Zheng X, Zhao Q, Zhou EM, Nan Y. Broad neutralization activity against both PRRSV-1 and PRRSV-2 and enhancement of cell mediated immunity against PRRSV by a novel IgM monoclonal antibody. Antiviral Res 2020; 175:104716. [PMID: 31981575 DOI: 10.1016/j.antiviral.2020.104716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease affecting the global swine industry, especially since vaccination has had limited impact on PRRSV prevention and control. In this study, the monoclonal antibody PR5nf1 (Mab-PR5nf1, IgM isotype) was shown to react with heterogeneous PRRSV isolates belonging to both PRRSV-1 and PRRSV-2 species. Pepsin digestion of Mab-PR5nf1 did not affect Mab binding to virions, as F(ab)2 fragments demonstrated the same reactivity as undigested Mab. Upon further investigation, Mab-PR5nf1 could neutralize all tested PRRSV isolates of both PRRSV-1 and PRRSV-2, suggesting it was a broadly neutralizing Mab against PRRSV. Interestingly, Mab-PR5nf1 appeared to recognize a specific virus epitope that required post-translational modification within the host cellular Golgi apparatus. Deglycosylation of PRRSV virions with PNGase F abolished Mab binding, suggesting that a novel Mab-binding epitope may exist that confers cross-protection against isolates of both PRRSV species. Additionally, immunization of mice with a cocktail of inactivated PRRSV virus and Mab-PR5nf1 enhanced cell-mediated immunity, as determined by IFN-γ ELIspot. In conclusion, this is the first report describing a novel Mab that recognizes a conserved epitope common to both PRRSV-1 and PRRSV-2 and provides valuable insights to guide future PRRSV vaccine development.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Tianshu Zhai
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yajing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yongling Yang
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China; Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
48
|
Li L, Zhang L, Hu Q, Zhao L, Nan Y, Hou G, Chen Y, Han X, Ren X, Zhao Q, Tao H, Sun Z, Zhang G, Wu C, Wang J, Zhou EM. MYH9 Key Amino Acid Residues Identified by the Anti-Idiotypic Antibody to Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 5 Involve in the Virus Internalization by Porcine Alveolar Macrophages. Viruses 2019; 12:v12010040. [PMID: 31905776 PMCID: PMC7019770 DOI: 10.3390/v12010040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
MYH9 has been identified as an indispensable cellular protein for porcine reproductive and respiratory syndrome virus (PRRSV) entry into permissive cells using the monoclonal anti-idiotypic antibody (Mab2-5G2) recognizing an antibody that specifically interacts with PRRSV glycoprotein 5 (GP5). More recently, we found that Mab2-5G2 interacted with the MYH9 C-terminal domain, designated PRA, which is required for PRRSV internalization. In this study, we demonstrate that blocking of MYH9 with Mab2-5G2 significantly diminished PRRSV internalization by porcine alveolar macrophage (PAM) via interruption of direct interaction between GP5 and MYH9, and thus remarkably inhibited subsequent infection of PAMs by PRRSV-2 isolates. Moreover, the three-dimensional structure of the Mab2-5G2 Fab-PRA complex determined via homology modeling predicted potential docking sites required for PRRSV internalization. Further analysis of Mab2-5G2-binding sites within PRA highlighted that the amino acids E1670, K1673, E1679, and I1683 in PRA are the key Mab2-5G2-binding residues. Notably, recombinant PRA protein blocked the interaction between PRRSV GP5 and cellular MYH9 by preventing translocation of MYH9 from the cytoplasm to the cell membrane, an essential step for PRRSV virion internalization. Meanwhile, porcine cell line permissive for PRRSV bearing point mutation of E1670A in MYH9 demonstrated reduced susceptibility for PRRSV infection. In conclusion, this work increases understanding of both PRRSV pathogenesis and the mechanistic role played by MYH9 in PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Qifan Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Liang Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Gaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Xiaolei Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Hu Tao
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Zhenzhao Sun
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 100193, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| | - Jingfei Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 100193, China
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| |
Collapse
|
49
|
Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, Schroeder DC, VanderWaal K. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2019; 10:2486. [PMID: 31736919 PMCID: PMC6839445 DOI: 10.3389/fmicb.2019.02486] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the most important endemic pathogen in the U.S. swine industry. Despite control efforts involving improved biosecurity and different vaccination protocols, the virus continues to circulate and evolve. One of the foremost challenges in its control is high levels of genetic and antigenic diversity. Here, we quantify the co-circulation, emergence and sequential turnover of multiple PRRSV lineages in a single swine-producing region in the United States over a span of 9 years (2009-2017). By classifying over 4,000 PRRSV sequences (open-reading frame 5) into phylogenetic lineages and sub-lineages, we document the ongoing diversification and temporal dynamics of the PRRSV population, including the rapid emergence of a novel sub-lineage that appeared to be absent globally pre-2008. In addition, lineage 9 was the most prevalent lineage from 2009 to 2010, but its occurrence fell to 0.5% of all sequences identified per year after 2014, coinciding with the emergence or re-emergence of lineage 1 as the dominant lineage. The sequential dominance of different lineages, as well as three different sub-lineages within lineage 1, is consistent with the immune-mediated selection hypothesis for the sequential turnover in the dominant lineage. As host populations build immunity through natural infection or vaccination toward the most common variant, this dominant (sub-) lineage may be replaced by an emerging variant to which the population is more susceptible. An analysis of patterns of non- synonymous and synonymous mutations revealed evidence of positive selection on immunologically important regions of the genome, further supporting the potential that immune-mediated selection shapes the evolutionary and epidemiological dynamics for this virus. This has important implications for patterns of emergence and re-emergence of genetic variants of PRRSV that have negative impacts on the swine industry. Constant surveillance on PRRSV occurrence is crucial to a better understanding of the epidemiological and evolutionary dynamics of co-circulating viral lineages. Further studies utilizing whole genome sequencing and exploring the extent of cross-immunity between heterologous PRRS viruses could shed further light on PRRSV immunological response and aid in developing strategies that might be able to diminish disease impact.
Collapse
Affiliation(s)
| | - Cesar Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Juan Manuel Sanhueza
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Carles Vilalta
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
50
|
Xue B, Hou G, Zhang G, Huang J, Li L, Nan Y, Mu Y, Wang L, Zhang L, Han X, Ren X, Zhao Q, Wu C, Wang J, Zhou EM. MYH9 Aggregation Induced by Direct Interaction With PRRSV GP5 Ectodomain Facilitates Viral Internalization by Permissive Cells. Front Microbiol 2019; 10:2313. [PMID: 31649651 PMCID: PMC6794372 DOI: 10.3389/fmicb.2019.02313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Prevention and control of infection by porcine reproductive and respiratory syndrome virus (PRRSV) remains a challenge, due to our limited understanding of the PRRSV invasion mechanism. Our previous study has shown that PRRSV glycoprotein GP5 interacts with MYH9 C-terminal domain protein (PRA). Here we defined that the first ectodomain of GP5 (GP5-ecto-1) directly interacted with PRA and this interaction triggered PRA and endogenous MYH9 to form filament assembly. More importantly, MYH9 filament assembly was also formed in GP5-ecto-1-transfected MARC-145 cells. Notably, PRRSV infection of MARC-145 cells and porcine alveolar macrophages also induced endogenous MYH9 aggregation and polymerization that were required for subsequent PRRSV internalization. Moreover, overexpression of S100A4, a MYH9-specific disassembly inducer, in MARC-145 cells significantly resulted in diminished MYH9 aggregation and marked inhibition of subsequent virion internalization and infection by both PRRSV-1 and PRRSV-2 isolates. The collective results of this work reveal a novel molecular mechanism employed by MYH9 that helps PRRSV gain entry into permissive cells.
Collapse
Affiliation(s)
- Biyun Xue
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Guixi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Liangliang Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yang Mu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ximeng Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaolei Ren
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chunyan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|