1
|
Loe-Sack-Sioe GE, de Vos DW, Visser LG, Jochems SP, Roukens AHE. Pneumococcal vaccine hyporesponsiveness in people living with HIV: A narrative review of immunological mechanisms and insights from minimally invasive lymph node sampling. Hum Vaccin Immunother 2025; 21:2503602. [PMID: 40374620 PMCID: PMC12087491 DOI: 10.1080/21645515.2025.2503602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Despite highly effective antiretroviral therapy, people living with HIV (PLWH) remain at elevated risk for invasive pneumococcal disease. Clinical studies show that, even with high CD4+ counts, PLWH exhibit diminished serological responses and rapid antibody decline following pneumococcal vaccination, plausibly due to underlying immune dysfunction. Germinal centers (GCs), located within lymph nodes, are essential for generating high-affinity antibodies, but are structurally and functionally disrupted in PLWH. These local impairments, combined with systemic immune dysregulation, contribute to vaccine hyporesponsiveness in PLWH. This narrative review links immunological findings from experimental and in vivo studies to clinical pneumococcal vaccine trials, to investigate mechanisms that may be leveraged to strengthen vaccine-induced immunity in PLWH. We also highlight the application of fine needle aspiration (FNA) of the lymph node as a way to study pneumococcal vaccine hyporesponsiveness in the GC and provide potential direction to improve responses for next-generation pneumococcal conjugate vaccines in PLWH.
Collapse
Affiliation(s)
- Giovanni E. Loe-Sack-Sioe
- Center for Infectious Diseases, Subdepartment of Research, Leiden University, Leiden, The Netherlands
| | - Danny W. de Vos
- Center for Infectious Diseases, Subdepartment of Infectious Diseases, Leiden University, Leiden, The Netherlands
| | - Leo G. Visser
- Center for Infectious Diseases, Subdepartment of Infectious Diseases, Leiden University, Leiden, The Netherlands
| | - Simon P. Jochems
- Center for Infectious Diseases, Subdepartment of Research, Leiden University, Leiden, The Netherlands
| | - Anna H. E. Roukens
- Center for Infectious Diseases, Subdepartment of Infectious Diseases, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Nakabembe E, Greenland M, Amaral K, Abu-Raya B, Amone A, Andrews N, Cantrell L, Lesne E, Gorringe A, Halkerston R, Mcstraw N, Dixon L, Hunter OF, Heath PT, Imede E, Kyohere M, Musoke P, Nakimuli A, Sekikubo M, Taylor S, Tusubira V, Sadarangani M, Le Doare K. Safety and immunogenicity of an acellular pertussis vaccine containing genetically detoxified pertussis toxin administered to pregnant women living with and without HIV and their newborns (WoMANPOWER): a randomised controlled trial in Uganda. Lancet Glob Health 2025; 13:e81-e97. [PMID: 39706666 PMCID: PMC11659843 DOI: 10.1016/s2214-109x(24)00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Immunisation in pregnancy against pertussis can reduce severe disease in infancy. There are few data on the safety and immunogenicity of vaccines given to pregnant women living with HIV and their infants. We aimed to describe the safety and immunogenicity of a tetanus-diphtheria-acellular pertussis (TdaP) vaccine containing genetically detoxified pertussis toxin given to pregnant women living with HIV and the effect of the vaccine on infant whole-cell pertussis vaccine responses. METHODS We conducted an observer-blind, randomised, phase 2, multicentre, non-inferiority trial evaluating safety and immunogenicity of a vaccine containing genetically detoxified acellular pertussis in pregnant women living with HIV in Uganda. Women aged at least 18 years between 16 weeks and 26 weeks of gestation were randomly assigned to receive the tetanus-diphtheria (Td) vaccine or TdaP vaccine. Stratified block randomisation using blocks of four with a 1:1:1:1 ratio stratified by participant HIV status was used to distribute participants into equal groups (50 participants per group for a total of 200 participants). The intervention was a 0·5 mL single intramuscular dose of TdaP vaccine. Td or TdaP vaccination was randomly assigned to different clinic days using randomisation software. Primary immunogenicity endpoints were anti-pertussis toxin and anti-filamentous haemagglutinin IgG concentrations in infants at delivery and 18 weeks following three doses of a whole-cell pertussis containing vaccine. This study is registered at ClinicalTrials.gov, NCT04589312. FINDINGS Between Oct 28, 2020, and May 21, 2021, 438 pregnant women were screened and 181 were randomly assigned: 90 to TdaP vaccine (40 HIV-positive participants and 50 HIV-negative participants) and 91 to Td vaccine (41 HIV-positive participants and 50 HIV-negative participants). All participants received Td, and 4 weeks later, 177 received either Td or TdaP. 32 serious adverse events occurred, none related to the study vaccine. At delivery, anti-pertussis toxin IgG concentrations for TdaP versus Td were superior in infants who were HIV-exposed but uninfected (geometric mean ratio 9·61, 95% CI 5·21-17·74) and HIV-unexposed infants (21·6, 11·2-41·7). In infants at 18 weeks, anti-pertussis toxin IgG concentrations for TdaP versus Td-vaccinated mothers were significantly lower for both infants who were HIV-exposed but uninfected (0·19, 0·09-0·43) and infants who were not HIV-exposed (0·17, 0·08-0·33). Serum bactericidal antibody generation following whole-cell pertussis vaccination in infants was not affected. INTERPRETATION TdaP was safe and immunogenic in pregnant women living with HIV and their infants. TdaP provided superior anti-pertussis toxin IgG concentrations at delivery. Following routine vaccination with whole-cell pertussis vaccine, infants born to women receiving the TdaP vaccine had lower anti-pertussis toxin IgG concentrations than infants born to women receiving Td. In the absence of a correlate of protection against pertussis disease, the clinical significance of this finding is unclear. FUNDING Medical Research Council Joint Clinical Trials, Canadian Institutes of Health Research, and British Columbia Children's Hospital Research Institute.
Collapse
Affiliation(s)
- Eve Nakabembe
- Department of Obstetrics and Gynaecology, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK.
| | - Melanie Greenland
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Kyle Amaral
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada; Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bahaa Abu-Raya
- Departments of Paediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alexander Amone
- Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Nick Andrews
- UK Health Security Agency, Immunisation and Vaccine Preventable Diseases Department, London, UK
| | - Liberty Cantrell
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Olivia F Hunter
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Paul T Heath
- Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK
| | - Esther Imede
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Mary Kyohere
- Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK; Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Philippa Musoke
- Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Musa Sekikubo
- Department of Obstetrics and Gynaecology, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Valerie Tusubira
- Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Manish Sadarangani
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada; Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection and Vaccine Institute, City St George's, University of London, London, UK; Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda; UK Health Security Agency, Salisbury, UK
| |
Collapse
|
3
|
Hentzien M, Bonnet F, Bernasconi E, Biver E, Braun DL, Munting A, Leuzinger K, Leleux O, Musardo S, Prendki V, Schmid P, Staehelin C, Stoeckle M, Walti CS, Wittkop L, Appay V, Didierlaurent AM, Calmy A. Immune response to the recombinant herpes zoster vaccine in people living with HIV over 50 years of age compared to non-HIV age-/gender-matched controls (SHINGR'HIV): a multicenter, international, non-randomized clinical trial study protocol. BMC Infect Dis 2024; 24:329. [PMID: 38504173 PMCID: PMC10949601 DOI: 10.1186/s12879-024-09192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The burden of herpes zoster (shingles) virus and associated complications, such as post-herpetic neuralgia, is higher in older adults and has a significant impact on quality of life. The incidence of herpes zoster and post-herpetic neuralgia is increased in people living with HIV (PLWH) compared to an age-matched general population, including PLWH on long-term antiretroviral therapy (ART) with no detectable viremia and normal CD4 counts. PLWH - even on effective ART may- exhibit sustained immune dysfunction, as well as defects in cells involved in the response to vaccines. In the context of herpes zoster, it is therefore important to assess the immune response to varicella zoster virus vaccination in older PLWH and to determine whether it significantly differs to that of HIV-uninfected healthy adults or younger PLWH. We aim at bridging these knowledge gaps by conducting a multicentric, international, non-randomised clinical study (SHINGR'HIV) with prospective data collection after vaccination with an adjuvant recombinant zoster vaccine (RZV) in two distinct populations: in PLWH on long-term ART (> 10 years) over 50 years of and age/gender matched controls. METHODS We will recruit participants from two large established HIV cohorts in Switzerland and in France in addition to age-/gender-matched HIV-uninfected controls. Participants will receive two doses of RZV two months apart. In depth-evaluation of the humoral, cellular, and innate immune responses and safety profile of the RZV will be performed to address the combined effect of aging and potential immune deficiencies due to chronic HIV infection. The primary study outcome will compare the geometric mean titer (GMT) of gE-specific total IgG measured 1 month after the second dose of RZV between different age groups of PLWH and between PLWH and age-/gender-matched HIV-uninfected controls. DISCUSSION The SHINGR'HIV trial will provide robust data on the immunogenicity and safety profile of RZV in older PLWH to support vaccination guidelines in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT05575830. Registered on 12 October 2022. Eu Clinical Trial Register (EUCT number 2023-504482-23-00).
Collapse
Affiliation(s)
- Maxime Hentzien
- HIV/AIDS Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- University of Reims Champagne-Ardenne, Reims, France
| | - Fabrice Bonnet
- CHU de Bordeaux, Hôpital Saint-André, Service de Médecine Interne et Maladies Infectieuses, Bordeaux, France
- Université de Bordeaux, INSERM, Institut Bergonié, BPH, U1219, CIC-EC 1401, Bordeaux, F-33000, France
| | - Enos Bernasconi
- Department of Infectious Diseases, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Dominique L Braun
- Division Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aline Munting
- Service of Infectious Diseases, Centre Hospitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | | | - Olivier Leleux
- Université de Bordeaux, INSERM, Institut Bergonié, BPH, U1219, CIC-EC 1401, Bordeaux, F-33000, France
| | - Stefano Musardo
- HIV/AIDS Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Virginie Prendki
- Division of Infectious Disease, Geneva University Hospital, Geneva, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital, St Gallen, Switzerland
| | - Cornelia Staehelin
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marcel Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Carla S Walti
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Linda Wittkop
- CHU de Bordeaux, Hôpital Saint-André, Service de Médecine Interne et Maladies Infectieuses, Bordeaux, France
- CHU de Bordeaux, Service d'information médicale, INSERM, Institut Bergonié, CIC-EC 1401, Bordeaux, F-33000, France
- Inria équipe SISTM team, Talence, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux, 33000, France
| | - Arnaud M Didierlaurent
- Department of Pathology and Immunology, Center of Vaccinology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Alexandra Calmy
- HIV/AIDS Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
4
|
Kreniske JS, Kaner RJ, Glesby MJ. Pathogenesis and management of emphysema in people with HIV. Expert Rev Respir Med 2023; 17:873-887. [PMID: 37848398 PMCID: PMC10872640 DOI: 10.1080/17476348.2023.2272702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Since early in the HIV epidemic, emphysema has been identified among people with HIV (PWH) and has been associated with increased mortality. Smoking cessation is key to risk reduction. Health maintenance for PWH and emphysema should ensure appropriate vaccination and lung cancer screening. Treatment should adhere to inhaler guidelines for the general population, but inhaled corticosteroid (ICS) should be used with caution. Frontiers in treatment include targeted therapeutics. Major knowledge gaps exist in the epidemiology of and optimal care for PWH and emphysema, particularly in low and middle-income countries (LMIC). AREAS COVERED Topics addressed include risk factors, pathogenesis, current treatment and prevention strategies, and frontiers in research. EXPERT OPINION There are limited data on the epidemiology of emphysema in LMIC, where more than 90% of deaths from COPD occur and where the morbidity of HIV is most heavily concentrated. The population of PWH is aging, and age-related co-morbidities such as emphysema will only increase in salience. Over the next 5 years, the authors anticipate novel trials of targeted therapy for emphysema specific to PWH, and we anticipate a growing body of evidence to inform optimal clinical care for lung health among PWH in LMIC.
Collapse
Affiliation(s)
- Jonah S. Kreniske
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
- Department of Genetic Medicine, Weill Cornell Medical College, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, USA
- Department of Population Health Sciences, Weill Cornell Medical College, USA
| |
Collapse
|
5
|
Anderson GP, Irving LB, Jarnicki A, Kedzierska K, Koutsakos M, Kent S, Hurt AC, Wheatley AK, Nguyen THO, Snape N, Upham JW. Prime-boost, double-dose influenza vaccine immunity in COPD: a pilot observational study. ERJ Open Res 2023; 9:00641-2021. [PMID: 36891079 PMCID: PMC9986756 DOI: 10.1183/23120541.00641-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background COPD patients are more susceptible to viral respiratory infections and their sequelae, and have intrinsically weaker immune responses to vaccinations against influenza and other pathogens. Prime-boost, double-dose immunisation has been suggested as a general strategy to overcome weak humoral response to vaccines, such as seasonal influenza vaccination, in susceptible populations with weak immunity. However, this strategy, which may also provide fundamental insights into the nature of weakened immunity, has not been formally studied in COPD. Methods We conducted an open-label study of seasonal influenza vaccination in 33 vaccine-experienced COPD patients recruited from established cohorts (mean age 70 (95% CI 66.9-73.2) years; mean forced expiratory volume in 1 s/forced vital capacity ratio 53.4% (95% CI 48.0-58.8%)). Patients received two sequential standard doses of the 2018 quadrivalent influenza vaccine (15 μg haemagglutinin per strain) in a prime-boost schedule 28 days apart. We measured strain-specific antibody titres, an accepted surrogate of likely efficacy, and induction of strain-specific B-cell responses following the prime and boost immunisations. Results Whereas priming immunisation induced the expected increase in strain-specific antibody titres, a second booster dose was strikingly ineffective at further increasing antibody titres. Similarly, priming immunisation induced strain-specific B-cells, but a second booster dose did not further enhance the B-cell response. Poor antibody responses were associated with male gender and cumulative cigarette exposure. Conclusions Prime-boost, double-dose immunisation does not further improve influenza vaccine immunogenicity in previously vaccinated COPD patients. These findings underscore the need to design more effective vaccine strategies for COPD patients for influenza.
Collapse
Affiliation(s)
- Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Australia
| | - Louis B Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Australia
| | - Andrew Jarnicki
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Stephen Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity and ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Natale Snape
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - John W Upham
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute and Princess Alexandra Hospital, Woolloongabba, Australia
| |
Collapse
|
6
|
Venturas JP. HIV and COVID-19 Disease. Semin Respir Crit Care Med 2023; 44:35-49. [PMID: 36646084 DOI: 10.1055/s-0042-1758852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite effective antiretroviral therapy (ART), HIV infected individuals throughout the world remain at significant risk of respiratory infections and non-communicable disease. Severe disease from SARS-CoV-2 is associated with a hyperinflammatory phenotype which manifests in the lungs as pneumonia and in some cases can lead to acute respiratory failure. Progression to severe COVID-19 is associated with comorbid disease such as obesity, diabetes mellitus and cardiovascular disease, however data concerning the associated risks of HIV coinfection are still conflicting, with large population studies demonstrating poorer outcomes, whilst smaller, case-controlled studies showing better outcomes. Furthermore, underlying immunopathological processes within the lungs and elsewhere, including interactions with other opportunistic infections (OI), remain largely undefined. Nonetheless, new and repurposed anti-viral therapies and vaccines which have been developed are safe to use in this population, and anti-inflammatory agents are recommended with the caveat that the coexistence of opportunistic infections is considered and excluded. Finally, HIV infected patients remain reliant on good ART adherence practices to maintain HIV viral suppression, and some of these practices were disrupted during the COVID-19 pandemic, putting these patients at further risk for acute and long-term adverse outcomes.
Collapse
Affiliation(s)
- Jacqui P Venturas
- Department of Internal Medicine and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital and Universtity of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Burton AR, Guillaume SM, Foster WS, Wheatley AK, Hill DL, Carr EJ, Linterman MA. The memory B cell response to influenza vaccination is impaired in older persons. Cell Rep 2022; 41:111613. [PMID: 36351385 PMCID: PMC9666924 DOI: 10.1016/j.celrep.2022.111613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/22/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Influenza infection imparts an age-related increase in mortality and morbidity. The most effective countermeasure is vaccination; however, vaccines offer modest protection in older adults. To investigate how aging impacts the memory B cell response, we track hemagglutinin-specific B cells by indexed flow sorting and single-cell RNA sequencing (scRNA-seq) in 20 healthy adults that were administered the trivalent influenza vaccine. We demonstrate age-related skewing in the memory B cell compartment 6 weeks after vaccination, with younger adults developing hemagglutinin-specific memory B cells with an FcRL5+ "atypical" phenotype, showing evidence of somatic hypermutation and positive selection, which happened to a lesser extent in older persons. We use publicly available scRNA-seq from paired human lymph node and blood samples to corroborate that FcRL5+ atypical memory B cells can derive from germinal center (GC) precursors. Together, this study shows that the aged human GC reaction and memory B cell response following vaccination is defective.
Collapse
Affiliation(s)
- Alice R Burton
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - William S Foster
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danika L Hill
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Edward J Carr
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | | |
Collapse
|
8
|
Diks AM, Overduin LA, van Leenen LD, Slobbe L, Jolink H, Visser LG, van Dongen JJM, Berkowska MA. B-Cell Immunophenotyping to Predict Vaccination Outcome in the Immunocompromised - A Systematic Review. Front Immunol 2021; 12:690328. [PMID: 34557188 PMCID: PMC8452967 DOI: 10.3389/fimmu.2021.690328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Vaccination is the most effective measure to prevent infections in the general population. Its efficiency strongly depends on the function and composition of the immune system. If the immune system lacks critical components, patients will not be fully protected despite a completed vaccination schedule. Antigen-specific serum immunoglobulin levels are broadly used correlates of protection. These are the products of terminally differentiated B cells - plasma cells. Here we reviewed the literature on how aberrancies in B-cell composition and function influence immune responses to vaccinations. In a search through five major literature databases, 6,537 unique articles published from 2000 and onwards were identified. 75 articles were included along three major research lines: extremities of life, immunodeficiency and immunosuppression. Details of the protocol can be found in the International Prospective Register of Systematic Reviews [PROSPERO (registration number CRD42021226683)]. The majority of articles investigated immune responses in adults, in which vaccinations against pneumococci and influenza were strongly represented. Lack of baseline information was the most common reason of exclusion. Irrespective of study group, three parameters measured at baseline seemed to have a predictive value in assessing vaccine efficacy: (1) distribution of B-cell subsets (mostly a reduction in memory B cells), (2) presence of exhausted/activated B cells, or B cells with an aberrant phenotype, and (3) pre-existing immunological memory. In this review we showed how pre-immunization (baseline) knowledge of circulating B cells can be used to predict vaccination efficacy. We hope that this overview will contribute to optimizing vaccination strategies, especially in immunocompromised patients.
Collapse
Affiliation(s)
- Annieck M Diks
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Lisanne A Overduin
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Laurens D van Leenen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Lennert Slobbe
- Department of Internal Medicine, Section of Infectious Diseases, Institute for Tropical Diseases, Erasmus Medical Center (MC), Rotterdam, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Leonardus G Visser
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Magdalena A Berkowska
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
9
|
Nguyen THO, Koutsakos M, van de Sandt CE, Crawford JC, Loh L, Sant S, Grzelak L, Allen EK, Brahm T, Clemens EB, Auladell M, Hensen L, Wang Z, Nüssing S, Jia X, Günther P, Wheatley AK, Kent SJ, Aban M, Deng YM, Laurie KL, Hurt AC, Gras S, Rossjohn J, Crowe J, Xu J, Jackson D, Brown LE, La Gruta N, Chen W, Doherty PC, Turner SJ, Kotsimbos TC, Thomas PG, Cheng AC, Kedzierska K. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat Commun 2021; 12:2691. [PMID: 33976217 PMCID: PMC8113517 DOI: 10.1038/s41467-021-23018-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Ludivine Grzelak
- Biology Department, École Normale Supérieure Paris-Saclay, Université Paris-Saclay Cachan, Cachan, France
| | - Emma K Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tim Brahm
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Maria Auladell
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patrick Günther
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Malet Aban
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yi-Mo Deng
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karen L Laurie
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aeron C Hurt
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - David Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Hartley GE, Edwards ESJ, Aui PM, Varese N, Stojanovic S, McMahon J, Peleg AY, Boo I, Drummer HE, Hogarth PM, O'Hehir RE, van Zelm MC. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci Immunol 2021; 5:5/54/eabf8891. [PMID: 33443036 PMCID: PMC7877496 DOI: 10.1126/sciimmunol.abf8891] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Lasting immunity following SARS-CoV-2 infection is questioned because serum antibodies decline in convalescence. However, functional immunity is mediated by long-lived memory T and B (Bmem) cells. Therefore, we generated fluorescently-labeled tetramers of the spike receptor binding domain (RBD) and nucleocapsid protein (NCP) to determine the longevity and immunophenotype of SARS-CoV-2-specific Bmem cells in COVID-19 patients. A total of 36 blood samples were obtained from 25 COVID-19 patients between 4 and 242 days post-symptom onset including 11 paired samples. While serum IgG to RBD and NCP was identified in all patients, antibody levels began declining at 20 days post-symptom onset. RBD- and NCP-specific Bmem cells predominantly expressed IgM+ or IgG1+ and continued to rise until 150 days. RBD-specific IgG+ Bmem were predominantly CD27+, and numbers significantly correlated with circulating follicular helper T cell numbers. Thus, the SARS-CoV-2 antibody response contracts in convalescence with persistence of RBD- and NCP-specific Bmem cells. Flow cytometric detection of SARS-CoV-2-specific Bmem cells enables detection of long-term immune memory following infection or vaccination for COVID-19.
Collapse
Affiliation(s)
- Gemma E Hartley
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephanie Stojanovic
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, The Alfred and Central Clinical school, Monash University, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred and Central Clinical school, Monash University, Melbourne, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - P Mark Hogarth
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia. .,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Fallet B, Hao Y, Florova M, Cornille K, de Los Aires AV, Girelli Zubani G, Ertuna YI, Greiff V, Menzel U, Hammad K, Merkler D, Reddy ST, Weill JC, Reynaud CA, Pinschewer DD. Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. Cell Rep 2020; 30:1013-1026.e7. [PMID: 31995746 PMCID: PMC6996002 DOI: 10.1016/j.celrep.2019.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent viral infections subvert key elements of adaptive immunity. To compare germinal center (GC) B cell responses in chronic and acute lymphocytic choriomeningitis virus infection, we exploit activation-induced deaminase (AID) fate-reporter mice and perform adoptive B cell transfer experiments. Chronic infection yields GC B cell responses of higher cellularity than acute infections do, higher memory B cell and antibody secreting cell output for longer periods of time, a better representation of the late B cell repertoire in serum immunoglobulin, and higher titers of protective neutralizing antibodies. GC B cells of chronically infected mice are similarly hypermutated as those emerging from acute infection. They efficiently adapt to viral escape variants and even in hypermutation-impaired AID mutant mice, chronic infection selects for GC B cells with hypermutated B cell receptors (BCRs) and neutralizing antibody formation. These findings demonstrate that, unlike for CD8+ T cells, chronic viral infection drives a functional, productive, and protective GC B cell response. Chronic viral infection elicits potent and sustained germinal center (GC) responses Chronic infection triggers prolonged plasma cell and memory B cell output from GCs GC B cells hypermutate efficiently and are potently selected in chronic infection
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Yi Hao
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marianna Florova
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Alba Verge de Los Aires
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulia Girelli Zubani
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yusuf I Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Department of Immunology, University of Oslo, Oslo, Norway
| | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Karim Hammad
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Claude Weill
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland.
| |
Collapse
|
13
|
Hartley GE, Edwards ESJ, Bosco JJ, Ojaimi S, Stirling RG, Cameron PU, Flanagan K, Plebanski M, Hogarth PM, O'Hehir RE, van Zelm MC. Influenza-specific IgG1 + memory B-cell numbers increase upon booster vaccination in healthy adults but not in patients with predominantly antibody deficiency. Clin Transl Immunology 2020; 9:e1199. [PMID: 33088507 PMCID: PMC7563650 DOI: 10.1002/cti2.1199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Annual influenza vaccination is recommended to all individuals over 6 months of age, including predominantly antibody deficiency (PAD) patients. Vaccination responses are typically evaluated by serology, and because PAD patients are by definition impaired in generating IgG and receive immunoglobulin replacement therapy (IgRT), it remains unclear whether they can mount an antigen-specific response. Objective To quantify and characterise the antigen-specific memory B (Bmem) cell compartment in healthy controls and PAD patients following an influenza booster vaccination. Methods Recombinant hemagglutinin (HA) from the A/Michigan/2015 H1N1 (AM15) strain with an AviTag was generated in a mammalian cell line, and following targeted biotinylation, was tetramerised with BUV395 or BUV737 streptavidin conjugates. Multicolour flow cytometry was applied on blood samples before and 28 days after booster influenza vaccination in 16 healthy controls and five PAD patients with circulating Bmem cells. Results Recombinant HA tetramers were specifically recognised by 0.5-1% of B cells in previously vaccinated healthy adults. HA-specific Bmem cell numbers were significantly increased following booster vaccination and predominantly expressed IgG1. Similarly, PAD patients carried HA-specific Bmem cells, predominantly expressing IgG1. However, these numbers were lower than in controls and did not increase following booster vaccination. Conclusion We have successfully identified AM15-specific Bmem cells in healthy controls and PAD patients. The presence of antigen-specific Bmem cells could offer an additional diagnostic tool to aid in the clinical diagnosis of PAD. Furthermore, alterations in the number or immunophenotype of HA-specific Bmem cells post-booster vaccination could assist in the evaluation of immune responses in individuals receiving IgRT.
Collapse
Affiliation(s)
- Gemma E Hartley
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Infectious Diseases Monash Health Clayton VIC Australia.,Immunology Laboratory Monash Pathology Clayton VIC Australia.,Allergy and Immunology Monash Health Clayton VIC Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Katie Flanagan
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,School of Medicine University of Tasmania Launceston TAS Australia.,School of Health and Biomedical Sciences RMIT Bundoora VIC Australia
| | | | - Philip Mark Hogarth
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,Immune Therapies Group Burnet Institute Melbourne VIC Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| |
Collapse
|
14
|
Saso A, Kampmann B. Maternal Immunization: Nature Meets Nurture. Front Microbiol 2020; 11:1499. [PMID: 32849319 PMCID: PMC7396522 DOI: 10.3389/fmicb.2020.01499] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinating women in pregnancy (i.e., maternal immunization) has emerged as a promising tool to tackle infant morbidity and mortality worldwide. This approach nurtures a 'gift of nature,' whereby antibody is transferred from mother to fetus transplacentally during pregnancy, or postnatally in breast milk, thereby providing passive, antigen-specific protection against infections in the first few months of life, a period of increased immune vulnerability for the infant. In this review, we briefly summarize the rationale for maternal immunization programs and the landscape of vaccines currently in use or in the pipeline. We then direct the focus to the underlying biological phenomena, including the main mechanisms by which maternally derived antibody is transferred efficiently to the infant, at the placental interface or in breast milk; important research models and methodological approaches to interrogate these processes, particularly in the context of recent advances in systems vaccinology; the potential biological and clinical impact of high maternal antibody titres on neonatal ontogeny and subsequent infant vaccine responses; and key vaccine- and host-related factors influencing the maternal-infant dyad across different environments. Finally, we outline important gaps in knowledge and suggest future avenues of research on this topic, proposing potential strategies to ensure optimal testing, delivery and implementation of maternal vaccination programs worldwide.
Collapse
Affiliation(s)
- Anja Saso
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
15
|
Cotugno N, Zicari S, Morrocchi E, de Armas LR, Pallikkuth S, Rinaldi S, Ruggiero A, Manno EC, Zangari P, Chiriaco M, Bernardi S, Andrews SF, Cagigi A, Rossi P, McDermott AB, Pahwa S, Palma P. Higher PIK3C2B gene expression of H1N1+ specific B-cells is associated with lower H1N1 immunogenicity after trivalent influenza vaccination in HIV infected children. Clin Immunol 2020; 215:108440. [PMID: 32330555 DOI: 10.1016/j.clim.2020.108440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Perinatally HIV-infected children (PHIV), despite successful antiretroviral therapy, present suboptimal responses to vaccinations compared to healthy-controls (HC). Here we investigated phenotypic and transcriptional signatures of H1N1-specific B-cells (H1N1-Sp) in PHIV, differentially responding to trivalent-influenza-vaccine (TIV), and HC. Patients were categorized in responders (R) and non-responders (NR) according to hemagglutination-inhibition-assay at baseline and 21 days after TIV. No differences in H1N1-Sp frequencies were found between groups. H1N1-Sp transcriptional analysis revealed a distinct signature between PHIV and HC. NR presented higher PIK3C2B and NOD2 expression compared to R, confirmed by downregulation of PIK3C2B in resting-memory of R after H1N1 in-vitro stimulation. In conclusion this study confirms that qualitative rather than quantitative analyses are needed to characterize immune responses in PHIV. These results further suggest that higher PIK3C2B in H1N1-Sp of NR is associated with lower H1N1 immunogenicity and may be targeted by future modulating strategies to improve TIV responses in PHIV.
Collapse
Affiliation(s)
- Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Sonia Zicari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy; Precision Vaccines Program, Boston Children's Hospital; Boston, MA, USA; Harvard Medical School; Boston, MA, USA
| | - Lesley R de Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stefano Rinaldi
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Chiriaco
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Bernardi
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA.
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
16
|
Forster AH, Witham K, Depelsenaire ACI, Veitch M, Wells JW, Wheatley A, Pryor M, Lickliter JD, Francis B, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Med 2020; 17:e1003024. [PMID: 32181756 PMCID: PMC7077342 DOI: 10.1371/journal.pmed.1003024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 μg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 μg/dose); or IM injection of H1N1 HA antigen (15 μg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 μg of HA to the FA or 15 μg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 μg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 μg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 μg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 μg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 μg HA injected IM. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.
Collapse
Affiliation(s)
| | | | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - Adam Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - Barbara Francis
- Avance Clinical Pty Ltd, Thebarton, South Australia, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Koutsakos M, Wheatley AK, Loh L, Clemens EB, Sant S, Nüssing S, Fox A, Chung AW, Laurie KL, Hurt AC, Rockman S, Lappas M, Loudovaris T, Mannering SI, Westall GP, Elliot M, Tangye SG, Wakim LM, Kent SJ, Nguyen THO, Kedzierska K. Circulating T FH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Sci Transl Med 2019; 10:10/428/eaan8405. [PMID: 29444980 DOI: 10.1126/scitranslmed.aan8405] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/05/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (TFH) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5-CXCR3+ antibody-secreting B cell population, CD21hiCD27+ memory B cells, and CD21loCD27+ B cells. Activation of circulating TFH cells correlated with the development of both CD21lo and CD21hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8+, mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21hiCD27+) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating TFH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Annette Fox
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Karen L Laurie
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Aeron C Hurt
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.,Seqirus, 63 Poplar Road, Parkville, Victoria 3052, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Michael Elliot
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| |
Collapse
|
19
|
Amoah S, Mishina M, Praphasiri P, Cao W, Kim JH, Liepkalns JS, Guo Z, Carney PJ, Chang JC, Fernandez S, Garg S, Beacham L, Holtz TH, Curlin ME, Dawood F, Olsen SJ, Gangappa S, Stevens J, Sambhara S. Standard-Dose Intradermal Influenza Vaccine Elicits Cellular Immune Responses Similar to Those of Intramuscular Vaccine in Men With and Those Without HIV Infection. J Infect Dis 2019; 220:743-751. [PMID: 31045222 PMCID: PMC11298778 DOI: 10.1093/infdis/jiz205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected persons are at a higher risk of severe influenza. Although we have shown that a standard-dose intradermal influenza vaccine versus a standard-dose intramuscular influenza vaccine does not result in differences in hemagglutination-inhibition titers in this population, a comprehensive examination of cell-mediated immune responses remains lacking. METHODS Serological, antigen-specific B-cell, and interleukin 2-, interferon γ-, and tumor necrosis factor α-secreting T-cell responses were assessed in 79 HIV-infected men and 79 HIV-uninfected men. RESULTS The route of vaccination did not affect the immunoglobulin A and immunoglobulin G (IgG) plasmablast or memory B-cell response, although these were severely impaired in the group with a CD4+ T-cell count of <200 cells/μL. The frequencies of IgG memory B cells measured on day 28 after vaccination were highest in the HIV-uninfected group, followed by the group with a CD4+ T-cell count of ≥200 cells/μL and the group with a CD4+ T-cell count of <200 cells/μL. The route of vaccination did not affect the CD4+ or CD8+ T-cell responses measured at various times after vaccination. CONCLUSIONS The route of vaccination had no effect on antibody responses, antibody avidity, T-cell responses, or B-cell responses in HIV-infected or HIV-uninfected subjects. With the serological and cellular immune responses to influenza vaccination being impaired in HIV-infected individuals with a CD4+ T-cell count of <200 cells/μL, passive immunization strategies need to be explored to protect this population. CLINICAL TRIALS REGISTRATION NCT01538940.
Collapse
Affiliation(s)
- Samuel Amoah
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Margarita Mishina
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | | | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Justine S Liepkalns
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Jessie C Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shikha Garg
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Lauren Beacham
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Timothy H Holtz
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
- HIV/STD Research Program, Thailand Ministry of Public Health-CDC Collaboration, Nonthaburi, Bangkok, Thailand
| | - Marcel E Curlin
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Fatimah Dawood
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
20
|
Liu Y, Tan HX, Koutsakos M, Jegaskanda S, Esterbauer R, Tilmanis D, Aban M, Kedzierska K, Hurt AC, Kent SJ, Wheatley AK. Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nat Commun 2019; 10:324. [PMID: 30659197 PMCID: PMC6338745 DOI: 10.1038/s41467-018-08165-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
Influenza B viruses (IBV) drive a significant proportion of influenza-related hospitalisations yet are understudied compared to influenza A. Current vaccines target the head of the viral hemagglutinin (HA) which undergoes rapid mutation, significantly reducing vaccine effectiveness. Improved vaccines to control IBV are needed. Here we developed novel IBV HA probes to interrogate humoral responses to IBV in humans. A significant proportion of IBV HA-specific B cells recognise both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages in a distinct pattern of cross-reactivity. Monoclonal antibodies (mAbs) were reconstituted from IBV HA-specific B cells, including mAbs providing broad protection in murine models of lethal IBV infection. Protection was mediated by neutralising antibodies targeting the receptor binding domain, or via Fc-mediated functions of non-neutralising antibodies binding alternative epitopes including the IBV HA stem. This work defines antigenic cross-recognition between IBV lineages and provides guidance for the rational design of improved IBV vaccines for broad and durable protection. Immune recognition of Influenza B virus (IBV) is poorly understood. Here, Liu et al. use flow cytometry to characterize IBV-specific memory B cell responses following seasonal vaccination and show that elicited cross-reactive antibodies can protect against infection, providing a platform for vaccine design.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Danielle Tilmanis
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Malet Aban
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia. .,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
21
|
Lam JH, Baumgarth N. The Multifaceted B Cell Response to Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:351-359. [PMID: 30617116 PMCID: PMC6327962 DOI: 10.4049/jimmunol.1801208] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Protection from yearly recurring, highly acute infections with a pathogen that rapidly and continuously evades previously induced protective neutralizing Abs, as seen during seasonal influenza virus infections, can be expected to require a B cell response that is too highly variable, able to adapt rapidly, and able to reduce morbidity and death when sterile immunity cannot be garnered quickly enough. As we outline in this Brief Review, the influenza-specific B cell response is exactly that: it is multifaceted, involves both innate-like and conventional B cells, provides early and later immune protection, employs B cells with distinct BCR repertoires and distinct modes of activation, and continuously adapts to the ever-changing virus while enhancing overall protection. A formidable response to a formidable pathogen.
Collapse
Affiliation(s)
- Jonathan H Lam
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616;
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Poonia B, Ayithan N, Nandi M, Masur H, Kottilil S. HBV induces inhibitory FcRL receptor on B cells and dysregulates B cell-T follicular helper cell axis. Sci Rep 2018; 8:15296. [PMID: 30333570 PMCID: PMC6193006 DOI: 10.1038/s41598-018-33719-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Spontaneous or treatment induced seroconversion in chronic HBV infection is rare and generation of anti-HBs antibodies is the current goal of HBV therapeutics. Here we investigated B and follicular T helper (Tfh) cell defects that persist in HBV infection despite long-term nucleos(t)ide analog (NUC) treatment and possible mechanisms behind them. RNA sequencing revealed that patient B cells have upregulated expression of multiple inhibitory receptors including members of FcRL family and downregulation of genes involved in antigen presentation. An expansion of atypical memory CD19+CD10−CD27−CD21− subset of B cells, that express high levels of FcRL5, is persistently present in patients. HBs antigen specific IgG response is concentrated in classical memory and not in atypical memory subset, confirming dysfunction of this subset. Activated Tfh, which expressed excessive CD40L upon polyclonal stimulation, were present in patients. Incubation of B cells from healthy individuals with HBV core (HBc) or CD40L resulted in induction of inhibitory receptors FcRL4, FcRL5 and PD-1 on CD19+ cells and resulted in altered B cell phenotypes. Mechanistically, HBc binds B cells and causes proliferation specifically of FcRL5+ B cell subset. Our results provide evidence that HBV directly causes upregulation of inhibitory pathways in B cells resulting in an accumulation of atypical B cells that lack anti-HBs function.
Collapse
Affiliation(s)
- Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Natarajan Ayithan
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Madhuparna Nandi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Henry Masur
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
23
|
Effect of Combination Antiretroviral Therapy on HIV-1-specific Antibody-Dependent Cellular Cytotoxicity Responses in Subtype B- and Subtype C-Infected Cohorts. J Acquir Immune Defic Syndr 2017; 75:345-353. [PMID: 28346319 DOI: 10.1097/qai.0000000000001380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is growing interest in immune therapies to clear the latent HIV-1 after combination antiretroviral therapy (cART). There is limited information on the effect of cART on antibody-dependent cellular cytotoxicity (ADCC), and no studies have directly compared ADCC in HIV-1 subtype B- and subtype C-infected subjects. The effect of improving immunocompetence on ADCC to influenza also remains unexplored. METHODS The effect of cART on HIV-1- and influenza-specific ADCC was analyzed in 2 cohorts (39 subtype B- and 47 subtype C-infected subjects) before and after 2 years of cART. ADCC analyses included an enzyme-linked immunosorbent assay-based dimeric recombinant soluble (rs) FcγRIIIa-binding assay, antibody-dependent natural killer cell activation assay, and ADCC-mediated killing assays. RESULTS HIV-1 subtype B and C Env-specific antibody binding to dimeric rsFcγRIIIa were reduced in subtypes B- and C-infected cohorts after 2 years of cART (both P < 0.05). Reduced ADCC-mediated killing of target cells expressing subtype B Env in the subtype B-infected cohort (P = 0.003) was observed after 96 weeks of cART, but not of subtype C Env in the subtype C-infected cohort. A greater reduction in ADCC was detected in subjects with baseline CD4 counts >300 cells/μL (P < 0.05). The resolving immunodeficiency after 96 weeks of cART resulted in improved HA-specific ADCC to 6 strains of influenza (all P < 0.01). CONCLUSIONS cART results in HIV-1 antigen loss and reductions in HIV-1 Env-specific antibodies with Fc functionality in both subtype B- and C-infected subjects, particularly in immunocompetent subjects. Simultaneously, cART improves ADCC to diverse strains of influenza, suggesting reduction in influenza disease after cART.
Collapse
|
24
|
Abstract
Annual administration of the seasonal influenza vaccine is strongly recommended to reduce the burden of disease, particularly for persons at the highest risk for the viral infection. Even during years when there is a good match between the vaccine and circulating strains, host-related factors such as age, preexisting immunity, genetic polymorphisms, and the presence of chronic underlying conditions may compromise influenza vaccine responsiveness. The application of new methodologies and large-scale profiling technologies are improving the ability to measure vaccine immunogenicity and our understanding of the immune mechanisms by which vaccines induce protective immunity. This review attempts to summarize the general concepts of how host factors can contribute to the heterogeneity of immune responses induced by influenza vaccines.
Collapse
Affiliation(s)
- Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
25
|
Feldman C, Anderson R, Rossouw T. HIV-related pneumococcal disease prevention in adults. Expert Rev Respir Med 2017; 11:181-199. [PMID: 28228053 DOI: 10.1080/17476348.2017.1289841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION HIV-infected persons are particularly susceptible to the development of severe pneumococcal disease, even in the setting of combination antiretroviral therapy (cART), due to slow, incomplete recovery of anti-pneumococcal host defenses. This risk is increased by avoidable aspects of lifestyle, particularly smoking, which intensify immunosuppression. Clearly, more effective preventive measures are needed to counter this threat. Areas covered: This is a detailed review of the published literature focusing on currently available strategies for prevention of pneumococcal infection in HIV-infected patients, including cotrimoxazole prophylaxis, cART, pneumococcal vaccination, and smoking cessation strategies. This is preceded by a consideration of the epidemiology, clinical presentation, risk factors, and outcome of pneumococcal disease. Expert commentary: Cotrimoxazole prophylaxis has been shown to reduce morbidity and mortality in HIV-infected patients, although there is inconsistent data on the preventive efficacy against pneumococcal infections. Some recent studies have documented unchanged incidences of IPD in adult patients in the cART era. With regard to pneumococcal vaccination, routine acceptance of the efficacy of the PCV13/PPV23 sequential administration prime-boost strategy awaits the outcome of clinical trials in those with HIV infection. Smoking cessation, and discontinuation of excessive alcohol consumption and intravenous drug abuse, are priority strategies to prevent severe pneumococcal infection.
Collapse
Affiliation(s)
- Charles Feldman
- a Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences , University of the Witwatersrand Medical School , Johannesburg , South Africa
| | - Ronald Anderson
- b Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Theresa Rossouw
- b Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
26
|
Dangor Z, Nunes MC, Kwatra G, Lala SG, Madhi SA. Vaccination of HIV-infected pregnant women: implications for protection of their young infants. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2017; 3:1. [PMID: 28883971 PMCID: PMC5530931 DOI: 10.1186/s40794-016-0044-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/18/2016] [Indexed: 12/02/2022]
Abstract
Background The prevention of mother to child transmission of HIV has resulted in reduced burden of pediatric HIV-infection, but the prevalence of maternal HIV infection remains high in sub-Saharan African countries. HIV-exposed-uninfected infants have an increased risk of morbidity and mortality due to infectious diseases than HIV-unexposed infants, particularly during the first six months of life, which in part might be due to lower levels of pathogen-specific protective antibodies acquired transplacentally from their mothers. This could be mitigated by vaccinating pregnant women to boost antibody levels; although vaccine responses among HIV-infected pregnant women might differ compared to HIV-uninfected women. We reviewed studies that compared natural and vaccine-induced antibody levels to different epitopes between HIV-infected and HIV-uninfected pregnant women. Findings Most studies reported lower baseline/pre-vaccination antibody levels in HIV-infected pregnant women, which may not be reversed by antiretroviral therapy during pregnancy. There were only few studies on vaccination of HIV-infected pregnant women, mainly on influenza virus and group B Streptococcus (GBS) vaccines. Immunogenicity studies on influenza vaccines indicated that HIV-infected pregnant women had lower vaccine induced hemagglutination inhibition antibody titers and a decreased likelihood of seroconversion compared to HIV-uninfected women; and while higher CD4+ T-lymphocyte levels were associated with better immune responses to vaccination, HIV viral load was not associated with responses. Furthermore, infants born to influenza vaccinated HIV-infected pregnant women also had lower antibody levels and a lower proportion of HIV-exposed infants had titers above the putative correlate of protection compared to HIV-unexposed infants. The immunogenicity of a CRM197-conjugated trivalent GBS vaccine was also lower in HIV-infected pregnant women compared to HIV-uninfected women, irrespective of CD4+ T-lymphocyte counts. Conclusions Poorer immunogenicity of vaccines reported in HIV-infected compared to HIV-uninfected pregnant women might compromise the potential benefits to their young infants. Alternate vaccination strategies, including vaccines with higher antigen concentration, adjuvanted vaccines or multiple doses schedules might be required in HIV-infected pregnant women to optimize antibody transferred to their fetuses.
Collapse
Affiliation(s)
- Ziyaad Dangor
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Sanjay G Lala
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa.,National Institute for Communicable Diseases: a division of National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
27
|
Abstract
The induction of neutralizing antibodies directed against the human immunodeficiency virus (HIV) has received considerable attention in recent years, in part driven by renewed interest and opportunities for antibody-based strategies for prevention such as passive transfer of antibodies and the development of preventive vaccines, as well as immune-based therapeutic interventions. Advances in the ability to screen, isolate, and characterize HIV-specific antibodies have led to the identification of a new generation of potent broadly neutralizing antibodies (bNAbs). The majority of these antibodies have been isolated from B cells of chronically HIV-infected individuals with detectable viremia. In this review, we provide insight into the phenotypic and functional attributes of human B cells, with a focus on HIV-specific memory B cells and plasmablasts/cells that are responsible for sustaining humoral immune responses against HIV. We discuss the abnormalities in B cells that occur in HIV infection both in the peripheral blood and lymphoid tissues, especially in the setting of persisting viremia. Finally, we consider the opportunities and drawbacks of intensively interrogating antibodies isolated from HIV-infected individuals to guide strategies aimed at developing effective antibody-based vaccine and therapeutic interventions for HIV.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
28
|
Tanko RF, Soares AP, Müller TL, Garrett NJ, Samsunder N, Abdool Karim Q, Abdool Karim SS, Riou C, Burgers WA. Effect of Antiretroviral Therapy on the Memory and Activation Profiles of B Cells in HIV-Infected African Women. THE JOURNAL OF IMMUNOLOGY 2016; 198:1220-1228. [PMID: 28039305 DOI: 10.4049/jimmunol.1601560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus infection induces a wide range of effects in B cells, including skewed memory cell differentiation, compromised B cell function, and hypergammaglobulinemia. However, data on the extent to which these B cell abnormalities can be reversed by antiretroviral therapy (ART) are limited. To investigate the effect of ART on B cells, the activation (CD86) and differentiation (IgD, CD27, and CD38) profiles of B cells were measured longitudinally in 19 HIV-infected individuals before (median, 2 mo) and after ART initiation (median, 12 mo) and compared with 19 age-matched HIV-uninfected individuals using flow cytometry. Twelve months of ART restored the typical distribution of B cell subsets, increasing the proportion of naive B cells (CD27-IgD+CD38-) and concomitantly decreasing the immature transitional (CD27-IgD+CD38+), unswitched memory (CD27+IgD+CD38-), switched memory (CD27+IgD-CD38- or CD27-IgD-CD38-), and plasmablast (CD27+IgD-CD38high) subsets. However, B cell activation was only partially normalized post-ART, with the frequency of activated B cells (CD86+CD40+) reduced compared with pre-ART levels (p = 0.0001), but remaining significantly higher compared with HIV-uninfected individuals (p = 0.0001). Interestingly, unlike for T cell activation profiles, the extent of B cell activation prior to ART did not correlate with HIV plasma viral load, but positively associated with plasma sCD14 levels (p = 0.01, r = 0.58). Overall, ART partially normalizes the skewed B cell profiles induced by HIV, with some activation persisting. Understanding the effects of HIV on B cell dysfunction and restoration following ART may provide important insights into the mechanisms of HIV pathogenesis.
Collapse
Affiliation(s)
- Ramla F Tanko
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Andreia P Soares
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Tracey L Müller
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nigel J Garrett
- Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032; and
| | - Salim S Abdool Karim
- Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032; and
| | - Catherine Riou
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Wendy A Burgers
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
29
|
Fallet B, Narr K, Ertuna YI, Remy M, Sommerstein R, Cornille K, Kreutzfeldt M, Page N, Zimmer G, Geier F, Straub T, Pircher H, Larimore K, Greenberg PD, Merkler D, Pinschewer DD. Interferon-driven deletion of antiviral B cells at the onset of chronic infection. Sci Immunol 2016; 1:eaah6817. [PMID: 27872905 PMCID: PMC5115616 DOI: 10.1126/sciimmunol.aah6817] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inadequate antibody responses and perturbed B cell compartments represent hallmarks of persistent microbial infections, but the mechanisms whereby persisting pathogens suppress humoral immunity remain poorly defined. Using adoptive transfer experiments in the context of a chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, we have documented rapid depletion of virus-specific B cells that coincided with the early type I interferon response to infection. We found that the loss of activated B cells was driven by type I interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and myeloid cells. Intriguingly, this process was independent of B cell-intrinsic IFN-I sensing and resulted from biased differentiation of naïve B cells into short-lived antibody-secreting cells. The ability to generate robust B cell responses was restored upon IFN-I receptor blockade or, partially, when experimentally depleting myeloid cells or the IFN-I-induced cytokines interleukin 10 and tumor necrosis factor alpha. We have termed this IFN-I-driven depletion of B cells "B cell decimation". Strategies to counter "B cell decimation" should thus help us better leverage humoral immunity in the combat against persistent microbial diseases.
Collapse
Affiliation(s)
- Benedict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Kerstin Narr
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Yusuf I. Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Melissa Remy
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Kevin Larimore
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Daniel D. Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| |
Collapse
|