1
|
Dali R, Langlet F. Tanycytes in the nexus of hypothalamic inflammation, appetite control, and obesity. Physiol Behav 2025; 296:114917. [PMID: 40222438 DOI: 10.1016/j.physbeh.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypothalamic inflammation has been identified as a critical factor driving the development of obesity and associated metabolic disorders. This inflammation-related disruption of energy balance relies on alterations in metabolic cues sensing and hypothalamic cellular functions, together leading to overeating and weight gain. Within the hypothalamic cellular networks controlling energy balance, recent studies have highlighted the significance of glial dysfunction in these processes, suggesting that these cells could provide new avenues for weight loss therapies. Glia rapidly activates following the consumption of a high-fat diet, even after a very short exposure, and contributes to the disruption of the entire system through inflammatory crosstalk. This review explores recent progress in understanding the molecular interactions between glial cells and neurons in hypothalamic inflammation related to obesity, diabetes, and associated complications. Notably, it highlights specialized ependymal cells called tanycytes, whose role is still underestimated in hypothalamic inflammation, and examines the potential for targeting this cell type as a treatment strategy for metabolic disorders.
Collapse
Affiliation(s)
- Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
3
|
Laffranchi M, Schioppa T, Sozio F, Piserà A, Tiberio L, Salvi V, Bosisio D, Musso T, Sozzani S, Del Prete A. Chemerin in immunity. J Leukoc Biol 2025; 117:qiae181. [PMID: 39228313 DOI: 10.1093/jleuko/qiae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Chemerin is a distant member of the cystatin protein family, initially discovered as a chemotactic factor and subsequently also reported to act as adipokine and angiogenetic factor. The biological activity of chemerin is regulated at different levels, such as gene expression, protein processing, and interaction with both signaling and nonsignaling receptors. Chemerin is mostly produced by stromal cells, such as adipocytes, fibroblasts, and epithelial and endothelial cells, and circulates in almost all human tissues as a zymogen that needs to be proteolytically activated to exert its biological functions. At the receptor level, chemerin binds a G protein-coupled 7-transmembrane domain receptor Chemerin1 (also named ChemR23 and CMKLR1), mostly expressed by innate immune cells, such as macrophages, dendritic cells, and natural killer cells, and by border cells. In addition, chemerin may bind GPR1, a weak signaling receptor, and CCRL2, a nonsignaling receptor expressed by barrier cells, such as endothelial and epithelial cells, able to regulate leukocytes' migration by multiple mechanisms. The aim of this review is to summarize the contribution of chemerin in the regulation of immune responses.
Collapse
Affiliation(s)
- Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca Sozio
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
4
|
Palomba S, Seminara G, Costanzi F, Caserta D, Aversa A. Chemerin and Polycystic Ovary Syndrome: A Comprehensive Review of Its Role as a Biomarker and Therapeutic Target. Biomedicines 2024; 12:2859. [PMID: 39767764 PMCID: PMC11672894 DOI: 10.3390/biomedicines12122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chemerin, an adipokine implicated in inflammatory, metabolic, and adipogenic processes, has been detected in high serum concentration in women with polycystic ovary syndrome (PCOS) and seems to play a role in PCOS pathogenesis. Moreover, at present, no comprehensive and critical document is available in the literature on this topic. The aim of the current study was to comprehensively review the latest available data to confirm the evidence about the association between chemerin and PCOS, highlighting its potential role as an upcoming biomarker and therapeutic target. Methods: A search in the literature of studies published between 2019 and 2024 was conducted using PubMed, Cochrane Library, and Web of Science, focusing on research related to chemerin, PCOS, and PCOS-related features, comorbidities, and complications. A qualitative structured synthesis of key findings was performed according to the specific thematic areas selected, including and discussing clinical data on women with PCOS and experimental studies in humans and animal models of PCOS. Results: Available data confirm increased serum levels of chemerin in women with PCOS compared with controls, independent of obesity and body mass index. Chemerin is associated with insulin resistance, hyperandrogenism, and ovarian dysfunction in PCOS individuals, inhibiting folliculogenesis and steroidogenesis. Experimental animal models underscore chemerin's regulatory roles through its receptors within the hypothalamic-pituitary-ovarian axis and peripheral tissues. High systemic levels of chemerin in PCOS may also be related to the increased risk of pregnancy complications, especially gestational diabetes mellitus and preeclampsia. Conclusions: The current review study highlights the role of chemerin in PCOS pathophysiology, severity, and associated comorbidities and complications, assessing its value as a future biomarker and foreshadowing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, University Sapienza of Rome, 89124 Reggio, Italy
| | - Giuseppe Seminara
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.S.); (A.A.)
| | - Flavia Costanzi
- Unit of Gynecology, Sant’Andrea Hospital of Rome, University Sapienza of Rome, 00185 Roma, Italy; (F.C.); (D.C.)
| | - Donatella Caserta
- Unit of Gynecology, Sant’Andrea Hospital of Rome, University Sapienza of Rome, 00185 Roma, Italy; (F.C.); (D.C.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.S.); (A.A.)
| |
Collapse
|
5
|
Höpfinger A, Behrendt M, Schmid A, Karrasch T, Schäffler A, Berghoff M. A Cross-Sectional Study: Systematic Quantification of Chemerin in Human Cerebrospinal Fluid. Biomedicines 2024; 12:2508. [PMID: 39595074 PMCID: PMC11592017 DOI: 10.3390/biomedicines12112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dysregulation of adipokines is considered a key mechanism of chronic inflammation in metabolic syndrome. Some adipokines affect food intake by crossing the blood/brain barrier. The adipokine chemerin is associated with metabolic syndrome, cardiovascular diseases and immune response. Little is known about chemerin's presence in cerebrospinal fluid (CSF) and its ability to cross the blood/CSF barrier. METHODS We quantified chemerin levels in paired serum and CSF samples of 390 patients with different neurological diagnoses via enzyme-linked immunosorbent assay (ELISA). Correlation analyses of serum and CSF chemerin levels with anthropometric, serum and CSF routine parameters were performed. RESULTS Overweight patients exhibited higher chemerin levels in serum and CSF. Chemerin CSF levels were higher in men. Chemerin levels in serum were associated with BMI (body mass index) and CRP (C-reactive protein). Chemerin levels in CSF were associated with age. Neurological diseases affected chemerin levels in CSF. The chemerin CSF/serum ratio was calculated as 96.3 ± 36.8 × 10-3 for the first time. CONCLUSIONS Our data present a basis for the development of standard values for chemerin quantities in CSF. CSF chemerin levels are differentially regulated in neurological diseases and affected by BMI and sex. Chemerin is able to cross the blood/CSF barrier under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Manuel Behrendt
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Martin Berghoff
- Department of Neurology, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany;
| |
Collapse
|
6
|
Kolb AF, Mayer C, Zitskaja A, Petrie L, Hasaballah K, Warren C, Carlisle A, Lillico S, Whitelaw B. Maternal α-casein deficiency extends the lifespan of offspring and programmes their body composition. GeroScience 2024:10.1007/s11357-024-01273-2. [PMID: 38992336 DOI: 10.1007/s11357-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Early nutrition has significant effects on physiological outcomes during adult life. We have analysed the effect of maternal α-casein (CSN1S1) deficiency on the physiological fate of dams and their offspring. α-casein deficiency reduces maternal milk protein concentration by more than 50% and attenuates the growth of pups to 27% (p < 0.001) of controls at the point of weaning. This is associated with a permanent reduction in adult body weight (- 31% at 25 weeks). Offspring nursed by α-casein deficient dams showed a significantly increased lifespan (+ 20%, χ2: 10.6; p = 0.001). Liver transcriptome analysis of offspring nursed by α-casein deficient dams at weaning revealed gene expression patterns similar to those found in dwarf mice (reduced expression of somatotropic axis signalling genes, increased expression of xenobiotic metabolism genes). In adult mice, the expression of somatotropic axis genes returned to control levels. This demonstrates that, in contrast to dwarf mice, attenuation of the GH-IGF signalling axis in offspring nursed by α-casein deficient dams is transient, while the changes in body size and lifespan are permanent. Offspring nursed by α-casein deficient dams showed permanent changes in body composition. Absolute and relative adipose tissue weights (p < 0.05), the percentage of body fat (p < 0.001) as well as adipocyte size in epididymal white adipose tissue are all reduced. Serum leptin levels were 25% of those found in control mice (p < 0.001). Liver lipid content and lipid composition were significantly altered in response to postnatal nutrition. This demonstrates the nutrition in early life programmes adult lipid metabolism, body composition and lifespan.
Collapse
Affiliation(s)
- Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland.
| | - Claus Mayer
- Biomathematics and Statistics Scotland (BioSS), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Alina Zitskaja
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Khulod Hasaballah
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon Lillico
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Bruce Whitelaw
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
7
|
Zhang Q, Ye J, Wang X. Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development. Exp Biol Med (Maywood) 2023; 248:2020-2029. [PMID: 38058030 PMCID: PMC10800121 DOI: 10.1177/15353702231214270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 in vivo. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Qilong Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
8
|
Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci 2023; 1525:61-69. [PMID: 37199228 PMCID: PMC10524199 DOI: 10.1111/nyas.15009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.
Collapse
Affiliation(s)
- Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Sims
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rauf Latif
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yelena Ginzburg
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Terry F. Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
9
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Arjunan A, Song J. Pharmacological and physiological roles of adipokines and myokines in metabolic-related dementia. Biomed Pharmacother 2023; 163:114847. [PMID: 37150030 DOI: 10.1016/j.biopha.2023.114847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Dementia is a detrimental neuropathologic condition with considerable physical, mental, social, and financial impact on patients and society. Patients with metabolic syndrome (MetS), a group of diseases that occur in tandem and increase the risk of neurologic diseases, have a higher risk of dementia. The ratio between muscle and adipose tissue is crucial in MetS, as these contain many hormones, including myokines and adipokines, which are involved in crosstalk and local paracrine/autocrine interactions. Evidence suggests that abnormal adipokine and myokine synthesis and release may be implicated in various MetS, such as atherosclerosis, diabetic mellitus (DM), and dyslipidemia, but their precise role is unclear. Here we review the literature on adipokine and myokine involvement in MetS-induced dementia via glucose and insulin homeostasis regulation, neuroinflammation, vascular dysfunction, emotional changes, and cognitive function.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| |
Collapse
|
11
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
12
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
13
|
Yu M, Yang Y, Huang C, Ge L, Xue L, Xiao Z, Xiao T, Zhao H, Ren P, Zhang JV. Chemerin: A Functional Adipokine in Reproductive Health and Diseases. Biomedicines 2022; 10:biomedicines10081910. [PMID: 36009457 PMCID: PMC9406010 DOI: 10.3390/biomedicines10081910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
As a multifaceted adipokine, chemerin has been found to perform functions vital for immunity, adiposity, and metabolism through its three known receptors (chemokine-like receptor 1, CMKLR1; G-protein-coupled receptor 1, GPR1; C-C motif chemokine receptor-like 2, CCRL2). Chemerin and the cognate receptors are also expressed in the hypothalamus, pituitary gland, testis, ovary, and placenta. Accumulating studies suggest that chemerin participates in normal reproduction and underlies the pathological mechanisms of certain reproductive system diseases, including polycystic ovary syndrome (PCOS), preeclampsia, and breast cancer. Herein, we present a comprehensive review of the roles of the chemerin system in multiple reproductive processes and human reproductive diseases, with a brief discussion and perspectives on future clinical applications.
Collapse
Affiliation(s)
- Ming Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonglin Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
14
|
Yun H, Dumbell R, Hanna K, Bowen J, McLean SL, Kantamneni S, Pors K, Wu QF, Helfer G. The Chemerin-CMKLR1 Axis is Functionally important for Central Regulation of Energy Homeostasis. Front Physiol 2022; 13:897105. [PMID: 35711300 PMCID: PMC9196942 DOI: 10.3389/fphys.2022.897105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/28/2022] Open
Abstract
Chemerin is an adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism, and has been hypothesized as a link between obesity and type II diabetes. In humans affected by obesity, chemerin gene expression in peripheral tissues and circulating levels are elevated. In mice, plasma levels of chemerin are upregulated by high-fat feeding and gain and loss of function studies show an association of chemerin with body weight, food intake and glucose homeostasis. Therefore, chemerin is an important blood-borne mediator that, amongst its other functions, controls appetite and body weight. Almost all studies of chemerin to date have focused on its release from adipose tissue and its effects on peripheral tissues with the central effects largely overlooked. To demonstrate a central role of chemerin, we manipulated chemerin signaling in the hypothalamus, a brain region associated with appetite regulation, using pharmacological and genetic manipulation approaches. Firstly, the selective chemerin receptor CMKLR1 antagonist α-NETA was administered i.c.v. to rats to test for an acute physiological effect. Secondly, we designed a short-hairpin-RNA (shRNA) lentivirus construct targeting expression of CMKLR1. This shRNA construct, or a control construct was injected bilaterally into the arcuate nucleus of male Sprague Dawley rats on high-fat diet (45%). After surgery, rats were maintained on high-fat diet for 2 weeks and then switched to chow diet for a further 2 weeks. We found a significant weight loss acutely and inhibition of weight gain chronically. This difference became apparent after diet switch in arcuate nucleus-CMKLR1 knockdown rats. This was not accompanied by a difference in blood glucose levels. Interestingly, appetite-regulating neuropeptides remained unaltered, however, we found a significant reduction of the inflammatory marker TNF-α suggesting reduced expression of CMKLR1 protects from high-fat diet induced neuroinflammation. In white and brown adipose tissue, mRNA expression of chemerin, its receptors and markers of adipogenesis, lipogenesis and brown adipocyte activation remained unchanged confirming that the effects are driven by the brain. Our behavioral analyses suggest that knockdown of CMKLR1 had an impact on object recognition. Our data demonstrate that CMKLR1 is functionally important for the central effects of chemerin on body weight regulation and neuroinflammation.
Collapse
Affiliation(s)
- Haesung Yun
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Rebecca Dumbell
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Katie Hanna
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Junior Bowen
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Samantha L McLean
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Wolfson Centre for Applied Health Research, Bradford, United Kingdom
| | - Sriharsha Kantamneni
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Klaus Pors
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Qing-Feng Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gisela Helfer
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
15
|
Feng C, Liu W, Chen H, Dong W, Yang J. Effect of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109100. [PMID: 34174412 DOI: 10.1016/j.cbpc.2021.109100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the effects of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish, a total of 60 zebrafish were fed for 21 days (24 h dark treatments or 14/10 h light/dark cycle), and the influence of dark environment on gut microbes and liver gene expression was studied using sequencing analysis of intestinal flora and liver. The results showed that the body weight of fish was significantly increased in the dark group than that in the control group (P < 0.05). Compared with the control group, dark environment treatment changed the composition of dominant flora, increased the abundance of unconventional bacteria and reduced probiotics in the intestine of zebrafish. Of these, the ratio of Bacteroidetes to Firmicutes in the intestine was reduced. The genome expression of the liver showed significant changes, and liver metabolites were also affected. Meanwhile, dark environment decreased gene expression associated with changes in blood glucose, lipid metabolism and immunization. Dark environment also caused liver steatosis as observed by histological study. This study shows that dark environment treatment has an important impact on liver metabolism and intestinal microbes in zebrafish.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; School of Animal Science, Mongolian State University of Agriculture, Bayangol, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
16
|
Samy DM, Mostafa DK, Abdelmonsif DA, Ismail CA, Hassaan PS. Crosstalk of hypothalamic chemerin, histamine, and AMPK in diet-and olanzapine-induced obesity in rats. Life Sci 2021; 284:119897. [PMID: 34450172 DOI: 10.1016/j.lfs.2021.119897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
AIM Contradiction overwhelms chemerin link to feeding behavior. Neither the chemerin central role on appetite regulation nor its relation to hypothalamic histamine and AMPK is verified. MAIN METHODS Food intake, body weight and hypothalamic biochemical changes were assessed after a single intra-cerebroventricular or intraperitoneal injection (ip) (1 μg/kg or 16 μg/kg, respectively) or chronic ip administration (8 μg/kg/day) of chemerin for 14 or 28 days. Hypothalamic neurobiochemical changes in chemerin/histamine/AMPK induced by either 8-week high fat diet (HFD) or food restriction were also investigated. To confirm chemerin-histamine crosstalk, these neurobiochemical changes were assessed under settings of H1-receptor agonism and/or antagonism by betahistine and/or olanzapine, respectively for 3 weeks. KEY FINDINGS Chemerin-injected rats exhibited anorexigenic behavior in both acute and chronic studies that was associated with a decreased AMPK activity in the arcuate nucleus (ARC). However, with long-term administration, chemerin anorexigenic effect gradually ceased. Contrarily to food restriction, 8-week HFD increased ARC expression of chemerin and its receptor CMKLR1, reducing food intake via an interplay of H1-receptors and AMPK activity. Blockage of H1-receptors by olanzapine disrupted chemerin signaling pathway with an increased AMPK activity, augmenting food intake. These changes were reversed to normal by betahistine coadministration. SIGNIFICANCE Chemerin is an anorexigenic adipokine, whose dysregulation is implicated in diet, and olanzapine-induced obesity through a histamine/AMPK axis in the ARC. Hypothalamic chemerin/CMKLR1 expression is a dynamic time-dependent response to changes in body weight and/or food intake. Targeting chemerin as a novel therapeutic approach against antipsychotic- or diet-induced obesity is worth to be further delineated.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Kamal Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research, University of Alexandria, Alexandria, Egypt
| | - Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Yamamoto A, Otani K, Okada M, Yamawaki H. Chemokine-like Receptor 1 in Brain of Spontaneously Hypertensive Rats Mediates Systemic Hypertension. Int J Mol Sci 2021; 22:11812. [PMID: 34769243 PMCID: PMC8584015 DOI: 10.3390/ijms222111812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Adipocytokine chemerin is a biologically active molecule secreted from adipose tissue. Chemerin elicits a variety of functions via chemokine-like receptor 1 (CMKLR1). The cardiovascular center in brain that regulates blood pressure (BP) is involved in pathophysiology of systemic hypertension. Thus, we explored the roles of brain chemerin/CMKLR1 on regulation of BP in spontaneously hypertensive rats (SHR). For this aim, we examined effects of intracerebroventricular (i.c.v.) injection of CMKLR1 small interfering (si)RNA on both systemic BP as measured by tail cuff system and protein expression in paraventricular nucleus (PVN) of SHR as determined by Western blotting. We also examined both central and peripheral protein expression of chemerin by Western blotting. Systolic BP of SHR but not normotensive Wistar Kyoto rats (WKY) was decreased by CMKLR1 siRNA. The decrease of BP by CMKLR1 siRNA persisted for 3 days. Protein expression of CMKLR1 in PVN of SHR tended to be increased compared with WKY, which was suppressed by CMKLR1 siRNA. Protein expression of chemerin in brain, peripheral plasma, and adipose tissue was not different between WKY and SHR. In summary, we for the first time revealed that the increased protein expression of CMKLR1 in PVN is at least partly responsible for systemic hypertension in SHR.
Collapse
Affiliation(s)
| | | | | | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan; (A.Y.); (K.O.); (M.O.)
| |
Collapse
|
18
|
Würfel M, Breitfeld J, Gebhard C, Scholz M, Baber R, Riedel-Heller SG, Blüher M, Stumvoll M, Kovacs P, Tönjes A. Interplay between adipose tissue secreted proteins, eating behavior and obesity. Eur J Nutr 2021; 61:885-899. [PMID: 34636987 PMCID: PMC8854280 DOI: 10.1007/s00394-021-02687-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022]
Abstract
Purpose Adipokines may play an important role in the complex etiology of human obesity and its metabolic complications. Here, we analyzed the relationship between 15 adipokines, eating behavior and body-mass index (BMI). Methods The study included 557 participants of the Sorbs (62.1% women, 37.9% men) and 3101 participants of the population-based LIFE-Adult cohorts (53.4% women, 46.4% men) who completed the German version of the Three-Factor-Eating Questionnaire to assess the eating behavior types cognitive restraint, disinhibition and hunger. Serum levels of 15 adipokines, including adiponectin, adipocyte fatty acid-binding protein (AFABP), angiopoietin-related growth factor (AGF), chemerin, fibroblast growth factor (FGF)-19, FGF-21, FGF-23, insulin-like growth factor (IGF)-1, interleukin (IL) 10, irisin, progranulin, vaspin, pro-neurotensin (pro-NT), pro-enkephalin (PENK) and leptin were measured. Based on significant correlations between several adipokines with different eating behavior items and BMI, we conducted mediation analyses, considering the eating behavior items as potential mediation variable towards BMI. Results Here, we found that the positive association between chemerin, AFABP or leptin and BMI in Sorbian women was mediated by higher restraint or disinhibited eating, respectively. Additionally, in Sorbian women, the negative relation between IGF-1 and BMI was mediated by higher disinhibition and the positive link between AGF and BMI by lower disinhibition. In Sorbian men, the negative relationship between PENK and BMI was mediated by lower disinhibition and hunger, whereas the negative relation between IGF-1 and BMI was mediated by higher hunger. In the LIFE-Adult women´s cohort, associations between chemerin and BMI were mediated by decreased hunger or disinhibition, respectively, whereas relations between PENK and BMI were fully mediated by decreased disinhibition. Conclusion Our study suggests that adipokines such as PENK, IGF-1, chemerin, AGF, AFABP and leptin might affect the development of obesity by directly modifying individual eating behavior. Given the observational nature of the study, future experimental or mechanistic work is warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02687-w.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany
| | - Claudia Gebhard
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Centre for Civilization Diseases, Leipzig, Germany
| | - Ronny Baber
- LIFE Research Centre for Civilization Diseases, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
McLean SL, Yun H, Tedder A, Helfer G. The effect of photoperiod and high fat diet on the cognitive response in photoperiod-sensitive F344 rats. Physiol Behav 2021; 239:113496. [PMID: 34118272 DOI: 10.1016/j.physbeh.2021.113496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
In many species, seasonal changes in day length (photoperiod) have profound effects on physiology and behavior. In humans, these include cognitive function and mood. Here we investigated the effect of photoperiod and high fat diets on cognitive deficits, as measured by novel object recognition, in the photoperiod-sensitive F344 rat, which exhibits marked natural changes in growth, body weight and food intake in response to photoperiod. 32 male juvenile F344 rats were housed in either long or short photoperiod and fed either a high fat or nutrient-matched chow diet. Rats were tested in the novel object recognition test before photoperiod and diet intervention and re-tested 28 days after intervention. In both tests during the acquisition trials there was no significant difference in exploration levels of the left and right objects in the groups. Before intervention, all groups showed a significant increase in exploration of the novel object compared to the familiar object. However, following the photoperiod and diet interventions the retention trial revealed that only rats in the long photoperiod-chow group explored the novel object significantly more than the familiar object, whereas all other groups showed no significant preference. These results suggest that changing rats to short photoperiod impairs their memory regardless of diet. The cognitive performance of rats on long photoperiod-chow remained intact, whereas the high fat diet in the long photoperiod group induced a memory impairment. In conclusion, our study suggests that photoperiod and high fat diet have an impact on object recognition in photoperiod-sensitive F344 rats.
Collapse
Affiliation(s)
- Samantha L McLean
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Haesung Yun
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Andrew Tedder
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Gisela Helfer
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK.
| |
Collapse
|
20
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
21
|
Abareshi A, Momenabadi S, Vafaei AA, Bandegi AR, Vakili A. Neuroprotective Effects of Chemerin on a Mouse Stroke Model: Behavioral and Molecular Dimensions. Neurochem Res 2021; 46:3301-3313. [PMID: 34431027 DOI: 10.1007/s11064-021-03432-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
The present study was conducted to investigate the effects of different doses of recombinant human Chemerin (rhChemerin) on brain damage, spatial memory, blood-brain barrier (BBB) disruption and cellular and molecular mechanisms in a mouse stroke model. The mouse stroke model was developed by blocking the middle cerebral artery for 1 h and performing reperfusion for 23 h. Immediately, one and three hours after the stroke, 200, 400 and 800 ng/mouse of intranasal rhChemerin was administered. Neuronal and BBB damage, spatial memory and neurological performance were examined 24 h after the stroke. Western blotting and immunofluorescence were utilized to determine the effects of rhChemerin on the expressions of nuclear factor kappa B (NF-κB), pro-inflammatory cytokines such as TNF-α and IL-1β, anti-inflammatory cytokines such as IL-10 and TGF-β and vascular endothelial growth factor (VEGF). Administering 400 and 800 ng/mouse of rhChemerin in the mice immediately and one hour after ischemia minimized the infarct size, BBB opening, spatial memory and neurological impairment (P < 0.001). Furthermore, 800 ng/mouse of rhChemerin significantly diminished terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive (apoptotic) cells, suppressed the expressions of NF-kB, TNF-α and IL-1β and upregulated IL-10 and VEGF in the cortex and hippocampus of the mice. The present findings showed that rhChemerin administered immediately and one hour after stroke alleviates neuronal and BBB injures and improves spatial memory. These effects of rhChemerin may be mediated by inhibiting inflammatory pathways and apoptotic machinery.
Collapse
Affiliation(s)
- Azam Abareshi
- Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahein Momenabadi
- Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
22
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Yanan Y, Yi J, Xiaojing L, Jing Q, Xiaohui W. Adipo-specific chemerin knockout alters the metabolomic profile of adipose tissue under normal and high-fat diet conditions: Application of an untargeted liquid chromatography-tandem mass spectrometry metabolomics method. Biomed Chromatogr 2021; 35:e5220. [PMID: 34323295 DOI: 10.1002/bmc.5220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
To explore the metabolic effect of chemerin, adipose-specific chemerin knockout (adipo-chemerin-/- ) male mice were established and fed with 5-week normal diet (ND) or high-fat diet (HFD), and then the glycolipid metabolism index was measured and epididymal adipose tissue metabolomics detected using untargeted LC-tandem mass spectrometry (LC-MS/MS). Under HFD, adipo-chemerin-/- mice showed improved glycolipid metabolism (decreased total cholesterol, low-density lipoprotein-cholesterol, insulin and Homeostasis Model Assessment of Insulin Resistance) compared with flox (control) mice. Furthermore, orthogonal partial least squares-discriminant analysis score plots identified separation of metabolites between adipo-chemerin-/- mice and flox mice fed ND and HFD. Under HFD, 28 metabolites were significantly enhanced in adipo-chemerin-/- mice, and pathway enrichment analysis suggested strong relationship of the differential metabolites with arginine and proline metabolism, phenylalanine metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis, which were directly or indirectly related to lipid metabolism, inflammation and oxidative stress. Under ND, taurine was increased in adipo-chemerin-/- mice, resulting in taurine and hypotaurine metabolism and primary bile acid biosynthesis. In conclusion, the improved effect of chemerin knockdown on the glycolipid metabolism of HFD-feeding male mice might be associated with the increases in differential metabolites and metabolic pathways involved in lipid metabolism, inflammation and oxidative stress, which provided insights into the mechanism of chemerin from a metabolomics aspect.
Collapse
Affiliation(s)
- Yang Yanan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jia Yi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lin Xiaojing
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Qu Jing
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wang Xiaohui
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am J Physiol Regul Integr Comp Physiol 2021; 320:R994-R1003. [PMID: 33826442 DOI: 10.1152/ajpregu.00296.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.
Collapse
Affiliation(s)
- Matei Bolborea
- Central and Peripheral Mechanisms of Neurodegeneration, INSERM U1118, Université de Strasbourg, Strasbourg, France.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Fanny Langlet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Estienne A, Ramé C, Ganier P, Chahnamian M, Barbe A, Grandhaye J, Dubois JP, Batailler M, Migaud M, Lecompte F, Adriaensen H, Froment P, Dupont J. Chemerin impairs food intake and body weight in chicken: Focus on hypothalamic neuropeptides gene expression and AMPK signaling pathway. Gen Comp Endocrinol 2021; 304:113721. [PMID: 33493505 DOI: 10.1016/j.ygcen.2021.113721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Unlike mammals, the role of adipokines and more particularly of chemerin in the regulation of food intake is totally unknown in avian species. Here we investigated the effect of chemerin on the food and water consumption and on the body weight in chicken. We studied the effects on the plasma glucose and insulin concentrations and the hypothalamic neuropeptides and AMPK signaling pathway. Female broiler chickens were intraperitoneally injected, daily for 13 days with either vehicle (saline; n = 25) or chemerin (8 μg/kg; n = 25 and 16 μg/kg; n = 25). Food and water intakes were recorded 24 h after each administration. Overnight fasted animals were sacrificed at day 13 (D13), 24 h after the last injection and hypothalamus and left cerebral hemispheres were collected. Chemerin and its receptors protein levels were determined by western-blot. Gene expression of neuropeptide Y (Npy), agouti-related peptide (Agrp), corticotrophin releasing hormone (Crh), pro-opiomelanocortin (Pomc), cocaine and amphetamine-regulated transcript (Cart) and Taste 1 Receptor Member 1 (Tas1r1) were evaluated by RT-qPCR. In chicken, we found that the protein amount of chemerin, CCRL2 and GPR1 was similar in left cerebral hemisphere and hypothalamus whereas CMKLR1 was higher in hypothalamus. Chemerin administration (8 and 16 μg/kg) decreased both food intake and body weight compared to vehicle without affecting water intake and the size or volume of different brain subdivisions as determined by magnetic resonance imaging. It also increased plasma insulin levels whereas glucose levels were decreased. These data were associated with an increase in Npy and Agrp expressions and a decrease in Crh, Tas1r1 mRNA expression within the hypothalamus. Furthermore, chemerin decreased hypothalamic CMKLR1 protein expression and AMPK activation. Taken together, these results support that chemerin could be a peripheral appetite-regulating signal through modulation of hypothalamic peptides expression in chicken.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Jean-Philippe Dubois
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Martine Batailler
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Martine Migaud
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - François Lecompte
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Hans Adriaensen
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France.
| |
Collapse
|
26
|
Association of chemerin gene promoter methylation in maternal blood and breast milk during gestational diabetes. J Dev Orig Health Dis 2021; 13:108-114. [PMID: 33781365 DOI: 10.1017/s2040174421000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The intrauterine environment and early-life nutrition are regulated by maternal biomarkers in the blood and breast milk. We aimed to explore epigenetic modifications that may contribute to differential chemerin expression in maternal plasma, colostrum, and breast milk and find its association with fetal cord blood and infant weight at 6 weeks postpartum. Thirty-three gestational diabetes mellitus (GDM) mothers and 33 normoglycemic mothers (NGT) were recruited. Two maternal blood samples (28th week of gestation and 6 weeks postpartum), cord blood, colostrum, and mature milk were collected. Methylation-specific polymerase chain reaction and enzyme-linked immunosorbent assay were conducted. The weight of the babies was measured at birth and 6 weeks postpartum. Serum chemerin levels at the 28th gestational week and 6 weeks postpartum were significantly lower for the NGT group as compared to the GDM group; (P < 0.05). Higher colostrum chemerin concentrations were observed in the GDM group and remained elevated in mature milk as compared to NGT (P < 0.05). Colostrum and breast milk chemerin levels showed an independent association with infant weight at 6 weeks postpartum (r = 0.270; P = 0.034) (r = 0.464; P < 0.001). Forty percent GDM mothers expressed unmethylated chemerin reflecting increased chemerin concentration in the maternal blood. This pattern was also observed in newborn cord blood where 52% of samples showed unmethylated chemerin in contrast to none in babies born to normoglycemic mothers. The results of this study highlight the critical importance of altered chemerin regulation in gestational diabetic mothers and its effect during early life period and suggest a possible role in contributing to childhood obesity.
Collapse
|
27
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
28
|
Adeyemi TE, Channa ML, Nadar A. Evaluation of maternal high-fat diet and Quercetin-3-O-rutinoside treatment on the reproductive profile of diet naïve male offspring. Life Sci 2021; 271:119179. [PMID: 33577849 DOI: 10.1016/j.lfs.2021.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Male infertility and reproductive dysfunctions have become major global health problems. Although several causative factors have been attributed to this challenge, of importance are alterations in maternal-foetal environment, diet-induced transcriptional changes and dysregulation in chemical signaling via hypothalamic-gonadal axis. AIM The present study investigated the impact of maternal high-fat diet (HFD) consumption and the putative role of Quercetin-3-O-rutinoside on reproductive functions of male offspring rats at critical developmental stages with a quest to unravel the underpinned molecular changes. MATERIALS AND METHODS Fifty-six pregnant rats (previously fed normal diet ND) or 45% HFD) were maintained on supplemented chow (150 mg/kg QR) - ND/QR, HFD/QR throughout gestation. Subsequently, dams (n = 7) and offspring (n = 6) were sacrificed at post-natal day (PND) 21, 28 and 35, respectively, and the blood, placenta, hypothalamus (HT), and testicular samples were processed for molecular analysis of Gonadotropin-releasing hormone (GnRH), Luteinizing hormone (LH), testosterone, chemerin, chemokine-like receptor 1 (CMKLR1), tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and nuclear factor kappa B (NF-κB). KEY FINDINGS We observed a significant decrease in GnRH level in the HFD group at PND21 and PND28 in male offspring and treatment with QR significantly reduced GnRH. There was a significant reduction in LH levels in the HFD group at PND 21 in the male offspring accompanied by a significant decrease in testosterone level at PND 28 and PND35 which appears to be age dependent. In the HT, Chemerin and CMKLR1 was significantly upregulated in the HFD group at PND 21 and PND 35 respectively while CMKLR1 was significantly downregulated in the HFD group of the placenta and testis at PND 21. TNF-α, IL-1β and NF-κB were also expressed in the placenta, HT and testis at PND 21. SIGNIFICANCE Male fertility is affected by maternal HFD consumption while chemerin, CMKLR1 and TNF-α, may play a significant role in male steroidogenesis. Treatment with QR had little or no ameliorative effect on HFD induced alterations in male reproductive functions.
Collapse
Affiliation(s)
- Toluwalope E Adeyemi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Mahendra L Channa
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Anand Nadar
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
29
|
Vastagh C, Csillag V, Solymosi N, Farkas I, Liposits Z. Gonadal Cycle-Dependent Expression of Genes Encoding Peptide-, Growth Factor-, and Orphan G-Protein-Coupled Receptors in Gonadotropin- Releasing Hormone Neurons of Mice. Front Mol Neurosci 2021; 13:594119. [PMID: 33551743 PMCID: PMC7863983 DOI: 10.3389/fnmol.2020.594119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone (GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes alterations in peptidergic signaling onto GnRH neurons inducing a differential expression of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes. Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using Affymetrix microarray technique. Proestrus resulted in a differential expression of genes coding for peptide/neuropeptide receptors including Adipor1, Prokr1, Ednrb, Rtn4r, Nmbr, Acvr2b, Sctr, Npr3, Nmur1, Mc3r, Cckbr, and Amhr2. In this gene cluster, Adipor1 mRNA expression was upregulated and the others were downregulated. Expression of growth factor receptors and their related proteins was also altered showing upregulation of Fgfr1, Igf1r, Grb2, Grb10, and Ngfrap1 and downregulation of Egfr and Tgfbr2 genes. Gpr107, an orphan GPCR, was upregulated during proestrus, while others were significantly downregulated (Gpr1, Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4, and Gpr88). Further affected receptors included vomeronasal receptors (Vmn1r172, Vmn2r-ps54, and Vmn1r148) and platelet-activating factor receptor (Ptafr), all with marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and GPR107 receptors were operational, as their activation by specific ligands evoked an increase in the frequency of miniature postsynaptic currents (mPSCs). These findings show the contribution of certain novel peptides, growth factors, and ligands of orphan GPCRs to regulation of GnRH neurons and their preparation for the surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
30
|
Ferland DJ, Mullick AE, Watts SW. Chemerin as a Driver of Hypertension: A Consideration. Am J Hypertens 2020; 33:975-986. [PMID: 32453820 PMCID: PMC7759724 DOI: 10.1093/ajh/hpaa084] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The protein chemerin (tazarotene-induced gene, TIG2; RARRES2) is a relatively new adipokine. Many studies support that circulating chemerin levels associate strongly and positively with body mass index, visceral fat, and blood pressure. Here, we focus on the specific relationship of chemerin and blood pressure with the goal of understanding whether and how chemerin drives (pathological) changes in blood pressure such that it could be interfered with therapeutically. We dissect the biosynthesis of chemerin and how current antihypertensive medications change chemerin metabolism. This is followed with a review of what is known about where chemerin is synthesized in the body and what chemerin and its receptors can do to the physiological function of organs important to blood pressure determination (e.g., brain, heart, kidneys, blood vessels, adrenal, and sympathetic nervous system). We synthesize from the literature our best understanding of the mechanisms by which chemerin modifies blood pressure, with knowledge that plasma/serum levels of chemerin may be limited in their pathological relevance. This review reveals several gaps in our knowledge of chemerin biology that could be filled by the collective work of protein chemists, biologists, pharmacologists, and clinicians.
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
31
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
32
|
Majumdar G, Yadav G, Malik S, Rani S, Balthazart J, Kumar V. Hypothalamic plasticity in response to changes in photoperiod and food quality: An adaptation to support pre-migratory fattening in songbirds? Eur J Neurosci 2020; 53:430-448. [PMID: 33010037 DOI: 10.1111/ejn.14994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
In latitudinal avian migrants, increasing photoperiods induce fat deposition and body mass increase, and subsequent night-time migratory restlessness in captive birds, but the underlying mechanisms remain poorly understood. We hypothesized that an enhanced hypothalamic neuronal plasticity was associated with the photostimulated spring migration phenotype. We tested this idea in adult migratory red-headed buntings (Emberiza bruniceps), as compared with resident Indian weaverbirds (Ploceus philippinus). Birds were exposed to a stimulatory long photoperiod (14L:10D, LP), while controls were kept on a short photoperiod (10L:14D, SP). Under both photoperiods, one half of birds also received a high calorie, protein- and fat-rich diet (SP-R, LP-R) while the other half stayed on the normal diet (SP-N, LP-N). Thirty days later, as expected, the LP had induced multiple changes in the behaviour and physiology in migratory buntings. Photostimulated buntings also developed a preference for the rich food diet. Most interestingly, the LP and the rich diet, both separately and in association, increased neurogenesis in the mediobasal hypothalamus (MBH), as measured by an increased number of cells immunoreactive for doublecortin (DCX), a marker of recently born neurons, in buntings, but not weaverbirds. This neurogenesis was associated with an increased density of fibres immunoreactive for the orexigenic neuropeptide Y (NPY). This hypothalamic plasticity observed in a migratory, but not in a non-migratory, species in response to photoperiod and food quality might represent an adaptation to the pre-migratory fattening, as required to support the extensive energy expenses that incur during the migratory flight.
Collapse
Affiliation(s)
| | - Garima Yadav
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
33
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N, Kaminski T. Expression of chemerin receptors CMKLR1, GPR1 and CCRL2 in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways. Theriogenology 2020; 157:181-198. [PMID: 32814246 DOI: 10.1016/j.theriogenology.2020.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Studies on adipokines, substances that are produced in adipose tissue, indicate that they influence both metabolism and reproduction. Chemerin is a novel addition to the adipokine family. It is believed that chemerin receptors are expressed in different structures of the hypothalamic-pituitary-gonadal (HPG) axis, which are crucial for endocrine control of reproductive functions, including the pituitary. The aim of this study was to investigate the expression of chemerin receptors (CMKLR1, GPR1, CCRL2) genes and proteins in the porcine pituitary. The effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways was also investigated. The anterior (AP) and posterior (PP) lobes of the pituitary were examined on days 2 to 3, 10 to 12, 14 to 16, and 17 to 19 of the oestrous cycle and on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy. This is the first study to demonstrate that CMKLR1, GPR1 and CCRL2 are expressed in the porcine AP and PP, which implies that this gland is sensitive to chemerin action. The expression of the studied chemerin receptors fluctuated during different phases of the cycle and early gestation, which could be related to changes in the endocrine status of female pigs. The study also revealed that CMKLR1 and CCRL2 proteins were present in gonadotrophs and thyrotrophs, whereas CCRL2 was also present in somatotrophs, during the cycle and early pregnancy. We observed that chemerin affected MAPK/Erk1/2, Akt and AMPK signalling pathways in the porcine AP. These results suggest that chemerin may participate in the regulation of reproductive functions at the level of the pituitary.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
35
|
Dobrzyn K, Kiezun M, Zaobidna E, Kisielewska K, Rytelewska E, Gudelska M, Kopij G, Bors K, Szymanska K, Kaminska B, Kaminski T, Smolinska N. The In Vitro Effect of Prostaglandin E 2 and F 2α on the Chemerin System in the Porcine Endometrium during Gestation. Int J Mol Sci 2020; 21:E5213. [PMID: 32717877 PMCID: PMC7432131 DOI: 10.3390/ijms21155213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Chemerin belongs to the group of adipocyte-derived hormones known as adipokines, which are responsible mainly for the control of energy homeostasis. Adipokine exerts its influence through three receptors: Chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). A growing body of evidence indicates that chemerin participates in the regulation of the female reproductive system. According to the literature, the expression of chemerin and its receptors in reproductive structures depends on the local hormonal milieu. The aim of this study was to investigate the in vitro effect of prostaglandins E2 (PGE2) and F2α (PGF2α) on chemerin and chemerin receptor (chemerin system) mRNAs (qPCR) and proteins (ELISA, Western blotting) in endometrial tissue explants collected from early-pregnant gilts. Both PGE2 and PGF2α significantly influenced the expression of the chemerin gene, hormone secretion, and the expression of chemerin receptor genes and proteins. The influence of both prostaglandins on the expression of the chemerin system varied between different stages of gestation. This is the first study to describe the modulatory effect of PGE2 and PGF2α on the expression of the chemerin system in the porcine uterus during early gestation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland; (M.K.); (E.Z.); (K.K.); (E.R.); (M.G.); (G.K.); (K.B.); (K.S.); (B.K.); (T.K.)
| |
Collapse
|
36
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N, Kaminski T. Relative abundance of chemerin mRNA transcript and protein in pituitaries of pigs during the estrous cycle and early pregnancy and associations with LH and FSH secretion during the estrous cycle. Anim Reprod Sci 2020; 219:106532. [PMID: 32828407 DOI: 10.1016/j.anireprosci.2020.106532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023]
Abstract
Adipokines such as chemerin affect metabolic status and reproductive function in many species. The hypothesis in the present study was that there were chemerin mRNA transcript and protein in the pituitary of pigs and that relative abundances fluctuate during the estrous cycle and early pregnancy. Chemerin is thought to modulate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion during the estrous cycle. Changes in the relative abundance of chemerin mRNA transcript and protein in anterior (AP) and posterior (PP) pituitaries of pigs were investigated, for the first time in the present study, during four phases of the estrous cycle and four periods of early pregnancy. Chemerin protein was localized in gonadotrophs, thyrotrophs and somatotrophs during the estrous cycle and early gestation. Chemerin treatments affected both basal, GnRH- and/or insulin-induced LH and FSH production, with there being variations with phase of the estrous cycle when tissues were collected. These findings indicate chemerin may be produced locally in the pituitary and may affect female reproductive function by controlling the release of LH and FSH from AP cells.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
37
|
Yamamoto A, Matsumoto K, Hori K, Kameshima S, Yamaguchi N, Okada S, Okada M, Yamawaki H. Acute intracerebroventricular injection of chemerin-9 increases systemic blood pressure through activating sympathetic nerves via CMKLR1 in brain. Pflugers Arch 2020; 472:673-681. [PMID: 32462328 DOI: 10.1007/s00424-020-02391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Chemerin is an adipocytokine involved in inflammation and lipid metabolism via G protein-coupled receptor, chemokine-like receptor (CMKLR)1. Since the important nuclei regulating pressure (BP) exist in the brain, we examined the effects of acute intracerebroventricular (i.c.v.) injection of chemerin-9 on systemic BP and explored underlying mechanisms. We examined the effects of acute i.c.v. injection of chemerin-9 (10 nmol/head) on systemic BP by a carotid cannulation method in the control or CMKLR1 small interfering (si) RNA-treated Wistar rats (0.04 nmol, 3 days, i.c.v.). We examined protein expression of CMKLR1 around brain ventricles by Western blotting. We examined the effects of acute i.c.v. injection of chemerin-9 on serum adrenaline by a high performance liquid chromatography. In the control siRNA-treated rats, chemerin-9 significantly increased mean BP, which reached a peak at 2 to 4 min after injection. On the other hand, in the CMKLR1 siRNA-treated rats, chemerin-9 did not affect the mean BP. Protein expression of CMKLR1 specifically in subfornical organ (SFO) and paraventricular nucleus (PVN) from the CMKLR1 siRNA-treated rats decreased compared with the control siRNA-treated rats. In the control siRNA-treated rats, chemerin-9 increased serum adrenaline level. On the other hand, in the CMKLR1 siRNA-treated rats, chemerin-9 did not affect the serum adrenaline level. Further, pretreatment with prazosin, an α-adrenaline receptor blocker, significantly prevented the pressor responses induced by chemerin-9. In summary, we for the first time demonstrated that chemerin-9 stimulates the sympathetic nerves via CMKLR1 perhaps expressed in SFO and PVN, which leads to an increase in systemic BP.
Collapse
Affiliation(s)
- Atsunori Yamamoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kengo Matsumoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kiko Hori
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Satoshi Kameshima
- Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Yazakokarimata 1-1, Nagakute, Aichi, 480-1195, Japan
| | - Shoshiro Okada
- Department of Pharmacology, School of Medicine, Aichi Medical University, Yazakokarimata 1-1, Nagakute, Aichi, 480-1195, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
38
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
39
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
40
|
Smolinska N, Kiezun M, Dobrzyn K, Rytelewska E, Kisielewska K, Gudelska M, Zaobidna E, Bogus-Nowakowska K, Wyrebek J, Bors K, Kopij G, Kaminska B, Kaminski T. Expression of Chemerin and Its Receptors in the Porcine Hypothalamus and Plasma Chemerin Levels during the Oestrous Cycle and Early Pregnancy. Int J Mol Sci 2019; 20:ijms20163887. [PMID: 31404950 PMCID: PMC6719988 DOI: 10.3390/ijms20163887] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 01/13/2023] Open
Abstract
Chemerin (CHEM) may act as an important link integrating energy homeostasis and reproductive functions of females, and its actions are mediated by three receptors: chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). The aim of the current study was to compare the expression of CHEM and its receptor (CHEM system) mRNAs (quantitative real-time PCR) and proteins (Western blotting and fluorescent immunohistochemistry) in the selected areas of the porcine hypothalamus responsible for gonadotropin-releasing hormone production and secretion: the mediobasal hypothalamus, preoptic area and stalk median eminence during the oestrous cycle and early pregnancy. Moreover, plasma CHEM concentrations were determined using ELISA. The expression of CHEM system has been demonstrated in the porcine hypothalamus throughout the luteal phase and follicular phase of the oestrous cycle, and during early pregnancy from days 10 to 28. Plasma CHEM levels and concentrations of transcripts and proteins of CHEM system components in the hypothalamus fluctuated throughout pregnancy and the oestrous cycle. Our study was the first experiment to demonstrate the presence of CHEM system mRNAs and proteins in the porcine hypothalamus and the correlations between the expression levels and physiological hormonal milieu related to the oestrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Joanna Wyrebek
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland.
| |
Collapse
|
41
|
Helfer G, Barrett P, Morgan PJ. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol 2019; 31:e12680. [PMID: 30585661 DOI: 10.1111/jne.12680] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Animals have evolved diverse seasonal variations in physiology and reproduction to accommodate yearly changes in environmental and climatic conditions. These changes in physiology are initiated by changes in photoperiod (daylength) and are mediated through melatonin, which relays photoperiodic information to the pars tuberalis of the pituitary gland. Melatonin drives thyroid-stimulating hormone transcription and synthesis in the pars tuberalis, which, in turn, regulates thyroid hormone and retinoic acid synthesis in the tanycytes lining the third ventricle of the hypothalamus. Seasonal variation in central thyroid hormone signalling is conserved among photoperiodic animals. Despite this, different species adopt divergent phenotypes to cope with the same seasonal changes. A common response amongst different species is increased hypothalamic cell proliferation/neurogenesis in short photoperiod. That cell proliferation/neurogenesis may be important for seasonal timing is based on (i) the neurogenic potential of tanycytes; (ii) the fact that they are the locus of striking seasonal morphological changes; and (iii) the similarities to mechanisms involved in de novo neurogenesis of energy balance neurones. We propose that a decrease in hypothalamic thyroid hormone and retinoic acid signalling initiates localised neurodegeneration and apoptosis, which leads to a reduction in appetite and body weight. Neurodegeneration induces compensatory cell proliferation from the neurogenic niche in tanycytes and new cells are born under short photoperiod. Because these cells have the potential to differentiate into a number of different neuronal phenotypes, this could provide a mechanistic basis to explain the seasonal regulation of energy balance, as well as reproduction. This cycle can be achieved without changes in thyroid hormone/retinoic acid and explains recent data obtained from seasonal animals held in natural conditions. However, thyroid/retinoic acid signalling is required to synchronise the cycles of apoptosis, proliferation and differentiation. Thus, hypothalamic neurogenesis provides a framework to explain diverse photoperiodic responses.
Collapse
Affiliation(s)
- Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Perry Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
42
|
Abstract
Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.
Collapse
|
43
|
Dalby MJ, Aviello G, Ross AW, Walker AW, Barrett P, Morgan PJ. Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep 2018; 8:15648. [PMID: 30353127 PMCID: PMC6199263 DOI: 10.1038/s41598-018-33928-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
Hypothalamic inflammation is thought to contribute to obesity. One potential mechanism is via gut microbiota derived bacterial lipopolysaccharide (LPS) entering into the circulation and activation of Toll-like receptor-4. This is called metabolic endotoxemia. Another potential mechanism is systemic inflammation arising from sustained exposure to high-fat diet (HFD) over more than 12 weeks. In this study we show that mice fed HFD over 8 weeks become obese and show elevated plasma LPS binding protein, yet body weight gain and adiposity is not attenuated in mice lacking Tlr4 or its co-receptor Cd14. In addition, caecal microbiota composition remained unchanged by diet. Exposure of mice to HFD over a more prolonged period (20 weeks) to drive systemic inflammation also caused obesity. RNAseq used to assess hypothalamic inflammation in these mice showed increased hypothalamic expression of Serpina3n and Socs3 in response to HFD, with few other genes altered. In situ hybridisation confirmed increased Serpina3n and Socs3 expression in the ARC and DMH at 20-weeks, but also at 8-weeks and increased SerpinA3N protein could be detected as early as 1 week on HFD. Overall these data show lack of hypothalamic inflammation in response to HFD and that metabolic endotoxemia does not link HFD to obesity.
Collapse
Affiliation(s)
- Matthew J Dalby
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Gabriella Aviello
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alexander W Ross
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| |
Collapse
|
44
|
Helfer G, Wu QF. Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol 2018; 238:R79-R94. [PMID: 29848608 PMCID: PMC6026924 DOI: 10.1530/joe-18-0174] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is a global public health problem and predisposes individuals to obesity, diabetes and cardiovascular disease. Although the underlying mechanisms remain to be elucidated, accumulating evidence has uncovered a critical role of adipokines. Chemerin, encoded by the gene Rarres2, is a newly discovered adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism. In humans, local and circulating levels of chemerin are positively correlated with BMI and obesity-related biomarkers. In this review, we discuss both peripheral and central roles of chemerin in regulating body metabolism. In general, chemerin is upregulated in obese and diabetic animals. Previous studies by gain or loss of function show an association of chemerin with adipogenesis, glucose homeostasis, food intake and body weight. In the brain, the hypothalamus integrates peripheral afferent signals including adipokines to regulate appetite and energy homeostasis. Chemerin increases food intake in seasonal animals by acting on hypothalamic stem cells, the tanycytes. In peripheral tissues, chemerin increases cell expansion, inflammation and angiogenesis in adipose tissue, collectively resulting in adiposity. While chemerin signalling enhances insulin secretion from pancreatic islets, contradictory results have been reported on how chemerin links to obesity and insulin resistance. Given the association of chemerin with obesity comorbidities in humans, advances in translational research targeting chemerin are expected to mitigate metabolic disorders. Together, the exciting findings gathered in the last decade clearly indicate a crucial multifaceted role for chemerin in the regulation of energy balance, making it a promising candidate for urgently needed pharmacological treatment strategies for obesity.
Collapse
Affiliation(s)
- Gisela Helfer
- School of Chemistry and BiosciencesUniversity of Bradford, Bradford, UK
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Correspondence should be addressed to Q-F Wu:
| |
Collapse
|
45
|
Singh A, Choubey M, Bora P, Krishna A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod Sci 2018; 25:1462-1473. [DOI: 10.1177/1933719118770547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anusha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Puran Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
46
|
Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, Migaud M, Baroncini M, Maurage CA, Fontaine C, Prévot V, Sharif A. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 2018; 526:1419-1443. [PMID: 29230807 DOI: 10.1002/cne.24376] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
Collapse
Affiliation(s)
- Giuliana Pellegrino
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Claire Trubert
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Danièle Leroy
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Anne Loyens
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France; Université de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Marc Baroncini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Claude-Alain Maurage
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neuropathology, Lille University Hospital, Lille, France
| | - Christian Fontaine
- University of Lille, School of Medicine, Lille Cedex, France.,Laboratory of Anatomy, Lille University Hospital, Lille, France
| | - Vincent Prévot
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| |
Collapse
|
47
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
48
|
Stoney PN, Rodrigues D, Helfer G, Khatib T, Ashton A, Hay EA, Starr R, Kociszewska D, Morgan P, McCaffery P. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain Behav Immun 2017; 61:340-352. [PMID: 27993690 PMCID: PMC5325119 DOI: 10.1016/j.bbi.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.
Collapse
Affiliation(s)
- Patrick N. Stoney
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Diana Rodrigues
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK,Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elizabeth A. Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Robert Starr
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Dagmara Kociszewska
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|