1
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Navarro R, Frago S, Hangiu O, Erce-Llamazares A, Lázaro-Gorines R, Morcillo MA, Rodriguez-Peralto JL, Sanz L, Compte M, Alvarez-Vallina L. Pharmacokinetics and safety of LEAD-452, an EGFR-specific 4-1BB-agonistic trimerbody in non-human primates. Toxicol Appl Pharmacol 2024; 487:116961. [PMID: 38740095 DOI: 10.1016/j.taap.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
LEAD-452 is a humanized bispecific EGFR-targeted 4-1BB-agonistic trimerbody with a unique trimeric configuration compared to other 4-1BB-specific antibodies that are currently in development. Indeed, enhanced tumor-specific costimulation and very remarkable safety and efficacy profiles have been observed in mouse models. Here, we conducted for the first time a preclinical pharmacokinetic and toxicity study in non-human primates (NHP) (Macaca fascicularis). LEAD-452 exhibits comparable binding affinity for human and macaque targets, indicating its pharmacological significance for safety testing across species. The NHP were administered LEAD-452 in a series of ascending doses, ranging from 0.1 mg/kg to 10 mg/kg, and repeated doses up to 20 mg/kg. The administration of LEAD-452 was found to be clinically well tolerated, with no major related adverse effects observed. Furthermore, there have been no reported cases of liver toxicity, thrombocytopenia, and neutropenia, which are commonly associated with treatments using conventional anti-4-1BB IgG-based antibodies. In addition, neither IgM nor IgG-based anti-drug antibodies were detected in serum samples from NHP during the study, regardless of the dose of LEAD-452 administered. These results support the clinical development of LEAD-452 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel A Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - José L Rodriguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Pathology, Universidad Complutense, Madrid, Spain; Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Fundación para la Investigación Biomédica Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain.
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
3
|
Yamamoto K, Nagatoishi S, Nakakido M, Kuroda D, Tsumoto K. Functional insights of Tyr37 in framework region 2 directly contributing to the binding affinities and dissociation kinetics in single-domain V HH antibodies. Biochem Biophys Res Commun 2024; 709:149839. [PMID: 38564943 DOI: 10.1016/j.bbrc.2024.149839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Rubio-Pérez L, Frago S, Compte M, Navarro R, Harwood SL, Lázaro-Gorines R, Gómez-Rosel M, Hangiu O, Silva-Pilipich N, Vanrell L, Smerdou C, Álvarez-Vallina L. Characterization of a Trispecific PD-L1 Blocking Antibody That Exhibits EGFR-Conditional 4-1BB Agonist Activity. Antibodies (Basel) 2024; 13:34. [PMID: 38804302 PMCID: PMC11130918 DOI: 10.3390/antib13020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity.
Collapse
Affiliation(s)
- Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Seandean L. Harwood
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Marina Gómez-Rosel
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Tres Cantos, 28760 Madrid, Spain; (S.F.); (M.C.); (R.N.)
| | - Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain; (N.S.-P.); (C.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, 11100 Montevideo, Uruguay;
- Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain; (N.S.-P.); (C.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), 28041 Madrid, Spain; (L.R.-P.); (R.L.-G.); (M.G.-R.); (O.H.)
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
5
|
Sandeep, Shinde SH, Ahmed S, Sharma SS, Pande AH. Engineered polyspecific antibodies: A new frontier in the field of immunotherapeutics. Immunology 2024; 171:464-496. [PMID: 38140855 DOI: 10.1111/imm.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The 21st-century beginning remarked with the huge success of monospecific MAbs, however, in the last couple of years, polyspecific MAbs (PsAbs) have been an interesting topic and show promise of being biobetter than monospecific MAbs. Polyspecificity, in which a single antibody serves multiple specific target binding, has been hypothesized to contribute to the development of a highly effective antibody repertoire for immune defence. This polyspecific MAb trend represents an explosion that is gripping the whole pharmaceutical industry. This review is concerned with the current development and quality enforcement of PsAbs. All provided literature on monospecific MAbs and polyspecific MAbs (PsAbs) were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent and books via the keywords Antibody engineering, Polyspecific antibody, Conventional antibody, non-conventional antibody, and Single domain antibody. In the literature, there are more than 100 different formats to construct PsAb by quadroma technology, chemical conjugation and genetic engineering. Till March 2023, nine PsAb have been approved around the world, and around 330 are in advanced developmental stages, showing the dominancy of PsAb in the growing health sector. Recent advancements in protein engineering techniques and the fusion of non-conventional antibodies have made it possible to create complex PsAbs that demonstrate higher stability and enhanced potency. This marks the most significant achievement for cancer immunotherapy, in which PsAbs have immense promise. It is worth mentioning that seven out of the nine PsAbs have been approved as anti-cancer therapy. As PsAbs continue to acquire prominence, they could pave the way for the development of novel immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
6
|
Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. MAbs 2024; 16:2341443. [PMID: 38666503 PMCID: PMC11057648 DOI: 10.1080/19420862.2024.2341443] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.
Collapse
|
7
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
8
|
Pourjafar M, Saidijam M, Miehe M, Najafi R, Soleimani M, Spillner E. Surfaceome Profiling Suggests Potential of Anti-MUC1×EGFR Bispecific Antibody for Breast Cancer Targeted Therapy. J Immunother 2023; 46:245-261. [PMID: 37493044 DOI: 10.1097/cji.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer (BC) treatment has traditionally been challenging due to tumor heterogeneity. Bispecific antibodies (bsAbs) offer a promising approach for overcoming these challenges by targeting multiple specific epitopes. In the current study, we designed a new bsAb against the most common BC cell surface proteins (SPs). To achieve this, we analyzed RNA-sequencing data to identify differentially expressed genes, which were further evaluated using Gene Ontology enrichment, Hidden Markov Models, clinical trial data, and survival analysis to identify druggable gene-encoding cell SPs. Based on these analyses, we constructed and expressed a bsAb targeting the mucin 1 (MUC1) and epidermal growth factor receptor (EGFR) proteins, which are the dominant druggable gene-encoding cell SPs in BC. The recombinant anti-MUC1×EGFR bsAb demonstrated efficient production and high specificity for MUC1 and EGFR + cell lines and BC tissue. Furthermore, the bsAb significantly reduced the proliferation and migration of BC cells. Our results suggested that simultaneous targeting with bsAbs could be a promising targeted therapy for improving the overall efficacy of BC treatment.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Michaela Miehe
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Edzard Spillner
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Rubio-Pérez L, Lázaro-Gorines R, Harwood SL, Compte M, Navarro R, Tapia-Galisteo A, Bonet J, Blanco B, Lykkemark S, Ramírez-Fernández Á, Ferreras-Gutiérrez M, Domínguez-Alonso C, Díez-Alonso L, Segura-Tudela A, Hangiu O, Erce-Llamazares A, Blanco FJ, Santos C, Rodríguez-Peralto JL, Sanz L, Álvarez-Vallina L. A PD-L1/EGFR bispecific antibody combines immune checkpoint blockade and direct anti-cancer action for an enhanced anti-tumor response. Oncoimmunology 2023; 12:2205336. [PMID: 37114242 PMCID: PMC10128431 DOI: 10.1080/2162402x.2023.2205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) with antibodies has shown durable clinical responses in a wide range of cancer types, but the overall response rate is still limited. Other effective therapeutic modalities to increase the ICB response rates are urgently needed. New bispecific antibody (bsAb) formats combining the ICB effect and a direct action on cancer cells could improve the efficacy of current immunotherapies. Here, we report the development of a PD-L1/EGFR symmetric bsAb by fusing a dual-targeting tandem trimmer body with the human IgG1 hinge and Fc regions. The bsAb was characterized in vitro and the antitumor efficacy was evaluated in humanized mice bearing xenografts of aggressive triple-negative breast cancer and lung cancer. The IgG-like hexavalent bsAb, designated IgTT-1E, was able to simultaneously bind both EGFR and PD-L1 antigens, inhibit EGF-mediated proliferation, effectively block PD-1/PD-L1 interaction, and induce strong antigen-specific antibody-dependent cellular cytotoxicity activity in vitro. Potent therapeutic efficacies of IgTT-1E in two different humanized mouse models were observed, where tumor growth control was associated with a significantly increased proportion of CD8+ T cells. These results support the development of IgTT-1E for the treatment of EGFR+ cancers.
Collapse
Affiliation(s)
- Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Seandean L. Harwood
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus C, Denmark
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Francisco J. Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - José L. Rodríguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Pathology, Universidad Complutense, Madrid, Spain
- Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- CONTACT Luis Álvarez-Vallina Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Avda. Cordoba s/n, Madrid28041, Spain
| |
Collapse
|
11
|
Morales-Kastresana A, Siegemund M, Haak S, Peper-Gabriel J, Neiens V, Rothe C. Anticalin®-based therapeutics: Expanding new frontiers in drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:89-106. [PMID: 35777866 DOI: 10.1016/bs.ircmb.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma. Anticalin proteins provide formatting flexibility which allows fusion with the same or other Anticalin proteins, or with other biologics to generate multivalent, multiparatopic or multispecific fusion proteins. The fusion of Anticalin proteins to antibodies allows the generation of potent therapeutic proteins with new modes of action, such as antibody-Anticalin bispecific proteins with tumor-localized activity. Cinrebafusp alfa and PRS-344/S095012 antibody-Anticalin bispecific proteins were designed to reduce potential systemic toxicity by localizing the activity to the tumor, and are currently in clinical development in immuno-oncology. Furthermore, the ease in generating bi- and multispecifics as well as the small and stable structure prompted the investigation of Anticalin proteins for the CAR T space, opening additional potential treatment options based on Anticalin protein therapies.
Collapse
Affiliation(s)
| | | | - Stefan Haak
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | | |
Collapse
|
12
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
13
|
Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor K, Rees R, Taxer W, Rymarenko O, Schünemann J, Dienemann C, Gunkel P, Mussil B, Krull J, Teichmann U, Groß U, Cordes VC, Dobbelstein M, Görlich D. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J 2021; 40:e107985. [PMID: 34302370 PMCID: PMC8420576 DOI: 10.15252/embj.2021107985] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
Monoclonal anti-SARS-CoV-2 immunoglobulins represent a treatment option for COVID-19. However, their production in mammalian cells is not scalable to meet the global demand. Single-domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein, we isolated 45 infection-blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS-CoV-2 at 17-50 pM concentration (0.2-0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X-ray and cryo-EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune-escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low-picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such "fold-promoting" nanobodies may allow for simplified production of vaccines and their adaptation to viral escape-mutations.
Collapse
Affiliation(s)
- Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, GZMB, University Medical Center, Göttingen, Germany
| | - Kim M Stegmann
- Institute of Molecular Oncology, GZMB, University Medical Center, Göttingen, Germany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Waltraud Taxer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Oleh Rymarenko
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bianka Mussil
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jens Krull
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrike Teichmann
- Animal facility, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Volker C Cordes
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, GZMB, University Medical Center, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Compte M, Harwood SL, Erce-Llamazares A, Tapia-Galisteo A, Romero E, Ferrer I, Garrido-Martin EM, Enguita AB, Ochoa MC, Blanco B, Oteo M, Merino N, Nehme-Álvarez D, Hangiu O, Domínguez-Alonso C, Zonca M, Ramírez-Fernández A, Blanco FJ, Morcillo MA, Muñoz IG, Melero I, Rodriguez-Peralto JL, Paz-Ares L, Sanz L, Alvarez-Vallina L. An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. Clin Cancer Res 2021; 27:3167-3177. [PMID: 33785484 DOI: 10.1158/1078-0432.ccr-20-4625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell-mediated antitumor response. Systemic administration of anti-4-1BB-agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity. EXPERIMENTAL DESIGN Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo. RESULTS In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non-small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer. CONCLUSIONS These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Eduardo Romero
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Eva M Garrido-Martin
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ana B Enguita
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain
| | - Maria C Ochoa
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Daniel Nehme-Álvarez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manuela Zonca
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Angel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco J Blanco
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Miguel A Morcillo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ines G Muñoz
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Immunology, University Clinic, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José L Rodriguez-Peralto
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain.,Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark. .,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
15
|
Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells 2020; 9:E2102. [PMID: 32942725 PMCID: PMC7565449 DOI: 10.3390/cells9092102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities. Given the potential of nanotechnology to deliver, enhance, and fine-tune cancer immunotherapeutic agents, the combination of cancer immunotherapy with nanotechnology can overcome some of these limitations. In this review, we summarize innovative reports and novel strategies that successfully combine nanotechnology and cancer immunotherapy. We also provide insight into how nanoparticular combination therapies can be used to improve therapy responsiveness, to reduce unwanted toxicity, and to overcome adverse effects of the TME.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dominik Siegl
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
16
|
Ma H, Wang H, Sove RJ, Jafarnejad M, Tsai CH, Wang J, Giragossian C, Popel AS. A Quantitative Systems Pharmacology Model of T Cell Engager Applied to Solid Tumor. AAPS JOURNAL 2020; 22:85. [PMID: 32533270 PMCID: PMC7293198 DOI: 10.1208/s12248-020-00450-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy has recently drawn remarkable attention as promising results in the clinic have shown its ability to improve the overall survival, and T cells are considered to be one of the primary effectors for cancer immunotherapy. Enhanced and restored T cell tumoricidal activity has shown great potential for killing cancer cells. Bispecific T cell engagers (TCEs) are a growing class of molecules that are designed to bind two different antigens on the surface of T cells and cancer cells to bring them in close proximity and selectively activate effector T cells to kill target cancer cells. New T cell engagers are being investigated for the treatment of solid tumors. The activity of newly developed T cell engagers showed a strong correlation with tumor target antigen expression. However, the correlation between tumor-associated antigen expression and overall response of cancer patients is poorly understood. In this study, we used a well-calibrated quantitative systems pharmacology (QSP) model extended to bispecific T cell engagers to explore their efficacy and identify potential biomarkers. In principle, patient-specific response can be predicted through this model according to each patient's individual characteristics. This extended QSP model has been calibrated with available experimental data and provides predictions of patients' response to TCE treatment.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sove
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chia-Hung Tsai
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. Methods Mol Biol 2020; 2070:173-189. [PMID: 31625096 DOI: 10.1007/978-1-4939-9853-1_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In addition to conventional hetero-tetrameric antibodies, the adaptive immune repertoire of camelids comprises the so-called heavy chain-only antibodies devoid of light chains. Consequently, antigen binding is mediated solely by the variable domain of the heavy chain, referred to as VHH. In recent years, these single-domain moieties emerged as promising tools for biotechnological and biomedical applications. In this chapter, we describe the generation of VHH antibody yeast surface display libraries from immunized Alpacas and Lamas as well as the facile isolation of antigen-specific molecules in a convenient fluorescence-activated cell sorting (FACS)-based selection process.
Collapse
Affiliation(s)
- Lukas Roth
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Janina Klemm
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Ralf Günther
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
18
|
Banaszek A, Bumm TGP, Nowotny B, Geis M, Jacob K, Wölfl M, Trebing J, Kucka K, Kouhestani D, Gogishvili T, Krenz B, Lutz J, Rasche L, Hönemann D, Neuweiler H, Heiby JC, Bargou RC, Wajant H, Einsele H, Riethmüller G, Stuhler G. On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nat Commun 2019; 10:5387. [PMID: 31772172 PMCID: PMC6879491 DOI: 10.1038/s41467-019-13196-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
T cell-engaging immunotherapies are changing the landscape of current cancer care. However, suitable target antigens are scarce, restricting these strategies to very few tumor types. Here, we report on a T cell-engaging antibody derivative that comes in two complementary halves and addresses antigen combinations instead of single molecules. Each half, now coined hemibody, contains an antigen-specific single-chain variable fragment (scFv) fused to either the variable light (VL) or variable heavy (VH) chain domain of an anti-CD3 antibody. When the two hemibodies simultaneously bind their respective antigens on a single cell, they align and reconstitute the original CD3-binding site to engage T cells. Employing preclinical models for aggressive leukemia and breast cancer, we show that by the combinatorial nature of this approach, T lymphocytes exclusively eliminate dual antigen-positive cells while sparing single positive bystanders. This allows for precision targeting of cancers not amenable to current immunotherapies. The restriction of appropriate tumour-specific antigens is a current limitation for T cell-engaging immunotherapy. Here, the authors have designed a new system constituted by two halve antibodies, which engage T cells once binding to two different antigens, to specifically eliminate double positive cells in preclinical leukemia and breast cancer mouse models.
Collapse
Affiliation(s)
- Agnes Banaszek
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Thomas G P Bumm
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Boris Nowotny
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Maria Geis
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Kim Jacob
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Matthias Wölfl
- University Clinic Würzburg, Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, Würzburg, Germany
| | - Johannes Trebing
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Kirstin Kucka
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Dina Kouhestani
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Tea Gogishvili
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Bastian Krenz
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Justina Lutz
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Leo Rasche
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Dirk Hönemann
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University Würzburg, Würzburg, Germany
| | - Julia C Heiby
- Department of Biotechnology and Biophysics, University Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Universitätsklinikum, Würzburg, Germany
| | - Harald Wajant
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Hermann Einsele
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Gert Riethmüller
- Ludwig-Maximilians-University, Institute for Immunology, Munich, Germany
| | - Gernot Stuhler
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany.
| |
Collapse
|
19
|
Ruiz-de-la-Herrán J, Tomé-Amat J, Lázaro-Gorines R, Gavilanes JG, Lacadena J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins. Toxins (Basel) 2019; 11:E593. [PMID: 31614771 PMCID: PMC6832446 DOI: 10.3390/toxins11100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.
Collapse
Affiliation(s)
- Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Rodrigo Lázaro-Gorines
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
20
|
A novel Carcinoembryonic Antigen (CEA)-Targeted Trimeric Immunotoxin shows significantly enhanced Antitumor Activity in Human Colorectal Cancer Xenografts. Sci Rep 2019; 9:11680. [PMID: 31406218 PMCID: PMC6690998 DOI: 10.1038/s41598-019-48285-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotoxins are chimeric molecules, which combine antibody specificity to recognize and bind with high-affinity tumor-associated antigens (TAA) with the potency of the enzymatic activity of a toxin, in order to induce the death of target cells. Current immunotoxins present some limitations for cancer therapy, driving the need to develop new prototypes with optimized properties. Herein we describe the production, purification and characterization of two new immunotoxins based on the gene fusion of the anti-carcinoembryonic antigen (CEA) single-chain variable fragment (scFv) antibody MFE23 to α-sarcin, a potent fungal ribotoxin. One construct corresponds to a conventional monomeric single-chain immunotoxin design (IMTXCEAαS), while the other one takes advantage of the trimerbody technology and exhibits a novel trimeric format (IMTXTRICEAαS) with enhanced properties compared with their monomeric counterparts, including size, functional affinity and biodistribution, which endow them with an improved tumor targeting capacity. Our results show the highly specific cytotoxic activity of both immunotoxins in vitro, which was enhanced in the trimeric format compared to the monomeric version. Moreover, the trimeric immunotoxin also exhibited superior antitumor activity in vivo in mice bearing human colorectal cancer xenografts. Therefore, trimeric immunotoxins represent a further step in the development of next-generation therapeutic immunotoxins.
Collapse
|
21
|
Mikkelsen K, Harwood SL, Compte M, Merino N, Mølgaard K, Lykkemark S, Alvarez-Mendez A, Blanco FJ, Álvarez-Vallina L. Carcinoembryonic Antigen (CEA)-Specific 4-1BB-Costimulation Induced by CEA-Targeted 4-1BB-Agonistic Trimerbodies. Front Immunol 2019; 10:1791. [PMID: 31417564 PMCID: PMC6685135 DOI: 10.3389/fimmu.2019.01791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023] Open
Abstract
4-1BB (CD137) is an inducible costimulatory receptor that promotes expansion and survival of activated T cells; and IgG-based 4-1BB-agonistic monoclonal antibodies exhibited potent antitumor activity in clinical trials. However, the clinical development of those antibodies is restricted by major off-tumor toxicities associated with FcγR interactions. We have recently generated an EGFR-targeted 4-1BB-agonistic trimerbody that demonstrated strong antitumor activity and did not induce systemic inflammatory cytokine secretion and hepatotoxicity associated with first-generation 4-1BB agonists. Here, we generate a bispecific 4-1BB-agonistic trimerbody targeting the carcinoembryonic antigen (CEA) that is highly expressed in cancers of diverse origins. The CEA-targeted anti-4-1BB-agonistic trimerbody consists of three 4-1BB-specific single-chain fragment variable antibodies and three anti-CEA single-domain antibodies positioned around a murine collagen XVIII-derived homotrimerization domain. The trimerbody was produced as a homogenous, non-aggregating, soluble protein purifiable by standard affinity chromatographic methods. The purified trimerbody was found to be trimeric in solution, very efficient at recognizing 4-1BB and CEA, and potently costimulating T cells in vitro in the presence of CEA. Therefore, trimerbody-based tumor-targeted 4-1BB costimulation is a broadly applicable and clinically feasible approach to enhance the costimulatory environment of disseminated tumor lesions.
Collapse
Affiliation(s)
- Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Seandean Lykke Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Francisco J Blanco
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis Álvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
22
|
Vigneron M, Dietsch F, Bianchetti L, Dejaegere A, Nominé Y, Cordonnier A, Zuber G, Chatton B, Donzeau M. Self-Associating Peptides for Modular Bifunctional Conjugation of Tetramer Macromolecules in Living Cells. Bioconjug Chem 2019; 30:1734-1744. [PMID: 31091078 DOI: 10.1021/acs.bioconjchem.9b00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monitoring the assembly of macromolecules to design entities with novel properties can be achieved either chemically creating covalent bonds or by noncovalent connections using appropriate structural motifs. In this report, two self-associating peptides (named K3 and E3) that originate from p53 tetramerization domain were developed as tools for highly specific and noncovalent heterotetramerization of two biomolecules. The pairing/coupling preferences of K3 and E3 were first evaluated by molecular modeling data and confirmed using circular dichroism spectroscopy, size-exclusion chromatography, and biological assays. Regardless of the moieties fused to K3 and E3, these two peptides self-assembled into dimers of dimers to form bivalent heterotetrameric complexes that proved to be extremely stable inside living cells. The benefits of the multivalency in terms of avidity, specificity, and expanded functional activity were strikingly revealed when the proliferating cell nuclear antigen (PCNA), which is essential for DNA replication, was targeted using a heterotetramer presenting both an antibody fragment against PCNA and a specific PCNA binder peptide. In vitro heterotetramerization of these two known PCNA ligands increased their binding efficiencies to PCNA up to 80-fold compared to the best homotetramer counterpart. In cellulo, the heterotetramers were able to efficiently inhibit DNA replication and to trigger cell death. Altogether, we demonstrate that these two biselective self-assembling peptidic domains offer a versatile noncovalent conjugation method that can be easily implemented for protein engineering.
Collapse
Affiliation(s)
- Marc Vigneron
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Frank Dietsch
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Laurent Bianchetti
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Annick Dejaegere
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Yves Nominé
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Agnès Cordonnier
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Guy Zuber
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Bruno Chatton
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Mariel Donzeau
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| |
Collapse
|
23
|
Rios X, Compte M, Gómez-Vallejo V, Cossío U, Baz Z, Morcillo MÁ, Ramos-Cabrer P, Alvarez-Vallina L, Llop J. Immuno-PET Imaging and Pharmacokinetics of an Anti-CEA scFv-based Trimerbody and Its Monomeric Counterpart in Human Gastric Carcinoma-Bearing Mice. Mol Pharm 2019; 16:1025-1035. [PMID: 30726099 DOI: 10.1021/acs.molpharmaceut.8b01006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (mAbs) are currently used as therapeutic agents in different types of cancer. However, mAbs and antibody fragments developed so far show suboptimal properties in terms of circulation time and tumor penetration/retention. Here, we report the radiolabeling, pharmacokinetic evaluation, and determination of tumor targeting capacity of the previously validated anti-CEA MFE23-scFv-based N-terminal trimerbody (MFE23N-trimerbody), and the results are compared to those obtained for the monomeric MFE23-scFv. Dissection and gamma-counting studies performed with the 131I-labeled protein scaffolds in normal mice showed slower blood clearance for the trimerbody, and accumulation in the kidneys, the spleen, and the liver for both species. These, together with a progressive uptake in the small intestine, confirm a combined elimination scheme with hepatobiliary and urinary excretion. Positron emission tomography studies performed in a xenograft mouse model of human gastric adenocarcinoma, generated by subcutaneous administration of CEA-positive human MKN45 cells, showed higher tumor accumulation and tumor-to-muscle (T/M) ratios for 124I-labeled MFE23N-trimerbody than for MFE23-scFv. Specific uptake was not detected with PET imaging in CEA negative xenografts as indicated by low T/M ratios. Our data suggest that engineered intermediate-sized trivalent antibody fragments could be promising candidates for targeted therapy and imaging of CEA-positive tumors.
Collapse
Affiliation(s)
- Xabier Rios
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Marta Compte
- Molecular Immunology Unit , Hospital Universitario Puerta de Hierro Majadahonda , Manuel de Falla 1, 28222 Majadahonda, Madrid , Spain
| | | | - Unai Cossío
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Zuriñe Baz
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit , CIEMAT , 28040 Madrid , Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa Spain.,Ikerbasque, The Basque Foundation for Science , 48013 Bilbao , Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Group, Department of Engineering , Aarhus University , Gustav WiedsVej 10 , 8000 C Aarhus , Denmark
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| |
Collapse
|
24
|
A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat Commun 2018; 9:4809. [PMID: 30442944 PMCID: PMC6237851 DOI: 10.1038/s41467-018-07195-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
The costimulation of immune cells using first-generation anti-4-1BB monoclonal antibodies (mAbs) has demonstrated anti-tumor activity in human trials. Further clinical development, however, is restricted by significant off-tumor toxicities associated with FcγR interactions. Here, we have designed an Fc-free tumor-targeted 4-1BB-agonistic trimerbody, 1D8N/CEGa1, consisting of three anti-4-1BB single-chain variable fragments and three anti-EGFR single-domain antibodies positioned in an extended hexagonal conformation around the collagen XVIII homotrimerization domain. The1D8N/CEGa1 trimerbody demonstrated high-avidity binding to 4-1BB and EGFR and a potent in vitro costimulatory capacity in the presence of EGFR. The trimerbody rapidly accumulates in EGFR-positive tumors and exhibits anti-tumor activity similar to IgG-based 4-1BB-agonistic mAbs. Importantly, treatment with 1D8N/CEGa1 does not induce systemic inflammatory cytokine production or hepatotoxicity associated with IgG-based 4-1BB agonists. These results implicate FcγR interactions in the 4-1BB-agonist-associated immune abnormalities, and promote the use of the non-canonical antibody presented in this work for safe and effective costimulatory strategies in cancer immunotherapy. Cancer therapy using systemically administrated 4-1BB-targeting antibodies is often associated with severe toxicity due to the nonspecific activation of autoreactive T cells. Here, the authors have developed a trimeric antibody targeting both 4-1BB and EGFR, which activates T cells effectively and shows negligible cytotoxicity.
Collapse
|
25
|
Mølgaard K, Harwood SL, Compte M, Merino N, Bonet J, Alvarez-Cienfuegos A, Mikkelsen K, Nuñez-Prado N, Alvarez-Mendez A, Sanz L, Blanco FJ, Alvarez-Vallina L. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2018; 67:1251-1260. [PMID: 29869168 PMCID: PMC11028287 DOI: 10.1007/s00262-018-2181-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain VHH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR VHH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Collapse
Affiliation(s)
- Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Ana Alvarez-Cienfuegos
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Ana Alvarez-Mendez
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark.
| |
Collapse
|
26
|
A dimeric form of a small-sized protein binder exhibits enhanced anti-tumor activity through prolonged blood circulation. J Control Release 2018; 279:282-291. [DOI: 10.1016/j.jconrel.2018.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
|
27
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment. Front Immunol 2018. [PMID: 29520274 PMCID: PMC5827546 DOI: 10.3389/fimmu.2018.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.
Collapse
Affiliation(s)
- María Elena Iezzi
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Policastro
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio Nanomedicina, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Comisión Nacional de Energía Atómica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alicia Canziani
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
29
|
Harwood SL, Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Hernández-Pérez S, Merino N, Bonet J, Navarro R, Van Bergen En Henegouwen PMP, Lykkemark S, Mikkelsen K, Mølgaard K, Jabs F, Sanz L, Blanco FJ, Roda-Navarro P, Alvarez-Vallina L. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology 2017; 7:e1377874. [PMID: 29296540 PMCID: PMC5739562 DOI: 10.1080/2162402x.2017.1377874] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
The redirection of T cell activity using bispecific antibodies is one of the most promising cancer immunotherapy approaches currently in development, but it is limited by cytokine storm-related toxicities, as well as the pharmacokinetics and tumor-penetrating capabilities of current bispecific antibody formats. Here, we have engineered the ATTACK (Asymmetric Tandem Trimerbody for T cell Activation and Cancer Killing), a novel T cell-recruiting bispecific antibody which combines three EGFR-binding single-domain antibodies (VHH; clone EgA1) with a single CD3-binding single-chain variable fragment (scFv; clone OKT3) in an intermediate molecular weight package. The two specificities are oriented in opposite directions in order to simultaneously engage cancer cells and T cell effectors, and thereby promote immunological synapse formation. EgA1 ATTACK was expressed as a homogenous, non-aggregating, soluble protein by mammalian cells and demonstrated an enhanced binding to EGFR, but not CD3, when compared to the previously characterized tandem bispecific antibody which has one EgA1 VHH and one OKT3 scFv per molecule. EgA1 ATTACK induced synapse formation and early signaling pathways downstream of TCR engagement at lower concentrations than the tandem VHH-scFv bispecific antibody. Furthermore, it demonstrated extremely potent, dose-dependent cytotoxicity when retargeting human T cells towards EGFR-expressing cells, with an efficacy over 15-fold higher than that of the tandem VHH-scFv bispecific antibody. These results suggest that the ATTACK is an ideal format for the development of the next-generation of T cell-redirecting bispecific antibodies.
Collapse
Affiliation(s)
- Seandean Lykke Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rocio Navarro
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Frederic Jabs
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco J Blanco
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bizkaia, Bilbao, Spain
| | - Pedro Roda-Navarro
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|