1
|
Zhu Q, Chen Z, Wang D, Jiao X, Luan Y, Wang M, Luo R, Wang Y, Fu G, Wang Y, Zhang W. Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery. Bioact Mater 2025; 48:443-457. [PMID: 40093305 PMCID: PMC11909720 DOI: 10.1016/j.bioactmat.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Early coagulation-inflammation interaction and late in-stent restenosis undermine the efficacy of vascular stents after implantation. Targeting the interplay between inflammation and coagulation, and smooth muscle cell (SMC) proliferation, we presented a microenvironment-responsive coating designed to regulate tissue responses and vascular regeneration throughout the remodeling process. Coagulation was inhibited by incorporating anticoagulant tirofiban into the coating. MMP9-responsive nanoparticles embedded in the coating released salvianolic acid A to modulate inflammatory cell behavior and inhibit SMC dysfunction. By effectively interfering with clotting and inflammation, the coating suppressed platelet-fibrin interaction and formation of platelet-monocyte aggregates, thereby mitigating adverse effects on reendothelialization. Its ability to influence SMC proliferation and migration resulted in reduced intimal hyperplasia. Coated stents were shown to significantly regulate tissue regeneration, improve the vascular environment and even reduced the lipid content in the narrowed atherosclerotic vessels in vivo. This direct approach enhanced the vascular tissue regeneration after stent implantation, and offered promising insights for optimizing vascular stent design.
Collapse
Affiliation(s)
- Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Dan'an Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Xiaolu Jiao
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Yanan Wang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310016, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
2
|
Gong F, Wei Y. LncRNA PVT1 promotes neuroinflammation after intracerebral hemorrhage by regulating the miR-128-3p/TXNIP axis. Int J Neurosci 2025; 135:573-587. [PMID: 38294729 DOI: 10.1080/00207454.2024.2312998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) has significant morbidity and mortality. TXNIP and the competing endogenous RNA (ceRNA) regulatory mechanism involved in long non-coding RNA (lncRNA) play roles in ICH. We probed the upstream microRNAs (miRNAs)/lncRNAs that regulated TXNIP expression in the ceRNA mechanism. METHODS ICH mouse model was established, and ICH secondary injury was simulated in BV2 microglia by hemin treatment. TXNIP was silenced 48 h before ICH modeling. The ICH mouse brain water content (BWC) and brain lesion volume after ICH were recorded. Neuronal apoptosis and neurological deficits were evaluated by double staining of NeuN and TUNEL/modified Garcia/corner turn/forelimb placement tests. Iba1 + microglia number and tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/IL-10/TXNIP/PVT1/miR-128-3p levels were assessed by immunohistochemistry, Western blot, ELISA, and RT-qPCR. Cell viability/death of BV2 cells conditioned medium-treated neuron HT22 cells were assessed by CCK-8/LDH assays. miRNA that had a targeted binding relationship with TXNIP was screened. The targeted bindings of miR-128-3p to TXNIP/PVT1 to miR-128-3p were verified by dual-luciferase reporter gene assay. RESULTS TXNIP knockdown reduced post-ICH microglial activation/release of pro-inflammatory factors/brain edema/brain lesion volume/neurological deficits in mice and increased releases of anti-inflammatory factors. TXNIP/PVT1 knockdown inhibited hemin-induced inflammatory responses in BV2 cells and protected in vitro co-cultured HT22 cells. PVT1 was a sponge of miR-128-3p to repress TXNIP expression. miR-128-3p knockdown diminished PVT1 knockdown-inhibited hemin-induced BV2 cell inflammatory responses/neurotoxicity. CONCLUSIONS PVT1 silencing reduced hemin-induced neuroinflammation and had a protective effect on neurons by increasing the targeted inhibition of TXNIP by miR-128-3p.
Collapse
Affiliation(s)
- Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Sun M, Zhang Z, Xie J, Yu J, Xiong S, Xiang F, Ma X, Yang C, Lin L. Research Progress on the Mechanism for Improving Glucose and Lipid Metabolism Disorders Using Phenolic Acid Components from Medicinal and Edible Homologous Plants. Molecules 2024; 29:4790. [PMID: 39459158 PMCID: PMC11510019 DOI: 10.3390/molecules29204790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Glucose and lipid metabolism disorders are the core pathological mechanism of a variety of metabolic diseases, and the incidence of related diseases is increasing year by year, which seriously threatens human life and health. Traditional Chinese medicine with medicinal and edible properties refers to Chinese medicinal resources that have both medicinal and edible characteristics. Due to its safety and its health-promoting and medicinal functions, traditional Chinese medicine has received increasing attention in the development of functional health foods. Phenolic acids are important secondary metabolites that are ubiquitous in medicinal and edible homologous plants, and the regulation of glycolipid metabolism is an important activity and plays a key role in many diseases. In this paper, we focus on the alleviation of glycolipid disorders using MEHH phenolic acids, which regulate glucose metabolism and lipid metabolism, improve insulin resistance, inhibit inflammatory responses, alleviate oxidative stress, and regulate intestinal flora; additionally, we summarize the mechanism in order to provide a reference for MEHH phenolic acids in the treatment of glycolipid metabolism diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (M.S.); (Z.Z.); (J.X.); (J.Y.); (S.X.); (F.X.); (X.M.); (C.Y.)
| |
Collapse
|
6
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
7
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
8
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Liquorice root extract and isoliquiritigenin attenuate high-fat diet-induced hepatic steatosis and damage in rats by regulating AMPK. Arch Physiol Biochem 2024; 130:385-400. [PMID: 36121371 DOI: 10.1080/13813455.2022.2102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective: This study compared the ability of Liquorice roots aqueous extract (LRE) and its ingredient, isoliquiritigenin (ISL), in alleviating high-fat diet (HFD)-induced hepatic steatosis and examined if this effect involves activation of AMPK.Materials and methods: Control or HFD-fed rats were treated with the vehicle, LRE (200 mg/kg), or ISL (30 mg/kg) for 8 weeks orally.Results: ISL and LRE reduced HFD-induced hyperglycaemia, improved liver structure, lowered serum and hepatic lipids, and attenuated hepatic oxidative stress and inflammation. In the control and HFD-fed rats, ISL and LRE significantly stimulated the muscular and hepatic mRNA and protein levels of AMPK, improved oral glucose tolerance, reduced hepatic mRNA levels of SREBP1/2, and upregulated hepatic levels of PPARα and Bcl2. These effects were comparable for ISL and LRE and were prevented by co-administration of compound C, an AMPK inhibitor.Discussion and conclusion: ISL and LRE provide an effective theory to alleviate hepatic steatosis through activating AMPK.
Collapse
Affiliation(s)
- Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Chen F, Xing Y, Chen Z, Chen X, Li J, Gong S, Luo F, Cai Q. Competitive adsorption of microRNA-532-3p by circular RNA SOD2 activates Thioredoxin Interacting Protein/NLR family pyrin domain containing 3 pathway and promotes pyroptosis of non-alcoholic fatty hepatocytes. Eur J Med Res 2024; 29:250. [PMID: 38659023 PMCID: PMC11044449 DOI: 10.1186/s40001-024-01817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE There is a growing body of evidence indicating that pyroptosis, a programmed cell death mechanism, plays a crucial role in the exacerbation of inflammation and fibrosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Circular RNAs (circRNAs), functioning as vital regulators within NAFLD, have been shown to mediate the process of cell pyroptosis. This study aims to elucidate the roles and mechanisms of circRNAs in NAFLD. METHODS Utilizing a high-fat diet (HFD)-induced rat model for in vivo experimentation and hepatocytes treated with palmitic acid (PA) for in vitro models, we identified circular RNA SOD2 (circSOD2) as our circRNA of interest through analysis with the circMine database. The expression levels of associated genes and pyroptosis-related proteins were determined using quantitative real-time polymerase chain reaction and Western blotting, alongside immunohistochemistry. Serum liver function markers, cellular inflammatory cytokines, malondialdehyde, lactate dehydrogenase levels, and mitochondrial membrane potential, were assessed using enzyme-linked immunosorbent assay, standard assay kits, or JC-1 staining. Flow cytometry was employed to detect pyroptotic cells, and lipid deposition in liver tissues was observed via Oil Red O staining. The interactions between miR-532-3p/circSOD2 and miR-532-3p/Thioredoxin Interacting Protein (TXNIP) were validated through dual-luciferase reporter assays and RNA immunoprecipitation experiments. RESULTS Our findings demonstrate that, in both in vivo and in vitro NAFLD models, there was an upregulation of circSOD2 and TXNIP, alongside a downregulation of miR-532-3p. Mechanistically, miR-532-3p directly bound to the 3'-UTR of TXNIP, thereby mediating inflammation and cell pyroptosis through targeting the TXNIP/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. circSOD2 directly interacted with miR-532-3p, relieving the suppression on the TXNIP/NLRP3 signaling pathway. Functionally, the knockdown of circSOD2 or TXNIP improved hepatocyte pyroptosis; the deletion of miR-532-3p reversed the effects of circSOD2 knockdown, and the deletion of TXNIP reversed the effects of circSOD2 overexpression. Furthermore, the knockdown of circSOD2 significantly mitigated the progression of NAFLD in vivo. CONCLUSION circSOD2 competitively sponges miR-532-3p to activate the TXNIP/NLRP3 inflammasome signaling pathway, promoting pyroptosis in NAFLD.
Collapse
Affiliation(s)
- FengJuan Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - YuFeng Xing
- Department of Hepatopathy, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen City, 518033, Guangdong Province, China
| | - ZhiJie Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - XiaoMan Chen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, 510630, Guangdong Province, China
| | - Jie Li
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - Si Gong
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - Fang Luo
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - QingXian Cai
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China.
| |
Collapse
|
11
|
Diab F, Beghelli D, Nuccitelli A, Lupidi G, Khalil M, Portincasa P, Vergani L. Supplementation with Thymbra spicata extract ameliorates lifespan, body-weight gain and Paraquat-induced oxidative stress in Drosophila melanogaster: An age- and sex-related study. J Funct Foods 2024; 114:106078. [DOI: 10.1016/j.jff.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
12
|
Moretti JB, Drouin A, Truong C, Youn E, Cloutier A, Alvarez F, Paganelli M, Grzywacz K, Jantchou P, Dubois J, Levy E, El Jalbout R. Effects of polyphenol supplementation on hepatic steatosis, intima-media thickness and non-invasive vascular elastography in obese adolescents: a pilot study protocol. BMJ Open 2024; 14:e074882. [PMID: 38296273 PMCID: PMC10828866 DOI: 10.1136/bmjopen-2023-074882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent in obese adolescents. Increased systemic inflammation and decreased gut microbial diversity linked to obesity affect the liver and are also associated with cardiovascular diseases in adulthood. However, NAFLD and vascular alterations are reversible. METHODS AND ANALYSIS This pilot study evaluated the feasibility of a prospective open-label randomised controlled trial evaluating the effects of polyphenols on NAFLD and vascular parameters in obese adolescents. Children aged 12-18 years with hepatic steatosis (n=60) will be recruited. The participants will be randomised with a 1:1 allocation ratio to receive polyphenol supplementation one time per day for 8 weeks along with the clinician-prescribed treatment (group B, n=30) or to continue the prescribed treatment without taking any polyphenols (group A, n=30). The outcome measures will be collected from both the groups at day 1 before starting polyphenol supplementation, at day 60 after 8 weeks of supplementation and at day 120, that is, 60 days after supplementation. The changes in hepatic steatosis and vascular parameters will be measured using liver and vascular imaging. Furthermore, anthropometric measures, blood tests and stool samples for gut microbiome analysis will be collected. After evaluating the study's feasibility, we hypothesise that, as a secondary outcome, compared with group A, the adolescents in group B will have improved NAFLD, vascular parameters, systemic inflammation and gut microbiome. ETHICS AND DISSEMINATION This study is approved by Health Canada and the hospital ethics. Participants and their parents/tutors will both provide consent. Trial results will be communicated to the collaborating gastroenterologists who follow the enrolled participants. Abstracts and scientific articles will be submitted to high-impact radiological societies and journals. CLINICALTRIALS gov ID: NCT03994029. Health Canada authorisation referral number: 250 811. Protocole version 13, 2 June 2023. TRIAL REGISTRATION NUMBER NCT03994029.
Collapse
Affiliation(s)
| | | | | | | | - Anik Cloutier
- CHU Sainte-Justine Centre de Recherche, Montreal, Québec, Canada
| | | | | | | | | | | | - Emile Levy
- CHU Sainte-Justine, Montreal, Québec, Canada
| | - Ramy El Jalbout
- Medical Imaging Department, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
13
|
Meng D, Zhang F, Yu W, Zhang X, Yin G, Liang P, Feng Y, Chen S, Liu H. Biological Role and Related Natural Products of SIRT1 in Nonalcoholic Fatty Liver. Diabetes Metab Syndr Obes 2023; 16:4043-4064. [PMID: 38089432 PMCID: PMC10715014 DOI: 10.2147/dmso.s437865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.
Collapse
Affiliation(s)
- Decheng Meng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Wenfei Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Guoliang Yin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Pengpeng Liang
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, People’s Republic of China
| | - Yanan Feng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Suwen Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Hongshuai Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| |
Collapse
|
14
|
Sztolsztener K, Dzięcioł J, Chabowski A. N-acetylcysteine acts as a potent anti-inflammatory agent altering the eicosanoid profile in the development of simple steatosis and its progression to hepatitis. Clin Exp Hepatol 2023; 9:386-395. [PMID: 38774197 PMCID: PMC11103808 DOI: 10.5114/ceh.2023.133106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 05/24/2024] Open
Abstract
Aim of the study We aimed to examine the influence of N-acetylcysteine (NAC) on the development of metabolic dysfunction-associated steatotic liver disease (MASLD) in rats with a specific focus on the eicosanoid pathway. Material and methods The experiment was conducted on male Wistar rats fed a standard diet or a high-fat diet (HFD) for eight weeks. In the entire experiment, half of rats from both groups received intragastrically NAC solution prepared in normal saline. H + E staining was used for the histological assessment of liver tissue. The gas-liquid chromatography (GLC) technique was used for the assessment of the activity of n-3 and n-6 polyunsaturated fatty acid (PUFA) pathways and arachidonic acid concentration. ELISA and multiplex immunoassay kits were applied for the measurement of eicosanoid, cytokine, and chemokine levels. The Western blot technique was applied to determine the expression of proteins involved in the inflammation pathway. Results NAC decreased hepatic n-6 PUFA activity in all examined lipid pools and decreased the hepatic content of arachidonic acid as a pro-inflammatory precursor in each lipid pool, especially in the phospholipid fraction in rats with fatty lipid disease. NAC administration abolished 5-LOX expression, leading to a decrease in the content of pro-inflammatory leukotriene B4 and leukotriene C4. In rats with steatosis, NAC weakened NF-κB expression and raised Nrf-2 expression, inhibiting the synthesis of pro-inflammatory cytokines and chemokines. Conclusions NAC treatment significantly rate-limited the progression of simple hepatic steatosis to hepatitis in a rat model of MASLD.
Collapse
Affiliation(s)
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
16
|
Villalva M, Martínez-García JJ, Jaime L, Santoyo S, Pelegrín P, Pérez-Jiménez J. Polyphenols as NLRP3 inflammasome modulators in cardiometabolic diseases: a review of in vivo studies. Food Funct 2023; 14:9534-9553. [PMID: 37855750 DOI: 10.1039/d3fo03015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are components of the innate immune system, important in coordinating the inflammatory response. Among them, NLRP3 can form inflammasomes, multiprotein complexes activating the inflammatory caspase-1 and leading, through a cell death-mediated signaling cascade, to the release of several proinflammatory cytokines. Dietary polyphenols, plant secondary metabolites, have been reported to exhibit anti-inflammatory properties, although studies have focused most on their effect on the expression of the final circulating cytokines rather than on the upstream signals activating the NLRP3 inflammasome. The present review explores current knowledge on the potential of dietary polyphenols to regulate the whole NLRP3 inflammasome pathway, in the context of cardiometabolic pathologies (obesity, cardiovascular diseases, type 2 diabetes and non-alcoholic fatty liver disease), based on in vivo studies. A clear tendency towards a decrease in the expression of the whole NLRP3 inflammasome signaling pathway when several animal models were supplemented with polyphenols was observed, commonly showing a dose-response effect; these modifications were concomitant with clinical improvements in the pathologies. Nevertheless, the diversity of doses used, the disparity in polyphenol structures tested and, particularly, the scarce clinical trials and exploration of mechanisms of action show the need to develop further research on the topic.
Collapse
Affiliation(s)
- Marisol Villalva
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Juan José Martínez-García
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
17
|
Han W, Li H, Jiang H, Xu H, Lin Y, Chen J, Bi C, Liu Z. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in alcohol-related liver disease. PeerJ 2023; 11:e15977. [PMID: 37727691 PMCID: PMC10506582 DOI: 10.7717/peerj.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.
Collapse
Affiliation(s)
- Wenwen Han
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Haiyu Li
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hanqi Jiang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yifeng Lin
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jiahuan Chen
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| |
Collapse
|
18
|
Guo Q, Xin M, Lu Q, Feng D, Yang V, Peng LF, Whelan KA, Hu W, Wu S, Yang X, Wang H, Rothberg BS, Gamero AM, Gerhard GS, Gao B, Yang L. A novel NEDD4L-TXNIP-CHOP axis in the pathogenesis of nonalcoholic steatohepatitis. Theranostics 2023; 13:2210-2225. [PMID: 37153733 PMCID: PMC10157740 DOI: 10.7150/thno.81192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver diseases worldwide. There is a pressing clinical need to identify potential therapeutic targets for NASH treatment. Thioredoxin interacting protein (Txnip) is a stress responsive gene that has been implicated in the pathogenesis of NASH, but its exact role is not fully understood. Here, we investigated the liver- and gene-specific role of Txnip and its upstream/downstream signaling in the pathogenesis of NASH. Methods and Results: Using four independent NASH mouse models, we found that TXNIP protein abnormally accumulated in NASH mouse livers. A decrease in E3 ubiquitin ligase NEDD4L resulted in impaired TXNIP ubiquitination and its accumulation in the liver. TXNIP protein levels were positively correlated with that of CHOP, a major regulator of ER stress-mediated apoptosis, in NASH mouse liver. Moreover, gain- and loss-of-function studies showed that TXNIP increased protein not mRNA levels of Chop both in vitro and in vivo. Mechanistically, the C-terminus of TXNIP associated with the N-terminus of the α-helix domain of CHOP and decreased CHOP ubiquitination, thus increasing the stability of CHOP protein. Lastly, selective knockdown of Txnip by adenovirus-mediated shRNA (not targets Txnip antisense lncRNA) delivery in the livers of both young and aged NASH mice suppressed the expression of CHOP and its downstream apoptotic pathway, and ameliorated NASH by reducing hepatic apoptosis, inflammation, and fibrosis. Conclusions: Our study revealed a pathogenic role of hepatic TXNIP in NASH and identified a novel NEDD4L-TXNIP-CHOP axis in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Qian Guo
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Mingyang Xin
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Vicky Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Lee F. Peng
- Division of Hepatology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kelly A. Whelan
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Wenhui Hu
- Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sheng Wu
- Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Department of Cardiovascular Sciences/Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Brad S. Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Glenn S. Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Han BH, Jang SH, Jang YJ, Na SW, Yoon JJ, Moon HG, Kim SY, Seo CS, Lee HS, Lee YM, Kang DG, Lee YJ. Diesel vehicles-derived PM2.5 induces lung and cardiovascular injury attenuates by Securiniga suffruticosa: Involvement of NF-κB-mediated NLRP3 inflammasome activation pathway. Biomed Pharmacother 2023; 162:114637. [PMID: 37027986 DOI: 10.1016/j.biopha.2023.114637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Respiratory exposure to Particulate matter (PM), including Diesel exhaust particulate (DEP), causes oxidative stress-induced lung inflammation. Especially, fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) is a serious air pollutant associated with various health problems including cardiovascular diseases. The present study aimed to examine the inhibitory effect of Securiniga suffruticosa (S. suffruiticosa) on DEP and PM-induced lung and cardiovascular diseases. Mice inhaled DEP by using nebulizer chamber for two weeks. Treatment with S. suffruiticosa reduced the expression of C-X-C motif ligand 1/2 in bronchoalveolar lavage fluid and Muc5ac, ICAM-1, TNF-⍺, IL-6 mRNA in lung were also attenuated by S. suffruiticosa. In thoracic aorta, DEP increased CAMs, TNF-⍺ and inflammasome markers such as NLRP3, Caspase-1, and ASC. However, S. suffruiticosa suppressed these levels. S. suffruiticosa inhibited PM2.5 induced production of intracellular reactive oxygen species (ROS); and inhibited the translocation of NF-κB p65 to the nucleus in human umbilical vein endothelial cells. Taken together, this study proved that exposure to PM2.5 induced both lung and vascular inflammation, however, S. suffruiticosa attenuated this injury via the downregulation of the NLRP3 signaling pathway. These findings suggest that S. suffruiticosa may have potential therapeutic benefit against air pollution-mediated lung and cardiovascular diseases.
Collapse
Affiliation(s)
- Byung Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se Hoon Jang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Youn Jae Jang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se Won Na
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hi Gyu Moon
- Center for Ecological Risk Assessment, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Soo Yeon Kim
- Center for Ecological Risk Assessment, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Chang Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, 34054 Daejeon, Republic of Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Yun Jung Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea.
| |
Collapse
|
20
|
Tang F, Wang Z, Zhou J, Yao J. Salvianolic Acid A Protects against Acetaminophen-Induced Hepatotoxicity via Regulation of the miR-485-3p/SIRT1 Pathway. Antioxidants (Basel) 2023; 12:antiox12040870. [PMID: 37107244 PMCID: PMC10135683 DOI: 10.3390/antiox12040870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The vast majority of drug-induced liver injury is mainly attributed to acetaminophen (APAP) overdose. Salvianolic acid A (Sal A), a powerful water-soluble compound obtained from Salvia miltiorrhiza, has been confirmed to exert hepatoprotective effects. However, the beneficial effects and the exact mechanisms of Sal A on APAP-induced hepatotoxicity remain unclear. In this study, APAP-induced liver injury with or without Sal A treatment was examined in vitro and in vivo. The results showed that Sal A could alleviate oxidative stress and inflammation by regulating Sirtuin 1 (SIRT1). Furthermore, miR-485-3p could target SIRT1 after APAP hepatotoxicity and was regulated by Sal A. Importantly, inhibiting miR-485-3p had a hepatoprotective effect similar to that of Sal A on APAP-exposed AML12 cells. These findings suggest that regulating the miR-485-3p/SIRT1 pathway can alleviate oxidative stress and inflammation induced by APAP in the context of Sal A treatment.
Collapse
Affiliation(s)
- Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
21
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
22
|
Jiang X, Li Y, Fu D, You T, Wu S, Xin J, Wen J, Huang Y, Hu C. Caveolin-1 ameliorates acetaminophen-aggravated inflammatory damage and lipid deposition in non-alcoholic fatty liver disease via the ROS/TXNIP/NLRP3 pathway. Int Immunopharmacol 2023; 114:109558. [PMID: 36700765 DOI: 10.1016/j.intimp.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The overuse of acetaminophen (APAP) may cause more severe hepatotoxicity in patients with non-alcoholic fatty liver disease (NAFLD). Caveolin-1 (CAV1), is an essential regulator of metabolic function, which can alleviate liver damage by scavenging reactive oxygen species (ROS). Evidence suggests that the NOD-like receptor family pyrin domain-containing 3 (NLRP3) -mediated pyroptosis is involved in the development of NAFLD. Moreover, thioredoxin-interactive protein (TXNIP) activation is a key event linking ROS to NLRP3 inflammasome. However, whether CAV1 alleviates APAP-aggravated hepatotoxicity in NAFLD via the ROS/TXNIP/NLRP3 pathway remains unclear. An in vivo fatty liver model was established by feeding mice a high-fat diet for 56 days. Additionally, using in vitro approach, AML-12 cells were incubated with free fatty acids for 48 h and APAP was added during the last 24 h. We found that the overuse of APAP in NAFLD not only induced oxidative stress, but also increased TXNIP expression, NLRP3-mediated pyroptosis, and lipid deposition. In addition to inhibiting ROS generation and lipid deposition, overexpression of CAV1 reduced the elevated levels of TXNIP expression and NLRP3-mediated pyroptosis. However, the effect of CAV1 on TXNIP expression, NLRP3-mediated pyroptosis, and lipid deposition was reversed by CAV1 small interfering RNA (siRNA) intervention. Finally, N-acetyl cysteine (NAC) treatment reduced CAV1 siRNA-mediated changes in TXNIP expression and NLRP3-mediated pyroptosis levels. These results demonstrate that the inhibitory effect of CAV1 on NLRP3-mediated pyroptosis may be mediated through the ROS/TXNIP axis. Moreover, the current study provides novel mechanistic insights into the protective effects of CAV1 on APAP-aggravated hepatotoxicity in NAFLD.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yu Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Dongdong Fu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Tingyu You
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiao Xin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiagen Wen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
23
|
Peloso A, Tihy M, Moeckli B, Rubbia-Brandt L, Toso C. Clearing Steatosis Prior to Liver Surgery for Colorectal Metastasis: A Narrative Review and Case Illustration. Nutrients 2022; 14:5340. [PMID: 36558499 PMCID: PMC9785595 DOI: 10.3390/nu14245340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Over recent years, non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder in the developed world, accounting for 20% to 46% of liver abnormalities. Steatosis is the hallmark of NAFLD and is recognized as an important risk factor for complication and death after general surgery, even more so after liver resection. Similarly, liver steatosis also impacts the safety of live liver donation and transplantation. We aim to review surgical outcomes after liver resection for colorectal metastases in patients with steatosis and discuss the most common pre-operative strategies to reduce steatosis. Finally, as illustration, we report the favorable effect of a low-caloric, hyper-protein diet during a two-stage liver resection for colorectal metastases in a patient with severe steatosis.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland
| | - Matthieu Tihy
- Department of Pathology and Immunology, University of Geneva, 1205 Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Beat Moeckli
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Pathology and Immunology, University of Geneva, 1205 Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
24
|
Su C, Yang Q. Clinical study of ganshuang granule combined with tenofovir in the treatment of chronic hepatitis B complicated with nonalcoholic fatty liver disease. Front Pharmacol 2022; 13:1032789. [PMID: 36588741 PMCID: PMC9794573 DOI: 10.3389/fphar.2022.1032789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/16/2022] Open
Abstract
Objective: This study aims to investigate the clinical efficacy of Ganshuang granules combined with tenofovir, an antiviral drug, in the treatment of chronic hepatitis B complicated with nonalcoholic fatty liver disease. Methods: A total of 92 patients with chronic hepatitis B combined with non-alcoholic fatty liver who were treated in our Hospital from January 2020 to December 2021 were included as the research objects. According to the method of random number table, the patients were divided into the control group (n = 42) and the treatment group (n = 50). The control group was treated with silibinin meglumine tablets and tenofovir, while the treatment group was treated with Ganshuang granules combined with silybin meglumine tablets and tenofovir. Before and after treatment, liver function index, liver hardness measurement (LSM), controlled attenuation parameter (CAP), HBV-DNA serum load and body mass index (BMI) were observed. Results: Compared with the baseline, ALT, AST and GGT were significantly improved in both groups after treatment (p < 0.05), while TBIL indexes were not significantly different before and after treatment (p > 0.05). Patients in the treatment group had significantly lower ALT and AST index values than the control group at 12 and 24 weeks of treatment (p < 0.05). At 12 and 24 weeks of treatment, the fat attenuation parameters of the two groups were significantly decreased compared with those before treatment, and the difference was statistically significant (p < 0.05). The fat attenuation parameters in the treatment group were significantly lower than those in the control group at 12 and 24 weeks after treatment (p < 0.05). Conclusion: The effect of Ganshuang granule combined with antiviral drugs in the treatment of chronic hepatitis B complicated with non-alcoholic fatty liver is significantly better than that of antiviral drugs alone, which is worthy of clinical recommendation. Systematic Review Registration: https://register.clinicaltrials.gov, identifier NCT05523648.
Collapse
|
25
|
Long J, Wang J, Li Y, Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Front Nutr 2022; 9:1008514. [PMID: 36532541 PMCID: PMC9756810 DOI: 10.3389/fnut.2022.1008514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2025] Open
Abstract
Gut microbiota is increasingly recognized to affect host health and disease, including ischemic stroke (IS). Here, we systematically review the current understanding linking gut microbiota as well as the associated metabolites to the pathogenesis of IS (e.g., oxidative stress, apoptosis, and neuroinflammation). Of relevance, we highlight that the implications of gut microbiota-dependent intervention could be harnessed in orchestrating IS.
Collapse
Affiliation(s)
- Jiaxin Long
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jinlong Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yang Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
26
|
Liu Y, Guo ZW, Li J, Li AH, Huo TG. Insight into the regulation of NLRP3 inflammasome activation by mitochondria in liver injury and the protective role of natural products. Biomed Pharmacother 2022; 156:113968. [DOI: 10.1016/j.biopha.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
27
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Wang X, Sun X, Abulizi A, Xu J, He Y, Chen Q, Yan R. Effects of salvianolic acid A on intestinal microbiota and lipid metabolism disorders in Zucker diabetic fatty rats. Diabetol Metab Syndr 2022; 14:135. [PMID: 36127704 PMCID: PMC9490915 DOI: 10.1186/s13098-022-00868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Salvianolic acid A (SalA) is the main water-soluble component isolated from Salvia miltiorrhiza. This study explored the influences of SalA on intestinal microbiota composition and lipid metabolism in Zucker diabetic fatty (ZDF) rats. The 6-week-old male ZDF rats were treated with distilled water (N = 10) and low dose (SalA 0.5 mg/kg/d, N = 10), medium dose (SalA 1 mg/kg/d, N = 10), and high dose (SalA 2 mg/kg/d, N = 10) of SalA, with the male Zucker lean normoglycemic rats of the same week age as controls (given distilled water, N = 10). The blood glucose, body weight, and food intake of rats were examined. After 7 and 8 weeks of continuous administration, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed, respectively. Serum fasting insulin (FINS), total cholesterol (TC), triglyceride (TG), and free fatty acid (FFA) were determined. Liver tissues were stained using hematoxylin-eosin (HE) and oil red O staining. Fecal samples were analyzed by 16S rRNA gene sequencing. Small intestinal tissues were stained using HE and immunohistochemistry. The tight junction proteins (ZO-1/Occludin/Claudin-1) and serum levels of LPS/TNF-α/IL-6 were evaluated. SalA reduced insulin resistance, liver injury, serum FFA, liver TC and TG levels in ZDF rats, and improved lipid metabolism. After SalA treatment, intestinal microbiota richness and diversity of ZDF rats were promoted. SalA retained the homeostasis of intestinal core microbiota. SalA reduced intestinal epithelial barrier damage, LPS, and inflammatory cytokines in ZDF rats. Overall, SalA can sustain intestinal microbiota balance and improve the lipid metabolism of ZDF rats.
Collapse
Affiliation(s)
- Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Abulikemu Abulizi
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Jinyao Xu
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Yun He
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China
| | - Ruicheng Yan
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Rd, Hongshan District, Wuhan, 430061, Hubei, China.
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China.
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, Hubei, China.
| |
Collapse
|
29
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
30
|
Biao Y, Chen J, Liu C, Wang R, Han X, Li L, Zhang Y. Protective Effect of Danshen Zexie Decoction Against Non-Alcoholic Fatty Liver Disease Through Inhibition of ROS/NLRP3/IL-1β Pathway by Nrf2 Signaling Activation. Front Pharmacol 2022; 13:877924. [PMID: 35800450 PMCID: PMC9253674 DOI: 10.3389/fphar.2022.877924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism disorders are a prominent characteristic in the pathological development of non-alcoholic fatty liver disease (NAFLD). Danshen zexie decoction (DZD) is a Chinese herbal medicine that is based on zexie decoction and has an effect of regulating lipid mechanism. However, the anti-NAFLD effect and mechanism of DZD remain unclear. In this study, we observed the therapeutic effect of DZD on NAFLD rats and investigated its possible mechanisms. Sixty Sprague Dawley rats were randomly assigned to six groups: control group, model group, Yishanfu (polyene phosphatidylcholine) group, and low, medium and high-dose DZD groups. High-fat diet (HFD) was fed to the rats to establish an NAFLD model, and each treatment group was given corresponding drugs at the same time for eight consecutive weeks. The results revealed that the obvious lipid metabolism disorder and liver injury induced by HFD were alleviated by treatment with DZD, which was verified by decreased serum TC, TG, ALT, AST, liver TC, TG, and FFA, as well as the alleviation of hepatic steatosis. The production of ROS in rats was reduced after treatment with DZD. The SOD activity and GSH content were increased with DZD treatment, while the MDA level was decreased. The administration of DZD could decrease serum IL-1β and IL-18 contents. Moreover, DZD upregulated the expressions of Nrf2, HO-1, GCLC, and GCLM, while it suppressed the expressions of NLRP3, caspase-1, GSDMD, and GSDMD-N. In conclusion, the data showed that DZD can reduce lipid accumulation, alleviate oxidative stress and inflammation, and inhibit pyroptosis in NAFLD rats, which might be ascribed to suppression of the ROS/NLRP3/IL-1β signaling pathway by activation of Nrf2. Overall, these results indicated that DZD is expected to be a therapeutic drug for NAFLD.
Collapse
Affiliation(s)
- Yaning Biao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Jian Chen
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chenxu Liu
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilong Wang
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Xue Han
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| | - Yixin Zhang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| |
Collapse
|
31
|
Wang A, Gong Y, Pei Z, Jiang L, Xia L, Wu Y. Paeoniflorin ameliorates diabetic liver injury by targeting the TXNIP-mediated NLRP3 inflammasome in db/db mice. Int Immunopharmacol 2022; 109:108792. [PMID: 35483236 DOI: 10.1016/j.intimp.2022.108792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Diabetic liver injury (DLI) is a complication that damages the quality of life in diabetes patients. While paeoniflorin (PF) exhibits anti-inflammatory and antioxidant effects, no data are available on whether PF protects against DLI. Therefore, we evaluated the effects of PF on hepatic steatosis and inflammation in db/db mice, a type 2 diabetes model. METHODS In this study, we investigated the effects of PF on DLI using diabetic mice model (db/db mice) and high glucose (HG)-induced mouse AML12 cells. The effects of PF on TXNIP-mediated NLRP3 inflammasome in vivo and in vitro were evaluated by Western bloting, RT-PCR, immunohistochemistry (IHC) and immunofluorescence (IF) analysis. Through molecular docking experiments and cellular thermal shift assay (CETSA), we studied the binding ability of PF to thioredoxin-interacting protein (TXNIP). We use TXNIP siRNA to knock down TXNIP in AML12 cells. RESULTS We found that PF reversed abnormal liver function and liver steatosis in db/db mice, while blocking the release of inflammatory cytokines. These effects are associated with PF inhibition of the TXNIP/NLRP3 signaling pathway. Molecular docking experiments and CETSA also demonstrated that TXNIP is a likely target of PF. In HG-treated AML12 cells, TXNIP knockdown eliminated the beneficial effects of PF. CONCLUSION Using a combination of animal and in vitro experiments, this study demonstrated for the first time that PF ameliorates DLI through targeting the TXNIP-activated NLRP3 inflammasome. Thus, PF may be a potential therapeutic agent against DLI.
Collapse
Affiliation(s)
- Anli Wang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yingjie Gong
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Zhixin Pei
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Xia
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
32
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
33
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
34
|
Wang L, Wang X, Kong L, Li Y, Huang K, Wu J, Wang C, Sun H, Sun P, Gu J, Luo H, Liu K, Meng Q. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease. Phytother Res 2022; 36:899-913. [PMID: 35041255 DOI: 10.1002/ptr.7334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a metabolic disease, has received wide attention worldwide. However, there is no approved effective drug for NAFLD treatment. In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, Western blot, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to further elucidate the mechanism of isoliquiritigenin (ISL) against NAFLD. The results showed that ISL significantly reduced the liver-to-body weight ratios and biochemical index. And the staining results showed that ISL remarkedly ameliorated liver histopathological changes of NAFLD. Furthermore, ISL significantly increased the levels of PPARα, CPT1α, and ACADS, which were involved in lipid metabolism, and inhibited the ROS, TNF-α, IL-1β, and IL-6 expression by activating PGC-1α. Bioinformatics and luciferase assay analysis confirmed that miR-138-5p might bind to PGC-1α mRNA in NAFLD. Importantly, the expression of miR-138-5p was increased in the NAFLD, which was significantly decreased by ISL. In addition, the miR-138-5p inhibitor also promoted lipid metabolism and inhibited inflammatory response in NAFLD via PGC-1α activation. The above results demonstrate that ISL alleviates NAFLD through modulating miR-138-5p/PGC-1α-mediated lipid metabolism and inflammatory reaction in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yingying Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Pharmacology, Drug Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Mohamed IN, Li L, Ismael S, Ishrat T, El-Remessy AB. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes 2021; 12:1979-1999. [PMID: 35047114 PMCID: PMC8696646 DOI: 10.4239/wjd.v12.i12.1979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis. Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease (NAFLD), retinopathy, critical limb ischemia, and impaired angiogenesis. Sterile inflammation driven by high-fat diet, increased formation of reactive oxygen species, alteration of intracellular calcium level and associated release of inflammatory mediators, are the main common underlying forces in the pathophysiology of NAFLD, ischemic retinopathy, stroke, and aging brain. This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein (TXNIP) to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states. Finally, the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.
Collapse
Affiliation(s)
- Islam N Mohamed
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California North State University, Elk Grove, CA 95758, United States
| | - Luling Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California North State University, Elk Grove, CA 95758, United States
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, and Neuroscience Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, and Neuroscience Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Azza B El-Remessy
- Department of Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, United States
| |
Collapse
|
36
|
Xin M, Guo Q, Lu Q, Lu J, Wang PS, Dong Y, Li T, Chen Y, Gerhard GS, Yang XF, Autieri M, Yang L. Identification of Gm15441, a Txnip antisense lncRNA, as a critical regulator in liver metabolic homeostasis. Cell Biosci 2021; 11:208. [PMID: 34906243 PMCID: PMC8670210 DOI: 10.1186/s13578-021-00722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background The majority of mammalian genome is composed of non-coding regions, where numerous long non-coding RNAs (lncRNAs) are transcribed. Although lncRNAs have been identified to regulate fundamental biological processes, most of their functions remain unknown, especially in metabolic homeostasis. Analysis of our recent genome-wide screen reveals that Gm15441, a thioredoxin-interacting protein (Txnip) antisense lncRNA, is the most robustly induced lncRNA in the fasting mouse liver. Antisense lncRNAs are known to regulate their sense gene expression. Given that Txnip is a critical metabolic regulator of the liver, we aimed to investigate the role of Gm15441 in the regulation of Txnip and liver metabolism. Methods We examined the response of Gm15441 and Txnip under in vivo metabolic signals such as fasting and refeeding, and in vitro signals such as insulin and key metabolic transcription factors. We investigated the regulation of Txnip expression by Gm15441 and the underlying mechanism in mouse hepatocytes. Using adenovirus-mediated liver-specific overexpression, we determined whether Gm15441 regulates Txnip in the mouse liver and modulates key aspects of liver metabolism. Results We found that the expression levels of Gm15441 and Txnip showed a similar response pattern to metabolic signals in vivo and in vitro, but that their functions were predicted to be opposite. Furthermore, we found that Gm15441 robustly reduced Txnip protein expression in vitro through sequence-specific regulation and translational inhibition. Lastly, we confirmed the Txnip inhibition by Gm15441 in vivo (mice) and found that Gm15441 liver-specific overexpression lowered plasma triglyceride and blood glucose levels and elevated plasma ketone body levels. Conclusions Our data demonstrate that Gm15441 is a potent Txnip inhibitor and a critical metabolic regulator in the liver. This study reveals the therapeutic potential of Gm15441 in treating metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00722-1.
Collapse
Affiliation(s)
- Mingyang Xin
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Guo
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Juan Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130021, China
| | - Po-Shun Wang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yun Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Endocrinology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541001, China
| | - Tao Li
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Infectious diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagsta, AZ, 86011, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Michael Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
37
|
Hu T, Zhu P, Liu Y, Zhu H, Geng J, Wang B, Yuan G, Peng Y, Xu B. PM2.5 induces endothelial dysfunction via activating NLRP3 inflammasome. ENVIRONMENTAL TOXICOLOGY 2021; 36:1886-1893. [PMID: 34173703 DOI: 10.1002/tox.23309] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 05/05/2023]
Abstract
PM2.5 (particulate matter <2.5 μm in diameter) is proven to contribute to the development of atherosclerosis. Endothelial cell dysfunction is the initial step of atherosclerosis. The underlying mechanisms of endothelial cell damage exposed to PM2.5 are still obscure. In our study, PM2.5 was administrated to C57BL/6 male mice by intranasal instillation for 2 weeks. Human umbilical vein endothelial cells (HUVECs) were also treated with PM2.5 to evaluate the adverse effect in vitro. The immunohistochemical staining of aortas showed that the expressions of proinflammatory cytokines and endothelial adhesion markers were significantly increased in PM2.5-exposed mice than that in saline-exposed mice. In vitro, PM2.5 could inhibit HUVECs viability and impair cell migration in a concentration-dependent manner. Besides, PM2.5 exposure downregulated eNOS expression while upregulated reactive oxygen species (ROS) levels. Mechanistically, PM2.5 activated the NLRP3 inflammasome in HUVECs while knockdown of NLRP3 could effectively reverse the downregulation of eNOS expression and production of ROS after PM2.5 exposure. In summary, our data showed that PM2.5 could cause endothelial dysfunction, and probably via NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ping Zhu
- Department of Endocrinology, Huai'an Hospital of Huai'an City, Huai'an, Jiangsu, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Haoran Zhu
- Department of Cardiology, Huai'an First People's Hospital Clinical College of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Jin Geng
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Bingjian Wang
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Guoliang Yuan
- Department of Cardiology, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, Jiangsu, China
| | - Yuzhu Peng
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
39
|
Kawaguchi T, Charlton M, Kawaguchi A, Yamamura S, Nakano D, Tsutsumi T, Zafer M, Torimura T. Effects of Mediterranean Diet in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis of Randomized Controlled Trials. Semin Liver Dis 2021; 41:225-234. [PMID: 34147036 DOI: 10.1055/s-0041-1723751] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We conducted a meta-analysis to investigate the effects of the Mediterranean Diet (Med-Diet) on hepatic steatosis and insulin resistance in patients with nonalcoholic fatty liver disease (NAFLD). Six randomized controlled trials were selected for the meta-analysis (sample size: 250 participants). In the meta-analysis, there was no significant difference in body mass index and waist circumference between the Med-Diet and control groups. Med-Diet significantly reduced fatty liver index (FLI) compared with the control diet (standard mean difference [SMD]: -1.06; 95% CI: -1.95 to -0.17; p = 0.02). Med-Diet significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR) compared with the control diet (SMD: -0.34; 95% CI: -0.65 to -0.03; p = 0.03). Similarly, a meta-regression analysis using age showed that Med-Diet significantly reduced FLI and HOMA-IR (95% CI: -0.956 to -0.237, p = 0.001 and 95% CI: -0.713 to -0.003, p = 0.048, respectively). This meta-analysis demonstrated that Med-Diet improved hepatic steatosis and insulin resistance in patients with NAFLD. Thus, Med-Diet is a beneficial pharmaconutritional therapy in patients with NAFLD.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Michael Charlton
- Department of Medicine, Center for Liver Diseases, University of Chicago Medicine, Chicago, Illinois
| | - Atsushi Kawaguchi
- Section of Clinical Cooperation System, Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Sakura Yamamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maryam Zafer
- Department of Medicine, Center for Liver Diseases, University of Chicago Medicine, Chicago, Illinois
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
40
|
Fortunato IM, dos Santos TW, Ferraz LFC, Santos JC, Ribeiro ML. Effect of Polyphenols Intake on Obesity-Induced Maternal Programming. Nutrients 2021; 13:nu13072390. [PMID: 34371900 PMCID: PMC8308680 DOI: 10.3390/nu13072390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Excess caloric intake and body fat accumulation lead to obesity, a complex chronic disease that represents a significant public health problem due to the health-related risk factors. There is growing evidence showing that maternal obesity can program the offspring, which influences neonatal phenotype and predispose offspring to metabolic disorders such as obesity. This increased risk may also be epigenetically transmitted across generations. Thus, there is an imperative need to find effective reprogramming approaches in order to resume normal fetal development. Polyphenols are bioactive compounds found in vegetables and fruits that exert its anti-obesity effect through its powerful anti-oxidant and anti-inflammatory activities. Polyphenol supplementation has been proven to counteract the prejudicial effects of maternal obesity programming on progeny. Indeed, some polyphenols can cross the placenta and protect the fetal predisposition against obesity. The present review summarizes the effects of dietary polyphenols on obesity-induced maternal reprogramming as an offspring anti-obesity approach.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Tanila Wood dos Santos
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Lucio Fábio Caldas Ferraz
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (J.C.S.); (M.L.R.)
| | - Marcelo Lima Ribeiro
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
- Correspondence: (J.C.S.); (M.L.R.)
| |
Collapse
|
41
|
Lai J, Qian Q, Ding Q, Zhou L, Fu A, Du Z, Wang C, Song Z, Li S, Dou X. Activation of AMP-Activated Protein Kinase-Sirtuin 1 Pathway Contributes to Salvianolic Acid A-Induced Browning of White Adipose Tissue in High-Fat Diet Fed Male Mice. Front Pharmacol 2021; 12:614406. [PMID: 34122060 PMCID: PMC8193940 DOI: 10.3389/fphar.2021.614406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and promising potential of browning of white adipose tissue to combat obesity, recent research has focused on herbal ingredients that may promote browning and increase energy expenditure. Purpose: The present study was designed to investigate the protective antiobesity mechanisms of Sal A, in part through white adipose browning. Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed in this study. Sal A (20 and 40 mg/kg) was administrated to DIO mice by intraperitoneal injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated. Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized thermogenic protein and marker for white adipocyte browning, was significantly induced by Sal A treatment in both white adipose tissues and cultured adipocytes. Further mechanistic investigations revealed that Sal A robustly reversed HFD-decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1 expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK. These findings indicate that AMPK was involved in Sal A-increased SIRT1. Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating and/or preventing obesity.
Collapse
Affiliation(s)
- Jianfei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Li Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Fu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyan Du
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Yang D, Tan Y, Li H, Zhang X, Li X, Zhou F. Upregulation of miR-20b Protects Against Cerebral Ischemic Stroke by Targeting Thioredoxin Interacting Protein (TXNIP). Exp Neurobiol 2021; 30:170-182. [PMID: 33972468 PMCID: PMC8118756 DOI: 10.5607/en20046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in abnormal development and pathophysiology in the brain. Although miR-20b plays essential roles in various human diseases, its function in cerebral ischemic stroke remains unclear. A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) and A rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) were constructed. qRT-PCR and western blot were used to evaluate the expression of miR-20b and TXNIP. Cell viability was detected by MTT assay, and cell apoptosis was evaluated by flow cytometry. Targetscan and Starbase were used to predict the potential targets of miR-20b. Luciferase reporter assay was applied to determine the interaction between miR-20b and TXNIP. Rescue experiments were conducted to confirm the functions of miR-20b/TXNIP axis in cerebral ischemic stroke. MiR-20b was significantly downregulated after I/R both in vitro and in vivo. Upregulation of miR-20b inhibited OGD/R-induced neurons apoptosis and attenuated ischemic brain injury in rat model. Bioinformatic prediction suggested that TXNIP might be a target of miR-20b, and luciferase reporter assay revealed that miR-20b negatively regulated TXNIP expression by directly binding to the 3’-UTR of TXNIP. Downregulation of TXNIP inhibited OGD/R-induced neurons apoptosis in vitro and ischemic brain injury in vivo. Rescue experiments indicated that downregulation of TXNIP effectively reversed the effect of miR-20b inhibitor in neurons apoptosis after OGD/R-treatment and ischemic brain injury in a mouse model after MCAO/R-treatment. Our study demonstrated that upregulation of miR-20b protected the brain from ischemic brain injury by targeting TXNIP, extending our understanding of miRNAs in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dejiang Yang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Yu Tan
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Huanhuan Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xiaowei Zhang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xinming Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Feng Zhou
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR. China
| |
Collapse
|
43
|
Ye M, Tang Y, He J, Yang Y, Cao X, Kou S, Wang L, Sheng L, Xue J. Alleviation of non-alcoholic fatty liver disease by Huazhi Fugan Granules is associated with suppression of TLR4/NF-κB signaling pathway. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:257-266. [PMID: 33810882 DOI: 10.1016/j.arteri.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In parallel with the improvement of living standard, Non-alcoholic fatty liver disease (NAFLD) becomes the most common liver disease around the world. Huazhi Fugan Granules (HZFGG) is a formula which is used to treating of fatty liver, Based on the data we studied, HZFGG may have potential as a therapeutic formula for the alleviation of NAFLD. OBJECTIVES The aim of our study was to identifying the improvement of HZFGG on NAFLD and exploring the potential mechanisms. METHODS MCD diet fed C57BL/6 mice once a day for 4 weeks to induce NAFLD model, HZFGG (10, 15, 20g/kg) orally administered simultaneously. The serum levels of TC, TG, ALT, AST were detected. H&E and Oil Red O staining were used to observed the liver sections. TNF-α, IL-1β and Gpx were also detected. The expression levels of TLR4, MyD88, p-NF-κB, NF-κB, p-IκBa were measured by western blotting assay. The apoptosis of the liver tissues were detected by TUNEL assay. RESULTS HZFGG decreased the serum levels of TC, TG, ALT, AST in MCD-diet mice. HZFGG alleviated inflammation by decreasing the levels of TNF-α and IL-1β and ameliorated oxidative stress through increased the level of Gpx. HZFGG Attenuates MCD-induced liver steatosis and injury in mice. Hepatocyte apoptosis was decreased after HZFGG treatment. Furthermore, HZFGG also suppressed the expression levels of TLR4 and MyD88, subsequently, inhibited the phosphorylation of NF-κB and IκBa. CONCLUSION HZFGG can improved MCD induced hepatic injury through inhibited TLR4/NF-κB signaling pathway in NAFLD model.
Collapse
Affiliation(s)
- Miaoqing Ye
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Yinghui Tang
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Jinyu He
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Yueqing Yang
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Xueyan Cao
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Shaojie Kou
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China
| | - Lin Wang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Lingli Sheng
- Nephrology, Pudong branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jingdong Xue
- Department of Liver Disease, Shaanxi Provincial Hospital of traditional Chinese Medicine, Xi'an, China.
| |
Collapse
|
44
|
Sharma A, Anand SK, Singh N, Dwarkanath A, Dwivedi UN, Kakkar P. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct 2021; 12:892-909. [PMID: 33411880 DOI: 10.1039/d0fo02501a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a chronic metabolic disorder is concomitant with oxidative stress and inflammation. This study aimed to assess the effects of berbamine (BBM), a natural bisbenzylisoquinoline alkaloid with manifold biological activities and pharmacological effects on lipid, cholesterol and glucose metabolism in a rat model of NAFLD, and to explicate the potential mechanisms underlying its activity. BBM administration alleviated the increase in the body weight and liver index of HFD rats. The aberrations in liver function, serum parameters, and microscopic changes in the liver structure of HFD fed rats were significantly improved upon BBM administration. BBM also significantly attenuated oxidative damage and inhibited triglyceride and cholesterol synthesis. The SIRT1 deacetylase activity was also enhanced by BBM through liver kinase B1 and activated AMP-activated protein kinase. Activation of the SIRT1/LKB1/AMPK pathway prevented the downstream target ACC (acetyl-CoA carboxylase) and elevation in the expression of FAS (fatty acid synthase) and SCD1 (steroyl CoA desaturase). BBM also modulated the expression of PPARs maintaining the fatty acid homeostasis regulation. The assessment of berbamine induced ultrastructural changes by TEM analysis and the expression of autophagic markers LC3a/b, Beclin 1 and p62 revealed the induction of autophagy to alleviate fatty liver conditions. These results show novel findings that BBM induced protection against hepatic lipid metabolic disorders is achieved by regulating the SIRT1/LKB1/AMPK pathway, and thus it emerges as an effective phyoconstituent for the management of NAFLD.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India.
| | | | | | | | | | | |
Collapse
|
45
|
Li S, Qian Q, Ying N, Lai J, Feng L, Zheng S, Jiang F, Song Q, Chai H, Dou X. Activation of the AMPK-SIRT1 pathway contributes to protective effects of Salvianolic acid A against lipotoxicity in hepatocytes and NAFLD in mice. Front Pharmacol 2020; 11:560905. [PMID: 33328983 PMCID: PMC7734334 DOI: 10.3389/fphar.2020.560905] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Salvianolic acid A (Sal A), a natural polyphenol compound extracted from Radix Salvia miltiorrhiza (known as Danshen in China), possesses a variety of potential pharmacological activities. The aim of this study is to determine mechanisms of hepatoprotective effects of Sal A against lipotoxicity both in cultured hepatocytes and in a mouse model of fatty liver disease. Methods: High-fat and high-carbohydrate diet (HFCD)-fed C57BL/6J mice were employed to establish hepatic lipotoxicity in a mouse model. Two doses of Sal A were administered every other day via intraperitoneal injection (20 and 40 mg/kg BW, respectively). After a 10-week intervention, liver injury was detected by immunohistochemical and biochemical analyses. For in vitro studies, we used HepG2, a human hepatoma cell line, and exposed them to palmitic acid to induce lipotoxicity. The protective effects of Sal A on palmitic acid-induced lipotoxicity were examined in Sal A-pretreated HepG2 cells. Results: Sal A treatments attenuated body weight gain, liver injury, and hepatic steatosis in mice exposed to HFCD. Sal A pretreatments ameliorated palmitic acid-induced cell death but did not reverse effects of HFCD- or palmitate-induced activations of JNK, ERK1/2, and PKA. Induction of p38 phosphorylation was significantly reversed by Sal A in HFCD-fed mice but not in palmitate-treated HepG2 cells. However, Sal A rescued hepatic AMP-activated protein kinase (AMPK) suppression and sirtuin 1 (SIRT1) downregulation by both HFCD feeding in mice and exposure to palmitate in HepG2 cells. Sal A dose-dependently up-regulated p-AMPK and SIRT1 protein levels. Importantly, siRNA silencing of either AMPK or SIRT1 gene expression abolished the protective effects of Sal A on lipotoxicity. Moreover, while AMPK silencing blocked Sal A-induced SIRT1, silencing of SIRT1 had no effect on Sal A-triggered AMPK activation, suggesting SIRT1 upregulation by Sal A is mediated by AMPK activation. Conclusion: Our data uncover a novel mechanism for hepatoprotective effects of Sal A against lipotoxicity both in livers from HFCD-fed mice and palmitic acid-treated hepatocytes.
Collapse
Affiliation(s)
- Songtao Li
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Ying
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfei Lai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luyan Feng
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sitong Zheng
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fusheng Jiang
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Song
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Chai
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Li W, Zhang D, Yuan W, Wang C, Huang Q, Luo J. Humanin Ameliorates Free Fatty Acid-Induced Endothelial Inflammation by Suppressing the NLRP3 Inflammasome. ACS OMEGA 2020; 5:22039-22045. [PMID: 32923762 PMCID: PMC7482084 DOI: 10.1021/acsomega.0c01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Cardiovascular disease (CVD) has been considered as a major risk factor of death in recent decades. In CVDs, the NLRP3 inflammasome is important for inflammatory response and vascular damage. Therefore, safe and effective treatments to decrease NLRP3 inflammasome activation are required. Increased levels of free fatty acid (FFA) have been associated with the progression of CVD. Humanin, a kind of mitochondrial-derived peptide, has shown its beneficial effects in different types of cells. However, the roles of humanin in the NLRP3 inflammasome induced by FFA are still unknown. Here, we investigated the molecular mechanisms whereby humanin was found to exert protective effects in human aortic endothelial cells (HAECs) against FFA-caused endothelial injury. Here, treatment with humanin inhibited FFA-induced lactate dehydrogenase release, thereby demonstrating a protective capacity against cell death. Humanin also suppressed oxidative stress by downregulating the expression of reactive oxygen species and NOX2. Notably, humanin reduced NLRP3 and p10 and rescued FFA-induced dysfunction of adenosine monophosphate-activated protein kinase. Consequently, humanin inhibited the expression of IL-1β and IL-18. These results conclude that humanin might be a promising therapeutic agent for CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- . Phone: +86-19979702109. Fax: +86-797-5889810
| |
Collapse
|
47
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Sztolsztener K, Chabowski A, Harasim-Symbor E, Bielawiec P, Konstantynowicz-Nowicka K. Arachidonic Acid as an Early Indicator of Inflammation during Non-Alcoholic Fatty Liver Disease Development. Biomolecules 2020; 10:biom10081133. [PMID: 32751983 PMCID: PMC7464179 DOI: 10.3390/biom10081133] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by excessive lipid deposition. Lipid metabolism disturbances are possibly associated with hepatocyte inflammation development and oxidative balance impairment. The aim of our experiment was to examine the first moment when changes in plasma and liver arachidonic acid (AA) levels as a pro-inflammatory precursor may occur during high-fat diet (HFD)-induced NAFLD development. Wistar rats were fed a diet rich in fat for five weeks, and after each week, inflammation and redox balance parameters were evaluated in the liver. The AA contents in lipid fractions were assessed by gas–liquid chromatography (GLC). Protein expression relevant to inflammatory and lipogenesis pathways was determined by immunoblotting. The oxidative system indicators were determined with assay kits. Our results revealed that a high-fat diet promoted an increase in AA levels, especially in the phospholipid (PL) fraction. Importantly, rapid inflammation development via increased inflammatory enzyme expression, elevated lipid peroxidation product content and oxidative system impairment was caused by the HFD as early as the first week of the experiment. Based on these results, we may postulate that changes in AA content may be an early indicator of inflammation and irreversible changes in NAFLD progression.
Collapse
|
49
|
Dietary Apigenin Reduces Induction of LOX-1 and NLRP3 Expression, Leukocyte Adhesion, and Acetylated Low-Density Lipoprotein Uptake in Human Endothelial Cells Exposed to Trimethylamine-N-Oxide. J Cardiovasc Pharmacol 2020; 74:558-565. [PMID: 31815868 DOI: 10.1097/fjc.0000000000000747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By inducing vascular inflammation, trimethylamine-N-oxide (TMAO) is associated with endothelial dysfunction, atherosclerosis, and enhanced risk of cardiovascular diseases in humans. However, the underlying mechanisms are unknown. Expression of several genes related to arteriosclerosis, inflammasomes, and endothelial dysfunction was quantified by polymerase chain reaction after exposure to TMAO. LOX-1, ICAM-1, and NLRP3 were also quantified by Western blot, whereas leukocytic adhesion was examined using fluorescently labeled U937 cells. Scavenger receptors, adhesion molecules, and other genes associated with atherosclerosis were induced in endothelial cells exposed to TMAO. On the other hand, apigenin, a flavonoid that is abundant in parsley and celery, prevents initial arteriosclerosis events in endothelial cells. Apigenin reversed the effects of TMAO on mRNA expression of LOX-1, SREC, SR-PSOX, NLRP3, ASC, TXNIP, VCAM-1, ICAM-1, and MCP-1, as well as protein expression of LOX-1, the adhesion molecule ICAM-1, and the inflammasome protein NLRP3. Apigenin also suppressed leukocyte adhesion and uptake of acetylated low-density lipoprotein. The data indicate that expression of scavenger receptors and adhesion molecules in response to TMAO, along with formation of NLRP3 inflammasomes, may drive endothelial dysfunction through uptake of acetylated low-density lipoprotein and lymphocyte adhesion. Apigenin reverses these effects, implying that it may also prevent arteriosclerosis.
Collapse
|
50
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|