1
|
Kovács F, Jakab Á, Balla N, Tóth Z, Balázsi D, Forgács L, Harmath A, Bozó A, Ragyák Á, Majoros L, Kovács R. A comprehensive analysis of the effect of quorum-sensing molecule 3-oxo-C12-homoserine lactone on Candida auris and Candida albicans. Biofilm 2025; 9:100259. [PMID: 39991553 PMCID: PMC11847529 DOI: 10.1016/j.bioflm.2025.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Candida auris occupies similar niches in various infections as Pseudomonas aeruginosa; however, the details of their interspecies communication remain largely unknown. To gain deeper insights into this relationship, phenotypic and transcriptomic analyses were conducted in the presence of the primary P. aeruginosa quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (HSL), against C. auris, with the results compared to those of C. albicans. Our findings indicate that HSL-induced effects are not specific to C. albicans; additionally, several characteristics are present in C. auris but not in C. albicans following HSL exposure. Significant HSL-induced reduction was observed in growth and adhesion of C. auris cells in time -and concentration-dependent way (p < 0.01-0.001). Moreover, HSL reduced intracellular iron and zinc levels (p < 0.05-0.001); furthermore, it modulated C. auris metabolism toward beta-oxidation, which may be associated with the observed reduction in in vivo virulence at lower HSL concentrations compared with C. albicans. RNA-sequencing transcriptome analysis of C. auris revealed 67 and 306 upregulated genes, as well as 111 and 168 downregulated genes, in response to 100 and 200-μM HSL, respectively. We identified 45 overlapping upregulated and 25 overlapping downregulated genes between the two HSL concentrations. Similar to other Candida-derived C12 compounds (e.g., farnesol), HSL reduces several C. auris survival strategies, which may significantly influence the nature of P. aeruginosa-C. auris co-habitation. In conclusion, the obtained findings on C. auris do not provide clear evidence that HSL mediated effects have any favourable consequences in terms of P. aeruginosa-C. auris co-colonisation and/or co-infections.
Collapse
Affiliation(s)
- Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Andrea Harmath
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Ágota Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
2
|
Qu FX, Guo X, Liu XJ, Zhang SW, Xin Y, Li JY, Wang R, Xu CJ, Li HY, Lu CH. Treatment with a combination of myricitrin and exercise alleviates myocardial infarction in rats via suppressing Nrf2/HO-1 antioxidant pathway. Arch Biochem Biophys 2024; 761:110153. [PMID: 39271097 DOI: 10.1016/j.abb.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, Western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.
Collapse
Affiliation(s)
- Feng-Xia Qu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao-Jun Liu
- Department of Cardiac Surgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Shu-Wen Zhang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Yue Xin
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Jing-Yuan Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Rong Wang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chen-Ji Xu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Hai-Ying Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chang-Hong Lu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China.
| |
Collapse
|
3
|
Jiang X, Shan X, Jia J, Yang X, Yang M, Hou S, Chen Y, Ni Z. The role of AbaI quorum sensing molecule synthase in host cell inflammation induced by Acinetobacter baumannii and its effect on zebrafish infection model. Int J Biol Macromol 2024; 278:134568. [PMID: 39116980 DOI: 10.1016/j.ijbiomac.2024.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs). Currently, QS has made great progress in the study of drug resistance, but there is still a lack of complete understanding of its damage to host cells after adhesion and invasion. Thus, in this study, we examined the effects of abaI mutant (ΔabaI) on the functions of adhesion and invasion, cell viability, inflammation, apoptosis in A. baumannii infected A549 cells, to evaluate the effects of ΔabaI in a zebrafish model. We found the group infected with ΔabaI increased cell viability, reduced adhesion and invasion, cell injury, inflammatory cytokine production and apoptosis. By RNA-Seq, we explored the possibility that abaI stimulated A549 cells inflammation by A. baumannii infection via TLR4/MAPK signaling pathway. In addition, the ΔabaI significantly reduced pathogenicity and recruitment to neutrophils in zebrafish. These observations suggest that abaI plays a major role in A. baumannii infection.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuchun Shan
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Junzhen Jia
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaomeng Yang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Shiqi Hou
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China.
| | - Zhaohui Ni
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Xia S, Yan C, Gu J, Yuan Y, Zou H, Liu Z, Bian J. Resveratrol Alleviates Zearalenone-Induced Intestinal Dysfunction in Mice through the NF-κB/Nrf2/HO-1 Signalling Pathway. Foods 2024; 13:1217. [PMID: 38672890 PMCID: PMC11049466 DOI: 10.3390/foods13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
6
|
Camps J, Iftimie S, Arenas M, Castañé H, Jiménez-Franco A, Castro A, Joven J. Paraoxonase-1: How a xenobiotic detoxifying enzyme has become an actor in the pathophysiology of infectious diseases and cancer. Chem Biol Interact 2023; 380:110553. [PMID: 37201624 DOI: 10.1016/j.cbi.2023.110553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Both infectious and non-infectious diseases can share common molecular mechanisms, including oxidative stress and inflammation. External factors, such as bacterial or viral infections, excessive calorie intake, inadequate nutrients, or environmental factors, can cause metabolic disorders, resulting in an imbalance between free radical production and natural antioxidant systems. These factors may lead to the production of free radicals that can oxidize lipids, proteins, and nucleic acids, causing metabolic alterations that influence the pathogenesis of the disease. The relationship between oxidation and inflammation is crucial, as they both contribute to the development of cellular pathology. Paraoxonase 1 (PON1) is a vital enzyme in regulating these processes. PON1 is an enzyme that is bound to high-density lipoproteins and protects the organism against oxidative stress and toxic substances. It breaks down lipid peroxides in lipoproteins and cells, enhances the protection of high-density lipoproteins against different infectious agents, and is a critical component of the innate immune system. Impaired PON1 function can affect cellular homeostasis pathways and cause metabolically driven chronic inflammatory states. Therefore, understanding these relationships can help to improve treatments and identify new therapeutic targets. This review also examines the advantages and disadvantages of measuring serum PON1 levels in clinical settings, providing insight into the potential clinical use of this enzyme.
Collapse
Affiliation(s)
| | | | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | |
Collapse
|
7
|
A. Eid R, Alaa Edeen M, Soltan MA, Al-Shraim M, Samir A. Zaki M, M. Al-Qahtani S, Fayad E, T. Salem E, K. Abdulsahib W, Emam H, M. Hassan H. Integration of Ultrastructural and Computational Approaches Reveals the Protective Effect of Astaxanthin against BPA-Induced Nephrotoxicity. Biomedicines 2023; 11:biomedicines11020421. [PMID: 36830956 PMCID: PMC9953522 DOI: 10.3390/biomedicines11020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant that can induce deleterious organ effects. Human Cytochrome P450 CYP2C9 enzyme belongs to the essential xenobiotic-metabolizing enzymes, producing ROS as a byproduct. Astaxanthin (ATX) is a powerful antioxidant that protects organs and tissues from the damaging effects of oxidative stress caused by various diseases. AIM OF THE STUDY This study investigated the possible protective impacts of ATX against BPA-induced nephrotoxicity and its underlying mechanism. MATERIALS AND METHODS Kidney tissues were isolated and examined microscopically from control, protected, and unprotected groups of rats to examine the potential protective effect of ATX against nephrotoxicity. Moreover, a molecular dynamic (MD) simulation was conducted to predict the performance of ATX upon binding to the active site of P450 CYP2C9 protein receptor as a potential mechanism of ATX protective effect. RESULTS Implemented computational methods revealed the possible underlying mechanism of ATX protection; the protective impact of ATX is mediated by inhibiting P450 CYP2C9 through binding to its dimeric state where the RMSF value for apo-protein and ATX-complex system were 5.720.57 and 1.040.41, respectively, implicating the ATX-complex system to have lesser variance in its residues, leading to the prevention of ROS excess production, maintaining the oxidant-antioxidant balance and re-establishing the proper mitochondrial functionality. Furthermore, the experimental methods validated in silico outcomes and revealed that ATX therapy effectively restored the typical histological architecture of pathological kidney tissues. CONCLUSIONS ATX prevents BPA-induced nephrotoxicity by controlling oxidative imbalance and reversing mitochondrial dysfunction. These outcomes shed new light on the appropriate use of ATX as a treatment or prophylactic agent for these severe conditions.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Correspondence: (R.A.E.); (M.A.E.)
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (R.A.E.); (M.A.E.)
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Mubarak Al-Shraim
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Eman T. Salem
- Department of Basic Science, Faculty of Physical Therapy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al-Farahidi University, Baghdad 10001, Iraq
| | - Hebatallah Emam
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Hesham M. Hassan
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
8
|
Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes 2022; 14:2039048. [PMID: 35188058 PMCID: PMC8865250 DOI: 10.1080/19490976.2022.2039048] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing is a molecular signaling-based communication mechanism in prokaryotes. In the basic mode, signaling molecules released by certain bacteria are sensed by intracellular receptors or membrane-bound receptors of other members in the community, leading to the collective isogenic signaling molecule synthesis and synchronized activities. This regulation is important for the symbiosis of the bacterium with the host, as well as virulence and biofilm formation. Notably, quorum sensing signaling molecules are not only able to control microbial community behavior but can likewise regulate the physiological status of host cells. Here, we provide a comprehensive review of the importance of quorum sensing signaling molecules in gram-negative bacteria in regulating host cell function and gut health, and suggest possible opportunities for application in combating human and animal diseases by blocking the pathways through which quorum sensing signaling molecules exert their functions.
Collapse
Affiliation(s)
- Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxing Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,CONTACT Shiyu TaoCollege of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070China
| |
Collapse
|
9
|
Yang L, Yuan TJ, Wan Y, Li WW, Liu C, Jiang S, Duan JA. Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host. Future Microbiol 2022; 17:293-309. [PMID: 35164528 DOI: 10.2217/fmb-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Tian-Jie Yuan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| |
Collapse
|
10
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
11
|
Shin J, Ahn SH, Kim SH, Oh DJ. N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting protein kinase 1-dependent apoptosis. Am J Physiol Cell Physiol 2021; 321:C644-C653. [PMID: 34432536 DOI: 10.1152/ajpcell.00094.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is associated with the initiation of sepsis-associated organ failure. Bacterial quorum-sensing molecules act as pathogen-associated molecular patterns; however, the effects of quorum-sensing molecules on endothelial cells remain less understood. This study investigated the molecular mechanisms of quorum-sensing molecule-induced cell death and their interaction with lipopolysaccharide (LPS) in human umbilical vein endothelial cells. Endothelial cells were treated with N-3-oxododecanoyl homoserine lactone (3OC12-HSL) and LPS derived from Pseudomonas aeruginosa. Treatment with 3OC12-HSL reduced cell viability in a dose-dependent manner, and cotreatment with 3OC12-HSL and LPS enhanced cell death. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay revealed an increase in apoptotic cell death following 3OC12-HSL treatment; furthermore, cotreatment with 3OC12-HSL and LPS enhanced apoptosis. Western blotting revealed that treatment with 3OC12-HSL activated the receptor-interacting protein kinase 1 (RIPK1) pathway, leading to an increase in the levels of cleaved caspase 8 and 3. In addition, we found that treatment with necrostatin-1, an RIPK1 inhibitor, reduced cell death and ameliorated the activation of the RIPK1-dependent apoptotic pathway in 3OC12-HSL-treated cells. In conclusion, 3OC12-HSL induced endothelial cell apoptosis via the activation of the RIPK1 pathway, independent of LPS toxicity. Inhibition of RIPK1 may act as a therapeutic option for preserving endothelial cell integrity in patients with sepsis by disrupting the mechanism by which quorum-sensing molecules mediate their toxicity.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Su Hyun Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| |
Collapse
|
12
|
Zhang YJ, Wu Q. Sulforaphane protects intestinal epithelial cells against lipopolysaccharide-induced injury by activating the AMPK/SIRT1/PGC-1ɑ pathway. Bioengineered 2021; 12:4349-4360. [PMID: 34308769 PMCID: PMC8806682 DOI: 10.1080/21655979.2021.1952368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The naturally occurring isothiocyanate sulforaphane, found in vegetables, shows promising anti-inflammatory, anti-apoptosis, and anti-oxidative effects. Whether sulforaphane protects against lipopolysaccharide (LPS)-induced injury in intestinal epithelial cells is unclear. The present study examines the ability of sulforaphane to protect Caco-2 cultures from LPS-induced injury, as well as the mechanism involved. Caco-2 cells were incubated for 24 h with 1 μg/mL LPS and different concentrations of sulforaphane (0.1–10 μM). Then, various indicators of oxidative stress, inflammation, apoptosis, and intestinal permeability were assayed. Sulforaphane increased cell viability and reduced lactate dehydrogenase activity in LPS-treated Caco-2 cells in a concentration-dependent manner. Sulforaphane weakened LPS-induced increases in intestinal epithelial cell permeability and oxidative stress (based on assays of reactive oxygen species, DMA, and H2O2), and it increased levels of antioxidants (SOD, GPx, CAT and T-AOC). At the same time, sulforaphane weakened the ability of LPS to induce production of inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) and the pro-apoptotic caspases-3 and −9. Sulforaphane also upregulated p-AMPK, SIRT1, and PGC-1ɑ, whose inhibitors antagonized the compound’s protective effects. Sulforaphane can protect intestinal epithelial cells against LPS-induced changes in intestinal permeability, oxidative stress, inflammation, and apoptosis. It appears to act by activating the AMPK/SIRT1/PGC-1ɑ pathway. The drug therefore shows potential for preventing LPS-induced intestinal injury.
Collapse
Affiliation(s)
- Yu-Jie Zhang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qian Wu
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Cheng W, Wang Z, Xiong Y, Wu Z, Tan X, Yang Y, Zhang H, Zhu X, Wei H, Tao S. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146347. [PMID: 34030388 DOI: 10.1016/j.scitotenv.2021.146347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a quorum sensing signal molecule, N-(3-oxododecanoyl)-homoserine lactone (3OC12) regulate the population behavior of microorganisms. Many studies have proved that 3OC12 harm the physiological function of host intestinal epithelial cells. However, the detrimental effects of 3OC12 on intestinal health need verification in animals. Besides, the role of gut microbiome in 3OC12-induced intestinal damage also needs further understanding. In our study, 3OC12 was first administered to specific pathogen-free (SPF) mice, then the fecal microbiome of SPF mice was transplanted into germ-free (GF) mice to reveal the effects of 3OC12 on intestinal health and regulatory mechanisms of the intestinal microbiome. 3OC12 treatment significantly decreased body weight, shortened colonic length, disrupted the morphology of the colonic epithelium and increased the histopathological score of the colon in SPF mice. The levels of diamine peroxidase, d-lactate, TNF-α, IL-1β, and IL-8 were found to be significantly elevated in the serum of 3OC12 mice, while the levels of IL-10 were significantly reduced. Besides, the fecal microbial community of mice was also altered in the 3OC12-treated SPF mice. The results of fecal microbial transplantation (FMT) experiment showed that the phenotypes in SPF mice were almost reproduced in GF mice, manifested by body weight loss, colon damage and changed in serum chemical markers. More importantly, a joint analysis of fecal microbes in SPF and GF mice revealed Feature14_Elizabethkingia spp. was common differential bacteria in the feces of two kinds of mice treated with and without FMT. Our results demonstrated that 3OC12 challenge led to systemic inflammation and body weight loss in mice by disrupting intestinal barrier function, in which gut microbiome played a key role. These findings increased our understanding of the mechanism of intestinal injury caused by 3CO12, providing new ideas for the prevention and therapy of diseases caused by bacterial infection from the perspective of intestinal microbiome.
Collapse
Affiliation(s)
- Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Woo K, Kim DH, Oh MH, Park HS, Choi CH. N-3-Hydroxy Dodecanoyl-DL-homoserine Lactone (OH-dDHL) Triggers Apoptosis of Bone Marrow-Derived Macrophages through the ER- and Mitochondria-Mediated Pathways. Int J Mol Sci 2021; 22:ijms22147565. [PMID: 34299184 PMCID: PMC8305837 DOI: 10.3390/ijms22147565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.
Collapse
Affiliation(s)
- Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
| | - Ho Sung Park
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
- Correspondence: ; Tel.: +82-42-580-8246
| |
Collapse
|
15
|
On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021; 11:biom11070971. [PMID: 34356595 PMCID: PMC8301931 DOI: 10.3390/biom11070971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Infectious and many non-infectious diseases share common molecular mechanisms. Among them, oxidative stress and the subsequent inflammatory reaction are of particular note. Metabolic disorders induced by external agents, be they bacterial or viral pathogens, excessive calorie intake, poor-quality nutrients, or environmental factors produce an imbalance between the production of free radicals and endogenous antioxidant systems; the consequence being the oxidation of lipids, proteins, and nucleic acids. Oxidation and inflammation are closely related, and whether oxidative stress and inflammation represent the causes or consequences of cellular pathology, both produce metabolic alterations that influence the pathogenesis of the disease. In this review, we highlight two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C motif) ligand 2 (CCL2). PON1 is an enzyme bound to high-density lipoproteins. It breaks down lipid peroxides in lipoproteins and cells, participates in the protection conferred by HDL against different infectious agents, and is considered part of the innate immune system. With PON1 deficiency, CCL2 production increases, inducing migration and infiltration of immune cells in target tissues and disturbing normal metabolic function. This disruption involves pathways controlling cellular homeostasis as well as metabolically-driven chronic inflammatory states. Hence, an understanding of these relationships would help improve treatments and, as well, identify new therapeutic targets.
Collapse
|
16
|
Tao S, Xiong Y, Wang Z, Wu Y, Li N, Pi Y, Han D, Zhao J, Wang J. N-Acyl-Homoserine Lactones May Affect the Gut Health of Low-Birth-Weight Piglets by Altering Intestinal Epithelial Cell Barrier Function and Amino Acid Metabolism. J Nutr 2021; 151:1736-1746. [PMID: 33982101 DOI: 10.1093/jn/nxab104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In piglets, low birth weight (LBW) is associated with intestinal dysfunction, which affects their growth performance and causes economic losses. OBJECTIVES This study was designed to test whether microbial quorum sensing (QS) affects LBW-induced intestinal developmental defects in piglets. METHODS Seven normal-birth-weight (NBW; 1.36 ± 0.01 kg) and 7 LBW (0.89 ± 0.01 kg) piglets were selected. Feces were collected from piglets on 2, 21, and 50 days of age for detection of the QS signaling molecules, N-acyl-homoserine lactones (AHLs), and microbiota analysis. The associations between 2 long-chain AHLs [N-3-oxo-dodecanoyl-l-homoserine lactone (3OC12-HSL) and N-3-oxo-tetradecanoyl-l-homoserine lactone (3OC14-HSL)] and the microbes were tested using Spearman correlation coefficients. The effect of 3OC12-HSL and 3OC14-HSL on intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell viability was investigated by cholecystokinin octapeptide assay. Transcriptomic analysis was performed by RNA sequencing on cells treated with 3OC12-HSL. RESULTS The concentrations of 3OC12-HSL and 3OC14-HSL in the feces of LBW piglets were higher than those in NBW piglets at age 50 d by 2.5- and 2.24-fold, respectively (P < 0.05). The microbial α diversity (observed species, abundance-based coverage estimator, and Shannon index) of LBW piglets was 81-91% lower than that of NBW piglets (P < 0.05). The relative abundance of Ruminococcaceae UCG-002/UCG-013 was 43.0% and 30.0% lower, respectively, in feces from LBW compared with NBW piglets (P < 0.05). 3OC12-HSL and Ruminococcaceae UCG-002/UCG-005/UCG-010 abundance were negatively correlated (ρ ≤ -0.58). Treatment with 400 μM 3OC12-HSL markedly reduced IPEC-J2 cell viability by 47.5%. Transcriptomic data showed that 3OC12-HSL mainly changed the "import across plasma membrane" and "arginine and proline metabolism" of IPEC-J2 cells. CONCLUSIONS 3OC12-HSL is a QS signaling molecule with an ability to impair gut health of LBW piglets. This finding adds to our understanding of the mechanisms responsible for gut injury in LBW piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhao A, Qin H, Sun M, Tang M, Mei J, Ma K, Fu X. Chemical conversion of human epidermal stem cells into intestinal goblet cells for modeling mucus-microbe interaction and therapy. SCIENCE ADVANCES 2021; 7:7/16/eabb2213. [PMID: 33853767 PMCID: PMC8046373 DOI: 10.1126/sciadv.abb2213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/25/2021] [Indexed: 06/01/2023]
Abstract
Intestinal goblet cells secrete mucus layers protecting the intestinal epithelia against injuries. It is challenging to study the interaction of goblet cells, mucus layers, and gut microbiota because of difficulty in producing goblet cells and mucus models. We generate intestinal goblet cells from human epidermal stem cells with two small molecular inhibitors Repsox and CHIR99021 in the presence of basic fibroblast growth factor and bone morphogenetic protein 4 at high efficiency (~95%) of conversion for a short time (6 to 8 days). Induced goblet cells are functional to secrete mucus, deliver fluorescent antigen, and form mucus layers modeling the mucus-microbe interaction in vitro. Transplantation of induced goblet cells and oral administration of chemical induction media promote the repair of the intestinal epithelia in a colitis mouse model. Thus, induced goblet cells can be used for investigating mucus-microbe interaction, and chemical cocktails may act as drugs for repairing the intestinal epithelia.
Collapse
Affiliation(s)
- Andong Zhao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- Tianjin Medical University, Tianjin 300070, China
| | - Hua Qin
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Mengli Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Mao Tang
- Tianjin Medical University, Tianjin 300070, China
| | - Jinyu Mei
- Tianjin Medical University, Tianjin 300070, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100048, China
| |
Collapse
|
18
|
Yadav VK, Singh PK, Sharma D, Pandey H, Singh SK, Agarwal V. Autoinducer N-(3-oxododecanoyl)-l-homoserine lactone induces calcium and reactive oxygen species-mediated mitochondrial damage and apoptosis in blood platelets. Microb Pathog 2021; 154:104792. [PMID: 33636321 DOI: 10.1016/j.micpath.2021.104792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
Acylated homoserine lactones (AHL) such as N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-l-homoserine lactone (C4 HSL) are the most common autoinducer molecules in Pseudomonas aeruginosa. These AHL molecules not only regulate the expression of virulence factors but also have been shown to interfere with the host cell and modulate its functions. Recently, we reported that 3-oxo-C12 HSL but not C4 HSL causes cytosolic Ca2+ rise and ROS production in platelets. In this study, we examined the potential of AHLs to induce apoptosis in the human blood platelet. Our result showed that 3-oxo-C12 HSL but not C4 HSL causes phosphatidylserine (PS) exposure, mitochondrial dysfunction (mitochondrial transmembrane potential loss, and mitochondrial permeability transition pore (mPTP) formation). Besides, 3-oxo-C12 HSL also inhibited thrombin-induced platelet aggregation and clot retraction. The pretreatment of an intracellular calcium chelator BAPTA-AM or ROS inhibitor (DPI) significantly attenuated the 3-oxo-C12 HSL induced apoptotic characters such as PS exposure and mitochondrial dysfunctions. These data, including our previous findings, confirmed that 3-oxo-C12 HSL induced intracellular Ca2+ mediated ROS production results in the activation and subsequent induction of apoptotic features in platelets. Our results demonstrated that the 3-oxo-C12 HSL modulates the functions of platelets that may cause severe thrombotic complications in P. aeruginosa infected individuals.
Collapse
Affiliation(s)
- Vivek Kumar Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India
| | - Pradeep Kumar Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India; Maharana Pratap Government Post Graduate College Gadarwara, Madhya Pradesh, India
| | - Deepmala Sharma
- Department of Mathematics National Institute of Technology, Raipur, India
| | - Himanshu Pandey
- Faculty of Sowa Rigpa Central Institute of Higher Tibetan Studies Sarnath, Varanasi, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, India.
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India.
| |
Collapse
|
19
|
Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants (Basel) 2021; 10:antiox10020256. [PMID: 33562328 PMCID: PMC7915308 DOI: 10.3390/antiox10020256] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. However, recent findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies. This review focuses on all of these aspects of PON2.
Collapse
|
20
|
Tao S, Xiong Y, Han D, Pi Y, Zhang H, Wang J. N-(3-oxododecanoyl)-l-homoserine lactone disrupts intestinal epithelial barrier through triggering apoptosis and collapsing extracellular matrix and tight junction. J Cell Physiol 2021; 236:5771-5784. [PMID: 33400297 DOI: 10.1002/jcp.30261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Microbes employ autoinducers of quorum sensing (QS) for population communication. Although the autoinducer of Pseudomonas aeruginosa LasI-LasR system, N-(3-oxododecanoyl)- l-homoserine lactone (3OC12), has been reported with deleterious effects on host cells, its biological effects on integrity of the intestinal epithelium and epithelial barrier are still unclear and need further investigation. In the present study, flow cytometry, transcriptome analysis and western blot technology have been adopted to investigate the potential molecular mechanisms of 3OC12 and its structurally similar analogs damage to intestinal epithelial cells. Our results indicated that 3OC12 and 3OC14 trigger apoptosis rather than necrosis and ferroptosis in intestinal epithelial cells. RNA-sequencing combined with bioinformatics analysis showed that 3OC12 and 3OC14 reduced the expression of genes from extracellular matrix (ECM)-receptor interaction pathway. Consistently, protein expressions from ECM and tight junction-associated pathway were significantly reduced after 3OC12 and 3OC14 challenge. In addition, 3OC12 and 3OC14 led to blocked cell cycle, decreased mitochondrial membrane potential, increased reactive oxygen species level and elevated Ca2+ concentration. Reversely, the antioxidant NAC could effectively mitigate the reduced expression of ECM and tight junction proteins caused by 3OC12 and 3OC14 challenge. Collectively, this study demonstrated that QS autoinducer exposure to intestinal epithelial cells ablates the ECM and tight junctions by triggering oxidative stress and apoptosis, and finally disrupts the intestinal epithelial barrier. These findings provide a rationale for defensing QS-dependent bacterial infections and potential role of NAC for alleviating the syndrome.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Hanlu Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Peyrottes A, Coquant G, Brot L, Rainteau D, Seksik P, Grill JP, Mallet JM. Anti-Inflammatory Effects of Analogues of N-Acyl Homoserine Lactones on Eukaryotic Cells. Int J Mol Sci 2020; 21:E9448. [PMID: 33322538 PMCID: PMC7764250 DOI: 10.3390/ijms21249448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Since acyl-homoserine lactone (AHL) profiling has been described in the gut of healthy subjects and patients with inflammatory bowel disease (IBD), the potential effects of these molecules on host cells have raised interest in the medical community. In particular, natural AHLs such as the 3-oxo-C12-HSL exhibit anti-inflammatory properties. Our study aimed at finding stable 3-oxo-C12-HSL-derived analogues with improved anti-inflammatory effects on epithelial and immune cells. METHODS We first studied the stability and biological properties of the natural 3-oxo-C12-HSL on eukaryotic cells and a bacterial reporter strain. We then constructed and screened a library of 22 AHL-derived molecules. Anti-inflammatory effects were assessed by cytokine release in an epithelial cell model, Caco-2, and a murine macrophage cell line, RAW264.7, (respectively, IL-8 and IL-6) upon exposure to the molecule and after appropriate stimulation (respectively, TNF-α 50 ng/mL and IFN-γ 50 ng/mL, and LPS 10 ng/mL and IFN-γ 20 U/mL). RESULTS We found two molecules of interest with amplified anti-inflammatory effects on mammalian cells without bacterial-activating properties in the reporter strain. The molecules furthermore showed improved stability in biological medium compared to the native 3-oxo-C12-HSL. CONCLUSIONS We provide new bio-inspired AHL analogues with strong anti-inflammatory properties that will need further study from a therapeutic perspective.
Collapse
Affiliation(s)
- Agathe Peyrottes
- Laboratoire des Biomolécules (LBM), Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; (A.P.); (J.-M.M.)
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Garance Coquant
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Loïc Brot
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Dominique Rainteau
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Philippe Seksik
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
- Service de Gastroentérologie et Nutrition, Hôpital Saint-Antoine, APHP, 75012 Paris, France
| | - Jean-Pierre Grill
- INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Saint-Antoine, Microbiote Intestin et Inflammation, Sorbonne Université, 75005 Paris, France; (G.C.); (L.B.); (D.R.); (J.-P.G.)
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules (LBM), Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; (A.P.); (J.-M.M.)
| |
Collapse
|
22
|
Aguanno D, Coquant G, Postal BG, Osinski C, Wieckowski M, Stockholm D, Grill JP, Carrière V, Seksik P, Thenet S. The intestinal quorum sensing 3-oxo-C12:2 Acyl homoserine lactone limits cytokine-induced tight junction disruption. Tissue Barriers 2020; 8:1832877. [PMID: 33100129 PMCID: PMC7714502 DOI: 10.1080/21688370.2020.1832877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestine is home to the largest microbiota community of the human body and strictly regulates its barrier function. Tight junctions (TJ) are major actors of the intestinal barrier, which is impaired in inflammatory bowel disease (IBD), along with an unbalanced microbiota composition. With the aim to identify new actors involved in host-microbiota interplay in IBD, we studied N-acyl homoserine lactones (AHL), molecules of the bacterial quorum sensing, which also impact the host. We previously identified in the gut a new and prominent AHL, 3-oxo-C12:2, which is lost in IBD. We investigated how 3-oxo-C12:2 impacts the intestinal barrier function, in comparison to 3-oxo-C12, a structurally close AHL produced by the opportunistic pathogen P. aeruginosa. Using Caco-2/TC7 cells as a model of polarized enterocytes, we compared the effects on paracellular permeability and TJ integrity of these two AHL, separately or combined with pro-inflammatory cytokines, Interferon-γ and Tumor Necrosis Factor-α, known to disrupt the barrier function during IBD. While 3-oxo-C12 increased paracellular permeability and decreased occludin and tricellulin signal at bicellular and tricellular TJ, respectively, 3-oxo-C12:2 modified neither permeability nor TJ integrity. Whereas 3-oxo-C12 potentiated the hyperpermeability induced by cytokines, 3-oxo-C12:2 attenuated their deleterious effects on occludin and tricellulin, and maintained their interaction with their partner ZO-1. In addition, 3-oxo-C12:2 limited the cytokine-induced ubiquitination of occludin and tricellulin, suggesting that this AHL prevented their endocytosis. In conclusion, the role of 3-oxo-C12:2 in maintaining TJ integrity under inflammatory conditions identifies this new AHL as a potential beneficial actor of host–microbiota interactions in IBD.
Collapse
Affiliation(s)
- Doriane Aguanno
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Garance Coquant
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Barbara G Postal
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Université de Paris, Centre De Recherche sur l'Inflammation, INSERM UMR 1149 , Paris, France.,Biology and Genetics of Bacterial Cell Wall Unit, Pasteur Institute , Paris, France
| | - Céline Osinski
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches , Paris, France
| | - Margaux Wieckowski
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Daniel Stockholm
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Département De Gastroentérologie Et Nutrition , Paris, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| |
Collapse
|
23
|
Zhu K, Zhao Y, Yang Y, Bai Y, Zhao T. Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro. ACS OMEGA 2020; 5:20399-20408. [PMID: 32832793 PMCID: PMC7439398 DOI: 10.1021/acsomega.0c02364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), a globally prevalent environmental contaminant, has been shown to have the potential to disrupt intestinal barrier function. This study explored the mechanisms of BPA-induced intestinal barrier dysfunction. In addition, the protective effect of the natural product icariin (ICA) on BPA-induced intestinal barrier dysfunction was evaluated. BPA relieved oxidative stress (reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), and hydrogen peroxide (H2O2)), suppressed antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (T-AOC)) activity, and increased gene expression and protein content of p38 mitogen-activated protein kinase (MAPK), giving rise to the dysfunctional gut in mice. ICA therapy effectively eased intestinal barrier dysfunction caused by BPA in vivo and in vitro. Treatment with p38 MAPK inhibitor (SB203580) significantly rescued the MODE-K cell barrier function disrupted by BPA challenge. However, treatment with p38 MAPK activator (anisomycin) did not attenuate the MODE-K cell barrier function impaired by BPA challenge. Overall, our data suggested that BPA disrupted intestinal barrier function in a p38 MAPK-dependent manner. Furthermore, we demonstrated that ICA regulated the redox equilibrium of intestinal epithelial cells by inhibiting the expression of p38 MAPK, thereby alleviating BPA-induced disruption of intestinal barrier function. These findings contributed to a better understanding of the mechanisms of BPA-induced intestinal barrier dysfunction and provided new insights into the prevention and treatment of BPA-induced intestinal diseases.
Collapse
Affiliation(s)
- Kun Zhu
- Department
of Pharmacy, The Third Hospital of Jilin
University, Xiantai Street
No. 126, Changchun 130021, China
| | - Yanan Zhao
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yang Yang
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yuansong Bai
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Tianyu Zhao
- College
of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun 130021, China
| |
Collapse
|
24
|
Santajit S, Seesuay W, Mahasongkram K, Sookrung N, Pumirat P, Ampawong S, Reamtong O, Chongsa-Nguan M, Chaicumpa W, Indrawattana N. Human Single-chain Variable Fragments Neutralize Pseudomonas aeruginosa Quorum Sensing Molecule, 3O-C12-HSL, and Prevent Cells From the HSL-mediated Apoptosis. Front Microbiol 2020; 11:1172. [PMID: 32670218 PMCID: PMC7326786 DOI: 10.3389/fmicb.2020.01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
The quorum sensing (QS) signaling molecule, N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL), contributes to the pathogenesis of Pseudomonas aeruginosa by regulating expression of the bacterial virulence factors that cause intense inflammation and toxicity in the infected host. As such, the QS molecule is an attractive therapeutic target for direct-acting inhibitors. Several substances, both synthetic and naturally derived products, have shown effectiveness against detrimental 3O-C12-HSL activity. Unfortunately, these compounds are relatively toxic to mammalian cells, which limits their clinical application. In this study, fully human single-chain variable fragments (HuscFvs) that bind to P. aeruginosa haptenic 3O-C12-HSL were generated based on the principle of antibody polyspecificity and molecular mimicry of antigenic molecules. The HuscFvs neutralized 3O-C12-HSL activity and prevented mammalian cells from the HSL-mediated apoptosis, as observed by Annexin V/PI staining assay, sub-G1 arrest population investigation, transmission electron microscopy for ultrastructural morphology of mitochondria, and confocal microscopy for nuclear condensation and DNA fragmentation. Computerized homology modeling and intermolecular docking predicted that the effective HuscFvs interacted with several regions of the bacterially derived ligand that possibly conferred neutralizing activity. The effective HuscFvs should be tested further in vitro on P. aeruginosa phenotypes as well as in vivo as a sole or adjunctive therapeutic agent against P. aeruginosa infections, especially in antibiotic-resistant cases.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Biomedical Research Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Manas Chongsa-Nguan
- Faculty of Public Health and Environment, Pathumthani University, Pathum Thani, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Qu W, Zhang L, Ao J. Radiotherapy Induces Intestinal Barrier Dysfunction by Inhibiting Autophagy. ACS OMEGA 2020; 5:12955-12963. [PMID: 32548479 PMCID: PMC7288592 DOI: 10.1021/acsomega.0c00706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Radiation enteritis is a common complication of abdominal irradiation (IR) therapy. However, the molecular mechanism of radiation enteritis accompanied by impaired intestinal barrier function is not clear. The aim of this study was to investigate the important role of autophagy in radiation-induced intestinal barrier function impairment. IR increased the abundance of autophagy-related genes in the colonic mucosa of mice. An autophagy activator (rapamycin) inhibited the oxidative stress (reactive oxygen species, reactive nitrogen species, malondialdehyde, and hydrogen peroxide) and inflammatory response (interleukin-1β, -6, -8, and tumor necrosis factor-α) in the colon samples. Antioxidant indices (superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity) in serum and colonic mucosa were significantly increased in the rapamycin group. Rapamycin can improve the activity of mitochondrial respiratory chain complexes I-V in colon mucosa. In addition, rapamycin reduced the gene expression and enzyme activity of caspase in the colonic mucosa. Levels of endotoxin, diamine peroxidase, d-lactic acid, and zonulin in serum and colonic mucosa were significantly reduced in the rapamycin group. Moreover, rapamycin significantly elevated the gene abundance of zonula occludens-1, occludin, claudin-1, and claudin-4. In contrast, completely opposite results were obtained for the autophagy inhibitor 3-methyladenine as compared to those of rapamycin. These results revealed that inhibition of autophagy is an important mechanism of intestinal barrier function damage caused by radiation. Collectively, these findings increase our understanding of the pathogenesis of radiation-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University
Medical College, Jiangyin, Jiangsu 214400, People’s Republic of China
| | - Lijin Zhang
- Department
of Urinary Surgery, The Affiliated Jiangyin
Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People’s Republic of China
| | - Jinfang Ao
- Department of Pharmacy, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi 330003, People’s Republic of China
| |
Collapse
|
26
|
Carusone TM, Cardiero G, Cerreta M, Mandrich L, Moran O, Porzio E, Catara G, Lacerra G, Manco G. WTAP and BIRC3 are involved in the posttranscriptional mechanisms that impact on the expression and activity of the human lactonase PON2. Cell Death Dis 2020; 11:324. [PMID: 32382056 PMCID: PMC7206036 DOI: 10.1038/s41419-020-2504-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
The activity of human paraoxonase 2 (PON2) is rapidly reduced in cells incubated with the bacterial quorormone 3-Oxo-dodecanoyl Homoserine Lactone (3OC12HSL), an observation that led to hypothesize a fast PON2 post-translational modification (PTM). Recently, we detected a 3OC12HSL-induced PTM in a cell-free system in which a crude extract from 3OC12HSL-treated HeLa cells was able to inactivate and ubiquitinate at position 144 a recombinant PON2. Here we show the occurrence of this and new PTMs on PON2 in HeLa cells. PTMs were found to gather nearby the two SNPs, A148G, and S311C, that are related to type-2 diabetes and its complications. Furthermore, we detected a PTM nearby a 12 amino acids region that is deleted in PON2 Isoform 2. An in vitro mutation analysis showed that the SNPs and the deletion are involved in PON2 activity and suggested a role of PTMs on its modulation, while a SAXS analysis pointed to Isoform 2 as being largely unstructured, compared to the wild type. Besides, we discovered a control of PON2 expression via a putative mRNA operon involving the Wilms tumor 1 associated protein (WTAP) and the E3 ubiquitin ligase (E3UbL) baculoviral IAP repeat-containing 3 (BIRC3).
Collapse
Affiliation(s)
- Teresa Maria Carusone
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giovanna Cardiero
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy
| | - Mariangela Cerreta
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Oscar Moran
- Institute of Biophysics (IBF, CNR), National Research Council, Genoa, Italy
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy.
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy.
| |
Collapse
|
27
|
Guo J, Yoshida K, Ikegame M, Okamura H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J Oral Biosci 2020; 62:16-29. [DOI: 10.1016/j.job.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
28
|
Zhao Z, Cheng W, Qu W, Wang K. Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner. Biomed Pharmacother 2020; 124:109855. [PMID: 31986410 DOI: 10.1016/j.biopha.2020.109855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
MGN-3 is an arabinoxylan from rice bran that has been shown to be an excellent antioxidant and radioprotector. This study examined the protective effects of MGN-3 on radiation-induced intestinal injury. Mice were treated with MGN-3 prior to irradiation, then continued to receive MGN-3 for 4 weeks thereafter. MGN-3 increased the activity of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, Ⅳ and Ⅴ, the intercellular ATP content, the mitochondria-encoded gene expression and mitochondrial copy numbers in the jejunal and colonic mucosa. MGN-3 reduced the oxidative stress levels and inflammatory response indicators in the serum and jejunal and colonic mucosa. Antioxidant indicators such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity were significantly increased in the serum and jejunal and colonic mucosa in the MGN-3 group. Moreover, MGN-3 decreased the gene abundances and enzymatic activities of caspase-3, 8, 9 and 10 in the jejunal and colonic mucosa. The endotoxin, diamine peroxidase, d-lactate and zonulin levels were significantly reduced in the serum and jejunal and colonic mucosa in the MGN-3 group. MGN-3 also markedly upregulated the gene abundances of ZO-1, occludin, claudin-1 and mucin 2. MGN-3 effectively attenuated radiation-induced changes in the intestinal epithelial mitochondrial function, oxidative stress, inflammatory response, apoptosis, intestinal permeability and barrier function in mice. These findings add to our understanding of the potential mechanisms by which MGN-3 alleviates radioactive intestinal injury.
Collapse
Affiliation(s)
- Zhenguo Zhao
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Wei Cheng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Kai Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China.
| |
Collapse
|
29
|
Xiong W, Huang J, Li X, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. Icariin and its phosphorylated derivatives alleviate intestinal epithelial barrier disruption caused by enterotoxigenic
Escherichia coli
through modulate p38 MAPK in vivo and in vitro. FASEB J 2019; 34:1783-1801. [DOI: 10.1096/fj.201902265r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jing Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Xueying Li
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhu Zhang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Meilan Jin
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jian Wang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Yuwei Xu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zili Wang
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|
30
|
Jiang W, Zhao H, Zhang L, Wu B, Zha Z. Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats. Biomed Pharmacother 2019; 121:109629. [PMID: 31733573 DOI: 10.1016/j.biopha.2019.109629] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), a global environmental pollutant, has been reported to have the potential to induced organs toxicity. This study explored the potential benefits of astaxanthin (ATX), a natural antioxidant, against BPA toxicity in the kidney, and explored whether mitochondria are involved in this condition. Male Wistar rats were fed with a vehicle, BPA, BPA plus ATX, ATX and were evaluated after five weeks. ATX treatment significantly reversed BPA-induced changes in body weight, kidney/body weight, and renal function related markers. When treated simultaneously with ATX, the imbalance of the oxidative-antioxidant status caused by BPA was also alleviated. The high expression of BPA-induced pro-inflammatory cytokines were inhibited by ATX treatment. ATX treatment also lessened the effects of BPA-induced caspase-3, -8, -9 and -10 gene expression and enzyme activity. The benefits of ATX were associated with enhanced mitochondrial function, which led to increased mitochondrial-encoded gene expression, mitochondrial copy number, and increased mitochondrial respiratory chain complex enzyme activity. Our results demonstrate the efficacy of ATX in protecting BPA-induced kidney damage, in part by regulating oxidative imbalance and improving mitochondrial function. Collectively, these findings provide a new perspective for the rational use of ATX in the treatment of BPA-induced kidney disease.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Urology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Hu Zhao
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Lijin Zhang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Bin Wu
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Zhenlei Zha
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| |
Collapse
|
31
|
Feng L, Chen S, Zhang L, Qu W, Chen Z. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112960. [PMID: 31394344 DOI: 10.1016/j.envpol.2019.112960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 05/28/2023]
Abstract
That an alteration of the intestinal permeability is associated with gut barrier function has been increasingly evident, which plays an important role in human and animal health. Bisphenol A (BPA), an industrial compound used worldwide, has recently been classified as an environmental pollutant. One of our earlier studies has demonstrated that BPA disrupts the intestinal barrier function by inducing apoptosis and inhibiting cell proliferation in the human colonic epithelial cells line. In this study, we investigated the effects of dietary BPA uptake on the colonic barrier function in mice, as well as the intestinal permeability. Dietary BPA uptake was observed to destroy the morphology of the colonic epithelium and increase the pathology score. The levels of endotoxin, diamine peroxidase, D-lactate, and zonulin were found to have been significantly elevated in both plasma and colonic mucosa. A decline in the number of intestinal goblet cells and in mucin 2 gene expression was observed in the mice belonging to the BPA group. The results of immunohistochemistry revealed that the expression of tight junction proteins (ZO-1, occludin, and claudin-1) in colonic epithelium of BPA mice decreased significantly, and their gene abundance was also inhibited. Moreover, dietary BPA uptake was also found to have significantly reduced colonic microbial diversity and altered microbial structural composition. The functional profiles of colonic bacterial community exhibited adverse effects of dietary BPA intake on the endocrine and digestive systems, as well as the transport and catabolism functions. Collectively, our study highlighted that dietary BPA increased the colonic permeability, and this effect was closely related to the disruption of intestinal chemistry and physical and biological barrier functions.
Collapse
Affiliation(s)
- Ling Feng
- Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, Jiangsu, China.
| | - Sijin Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Lijin Zhang
- Department of Urinary Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Zhigao Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| |
Collapse
|
32
|
Tao S, Bai Y, Li T, Li N, Wang J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J 2019; 33:9897-9912. [PMID: 31170357 DOI: 10.1096/fj.201900204rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deteriorative effect of low birth weight (LBW) on the mucosal permeability of the small intestine in piglets has been widely confirmed. However, whether the hindgut epithelial barrier function in LBW pigs is deteriorated during the growing stage is still unclear. Our study investigated differences in the hindgut epithelial barrier function between LBW and normal birth weight pigs during the growing stage (d 90). Our data demonstrated that the hindgut epithelium of LBW pigs has a high histopathological score, accompanied by decreased antioxidant capacity and increased apoptosis rate, as well as elevated expression and activity of caspase-3. In addition, the number of intestinal goblet cells and gene expression of mucin 2 were significantly down-regulated in LBW pigs. The expression of tight junction proteins (ZO-1 and occludin) was markedly inhibited by the LBW. The mRNA abundance of inflammatory cytokines such as TNF-α, IL-1β, and IL-8 was significantly increased in the hindgut mucosa of LBW pigs. Furthermore, our data revealed that LBW altered the intestinal microbial community in the hindgut mucosa of pigs. Collectively, these finding add to our understanding of the mechanisms responsible for hindgut epithelial barrier dysfunction in LBW pigs during the growing stage and facilitate the development of nutritional intervention strategies.-Tao, S., Bai, Y., Li, T., Li, N., Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed Pharmacother 2019; 117:109182. [DOI: 10.1016/j.biopha.2019.109182] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
|
34
|
Maurice NM, Bedi B, Yuan Z, Goldberg JB, Koval M, Hart CM, Sadikot RT. Pseudomonas aeruginosa Induced Host Epithelial Cell Mitochondrial Dysfunction. Sci Rep 2019; 9:11929. [PMID: 31417101 PMCID: PMC6695387 DOI: 10.1038/s41598-019-47457-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
The pathogenicity of P. aeruginosa is dependent on quorum sensing (QS), an inter-bacterial communication system that can also modulate host biology. The innate immune function of the lung mucosal barrier is dependent on proper mitochondrial function. The purpose of this study was to define the mechanism by which bacterial factors modulate host lung epithelial cell mitochondrial function and to investigate novel therapies that ameliorate this effect. 3-oxo-C12-HSL disrupts mitochondrial morphology, attenuates mitochondrial bioenergetics, and induces mitochondrial DNA oxidative injury. Mechanistically, we show that 3-oxo-C12-HSL attenuates expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration, and its downstream effectors in both BEAS-2B and primary lung epithelial cells. Overexpression of PGC-1α attenuates the inhibition in cellular respiration caused by 3-oxo-C12-HSL. Pharmacologic activation of PGC-1α restores barrier integrity in cells treated with 3-oxo-C12-HSL. These data demonstrate that the P. aeruginosa QS molecule, 3-oxo-C12-HSL, alters mitochondrial pathways critical for lung mucosal immunity. Genetic and pharmacologic strategies that activate the PGC-1α pathway enhance host epithelial cell mitochondrial function and improve the epithelial innate response to P. aeruginosa. Therapies that rescue PGC-1α function may provide a complementary approach in the treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Nicholas M Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA
| | - Brahmchetna Bedi
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA
| | - Zhihong Yuan
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Center for CF and Airways Disease Research Atlanta, Atlanta, GA, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA
| | - Ruxana T Sadikot
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA.
| |
Collapse
|
35
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. The protective effect of icariin and phosphorylated icariin against LPS-induced intestinal goblet cell dysfunction. Innate Immun 2019; 26:97-106. [PMID: 31390916 PMCID: PMC7016409 DOI: 10.1177/1753425919867746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, we used LS174T cells as a model to investigate the protective effects of icariin and phosphorylated icariin on LPS-induced goblet cell dysfunction. Our results indicated that icariin and phosphorylated icariin increased the cell viability and decreased lactate dehydrogenase activity in LPS-treated LS174T cells. Icariin and phosphorylated icariin attenuated LPS-induced changes in mucin 2 synthesis and secretion. Besides, Icariin and phosphorylated icariin reduced the levels of ROS, MDA, and H2O2 and increased the activity of SOD, GPx, CAT, and T-AOC in LPS-treated LS174T cells. Moreover, the levels of IL-1β, IL-6, IL-8, and TNF-α were reduced in the Icariin and phosphorylated icariin group. Furthermore, Icariin and phosphorylated icariin decreased gene abundance or enzyme activity of Bip, XBP1, GRP78, CHOP, caspase-3, and caspase-4 in LPS-treated LS174T cells. Our data suggest that Icariin and phosphorylated icariin effectively attenuate LPS-induced intestinal goblet cell function damage through regulating oxidative stress, inflammation, apoptosis, and mucin expression.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jian Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling. Med Microbiol Immunol 2019; 208:855-868. [DOI: 10.1007/s00430-019-00631-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 01/29/2023]
|
37
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. The protective effect of icariin and phosphorylated icariin against LPS-induced intestinal epithelial cells injury. Biomed Pharmacother 2019; 118:109246. [PMID: 31387006 DOI: 10.1016/j.biopha.2019.109246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Icariin (ICA) and phosphorylated icariin (pICA) have excellent antiviral and antioxidant effects. However, whether ICA and pICA cause anti-LPS-induced intestinal damage remains unclear. In this study, we used Caco-2 cells as a model to investigate the protective effects of ICA and pICA on human colonic epithelial cells and explore their potential mechanisms. Our results indicated that ICA and pICA increased cell viability and decreased lactate dehydrogenase activity in Caco-2 cells. ICA and pICA also attenuated LPS-induced changes in intestinal epithelial cell permeability and reduced the levels of oxidative stress indicators, such as reactive oxygen species, malondialdehyde, and hydrogen peroxide, in Caco-2 cells. Antioxidant indicators, such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity, were increased, while the levels of IL-1β, IL-6, IL-8 and TNF-α were reduced in the ICA and pICA groups. Furthermore, ICA and pICA decreased the gene abundance and enzyme activities of caspase-3, -8, -9 and -10 in Caco-2 cells. Our data suggest that ICA and pICA effectively attenuated LPS-induced changes in the oxidative stress, inflammation, apoptosis and intestinal permeability of intestinal epithelial cells. These findings provide new insight for treating LPS-induced intestinal injury.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Jian Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
38
|
Zhao Z, Qu W, Wang K, Chen S, Zhang L, Wu D, Chen Z. Bisphenol A inhibits mucin 2 secretion in intestinal goblet cells through mitochondrial dysfunction and oxidative stress. Biomed Pharmacother 2019; 111:901-908. [DOI: 10.1016/j.biopha.2019.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 01/14/2023] Open
|
39
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
40
|
Song D, Meng J, Cheng J, Fan Z, Chen P, Ruan H, Tu Z, Kang N, Li N, Xu Y, Wang X, Shu F, Mu L, Li T, Ren W, Lin X, Zhu J, Fang X, Amrein MW, Wu W, Yan LT, Lü J, Xia T, Shi Y. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat Microbiol 2019; 4:97-111. [PMID: 30510173 DOI: 10.1038/s41564-018-0290-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/10/2018] [Indexed: 01/02/2023]
Abstract
Bacterial quorum-sensing autoinducers are small chemicals released to control microbial community behaviours. N-(3-oxo-dodecanoyl) homoserine lactone, the autoinducer of the Pseudomonas aeruginosa LasI-LasR circuitry, triggers significant cell death in lymphocytes. We found that this molecule is incorporated into the mammalian plasma membrane and induces dissolution of eukaryotic lipid domains. This event expels tumour necrosis factor receptor 1 into the disordered lipid phase for its spontaneous trimerization without its ligand and drives caspase 3-caspase 8-mediated apoptosis. In vivo, P. aeruginosa releases N-(3-oxo-dodecanoyl) homoserine lactone to suppress host immunity for its own better survival; conversely, blockage of caspases strongly reduces the severity of the infection. This work reveals an unknown communication method between microorganisms and the mammalian host and suggests interventions of bacterial infections by intercepting quorum-sensing signalling.
Collapse
Affiliation(s)
- Dingka Song
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Junchen Meng
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jie Cheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Hefei Ruan
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongyuan Tu
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ning Kang
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nan Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ying Xu
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaobo Wang
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Fei Shu
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Libing Mu
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Tengfei Li
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenran Ren
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Matthias W Amrein
- Departments of Cell Biology and Anatomy, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Junhong Lü
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Tie Xia
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
41
|
Tao S, Sun Q, Cai L, Geng Y, Hua C, Ni Y, Zhao R. Caspase-1-dependent mechanism mediating the harmful impacts of the quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone on the intestinal cells. J Cell Physiol 2018; 234:3621-3633. [PMID: 30471106 DOI: 10.1002/jcp.27132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), a quorum-sensing (QS) molecule produced by Gram-negative bacteria in the gastrointestinal tract, adversly impacts host cells. Our previous study demonstrated that 3-oxo-C12-HSL induced a decrease in cell viability via cell apoptosis and eventually disrupted mucin synthesis from LS174T goblet cells. However, the molecular mechanism underlying cell apoptosis and whether pyroptosis was involved in this process are still unknown. In this study, we emphasized on the caspases signal pathway and sterile inflammation to reveal the harmful effects of 3-oxo-C12-HSL on LS174T goblet cells. Our data showed that 3-oxo-C12-HSL is a major inducer of oxidative stress indicated by a high level of intracellular reactive oxygen species (ROS). However, TQ416, an inhibitor of paraoxonase 2, can effectively block oxidative stress. A higher ROS level is the trigger for activating the caspase-1 and 3 cascade signal pathways. Blockade of ROS synthesis and caspase-1 and 3 cascades can obviously rescue the viability of LS174T cells after 3-oxo-C12-HSL treatment. We also found that paralleled with a higher level of ROS and caspases activation, an abnormal expression of proinflammatory cytokines was induced by 3-oxo-C12-HSL treatment; however, the blockage of TLRs-NF-κB pathway cannot restore cell viability and secretary function. These data collectively indicate that 3-oxo-C12-HSL exposure induces damages to cell viability and secretary function of LS174T goblet cells, which is mediated by oxidative stress, cell apoptosis, and sterile inflammation. Overall, the data in this study will provide a better understanding of the harmful impacts of some QS molecules on host cells and their underlying mechanism.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Turkina MV, Vikström E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. J Innate Immun 2018; 11:263-279. [PMID: 30428481 DOI: 10.1159/000494069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.
Collapse
Affiliation(s)
- Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
43
|
Yadav VK, Singh PK, Kalia M, Sharma D, Singh SK, Agarwal V. Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int J Med Microbiol 2018; 308:858-864. [DOI: 10.1016/j.ijmm.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/15/2018] [Accepted: 07/29/2018] [Indexed: 01/20/2023] Open
|
44
|
Qu W, Zhao Z, Chen S, Zhang L, Wu D, Chen Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci 2018; 208:167-174. [DOI: 10.1016/j.lfs.2018.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023]
|
45
|
Tao S, Niu L, Cai L, Geng Y, Hua C, Ni Y, Zhao R. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci 2018; 201:81-88. [PMID: 29596921 DOI: 10.1016/j.lfs.2018.03.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 02/08/2023]
Abstract
AIMS The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. MAIN METHODS In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. KEY FINDINGS The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P < 0.05) in LS174T cells after C12-HSL treatment, with elevated intracellular ATP generation (P < 0.05). Flow cytometry analysis revealed significantly increased intracellular Ca2+ levels (P < 0.05), as well as disrupted mitochondrial activity and cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P < 0.05) in LS174T cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. SIGNIFICANCE These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Neely AM, Zhao G, Schwarzer C, Stivers NS, Whitt AG, Meng S, Burlison JA, Machen TE, Li C. N-(3-Oxo-acyl)-homoserine lactone induces apoptosis primarily through a mitochondrial pathway in fibroblasts. Cell Microbiol 2017; 20. [PMID: 28876505 DOI: 10.1111/cmi.12787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
N-(3-Oxododecanoyl)-l-homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum-sensing molecule for bacteria-bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12-triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in "initiator" caspases or "effector" caspases. Our data indicate that C12 selectively induces the mitochondria-dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both "initiator" and "effector" caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis.
Collapse
Affiliation(s)
- Aaron M Neely
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Guoping Zhao
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole S Stivers
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Aaron G Whitt
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Shuhan Meng
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Joseph A Burlison
- Structural Biology Program, James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Chi Li
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
47
|
Balhouse BN, Patterson L, Schmelz EM, Slade DJ, Verbridge SS. N-(3-oxododecanoyl)-L-homoserine lactone interactions in the breast tumor microenvironment: Implications for breast cancer viability and proliferation in vitro. PLoS One 2017; 12:e0180372. [PMID: 28692660 PMCID: PMC5503244 DOI: 10.1371/journal.pone.0180372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/14/2017] [Indexed: 01/19/2023] Open
Abstract
It is well documented that the tumor microenvironment profoundly impacts the etiology and progression of breast cancer, yet the contribution of the resident microbiome within breast tissue remains poorly understood. Tumor microenvironmental conditions, such as hypoxia and dense tumor stroma, predispose progressive phenotypes and therapy resistance, however the role of bacteria in this interplay remains uncharacterized. We hypothesized that the effect of individual bacterial secreted molecules on breast cancer viability and proliferation would be modulated by these tumor-relevant stressors differentially for cells at varying stages of progression. To test this, we incubated human breast adenocarcinoma cells (MDA-MB-231, MCF-DCIS.com) and non-malignant breast epithelial cells (MCF-10A) with N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), a quorum-sensing molecule from Pseudomonas aeruginosa that regulates bacterial stress responses. This molecule was selected because Pseudomonas was recently characterized as a significant fraction of the breast tissue microbiome and OdDHL is documented to impact mammalian cell viability. After OdDHL treatment, we demonstrated the greatest decrease in viability with the more malignant MDA-MB-231 cells and an intermediate MCF-DCIS.com (ductal carcinoma in situ) response. The responses were also culture condition (i.e. microenvironment) dependent. These results contrast the MCF-10A response, which demonstrated no change in viability in any culture condition. We further determined that the observed trends in breast cancer viability were due to modulation of proliferation for both cell types, as well as the induction of necrosis for MDA-MB-231 cells in all conditions. Our results provide evidence that bacterial quorum-sensing molecules interact with the host tissue environment to modulate breast cancer viability and proliferation, and that the effect of OdDHL is dependent on both cell type as well as microenvironment. Understanding the interactions between bacterial signaling molecules and the host tissue environment will allow for future studies that determine the contribution of bacteria to the onset, progression, and therapy response of breast cancer.
Collapse
Affiliation(s)
- Brittany N. Balhouse
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Logan Patterson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States of America
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | - Scott S. Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Camps J, Iftimie S, García-Heredia A, Castro A, Joven J. Paraoxonases and infectious diseases. Clin Biochem 2017; 50:804-811. [PMID: 28433610 DOI: 10.1016/j.clinbiochem.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
The paraoxonases (PON1, PON2 and PON3) are an enzyme family with a high structural homology. All of them have lactonase activity and degrade lipid peroxides in lipoproteins and cells. As such, they play a role in protection against oxidation and inflammation. Infectious diseases are often associated with oxidative stress and an inflammatory response. Infection and inflammation trigger a cascade of reactions in the host, known as the acute-phase response. This response is associated with dramatic changes in serum proteins and lipoproteins, including a decrease in serum PON1 activity. These alterations have clinical consequences for the infected patient, including an increased risk for cardiovascular diseases, and an impaired protection against the formation of antibiotic-resistant bacterial biofilms. Several studies have investigated the value of serum PON1 measurement as a biomarker of the infection process. Low serum PON1 activities are associated with poor survival in patients with severe sepsis. In addition, preliminary studies suggest that serum PON1 concentration and/or enzyme activity may be useful as markers of acute concomitant infection in patients with an indwelling central venous catheter. Investigating the associations between paraoxonases and infectious diseases is a recent, and productive, line of research.
Collapse
Affiliation(s)
- Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain.
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, 2, 43204 Reus, Catalonia, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, 2, 43204 Reus, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain
| |
Collapse
|