1
|
Huang Y, Hu Y, Lv L, Wang D, Li X, Liu S, Zhuo Z, Fan C, Cheng J. Supplementation with Lentinan Improves the Colostrum Quality of Holstein Dairy Cows and the Immunity and Antioxidant Capacity of Newborn Calves. Animals (Basel) 2025; 15:835. [PMID: 40150364 PMCID: PMC11939786 DOI: 10.3390/ani15060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The aim of this study was to evaluate the effects of lentinan (LNT) on the quality of colostrum produced by perinatal dairy cows and the health status of their newborn calves. A total of 40 expectant Holstein cows, matched for parity and expected date of delivery, were selected and randomly divided into four groups: a control group fed a total mixed diet (TMR); a low LNT group (10 g/d, LLNT); a medium LNT group (20 g/d, MLNT); and a high LNT group (40 g/d, HLNT). The study commenced 21 days prior to parturition and continued for three weeks. Colostrum was collected from the cows immediately after delivery and subsequently fed to the newborn calves. The results indicated that colostrum milk protein production and IgG production in the MLNT group were significantly increased (p < 0.05). Following colostrum gavage, serum SOD and IgG in both the MLNT and HLNT groups showed significant increases (p < 0.05), while MDA and IL-1β levels were significantly decreased (p < 0.05). Moreover, calves in the MLNT and HLNT groups experienced lower incidences of diarrhea, pneumonia, and overall morbidity compared to those in the control group. In conclusion, LNT enhanced the quality of colostrum in perinatal cows and contributed to the health of newborn calves through colostrum. This study offers new research avenues for improving the health of newborn calves and provides a theoretical foundation for the development of LNT as a novel feed additive.
Collapse
Affiliation(s)
- Yinghao Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Yapeng Hu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Longfei Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Dian Wang
- National Center of Technology Innovation for Dairy, Hohhot 010010, China;
- Inner Mongolia Youran Dairy Group Limited, Hohhot 010010, China
| | - Xiao Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Sijia Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Zhao Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Caiyun Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.H.); (Y.H.); (L.L.); (X.L.); (S.L.); (Z.Z.)
| |
Collapse
|
2
|
Li T, Wang Q, Rui C, Ren L, Dai M, Bi Y, Yang Y. Targeted isolation and AI-based analysis of edible fungal polysaccharides: Emphasizing tumor immunological mechanisms and future prospects as mycomedicines. Int J Biol Macromol 2025; 284:138089. [PMID: 39603293 DOI: 10.1016/j.ijbiomac.2024.138089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities such as antioxidant, immune-modulatory, anti-inflammatory, and anti-obesity properties. In cancer therapy, members of this family show promise in inhibiting tumor growth and metastasis through mechanisms like apoptosis induction and modulation of the immune system. This review provides a detailed examination of contemporary techniques for the targeted isolation and structural elucidation of edible fungal polysaccharides. Additionally, the review highlights the application of advanced artificial intelligence (AI) methodologies to facilitate efficient and accurate structural analysis of these polysaccharides. It also explores their interactions with immune cells within the tumor microenvironment and their role in modulating gut microbiota, which can enhance overall immune function and potentially reduce cancer risks. Clinical studies further demonstrate their efficacy in various cancer treatments. Overall, edible fungal polysaccharides represent a promising frontier in cancer therapy, leveraging their natural origins and minimal toxicity to offer novel strategies for comprehensive cancer management.
Collapse
Affiliation(s)
- Tingting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China; College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qin Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuang Rui
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lu Ren
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mingcheng Dai
- Clinical Medical Institute, Harbin Medical University, Harbin, China
| | - Yong Bi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; National Engineering Research Center of Edible Fungi; Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
3
|
Cui FJ, Fu X, Sun L, Zan XY, Meng LJ, Sun WJ. Recent insights into glucans biosynthesis and engineering strategies in edible fungi. Crit Rev Biotechnol 2024; 44:1262-1279. [PMID: 38105513 DOI: 10.1080/07388551.2023.2289341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 12/19/2023]
Abstract
Fungal α/β-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/β-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/β-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| | - Xin Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| |
Collapse
|
4
|
Arast Y, Esfandiari H, Kamranfar F, Mousavi Z, Ameri Shah Reza M, Pourahmad J. Evaluating the concentration dependent dual effects of β-Glucan on cancerous skin cells and mitochondria isolated from melanoma-induced animal model. Cutan Ocul Toxicol 2024:1-9. [PMID: 39392009 DOI: 10.1080/15569527.2024.2410355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Melanoma is still one of the deadliest cancers whose prevalence has increased in recent decades. Today, many polysaccharides and their bioactive compounds have been of special importance in modern biotechnology. They have various biological and therapeutic properties. they can regulate and strengthen the immune system, lower blood pressure and cholesterol, and reduce bacterial and viral infections. According to studies, these compounds also have antitumor properties. we investigated the cytotoxic effects of β-Glucan obtained from solid-state fermentation (SSF) of edible medicinal mushroom Lentinus edodes on cancerous skin cells. MATERIALS AND METHODS The mitochondria were isolated from melanoma cells via differential centrifugation and treated with various concentrations (30, 45, 60, 90, 120, and 240 µg/ml) of β-Glucan extract. Then, they were subjected to MTT, ROS, MMP decline, mitochondrial swelling, cytochrome c release, and flow cytometry assays. RESULTS The results of the MTT assay showed that IC50 of β-Glucan extract was 60 μg/ml, and it induced a selectively significant (P < 0.05) concentration-dependent decrease in the SDH activity in cancerous skin mitochondria. At higher concentrations, no such effect was observed. The ROS results also showed that 30, 45, and 60 µg/ml concentrations of β-Glucan extract significantly increased ROS. However, no such effect was observed at higher concentrations. MMP decline and the release of cytochrome c in cancer groups mitochondria and swelling were significantly increased at 30, 45, and 60 µg/ml compared to the control group. At higher concentrations, no such effect was observed. β-Glucan extract at 60 µg/ml concentration increased apoptosis on melanoma cells, while it had no effect on control non-tumour cells. DISCUSSION AND CONCLUSION Based on these results, β-Glucan extract at 30, 45, and 60 µg/ml showed a cytotoxic effect, while no such effect was observed at higher concentrations. Overall, it seems that β-Glucan has antioxidant and free radical scavenging effects on cancer cells at higher concentrations.
Collapse
Affiliation(s)
- Yalda Arast
- Research center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Hanife Esfandiari
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Farzane Kamranfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Reza MAS, Rasouli A, Vahidi H, Kobarfard F. Molecular identification of Shiitake (Lentinula edodes), analysis and production of beta-glucan using beech wood sawdust waste. Int J Biol Macromol 2024; 280:135539. [PMID: 39276893 DOI: 10.1016/j.ijbiomac.2024.135539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Lentinula edodes has the ability to grow and produce bioactive compounds on industrial by-products. This study aimed to produce B-glucan of cell wall Shiitake on Beechwood Sawdust (BWS) through a two-step procedure, which included fermentation and B-glucan extraction and purification. Shiitake mushrooms are cultivated by solid-state fermentation (SSF) using the Jamas method to increase the purity of B-glucan. The fermented substrate was first separated and then hydrolyzed by sodium hydroxide (NaOH) (10 M, 1 M), followed by acid hydrolysis extraction. The structure and purity of B-glucan were confirmed by FTIR, NMR, and AFM spectroscopy. The fungus used was molecularly identified by the 18 s rRNA method. Shiitake mushroom was produced by SSF using BWS and high purity β-glucan was extracted from the produced polysaccharide in the amount of 67.33 mg/g. FTIR, NMR, and AFM analyses proved the production of beta-glucan, and based on molecular identification, it was determined that the mushroom used was Lentinula edodes. The results obtained show that SSF is a valuable technology for the production of biomass and polysaccharides by utilizing the strain of L. edodes. To the best of our knowledge, the yield reported is the highest by the strain of L. edodes using SSF.
Collapse
Affiliation(s)
| | - Alireza Rasouli
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunol Rev 2024; 323:164-185. [PMID: 38551324 DOI: 10.1111/imr.13326] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Datta S, Verma P, Dhara B, Kundu R, Maitra S, Mitra AK, Khan MS, Zughaibi TA, Tabrez S, Kumer A. Interplay of precision therapeutics and MD study: Calocybe indica's potentials against cervical cancer and its interaction with VEGF via octadecanoic acid. J Cell Mol Med 2024; 28:e18302. [PMID: 38652115 PMCID: PMC11037404 DOI: 10.1111/jcmm.18302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.
Collapse
Affiliation(s)
- Suhana Datta
- Department of MicrobiologySt. Xavier's CollegeKolkataWest BengalIndia
| | - Preeti Verma
- Department of Botany, Centre of Advanced StudiesUniversity of CalcuttaKolkataWest BengalIndia
| | - Bikram Dhara
- Department of Health SciencesNovel Global Community Educational FoundationHabersham, NSWSydneyAustralia
- Center for Global Health Research, Saveetha Medical College and HospitalSaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Rita Kundu
- Department of Botany, Centre of Advanced StudiesUniversity of CalcuttaKolkataWest BengalIndia
| | - Swastika Maitra
- Department of Health SciencesNovel Global Community Educational FoundationHabersham, NSWSydneyAustralia
| | - Arup Kumar Mitra
- Department of MicrobiologySt. Xavier's CollegeKolkataWest BengalIndia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, Department of Chemistry, College of Arts and SciencesIUBAT‐International University of Business Agriculture & TechnologyDhakaBangladesh
| |
Collapse
|
8
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
9
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
10
|
Shu X, Su J, Zhao Y, Liu C, Chen Y, Ma X, Wang Z, Bai J, Zhang H, Ma Z. Regulation of HeLa cell proliferation and apoptosis by bovine lactoferrin. Cell Biochem Funct 2023; 41:1395-1402. [PMID: 37842864 DOI: 10.1002/cbf.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Cervical cancer is one of the foremost common cancers in women. Lactoferrin (LF) has many biological functions, such as antitumor. This study aimed to explore the regulatory effect of bovine lactoferrin (bLF) on the proliferation and apoptosis of cervical cancer HeLa cells and to clarify the potential mechanism of action of bLF against HeLa cells. This study used CCK-8, Trypan blue staining, and colony formation assays to verify the effect of bLF on HeLa cell proliferation. Hoechst 33258 fluorescence staining, AO/EB staining, and western blotting were used to determine the effects of bLF on apoptosis and autophagy in HeLa cells. We discovered that bLF significantly reduced the proliferation of HeLa cells in a dose- and time-dependent manner compared to the control group. Furthermore, bLF primarily induced apoptosis in HeLa cells by increasing the expression of the proapoptotic proteins p53, Bax, and Cleaved-caspase-3 and downregulating the expression of the antiapoptotic protein Bcl-2. In addition, the present study also showed that bLF treatment significantly activated autophagy-related proteins LC3B-II and Beclin I and down regulated the autophagosome transporter protein p62, indicating that bLF treatment can induce autophagy in HeLa cells. After pretreatment with the autophagy inhibitor, 3-MA, which markedly found that autophagy inhibition by 3-MA reversed bLF-induced apoptosis, indicating that bLF can induce apoptosis by activating intracellular autophagy in HeLa cells. In the present study, our results support the theory of bLF significantly inhibited the proliferation of Hela cells by promoting apoptosis and reinforcing autophagy. The study will play an important role in therapying cervical cancer.
Collapse
Affiliation(s)
- Xingfu Shu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Jinxian Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Yu Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Chun Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yao Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Xiaomei Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
11
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Hu S, Xu H, Xie C, Meng Y, Xu X. Inhibition of human cervical cancer development through p53-dependent pathways induced by the specified triple helical β-glucan. Int J Biol Macromol 2023; 251:126222. [PMID: 37586625 DOI: 10.1016/j.ijbiomac.2023.126222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study demonstrates that the purified β-glucan (LNT) with a triple helix and relatively narrow molecular weight distribution, extracted and purified from artificially cultured Lentinus edodes, showed a significant cervical cancer inhibition with little cytotoxicity against normal cells in vitro and in vivo. From the in vitro data, the potential mechanism of anti-cervical cancer was preliminarily revealed as follows: LNT was firstly recognized by the human cervical cancer cell line of Hela and induced cell proliferation inhibition through p21 and apoptosis via a mitochondrion-dependent pathway by targeting the tumor suppressor of p53, indicated by an increase in reactive oxygen species (ROS) generation and a loss of mitochondrial membrane potential (Δψm), in a significant dosage-dependent manner. Meanwhile, LNT repressed tumor growth with an inhibition ratio of 61.2 % and induced tumor cell apoptosis through endogenous MDM2/p53/Bax/mitochondrion signal pathway by up-regulating the expression of p53, Bax, Cyt. c, caspase 9, and caspase 3, as well as down-regulating Bcl-2, MDM2, and PARP1 levels in Hela cells-transplanted BALB/c nude mice. This study provides a scientific basis for the clinical treatment of cervical cancer with LNT as a potential drug candidate characterized by the triple helix and specified molecular weight with a relatively narrow distribution.
Collapse
Key Words
- 4′, 6-Diamidino-2-Phenylindole (DAPI, PubChem CID: 2954)
- Acetic acid (HAc, PubChem CID:176)
- Anti-cervical cancer
- Deuterated dimethyl sulfoxide (DMSO‑d(6), PubChem CID: 75151)
- Dimethyl Sulfoxide (DMSO, PubChem CID: 679)
- Eosin (PubChem CID: 11048)
- Fluorescein isothiocyanate isomer (FITC, PubChem CID: 18730)
- Hematoxylin (PubChem CID: 442514)
- Hydrogen peroxide (H(2)O(2), PubChem CID: 784)
- Narrow molecular weight distribution
- Phenol (PubChem CID: 996)
- Sodium borohydride (NaBH(4), PubChem CID: 4311764)
- Sodium chloride (NaCl, PubChem CID: 5234)
- Sodium hydroxide (NaOH, PubChem CID: 14798)
- Sulfuric acid (PubChem CID: 1118)
- Trifluoroacetic acid (TFA, PubChem CID: 6422)
- Triple helix β-glucan
Collapse
Affiliation(s)
- Shuqian Hu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Hui Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China; Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
14
|
Zhu F, Zhang Q, Feng J, Zhang X, Li T, Liu S, Chen Y, Li X, Wu Q, Xue Y, Alitongbieke G, Pan Y. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun Inflamm Dis 2023; 11:e876. [PMID: 37249285 PMCID: PMC10214582 DOI: 10.1002/iid3.876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fukai Zhu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qianru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Jiexin Feng
- Breast Surgery DepartmentZhangzhou Hospital of Fujian Medical UniversityZhangzhouFujianPeople's Republic of China
| | - Xiuru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Tingting Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Shuwen Liu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yanling Chen
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Xiumin Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qici Wu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| |
Collapse
|
15
|
Lyu F, Xie C, Zhang L, Xu X. Nanotubes fabricated from a triple helix polysaccharide as a novel carrier delivering doxorubicin for breast cancer therapy. Int J Biol Macromol 2023; 242:124153. [PMID: 36963541 DOI: 10.1016/j.ijbiomac.2023.124153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Most current strategies of drug delivery systems face momentous challenges owing to obvious biological barriers. It is urgently necessary to develop artificial nanocarriers with biological and physical properties to reduce the severe system cytotoxicity of chemical drugs. Herein, triggered by the stiffness and amphiphilicity of the triple helix β-glucan (LNT), we developed a novel nanocarrier with the hydrophobic cavity for delivering the anti-cancer drug of doxorubicin. In our findings, based on the law of minimum surface energy, LNT with considerable chain stiffness self-assembled into nanotubes (LNT-NT) with the controlled hydrophobic nanotube diameter at the nanometer level positively depending on the molecular weight through hydrogen bonding and hydrophobic interaction in manners of "shoulder-to-shoulder" and "head-to-head" arrangements. The hydrophobic drug of doxorubicin was then demonstrated to be entrapped into LNT-NT through hydrophobic interaction. Doxorubicin loaded into LNT-NT nanocarriers significantly inhibited tumor growth in vitro and in vivo by promoting tumor cell apoptosis and blocking cell proliferation, showing a higher therapeutic efficacy of 74.5 % and less adverse effects than the free doxorubicin, which was ascribed to the enhanced targetability by LNT-NT. In conclusion, this work proposes an alternative strategy for delivering hydrophobic drugs to reduce cytotoxicity and enhance therapeutic effectiveness by constructing β-glucan-based nanotubes as a promising nanocarrier.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
16
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
17
|
A β-glucan from Aureobasidium pullulans enhanced the antitumor effect with rituximab against SU-DHL-8. Int J Biol Macromol 2022; 220:1356-1367. [PMID: 36116589 DOI: 10.1016/j.ijbiomac.2022.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
β-Glucans affect the immune system and have antitumor activity; therefore, they are being investigated as immunomodulators and chemotherapeutic adjuvants. In this study, we investigated a specific β-glucan, exopolysaccharide (EPS-1) derived from Aureobasidium pullulans (CGMCC 20363), to investigate its impact on the efficacy of rituximab against diffuse large B cell lymphoma (SU-DHL-8 cells) in vitro and in vivo. The results show that compared to rituximab alone, EPS-1 enhanced the inhibition of SU-DHL-8, had antitumor effects in vivo, and improved the response of the immune system of the host. RNA sequencing results reveal that EPS-1 had a chemotactic effect on T cells through the JAK-STAT signaling pathway and recruited immune cells into tumor tissues. EPS-1 also played an antitumor role through the mitochondrial and death receptor Fas-related apoptotic pathways. In summary, EPS-1 may be an effective adjuvant to treat diffuse large B cell lymphoma in combination with rituximab.
Collapse
|
18
|
Epigenetic Memories in Hematopoietic Stem and Progenitor Cells. Cells 2022; 11:cells11142187. [PMID: 35883630 PMCID: PMC9324604 DOI: 10.3390/cells11142187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The recent development of next-generation sequencing (NGS) technologies has contributed to research into various biological processes. These novel NGS technologies have revealed the involvement of epigenetic memories in trained immunity, which are responses to transient stimulation and result in better responses to secondary challenges. Not only innate system cells, such as macrophages, monocytes, and natural killer cells, but also bone marrow hematopoietic stem cells (HSCs) have been found to gain memories upon transient stimulation, leading to the enhancement of responses to secondary challenges. Various stimuli, including microbial infection, can induce the epigenetic reprogramming of innate immune cells and HSCs, which can result in an augmented response to secondary stimulation. In this review, we introduce novel NGS technologies and their application to unraveling epigenetic memories that are key in trained immunity and summarize the recent findings in trained immunity. We also discuss our most recent finding regarding epigenetic memory in aged HSCs, which may be associated with the exposure of HSCs to aging-related stresses.
Collapse
|
19
|
Jia X, Wang X, Liu Y, Sun Y, Ma B, Li Z, Xu C. Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Xuanjing Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanshang Liu
- Technical Center of Hebei China Tobacco Industry Co, Ltd, Shijiazhuang, China
| | - Yiyan Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingjie Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
20
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
21
|
Cai L, Zhou S, Wang Y, Xu X, Zhang L, Cai Z. New insights into the anti- hepatoma mechanism of triple-helix β- glucan by metabolomics profiling. Carbohydr Polym 2021; 269:118289. [PMID: 34294315 DOI: 10.1016/j.carbpol.2021.118289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022]
Abstract
Natural polysaccharide as the third abundant biomacromolecule has attracted considerable attentions due to their superior anti-tumor activities. However, the anti-tumor mechanism of polysaccharides has not been completely understood. Herein, the anti-tumor effects of black fungus polysaccharide (BFP), a typical β-glucan was comprehensively investigated, and the anti-tumor mechanism was obtained from metabolomics profiling. The in vitro results demonstrate that BFP inhibited the proliferation, migration and invasion of hepatoma carcinoma cells (HCC) through inducing the cell apoptosis and arresting the cell cycle at S phase without direct cytotoxicity. The hepatoma-bearing nude mice experiments further demonstrate that BFP could significantly inhibit the growth without system toxicity in vivo. Mass spectrometry-based metabolomics unveils that BFP significantly disturbed the multiple metabolic pathways, leading to the inhibition of tumor cells proliferation by promoting DNA damage, attenuating DNA damage repair, and inhibiting DNA synthesis. This study provides new insights for pharmacological research and clinical practice of polysaccharides.
Collapse
Affiliation(s)
- Liqin Cai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Wuhan University, Wuhan 430072, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
22
|
Extraction, purification, bioactivities and prospect of lentinan: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, Yang W, Jiang S. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct 2021; 11:9035-9047. [PMID: 33021613 DOI: 10.1039/d0fo01711f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alfalfa polysaccharide (APS) has been proposed to exhibit growth-promoting and immune-enhancing bodily functions in vivo. However, little is known about its downstream immunomodulatory and intrinsic molecular mechanisms. Herein, mouse splenic lymphocytes were isolated to characterize the immunomodulatory effects and molecular mechanisms of APS in vitro. The results demonstrated that APS selectively improved the cell viability and IgM production of B cells, but no effects on T cell viability or secretion of IL-2, IL-4 and IFN-γ were observed in vitro. The receptor blocking assay showed that TLR4 was the primary receptor involved in APS-mediated B cell activation, which was confirmed by the results obtained using C57BL/10ScNJ (TLR4 gene-deficient) mice. Moreover, APS activated the TLR4-MyD88 signaling pathway at the translational level by significantly increasing the protein expression of TLR4 and MyD88. Downstream pathway blocking assay demonstrated that both the MAPK and NF-κB pathways were involved in APS-induced B cell activation. Additionally, APS significantly enhanced the phosphorylation of p38, ERK, and JNK and activated the nuclear translocation of the NF-κB p65 subunit. Therefore, we concluded that APS specifically activates the immune functions of splenic B cells by TLR4, acting through the MAPK and NF-κB signaling pathways, and potently activates the p38 pathway.
Collapse
Affiliation(s)
- Yuhuai Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Hua Sun
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Qinghui Shang
- Department of Animal Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Yuxi Wang
- Lethbridge Research Centre, Agriculture and Agri-Food C, anadaLethbridge, Alberta T1J 4B1, Canada
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
24
|
Dey DK, Chang SN, Gu JY, Kim KM, Lee JJ, Kim TH, Kang SC. Ultraviolet B-irradiated mushroom supplementation increased the Ca ++ uptake and ameliorated the LPS-induced inflammatory responses in zebrafish larvae. J Food Biochem 2021; 45:e13742. [PMID: 33931887 DOI: 10.1111/jfbc.13742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
The harmful effects of excessive ultraviolet (UV) exposure are well known. However, moderate exposure to UV radiation is beneficial and required for active vitamin D synthesis in our body. People living in the coldest regions on the earth are unable to expose their skin to the solar UV radiation and, therefore, additional supplementation of Vitamin D2 is recommended. Mushrooms are one such consumable macrofungi, which has high vitamin content and therefore used in various traditional medicines. Particularly, UVB-irradiated mushrooms are rich in active vitamin D content and that is why recommended to include in the daily diets for the patients suffering from the problems associated with bone mineralization. In the present study, we evaluated the cytotoxic effect of mushroom extract (UVB-ME) (Lentinus edodes) treatment against MG-63 cells, HepG2 cells, and CCD 841 CoN cells. Furthermore, we elucidated the potential of UVB-ME on Ca++ uptake in osteoblast-like MG-63 cells. Next, we validated the response of Ca++ uptake on the growth and development of zebrafish larvae. In addition, the anti-inflammatory and immunomodulatory potential of UVB-ME treatment against lipopolysaccharide-induced inflammatory response was also analyzed in vivo. Collectively, the study suggested that dietary supplementation of UVB-irradiated mushroom is beneficial for bone calcification and could modulate the host immune system.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | | | - Ji Ye Gu
- Department of Pharmaceutical Science and Technology, Kyungsung University, Busan, Republic of Korea
| | - Kang Min Kim
- Department of Pharmaceutical Science and Technology, Kyungsung University, Busan, Republic of Korea
| | | | - Tae Hee Kim
- Naturetech Co. Ltd., Chungbuk, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
25
|
β-glucan from Lentinus edodes inhibits breast cancer progression via the Nur77/HIF-1α axis. Biosci Rep 2021; 40:227063. [PMID: 33245358 PMCID: PMC7736624 DOI: 10.1042/bsr20201006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: β-glucan from Lentinus edodes (LNT) is a plant-derived medicinal fungus possessing significant bioactivities on anti-tumor. Both hypoxia-induced factor-1α (HIF)-1α and Nur77 have been shown to be involved in the development of breast cancer. However, there is yet no proof of Nur77/HIF-1α involvement in the process of LNT-mediated tumor-inhibition effect. Methods: Immunohistochemistry, immunofluorescence and Hematoxylin–Eosin staining were used to investigate tumor growth and metastasis in MMTV-PyMT transgenic mice. Proliferation and metastasis-associated molecules were determined by Western blotting and reverse transcription-quantitative PCR. Hypoxic cellular model was established under the exposure of CoCl2. Small interference RNA was transfected using Lipofectamine reagent. The ubiquitin proteasome pathway was blunted by adding the proteasome inhibitor MG132. Results: LNT inhibited the growth of breast tumors and the development of lung metastases from breast cancer, accompanied by a decreased expression of HIF-1α in the tumor tissues. In in vitro experiments, hypoxia induced the expression of HIF-1α and Nur77 in breast cancer cells, while LNT addition down-regulated HIF-1α expression in an oxygen-free environment, and this process was in a manner of Nur77 dependent. Mechanistically, LNT evoked the down-regulation of HIF-1α involved the Nur77-mediated ubiquitin proteasome pathway. A strong positive correlation between Nur77 and HIF-1α expression in human breast cancer specimens was also confirmed. Conclusion: Therefore, LNT appears to inhibit the progression of breast cancer partly through the Nur77/HIF-1α signaling axis. The findings of the present study may provide a theoretical basis for targeting HIFs in the treatment of breast cancer.
Collapse
|
26
|
Yang S, Chew H, Jiang Y, Cheng L, Guo X, Che H, Sun N. Lentinan Inhibited the Activation of Th2 Cells in Allergic Mice by Reducing the Amplitude of Changes in Biological Rhythm. Int Arch Allergy Immunol 2020; 182:167-181. [PMID: 33378763 DOI: 10.1159/000509437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Biological rhythm is inextricably linked to the physiological mechanisms of allergic diseases, but the exact mechanisms are still poorly understood. Clinical studies have reported rhythmic fluctuations in allergic diseases. The search for natural and harmless active ingredients based on biological rhythm with which to regulate allergic diseases is essential for the control of food allergy. METHODS In this study, mice were treated at different time points to determine the link between the severity of allergic reactions and the circadian clock genes. The mice were treated with lentinan, either continuously or discontinuously, to assess their clinical symptoms, vascular permeability, immune cells, cytokines, and clock genes. Specifically, rat basophilic leukemia (RBL-2H3) cells were treated with lentinan and the rhythmic changes of cell degranulation were measured. RESULTS The results in different models showed that the allergic reactions in mice treated at different time points were significantly different and thus related to fluctuations in biological rhythm. Treatment with lentinan was found to reduce the amplitude of changes in the clock genes, such as the activation of Per and Cry proteins in allergic mice, as well as to regulate biological rhythm in cells, inhibit the activation of Th2 cells, and alleviate allergic reactions. Furthermore, lentinan changed the rhythm of degranulation in RBL-2H3 cells. CONCLUSION Lentinan was, therefore, determined to successfully alleviate allergic reactions by reducing the amplitude of changes in the body's biological rhythm, inhibiting the activation of Th2 cells, and affecting the immune microenvironment.
Collapse
Affiliation(s)
- Shuai Yang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huifang Chew
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchi Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
27
|
Duan B, Zou S, Sun Y, Xu X. Fabrication of tumor-targeting composites based on the triple helical β-glucan through conjugation of aptamer. Carbohydr Polym 2020; 254:117476. [PMID: 33357929 DOI: 10.1016/j.carbpol.2020.117476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/31/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Herein the nucleic acid aptamers were attached to the polydeoxyadenylic acid (poly(dA)) tail for improving the tumor-targetability and cellular internalization of s-LNT/poly(dA) composite composed of two single chains of triple helical β-glucan lentinan (s-LNT) and one poly(dA) chain. The in vitro results demonstrate that the cellular uptake of s-LNT/poly(dA) composites in MCF-7 cancer cells was enhanced effectively after attaching the aptamer. The as-prepared fluorescin isothiocyanate (FITC)-labelled LNT (LNT-FITC) through grafting was used for tracing the enhanced tumor-targetability of the composites. As a result, the cellular internalization of the LNT-FITC into MCF-7 and 4T1 cancer cells was further increased by the aptamer conjugated to poly(dA). Meanwhile, the in vivo experiments further demonstrate more s-LNT/poly(dA)-aptamer composites were effectively accumulated at the tumor site compared with s-LNT alone. This work provides a novel strategy for fabricating triplex β-glucan as delivery vectors with active tumor-targetability.
Collapse
Affiliation(s)
- Bingchao Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
28
|
Wan X, Jin X, Xie M, Liu J, Gontcharov AA, Wang H, Lv R, Liu D, Wang Q, Li Y. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells. Int J Biol Macromol 2020; 163:865-877. [DOI: 10.1016/j.ijbiomac.2020.06.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
|
29
|
Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S, de Jesus Domingues AM, Nati M, Sormendi S, Neuwirth A, Chatzigeorgiou A, Ziogas A, Lesche M, Dahl A, Henry I, Subramanian P, Wielockx B, Murray P, Mirtschink P, Chung KJ, Schultze JL, Netea MG, Hajishengallis G, Verginis P, Mitroulis I, Chavakis T. Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell 2020; 183:771-785.e12. [PMID: 33125892 PMCID: PMC7599076 DOI: 10.1016/j.cell.2020.09.058] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with β-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of β-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from β-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of β-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany; Hull York Medical School, York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Jonas Schulte-Schrepping
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aikaterini Hatzioannou
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tatyana Grinenko
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Canan Has
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sevina Dietz
- DFG-Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
| | | | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sundary Sormendi
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Athanasios Ziogas
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ian Henry
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Peter Murray
- Immunoregulation Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; PRECISE - Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 XZ, the Netherlands
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
30
|
A Systematic Review of the Mechanisms Underlying Treatment of Gastric Precancerous Lesions by Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9154738. [PMID: 32454874 PMCID: PMC7212333 DOI: 10.1155/2020/9154738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Gastric precancerous lesions (GPLs) are an essential precursor in the occurrence and development of gastric cancer, known to be one of the most common and lethal cancers worldwide. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and therapy of GPL owing to several advantages including a definite curative effect, fewer side effects compared to other treatments, multiple components, and holistic regulation. Despite these characteristic advantages, the mechanisms of TCM in treating GPL have not been fully elucidated. In this review, we summarize the current knowledge with respect to herbal formulations and the therapeutic mechanisms of TCM active ingredients for GPL. This paper elaborates on the mechanisms of TCM underlying the prevention and treatment of GPL, specifically those that are linked to anti-H. pylori, anti-inflammation, antiproliferation, proapoptotic, antioxidation, antiglycolytic, and antiangiogenesis effects.
Collapse
|
31
|
Jia X, Yao Y, Yu G, Qu L, Li T, Li Z, Xu C. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydr Polym 2020; 238:116169. [PMID: 32299566 DOI: 10.1016/j.carbpol.2020.116169] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Polysaccharides are ideal green synthetic raw materials to improve the biocompatibility of metal nanoparticles. However, polysaccharides generally have weak reducibilities, being challenging supports for the direct preparation of Ag nanoparticles. In this work, gold nanoclusters were prepared using a triple helix glucan (Lentinan) via microwave-assisted synthesis and subsequently employed as seeds for the synthesis of a series of Ag-Au alloy nanoparticles (Ag-AuNPs). The results showed that gold nanoclusters can remarkably speed up the preparation of Ag-AuNPs without the addition of any other chemicals. The particle size of Ag-AuNPs increased at increasing Ag contents in the alloy. Results of UV-vis, transmission electron microscope (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) suggested that Ag+ was quickly reduced to irregular silver nanoparticles (with gold nanoparticles as seeds), then gradually form more regular nano-alloys. Additionally, X-ray diffraction (XRD) and zeta potential results suggested that Ag-AuNPs could entrap the hydrophobic cavity of triple helix polysaccharides during the renaturation process. The nanocomposites exhibited good antifungal activity and low cytotoxicity to RAW264.7, Hela and LO2 cell lines in vitro.
Collapse
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Yanchao Yao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Guofeng Yu
- Shandong China Tobacco Industry Co., Ltd, Qingdao, Shandong, China
| | - Lili Qu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Tianxiao Li
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming, Yunnan, China.
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Lyu F, Xu X, Zhang L. Natural polysaccharides with different conformations: extraction, structure and anti-tumor activity. J Mater Chem B 2020; 8:9652-9667. [DOI: 10.1039/d0tb01713b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural polysaccharides as sustainable polymers are rich sources with good biological safety and various biological functions, which are important research topics in the fields of food and medicine.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| |
Collapse
|
34
|
Yuan H, Lan P, He Y, Li C, Ma X. Effect of the Modifications on the Physicochemical and Biological Properties of β-Glucan-A Critical Review. Molecules 2019; 25:E57. [PMID: 31877995 PMCID: PMC6983044 DOI: 10.3390/molecules25010057] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
β-Glucan exhibits many biological activities and functions such as stimulation of the immune system and anti-inflammatory, anti-microbial, anti-infective, anti-viral, anti-tumor, anti-oxidant, anti-coagulant, cholesterol-lowering, radio protective, and wound healing effects. It has a wide variety of uses in pharmaceutical, cosmetic, and chemical industries as well as in food processing units. However, due to its dense triple helix structure, formed by the interaction of polyhydroxy groups in the β-d-glucan molecule, it features poor solubility, which not only constrains its applications, but also inhibits its physiological function in vivo. One aim is to expand the applications for modified β-glucan with potential to prevent disease, various therapeutic purposes and as health-improving ingredients in functional foods and cosmetics. This review introduces the major modification methods required to understand the bioactivity of β-glucan and critically provides a literature survey on the structural features of this molecule and reported biological activity. We also discuss a new method to create novel opportunities to exploit maximally various properties of β-glucan, namely ultrasound-assisted enzymatic modification.
Collapse
Affiliation(s)
- Hongjie Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Chengliang Li
- LB Cosmeceutical Technology Co., Ltd., Shanghai 201499, China;
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| |
Collapse
|
35
|
Inhibition of tumor growth by β-glucans through promoting CD4+ T cell immunomodulation and neutrophil-killing in mice. Carbohydr Polym 2019; 213:370-381. [DOI: 10.1016/j.carbpol.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
|
36
|
Production, structural characterization, and antiproliferative activity of exopolysaccharide produced by Scleroderma areolatum Ehrenb with different carbon source. Braz J Microbiol 2019; 50:625-632. [PMID: 31030410 DOI: 10.1007/s42770-019-00071-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/22/2019] [Indexed: 10/26/2022] Open
Abstract
The effects of different three carbon sources, that is, glucose, fructose, and sucrose, on production, molecular properties and antiproliferative activity of exopolysaccharide (EPS), were evaluated in the submerged culture of Scleroderma areolatum Ehrenb. Among carbon sources examined, the addition of sucrose maximizes the mycelia production, while fructose could maximize the EPS yield. Although the predominant carbohydrate compositions identified were gluconic acid and mannose, the monosaccharide composition of EPSs was also different significantly. FT-IR spectral analysis revealed there was no significant difference among the prominent characteristic groups in three EPSs. The molecular weight of EPSs was also affected by carbon source, being generally lower compared with that with glucose. However, all EPSs molecule existed as nearly globular shape form in aqueous solution. The variation of carbon sources also affected antiproliferative activity examined in vitro using cell proliferation assay. Fructose was optimal carbon source giving higher antiproliferative activity probably due to the relatively high contents of xylose in the EPS with low molecular weight.
Collapse
|
37
|
Wei X, Cai L, Liu H, Tu H, Xu X, Zhou F, Zhang L. Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydr Polym 2019; 208:86-96. [PMID: 30658835 DOI: 10.1016/j.carbpol.2018.12.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022]
Abstract
A fucoidan derived from marine brown algae has great potential in biomedical filed. Herein, the fucoidan was successfully isolated and purified by using chitosan microspheres, resulting in the sulfate fucoidan (CF) with degree of sulfation (DS) of 0.94. CF was identified to be highly branched, consisting of fucose (77.4%) and galactose (13.9%), etc., supported by the results of GCMS and light scattering with the structure-sensitive parameter of 0.98 in 0.15 M aqueous NaNO3. The individual CF and its desulfated derivative chains adopted sphere-like conformation in water, observed by atomic force microscopy. CF exhibited higher antiangiogenesis than the desulfated one and strong antileukemia activities through inhibiting cell proliferation and inducing cell apoptosis via cell cycle arrest at G1 phase in vitro. This work provided important information that ester sulfate groups of polysaccharide played an important role in the enhancing of bioactivities of fucoidan, and put forward to a potential drug to treat acute myelocytic leukemia (AML) and tumors.
Collapse
Affiliation(s)
- Xueqin Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Liqin Cai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hailing Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
38
|
Duan B, Zou S, Sun Y, Xu X. Nanoplatform Constructed from a β-Glucan and Polydeoxyadenylic Acid for Cancer Chemotherapy and Imaging. Biomacromolecules 2019; 20:1567-1577. [PMID: 30799607 DOI: 10.1021/acs.biomac.8b01780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A nanoplatform carrying doxorubicin (Dox) for cancer therapy and a dye for imaging was developed based on a natural triple helix β-glucan (t-LNT) and polydeoxyadenylic acid (poly(dA)). The t-LNT-Dox conjugates were prepared through Schiff-base reaction between the aldehyde group in the oxidized t-LNT and the amino group of Dox, the single chains (s-LNT-Dox) of which interacted with the poly(dA)-dye to form a composite s-LNT-Dox/poly(dA)-dye through hydrogen bonding between s-LNT and poly(dA). t-LNT-Dox was confirmed to acid-responsively release Dox in vitro, showing enhanced cytotoxicity against HeLa cancer cells with time. It was confirmed that Dox and the dye could be simultaneously delivered into HeLa cells or the tumors with a prolonged duration time. Furthermore, LNT-Dox conjugates effectively inhibited tumor growth and decreased adverse effects of the free Dox in vivo. Hence, this work develops a new strategy to fabricate the nanoplatform for therapy and imaging using a natural polysaccharide.
Collapse
Affiliation(s)
- Bingchao Duan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
39
|
Chen C, Liu S, Wan X, Jin X, Ren Y, Xiu Y, Li Y. Antitumor effects and mechanism of protein from Panax ginseng C. A. Meyer on human breast cancer cell line MCF-7. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_151_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Xu HL, Dai JH, Hu T, Liao YF. Lentinan up-regulates microRNA-340 to promote apoptosis and autophagy of human osteosarcoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3876-3883. [PMID: 31949775 PMCID: PMC6962797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/12/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a common tumor of bone, and the high incidence and poor prognosis of OS call for novel therapeutic strategies. We aimed to explore the functional role of lentinan (LNT) in human OS MG63 cells as well as the underlying mechanisms. METHODS Cell viability of MG63 cells under LNT stimulation was measured by CCK-8 assay to explore the adequate concentration of LNT. Cell proliferation, apoptosis and expression of microRNA (miR)-340 in MG63 cells after LNT treatments were assayed by BrdU incorporation assay, flow cytometry assay and quantitative reverse transcription PCR, respectively. Expression of proteins associated with cell cycle, apoptosis, and autophagy were determined by western blot analysis. Subsequently, whether LNT affected MG63 cells through miR-340 as well as the related signaling pathway was explored. RESULTS Cell viability was reduced by 5-100 mg/mL of LNT. Percentage of BrdU-positive cells was reduced while that of apoptotic cells was enhanced by LNT treatment. LNT decreased cyclin D1 level but increased levels of active caspase-3 and caspase-9. After treatment, LNT enhanced LC3B-II/LC3B-I and Beclin-1 levels but reduced the p62 level. The miR-340 level was up-regulated by LNT, and further experiments showed LNT promoted apoptosis and autophagy through up-regulating miR-340. Moreover, LNT reduced the phosphorylated levels of MAPK and ERK through up-regulating miR-340. CONCLUSION LNT reduced proliferation and induced apoptosis and autophagy by up-regulating miR-340 in MG63 cells, along with inhibition of the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Huan-Long Xu
- Department of Radiation Oncology, Ningbo No. 2 HospitalNingbo 315010, Zhejiang, China
| | - Jin-Hua Dai
- Department of Clinical Laboratory, Ningbo No. 2 HospitalNingbo 315010, Zhejiang, China
| | - Ting Hu
- Department of Radiation Oncology, Ningbo No. 2 HospitalNingbo 315010, Zhejiang, China
| | - Yu-Feng Liao
- Department of Clinical Laboratory, Ningbo No. 2 HospitalNingbo 315010, Zhejiang, China
| |
Collapse
|
41
|
Jin Y, Li P, Wang F. β-glucans as potential immunoadjuvants: A review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine 2018; 36:5235-5244. [PMID: 30049632 DOI: 10.1016/j.vaccine.2018.07.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
β-glucans, a group of polysaccharides exist in many organism species such as mushrooms, yeasts, oats, barley, seaweed, but not mammalians, have a variety of biological activities and applications in drugs and other healthcare products. In recent years, β-glucans have been studied as adjuvants in anti-infection vaccines as well as immunomodulators in anti-cancer immunotherapy. β-glucans can regulate immune responses when administered alone and can connect innate and adaptive immunity to improve immunogenicity of vaccines. When β-glucans act as immunostimulants or adjuvants, a set of receptors have been revealed to recognize β-glucans, including dectin-1, complement receptor 3 (CR3), CD5, lactosylceramide, and so on. Therefore, this review is mainly focused on the application of β-glucans as immune adjuvants, the receptors of β-glucans, as well as their structure and activity relationship which will benefit future research of β-glucans.
Collapse
Affiliation(s)
- Yiming Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
42
|
Zong S, Li J, Yang L, Huang Q, Ye Z, Hou G, Ye M. Synergistic antitumor effect of polysaccharide from Lachnum sp. in combination with cyclophosphamide in hepatocellular carcinoma. Carbohydr Polym 2018; 196:33-46. [PMID: 29891303 DOI: 10.1016/j.carbpol.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Combination therapy with chemotherapeutics is attracting increasing attention as an important treatment option for hepatocellular carcinoma (HCC) due to its complex pathological characteristics. In this study, as a new therapy strategy, combination treatment of LEP-2a (a non-toxic polysaccharide from Lachnum sp.) with cyclophosphamide (CTX) was investigated. Results showed that combination treatment with LEP-2a and CTX processed a significantly synergistic anti-tumor effect in H22 tumor-bearing mice through Fas/FasL mediated caspase-dependent death pathway and mitochondria apoptosis pathway. Moreover, our study indicated that LEP-2a played a crucial role in enhancement of immune response, inhibition of tumor angiogenesis and down-regulation of survival associated proteins. Notably, side effects induced by CTX were relieved after LEP-2a treatment. These results support the conception that LEP-2a has the potential as an ideal adjuvant agent for a more effective combination therapy with CTX against HCC.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Qianli Huang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ziyang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Guohua Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
43
|
Uchiyama H, Iwai A, Dohra H, Ohnishi T, Kato T, Park EY. The effects of gene disruption of Kre6-like proteins on the phenotype of β-glucan-producing Aureobasidium pullulans. Appl Microbiol Biotechnol 2018; 102:4467-4475. [PMID: 29600492 DOI: 10.1007/s00253-018-8947-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 11/27/2022]
Abstract
Killer toxin resistant 6 (Kre6) and its paralog, suppressor of Kre null 1 (Skn1), are thought to be involved in the biosynthesis of cell wall β-(1 → 6)-D-glucan in baker's yeast, Saccharomyces cerevisiae. The Δkre6Δskn1 mutant of S. cerevisiae and other fungi shows severe growth defects due to the failure to synthesize normal cell walls. In this study, two homologs of Kre6, namely, K6LP1 (Kre6-like protein 1) and K6LP2 (Kre6-like protein 2), were identified in Aureobasidium pullulans M-2 by draft genome analysis. The Δk6lp1, Δk6lp2, and Δk6lp1Δk6lp2 mutants were generated in order to confirm the functions of the Kre6-like proteins in A. pullulans M-2. The cell morphologies of Δk6lp1 and Δk6lp1Δk6lp2 appeared to be different from those of wild type and Δk6lp2 in both their yeast and hyphal forms. The productivity of the extracellular polysaccharides, mainly composed of β-(1 → 3),(1 → 6)-D-glucan (β-glucan), of the mutants was 5.1-17.3% less than that of wild type, and the degree of branching in the extracellular β-glucan of mutants was 14.5-16.8% lower than that of wild type. This study showed that the gene disruption of Kre6-like proteins affected the cell morphology, the productivity of extracellular polysaccharides, and the structure of extracellular β-glucan, but it did not have a definite effect on the cell viability even in Δk6lp1Δk6lp2, unlike in the Δkre6Δskn1 of S. cerevisiae.
Collapse
Affiliation(s)
- Hirofumi Uchiyama
- Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Aureo-Science Co., Ltd., Nishi 12-2, Kita 21-jo, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Atsushi Iwai
- Aureo-Science Co., Ltd., Nishi 12-2, Kita 21-jo, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshiyuki Ohnishi
- Laboratory of Organic Chemistry of Natural Products, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
44
|
Cao Y, Sun Y, Zou S, Duan B, Sun M, Xu X. Yeast β-Glucan Suppresses the Chronic Inflammation and Improves the Microenvironment in Adipose Tissues of ob/ob Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:621-629. [PMID: 29285925 DOI: 10.1021/acs.jafc.7b04921] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inflammation in visceral adipose tissues (VATs) contributes to the pathology of diabetes. This study focused on the inflammatory regulation in VATs by a yeast β-1,3-glucan (BYG) orally administered to ob/ob mice. BYG decreased pro-inflammatory modulators of TNF-α, IL-6, IL-1β, CCL2, and SAA3, and increased anti-inflammatory factors of Azgp1 (2.53 ± 0.02-fold change) at protein and/or mRNA levels (p < 0.05). Remarkably, BYG decreased the degree of adipose tissue macrophages (ATMs) infiltration to 82.5 ± 8.3%, especially the newly recruited ATMs. Interestingly, BYG increased the protective Th2 cell regulator GATA3 (7.72 ± 0.04-fold change) and decreased immunosuppressors IL-10 and IL-1ra, suggesting that BYG elicited inflammation inhibition via stimulating immune responses. Additionally, BYG increased the gut microbiota proportion of Akkermansia from 0.07% to 4.85% and improved the microenvironment of VATs through decreasing fibrosis and angiogenesis. These findings suggest that BYG has anti-inflammatory effect in diabetic mice, which can be used as a food component and/or therapeutic agent for diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Mengying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
45
|
WITHDRAWN: Mechanisms of antimelanoma effect of oat β-glucan supported by electroporation. Bioelectrochemistry 2018. [DOI: 10.1016/j.bioelechem.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Cao Y, Sun Y, Zou S, Li M, Xu X. Orally Administered Baker's Yeast β-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9665-9674. [PMID: 29035040 DOI: 10.1021/acs.jafc.7b03782] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Baker's yeast glucan (BYG) has been reported to be an anti-diabetic agent. In the work described herein, further study on the effect of orally administered BYG on glucose and lipid homeostasis in the livers of ob/ob mice was performed. It was found that BYG decreased the blood glucose and the hepatic glucose and lipid disorders. Western blotting analysis revealed that BYG up-regulated p-AKT and p-AMPK, and down-regulated p-Acc in the liver. Furthermore, RNA-Seq analysis indicated that BYG down-regulated genes responsible for gluconeogenesis (G6pase and Got1), fatty acid biosynthesis (Acly, Acc, Fas, etc.), glycerolipid synthesis (Gpam and Lipin1/2), and cholesterol synthesis (Hmgcr, Fdps, etc.). Additionally, BYG decreased glucose transporters SGLT1 and GLUT2, fat emulsification, and adipogenic genes/proteins in the intestine to decrease glucose and lipid absorption. All these findings demonstrated that BYG is beneficial for regulating glucose and lipid homeostasis in diabetic mice, and thus has potential applications in anti-diabetic foods or drugs.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Mengxia Li
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
47
|
Xu H, Zou S, Xu X. The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget 2017; 8:86693-86709. [PMID: 29156828 PMCID: PMC5689718 DOI: 10.18632/oncotarget.21411] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is now the most common cancer in worldwide women, and novel interventions are needed to overcome the resistance occurring in the estrogen-targeted endocrine therapy. Herein, we demonstrate that the β-glucan from Lentinus edodes (LNT) exhibited a profound inhibition ratio of ∼53% against estrogen receptor positive (ER+) MCF-7 tumor growth in nude mice similar to the positive control of cisplatin. Immunohistochemistry images showed that LNT evidently suppressed cell proliferation and promoted apoptosis in MCF-7 tumor tissues. The Western blotting analysis indicated that LNT up-regulated the tumor suppressor p53, phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2), cleaved-Caspase 3 and poly [ADP (ribose)] polymerase 1 (PARP 1) protein levels, and reduced the expression of mouse double minute 2 (MDM2), telomerase reverse transcriptase (TERT), nuclear factor-kappa B (NF-κB) p65, B-cell lymphoma-2 (Bcl-2), estrogen receptor α (ERα), etc. in tumor tissues. Moreover, LNT significantly suppressed phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) protein levels. It was thus proposed that LNT inhibited MCF-7 tumor growth through suppressing cell proliferation and enhancing apoptosis possibly via multiple pathways such as PI3K/Akt/mTOR, NF-κB-, ERK-, ERα-, caspase- and p53-dependent pathways. Interestingly, the cell viability assay, siRNA transfection, Western blotting and flow cytometric analysis suggested that LNT targeted p53/ERα to only suppress cell proliferation via cell cycle arrest at G2/M phase without apoptosis in vitro. The big difference between in vivo and in vitro data suggested that the immune responses triggered by the polysaccharide should mainly contribute to the apoptotic effect in vivo. Overall, this work provides a novel strategy to treat ER+ breast cancers by using a naturally occurring β-glucan from mushrooms.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
48
|
A novel self-assembly Lentinan-tetraphenylethylene composite with strong blue fluorescence in water and its properties. Carbohydr Polym 2017; 174:13-24. [DOI: 10.1016/j.carbpol.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022]
|
49
|
Wang H, Cai Y, Zheng Y, Bai Q, Xie D, Yu J. Efficacy of biological response modifier lentinan with chemotherapy for advanced cancer: a meta-analysis. Cancer Med 2017; 6:2222-2233. [PMID: 28940986 PMCID: PMC5633561 DOI: 10.1002/cam4.1156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023] Open
Abstract
Lentinan is a common biological response modifier. This study was sought to evaluate the efficacy of adjuvant lentinan combined with chemotherapy for advanced cancer. A meta-analysis of published prospective controlled trials investigating the effects of lentinan for kinds of advanced cancer was performed. Sensitivity analysis, inverted funnel plots, and trial sequence analysis were conducted to explore the reliability and stability of results. Seventeen clinical studies were identified containing 1423 patients. Twelve trials included gastrointestinal cancer (GIC), three trials included lung cancer (LC), and two trials included the two cancers. There was a increase in survival rate in 1 year (risk ratios [RR], 1.46, P = 0.001) and overall response rate including both complete and partial response (RR, 1.28, P = 0.005). There was also a reduction in progressive disease (RR, 0.57, P = 0.0005), nonsevere adverse events (RR, 0.88, P = 0.004), and severe adverse events (RR, 0.73, P = 0.007). Similar results were shown in the two subgroups of GIC and LC. Limited trials reported the data of median overall survival and time to treatment failure, and the data were insufficient for quantitative analysis, and no significant difference were found in 2-year survival rate. Adjuvant lentinan used with chemotherapy achieved improvements in 1-year survival rate, response rate, and adverse events in advanced cancer. The effect seemed to be similar irrespective of cancer type. However, its sustained efficacy on survival was still unclear.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Yong Cai
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Yue Zheng
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Qixuan Bai
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Dongling Xie
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| | - Jiufei Yu
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, 100123, China
| |
Collapse
|
50
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|