1
|
Li M, Yao Z, Wang H, Ma Y, Yang W, Guo Y, Yu G, Shi W, Zhang N, Xu M, Li X, Zhao J, Zhang Y, Xue C, Sun B. Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines. ACS NANO 2024; 18:16878-16894. [PMID: 38899978 DOI: 10.1021/acsnano.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wendi Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiashu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
2
|
Mancini F, Caradonna V, Alfini R, Aruta MG, Vitali CG, Gasperini G, Piccioli D, Berlanda Scorza F, Rossi O, Micoli F. Testing S. sonnei GMMA with and without Aluminium Salt-Based Adjuvants in Animal Models. Pharmaceutics 2024; 16:568. [PMID: 38675229 PMCID: PMC11054012 DOI: 10.3390/pharmaceutics16040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is one of the leading causes of diarrheal disease in low- and middle-income countries, particularly in young children, and is more often associated with antimicrobial resistance. Therefore, a preventive vaccine against shigellosis is an urgent medical need. We have proposed Generalised Modules for Membrane Antigens (GMMA) as an innovative delivery system for Shigella sonnei O-antigen, and an Alhydrogel formulation (1790GAHB) has been extensively tested in preclinical and clinical studies. Alhydrogel has been used as an adsorbent agent with the main purpose of reducing potential GMMA systemic reactogenicity. However, the immunogenicity and systemic reactogenicity of this GMMA-based vaccine formulated with or without Alhydrogel have never been compared. In this work, we investigated the potential adjuvant effect of aluminium salt-based adjuvants (Alhydrogel and AS37) on S. sonnei GMMA immunogenicity in mice and rabbits, and we found that S. sonnei GMMA alone resulted to be strongly immunogenic. The addition of neither Alhydrogel nor AS37 improved the magnitude or the functionality of vaccine-elicited antibodies. Interestingly, rabbits injected with either S. sonnei GMMA adsorbed on Alhydrogel or S. sonnei GMMA alone showed a limited and transient body temperature increase, returning to baseline values within 24 h after each vaccination. Overall, immunisation with unadsorbed GMMA did not raise any concern for animal health. We believe that these data support the clinical testing of GMMA formulated without Alhydrogel, which would allow for further simplification of GMMA-based vaccine manufacturing.
Collapse
Affiliation(s)
- Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Valentina Caradonna
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | | | | | | | | | - Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| |
Collapse
|
3
|
D'Oro U, O'Hagan DT. The scientific journey of a novel adjuvant (AS37) from bench to bedside. NPJ Vaccines 2024; 9:26. [PMID: 38332005 PMCID: PMC10853242 DOI: 10.1038/s41541-024-00810-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
A decade ago, we described a new approach to discover next generation adjuvants, identifying small-molecule immune potentiators (SMIPs) as Toll-like receptor (TLR)7 agonists. We also optimally formulated these drugs through adsorption to aluminum salts (alum), allowing them to be evaluated with a range of established and early-stage vaccines. Early proof-of-concept studies showed that a TLR7 agonist (TLR7a)-based SMIP, when adsorbed to alum, could perform as an effective adjuvant for a variety of different antigens, in both small and large animals. Studies in rodents demonstrated that the adjuvant enhanced immunogenicity of a recombinant protein-based vaccine against Staphylococcus aureus, and also showed potential to improve existing vaccines against pertussis or meningococcal infection. Extensive evaluations showed that the adjuvant was effective in non-human primates (NHPs), exploiting a mechanism of action that was consistent across the different animal models. The adjuvant formulation (named AS37) has now been advanced into clinical evaluation. A systems biology-based evaluation of the phase I clinical data with a meningococcal C conjugate vaccine showed that the AS37-adjuvanted formulation had an acceptable safety profile, was potent, and activated the expected immune pathways in humans, which was consistent with observations from the NHP studies. In the intervening decade, several alternative TLR7 agonists have also emerged and advanced into clinical development, such as the alum adsorbed TLR7/8 SMIP present in a widely distributed COVID-19 vaccine. This review summarizes the research and early development of the new adjuvant AS37, with an emphasis on the steps taken to allow its progression into clinical evaluations.
Collapse
|
4
|
Powers N, Massena C, Crouse B, Smith M, Hicks L, Evans JT, Miller S, Pravetoni M, Burkhart D. Self-Adjuvanting TLR7/8 Agonist and Fentanyl Hapten Co-Conjugate Achieves Enhanced Protection against Fentanyl Challenge. Bioconjug Chem 2023; 34:1811-1821. [PMID: 37758302 PMCID: PMC10587865 DOI: 10.1021/acs.bioconjchem.3c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Currently approved pharmacotherapies for opioid use disorders (OUDs) and overdose reversal agents are insufficient to slow the spread of OUDs due to the proliferation of fentanyl. This is evident in the 31% rise in drug overdose deaths from 2019 to 2022, with rates increasing from 21.6 to 28.3 overdoses per 100,000 deaths. Vaccines are a potential alternative or adjunct therapy for the treatment of several substance use disorders (nicotine, cocaine) but have shown limited clinical success due to suboptimal antibody titers. In this study, we demonstrate that coconjugation of a Toll-like receptor 7/8 (TLR7/8) agonist (UM-3006) alongside a fentanyl-based hapten (F1) on the surface of the carrier protein cross-reactive material 197 (CRM) significantly increased generation of high-affinity fentanyl-specific antibodies. This demonstrated enhanced protection against fentanyl challenges relative to an unconjugated (admix) adjuvant control in mice. Inclusion of aluminum hydroxide (alum) adjuvant further increased titers and enhanced protection, as determined by analysis of fentanyl concentration in serum and brain tissue. Collectively, our findings present a promising approach to enhance the efficacy of antiopioid vaccines, underscoring the need for extensive exploration of TLR7/8 agonist conjugates as a compelling strategy to combat opioid use disorders.
Collapse
Affiliation(s)
- Noah Powers
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Casey Massena
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mira Smith
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Linda Hicks
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Jay T. Evans
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Shannon Miller
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Marco Pravetoni
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
| | - David Burkhart
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| |
Collapse
|
5
|
Laera D, HogenEsch H, O'Hagan DT. Aluminum Adjuvants-'Back to the Future'. Pharmaceutics 2023; 15:1884. [PMID: 37514070 PMCID: PMC10383759 DOI: 10.3390/pharmaceutics15071884] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.
Collapse
Affiliation(s)
- Donatello Laera
- Technical Research & Development, Drug Product, GSK, 53100 Siena, Italy
- Global Manufacturing Division, Corporate Industrial Analytics, Chiesi Pharmaceuticals, 43122 Parma, Italy
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
6
|
Siena E, Schiavetti F, Borgogni E, Taccone M, Faenzi E, Brazzoli M, Aprea S, Bardelli M, Volpini G, Buricchi F, Sammicheli C, Tavarini S, Bechtold V, Blohmke CJ, Cardamone D, De Intinis C, Gonzalez-Lopez A, O'Hagan DT, Nuti S, Seidl C, Didierlaurent AM, Bertholet S, D'Oro U, Medini D, Finco O. Systems analysis of human responses to an aluminium hydroxide-adsorbed TLR7 agonist (AS37) adjuvanted vaccine reveals a dose-dependent and specific activation of the interferon-mediated antiviral response. Vaccine 2023; 41:724-734. [PMID: 36564274 DOI: 10.1016/j.vaccine.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlo De Intinis
- GSK, Via Fiorentina 1, 53100 Siena, Italy; University of Turin, Via Verdi 8, 10124 Torino, Italy.
| | | | | | - Sandra Nuti
- GSK, 14200 Shady Grove Rd, Rockville MD, USA.
| | | | | | | | - Ugo D'Oro
- GSK, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | |
Collapse
|
7
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Dowling DJ, Barman S, Smith AJ, Borriello F, Chaney D, Brightman SE, Melhem G, Brook B, Menon M, Soni D, Schüller S, Siram K, Nanishi E, Bazin HG, Burkhart DJ, Levy O, Evans JT. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Alyson J Smith
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Seagen, Bothell, WA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, 80131, Italy
- WAO Center of Excellence, Naples, 80131, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Danielle Chaney
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Schüller
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Hélène G Bazin
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - David J Burkhart
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
9
|
Grigoryan L, Lee A, Walls AC, Lai L, Franco B, Arunachalam PS, Feng Y, Luo W, Vanderheiden A, Floyd K, Wrenn S, Pettie D, Miranda MC, Kepl E, Ravichandran R, Sydeman C, Brunette N, Murphy M, Fiala B, Carter L, Coffman RL, Novack D, Kleanthous H, O’Hagan DT, van der Most R, McLellan JS, Suthar M, Veesler D, King NP, Pulendran B. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. NPJ Vaccines 2022; 7:55. [PMID: 35606518 PMCID: PMC9126867 DOI: 10.1038/s41541-022-00472-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Adjuvants enhance the magnitude and the durability of the immune response to vaccines. However, there is a paucity of comparative studies on the nature of the immune responses stimulated by leading adjuvant candidates. In this study, we compared five clinically relevant adjuvants in mice-alum, AS03 (a squalene-based adjuvant supplemented with α-tocopherol), AS37 (a TLR7 ligand emulsified in alum), CpG1018 (a TLR9 ligand emulsified in alum), O/W 1849101 (a squalene-based adjuvant)-for their capacity to stimulate immune responses when combined with a subunit vaccine under clinical development. We found that all four of the adjuvant candidates surpassed alum with respect to their capacity to induce enhanced and durable antigen-specific antibody responses. The TLR-agonist-based adjuvants CpG1018 (TLR9) and AS37 (TLR7) induced Th1-skewed CD4+ T cell responses, while alum, O/W, and AS03 induced a balanced Th1/Th2 response. Consistent with this, adjuvants induced distinct patterns of early innate responses. Finally, vaccines adjuvanted with AS03, AS37, and CpG1018/alum-induced durable neutralizing-antibody responses and significant protection against the B.1.351 variant 7 months following immunization. These results, together with our recent results from an identical study in non-human primates (NHPs), provide a comparative benchmarking of five clinically relevant vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV-2 subunit vaccines to provide durable protection against the B.1.351 variant. Furthermore, these results reveal differences between the widely-used C57BL/6 mouse strain and NHP animal models, highlighting the importance of species selection for future vaccine and adjuvant studies.
Collapse
Affiliation(s)
- Lilit Grigoryan
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Audrey Lee
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Lilin Lai
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Benjamin Franco
- Veterinary Service Center, Department of Comparative Medicine, Stanford, CA USA
| | - Prabhu S. Arunachalam
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Yupeng Feng
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Wei Luo
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Abigail Vanderheiden
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Katharine Floyd
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Samuel Wrenn
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Deleah Pettie
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Marcos C. Miranda
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Elizabeth Kepl
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Rashmi Ravichandran
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Claire Sydeman
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Natalie Brunette
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Michael Murphy
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Brooke Fiala
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Lauren Carter
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Robert L. Coffman
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - David Novack
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - Harry Kleanthous
- grid.418309.70000 0000 8990 8592Bill and Melinda Gates Foundation, Seattle, WA 98102 USA
| | | | | | - Jason S. McLellan
- grid.55460.320000000121548364Department of Molecular Biosciences, University of Texas, Austin, TX USA
| | - Mehul Suthar
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - David Veesler
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Neil P. King
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Bali Pulendran
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
10
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
13
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Auderset F, Belnoue E, Mastelic-Gavillet B, Lambert PH, Siegrist CA. A TLR7/8 Agonist-Including DOEPC-Based Cationic Liposome Formulation Mediates Its Adjuvanticity Through the Sustained Recruitment of Highly Activated Monocytes in a Type I IFN-Independent but NF-κB-Dependent Manner. Front Immunol 2020; 11:580974. [PMID: 33262759 PMCID: PMC7686571 DOI: 10.3389/fimmu.2020.580974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Novel adjuvants, such as Toll-like receptors (TLRs) agonists, are needed for the development of new formulations able to circumvent limitations of current vaccines. Among TLRs, TLR7/8 agonists represent promising candidates, as they are well described to enhance antigen-specific antibody responses and skew immunity toward T helper (TH) 1 responses. We find here that the incorporation of the synthetic TLR7/8 ligand 3M-052 in a cationic DOEPC-based liposome formulation shifts immunity toward TH1 responses and elicits strong and long-lasting germinal center and follicular T helper cell responses in adult mice. This reflects the prolonged recruitment of innate cells toward the site of immunization and homing of activated antigen-loaded monocytes and monocyte-derived dendritic cells toward draining lymph nodes. We further show that this adjuvanticity is independent of type I IFN but NF-κB-dependent. Overall, our data identify TLR7/8 agonists incorporated in liposomes as promising and effective adjuvants to enhance TH1 and germinal center responses.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
16
|
Xu H, Niu Y, Hong W, Liu W, Zuo X, Bao X, Guo C, Lu Y, Deng B. Development of a water-in-oil-in-water adjuvant for foot-and-mouth disease vaccine based on ginseng stem-leaf saponins as an immune booster. Comp Immunol Microbiol Infect Dis 2020; 71:101499. [PMID: 32505765 DOI: 10.1016/j.cimid.2020.101499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022]
Abstract
There has been an increasing interest in finding new formulations that qualify as vaccine adjuvants, which must be safe, stable, and have the capacity to stimulate a strong immune response. In this study, a basic formulation of a water-in-oil-in-water (W/O/W) adjuvant CV13 was developed, and ginseng stem-leaf saponins (GSLS) were added as an immune booster into oil phase. The physicochemical properties of the adjuvant were tested. Furthermore, the immune activity and the adjuvant effects, as indicated by the foot-and-mouth disease virus (FMDV) antigen were evaluated. The results showed that CV13 was similar in appearance to ISA 206 and could package FMDV antigen into a stable W/O/W emulsion. The FMD vaccine prepared with CV13 alone or CV13 containing GSLS achieved pharmaceutical characteristics comparable to a vaccine prepared with ISA 206, moreover the structural stability of the CV 13 vaccine was found to be better. Mice that were immunized with the FMD vaccine prepared with CV13 containing GSLS presented a significantly higher LPBE antibody titer and splenocyte proliferation rate than those immunized with a vaccine prepared with CV13 alone (p < 0.05). In addition, there was no significant difference between the groups that were immunized with FMD vaccine prepared with CV13 containing GSLS and ISA206 in terms of cellular and humoral immune response. In this paper, CV13 containing GSLS shows excellent immunologic adjuvant effect in mice model, and this new adjuvant may provide a potential choice for FMD vaccine production in the future.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu Province, PR China; Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China
| | - Yale Niu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China
| | - Weiming Hong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu Province, PR China
| | - Weixin Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China
| | - Changming Guo
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu Province, PR China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China; School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu province, PR China.
| |
Collapse
|
17
|
Miller SM, Cybulski V, Whitacre M, Bess LS, Livesay MT, Walsh L, Burkhart D, Bazin HG, Evans JT. Novel Lipidated Imidazoquinoline TLR7/8 Adjuvants Elicit Influenza-Specific Th1 Immune Responses and Protect Against Heterologous H3N2 Influenza Challenge in Mice. Front Immunol 2020; 11:406. [PMID: 32210973 PMCID: PMC7075946 DOI: 10.3389/fimmu.2020.00406] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Most licensed seasonal influenza vaccines are non-adjuvanted and rely primarily on vaccine-induced antibody titers for protection. As such, seasonal antigenic drift and suboptimal vaccine strain selection often results in reduced vaccine efficacy. Further, seasonal H3N2 influenza vaccines demonstrate poor efficacy compared to H1N1 and influenza type B vaccines. New vaccines, adjuvants, or delivery technologies that can induce broader or cross-seasonal protection against drifted influenza virus strains, likely through induction of protective T cell responses, are urgently needed. Here, we report novel lipidated TLR7/8 ligands that act as strong adjuvants to promote influenza-virus specific Th1-and Th17-polarized T cell responses and humoral responses in mice with no observable toxicity. Further, the adjuvanted influenza vaccine provided protection against a heterologous H3N2 influenza challenge in mice. These responses were further enhanced when combined with a synthetic TLR4 ligand adjuvant. Despite differences between human and mouse TLR7/8, these novel lipidated imidazoquinolines induced the production of cytokines required to polarize a Th1 and Th17 immune response in human PBMCs providing additional support for further development of these compounds as novel adjuvants for the induction of broad supra-seasonal protection from influenza virus.
Collapse
Affiliation(s)
- Shannon M. Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Margaret Whitacre
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S. Bess
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Mark T. Livesay
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Lois Walsh
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - David Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Hélène G. Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
18
|
Hu Y, Tang L, Zhu Z, Meng H, Chen T, Zhao S, Jin Z, Wang Z, Jin G. A novel TLR7 agonist as adjuvant to stimulate high quality HBsAg-specific immune responses in an HBV mouse model. J Transl Med 2020; 18:112. [PMID: 32131853 PMCID: PMC7055022 DOI: 10.1186/s12967-020-02275-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background The global burden of hepatitis B virus (HBV) infection in terms of morbidity and mortality is immense. Novel treatments that can induce a protective immune response are urgently needed to effectively control the HBV epidemic and eventually eradicate chronic HBV infection. Methods We designed and evaluated an HBV therapeutic vaccine consisting of a novel Toll-like receptor 7 (TLR7) agonist T7-EA, an Alum adjuvant and a recombinant HBsAg protein. We used RNA-seq, ELISA and hTLR7/8 reporting assays to characterize T7-EA in vitro and real-time PCR to evaluate the tissue-retention characteristics in vivo. To evaluate the adjuvant potential, we administrated T7-EA intraperitoneally in a formulation with an Alum adjuvant and HBsAg in normal and HBV mice, then, we evaluated the HBsAg-specific immune responses by ELISA and Elispot assays. Results T7-EA acted as an hTLR7-specific agonist and induced a similar gene expression pattern as an unmodified TLR7 ligand when Raw 264.7 cells were exposed to T7-EA; however, T7-EA was more potent than the unmodified TLR7 ligand. In vivo studies showed that T7-EA had tissue-retaining activity with stimulating local cytokine and chemokine expression for up to 7 days. T7-EA could induce Th1-type immune responses, as evidenced by an increased HBsAg-specific IgG2a titer and a T-cell response in normal mice compared to mice received traditional Alum-adjuvant HBV vaccine. Importantly, T7-EA could break immune tolerance and induce persistent HBsAg-specific antibody and T-cell responses in an HBV mouse model. Conclusions T7-EA might be a candidate adjuvant in a prophylactic and therapeutic HBV vaccine.
Collapse
Affiliation(s)
- Yunlong Hu
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Li Tang
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhengyu Zhu
- Shenzhen Kang Tai Biological Products CO., Ltd, Shenzhen, 518060, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China
| | - Tingting Chen
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sheng Zhao
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Zhenchao Jin
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Zhulin Wang
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Guangyi Jin
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Adjuvant effect of TLR7 agonist adsorbed on aluminum hydroxide (AS37): A phase I randomized, dose escalation study of an AS37-adjuvanted meningococcal C conjugated vaccine. Clin Immunol 2019; 209:108275. [PMID: 31669193 DOI: 10.1016/j.clim.2019.108275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
An adjuvant system (AS37) has been developed containing a synthetic toll-like receptor agonist (TLR7a). We conducted a phase I randomized, observer-blind, dose-escalation study to assess the safety and immunogenicity of an investigational AS37-adjuvanted meningococcus C (MenC) conjugate vaccine in healthy adults (NCT02639351). A control group received a licensed MenC conjugate alum-adjuvanted vaccine. Eighty participants were randomized to receive one dose of control or investigational vaccine containing AS37 (TLR7a dose 12.5, 25, 50, 100 μg). All vaccines were well tolerated, apart from in the TLR7a 100 μg dose group, which had three reports (18.8%) of severe systemic adverse events. Four weeks after vaccination, human complement serum bactericidal assay seroresponse rates against MenC were 56-81% in all groups, and ELISA seroresponses were ≥81% for all AS37-adjuvanted vaccine groups (100% in 50 and 100 μg dose groups) and 88% in the control group. Antibody responses were maintained at six months after vaccination.
Collapse
|
21
|
Huang CH, Mendez N, Echeagaray OH, Weeks J, Wang J, Vallez CN, Gude N, Trogler WC, Carson DA, Hayashi T, Kummel AC. Conjugation of a Small-Molecule TLR7 Agonist to Silica Nanoshells Enhances Adjuvant Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26637-26647. [PMID: 31276378 DOI: 10.1021/acsami.9b08295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimulation of Toll-like receptors (TLRs) and/or NOD-like receptors on immune cells initiates and directs immune responses that are essential for vaccine adjuvants. The small-molecule TLR7 agonist, imiquimod, has been approved by the FDA as an immune response modifier but is limited to topical application due to its poor pharmacokinetics that causes undesired adverse effects. Nanoparticles are increasingly used with innate immune stimulators to mitigate side effects and enhance adjuvant efficacy. In this study, a potent small-molecule TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), was conjugated to hollow silica nanoshells (NS). Proinflammatory cytokine (IL-6, IL-12) release by mouse bone-marrow-derived dendritic cells and human peripheral blood mononuclear cells revealed that the potency of silica nanoshells-TLR7 conjugates (NS-TLR) depends on nanoshell size and ligand coating density. Silica nanoshells of 100 nm diameter coated with a minimum of ∼6000 1V209 ligands/particle displayed 3-fold higher potency with no observed cytotoxicity when compared to an unconjugated TLR7 agonist. NS-TLR activated the TLR7-signaling pathway, triggered caspase activity, and stimulated IL-1β release, while neither unconjugated TLR7 ligands nor silica shells alone produced IL-1β. An in vivo murine immunization study, using the model antigen ovalbumin, demonstrated that NS-TLR increased antigen-specific IgG antibody induction by 1000× with a Th1-biased immune response, compared to unconjugated TLR7 agonists. The results show that the TLR7 ligand conjugated to silica nanoshells is capable of activating an inflammasome pathway to enhance both innate immune-stimulatory and adjuvant potencies of the TLR7 agonist, thereby broadening applications of innate immune stimulators.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Department of Chemistry & Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Natalie Mendez
- Department of Chemistry & Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Oscar Hernandez Echeagaray
- Molecular Biology Institute , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Joi Weeks
- Molecular Biology Institute , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - James Wang
- Department of Chemistry & Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Charles N Vallez
- Molecular Biology Institute , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Natalie Gude
- Molecular Biology Institute , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - William C Trogler
- Department of Chemistry & Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Dennis A Carson
- Moores Cancer Center , University of California , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Tomoko Hayashi
- Moores Cancer Center , University of California , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Andrew C Kummel
- Department of Chemistry & Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| |
Collapse
|
22
|
Francica JR, Laga R, Lynn GM, Mužíková G, Androvič L, Aussedat B, Walkowicz WE, Padhan K, Ramirez-Valdez RA, Parks R, Schmidt SD, Flynn BJ, Tsybovsky Y, Stewart-Jones GBE, Saunders KO, Baharom F, Petrovas C, Haynes BF, Seder RA. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biol 2019; 17:e3000328. [PMID: 31206510 PMCID: PMC6597128 DOI: 10.1371/journal.pbio.3000328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic “star” nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes. Synthetic polymer-based nanoparticles effectively deliver HIV Env glycopeptide immunogens to lymph nodes and stimulate B cell lineages with characteristics resembling broadly neutralizing antibodies, in nonhuman primates.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Geoffrey M Lynn
- Avidea Technologies, Inc., Baltimore, Maryland, United States of America
| | - Gabriela Mužíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kartika Padhan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramiro Andrei Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Krueger CC, Thoms F, Keller E, Leoratti FMS, Vogel M, Bachmann MF. RNA and Toll-Like Receptor 7 License the Generation of Superior Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion. Front Immunol 2019; 10:736. [PMID: 31024563 PMCID: PMC6467167 DOI: 10.3389/fimmu.2019.00736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Secondary plasma cells (PCs) originate from memory B cells and produce increased levels of antibodies with higher affinity compared to PCs generated during primary responses. Here we demonstrate that virus-like particles (VLPs) only induce secondary PCs in the presence of toll-like receptor (TLR) 7 and if they are loaded with RNA. Furthermore, adoptive transfer experiments demonstrate that RNA and TLR7 signaling are required for secondary PC generation, both at the level of memory B cell as well as PC differentiation. TLR7-signaling occurred in a B cell intrinsic manner as TLR7-deficient B cells in an otherwise TLR7-competent environment failed to differentiate into secondary PCs. Therefore, RNA inside VLPs is essential for the generation of memory B cells, which are competent to differentiate to secondary PCs and for the differentiation of secondary PCs themselves. While we have not tested all other TLR or non-TLR adjuvants with our VLPs, these data have obvious implications for vaccine design, as RNA packaged into VLPs is a simple way to enhance induction of memory B cells capable of generating secondary PCs.
Collapse
Affiliation(s)
- Caroline C. Krueger
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Elsbeth Keller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Fabiana M. S. Leoratti
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Wilson DS, Hirosue S, Raczy MM, Bonilla-Ramirez L, Jeanbart L, Wang R, Kwissa M, Franetich JF, Broggi MAS, Diaceri G, Quaglia-Thermes X, Mazier D, Swartz MA, Hubbell JA. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. NATURE MATERIALS 2019; 18:175-185. [PMID: 30643235 DOI: 10.1038/s41563-018-0256-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/20/2018] [Indexed: 05/17/2023]
Abstract
Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man-TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man-TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man-TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)-p(Man-TLR7) conjugates demonstrate that OVA-p(Man-TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP-p(Man-TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes-the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen-p(Man-TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.
Collapse
Affiliation(s)
- D Scott Wilson
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sachiko Hirosue
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michal M Raczy
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Leonardo Bonilla-Ramirez
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Laura Jeanbart
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ruyi Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Marcin Kwissa
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jean-Francois Franetich
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Maria A S Broggi
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Giacomo Diaceri
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xavier Quaglia-Thermes
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Melody A Swartz
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Science and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. Trends Biotechnol 2018; 37:373-388. [PMID: 30470547 DOI: 10.1016/j.tibtech.2018.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.
Collapse
|
26
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
27
|
Wilkinson A, Lattmann E, Roces CB, Pedersen GK, Christensen D, Perrie Y. Lipid conjugation of TLR7 agonist Resiquimod ensures co-delivery with the liposomal Cationic Adjuvant Formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated Resiquimod+CAF01. J Control Release 2018; 291:1-10. [PMID: 30291987 DOI: 10.1016/j.jconrel.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/12/2023]
Abstract
Pattern recognition receptors, including the Toll-like receptors (TLRs), are important in the induction and activation of two critical arms of the host defence to pathogens and microorganisms: the rapid innate immune response (as characterised by the production of Th1 promoting cytokines and type 1 interferons) and the adaptive immune response. Through this activation, ligands and agonists of TLRs can enhance immunotherapeutic efficacy. Resiquimod is a small (water-soluble) agonist of the endosome-located Toll-like receptors 7 and 8 (TLR7/8). However due to its molecular attributes it rapidly distributes throughout the body after injection. To circumvent this, these TLR agonists can be incorporated within delivery systems, such as liposomes, to promote the co-delivery of both antigen and agonists to antigen presenting cells. In this present study, resiquimod has been chemically conjugated to a lipid to form a lipid-TLR7/8 agonist conjugate which can be incorporated within immunogenic cationic liposomes composed of dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory glycolipid trehalose 6,6' - dibehenate (TDB). This DDA:TDB-TLR7/8 formulation offers similar vesicle characteristics to DDA:TDB (size and charge) and offers high retention of both resiquimod and the electrostatically adsorbed TB subunit antigen Ag85B-ESAT6-Rv2660c (H56). Following immunisation through the intramuscular (i.m.) route, these cationic DDA:TDB-TLR7/8 liposomes form a vaccine depot at the injection site. However, immunisation studies have shown that this biodistribution does not translate into notably increased antibody nor Th1 responses at the spleen and draining popliteal lymph node compared to DDA:TDB liposomes. This work demonstrates that the conjugation of TLR7/8 agonists to cationic liposomes can promote co-delivery but the immune responses stimulated do not merit the added complexity considerations of the formulation.
Collapse
Affiliation(s)
| | - Eric Lattmann
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Gabriel K Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK.
| |
Collapse
|
28
|
Rappuoli R. Glycoconjugate vaccines: Principles and mechanisms. Sci Transl Med 2018; 10:10/456/eaat4615. [DOI: 10.1126/scitranslmed.aat4615] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
|
29
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
30
|
Vo HTM, Baudner BC, Sammicheli S, Iannacone M, D'Oro U, Piccioli D. Alum/Toll-Like Receptor 7 Adjuvant Enhances the Expansion of Memory B Cell Compartment Within the Draining Lymph Node. Front Immunol 2018; 9:641. [PMID: 29686670 PMCID: PMC5900039 DOI: 10.3389/fimmu.2018.00641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Vaccination is one of the most cost-effective health interventions and, with the exception of water sanitization, no other action has had such a major effect in mortality reduction. Combined with other approaches, such as clean water, better hygiene, and health education, vaccination contributed to prevent millions of cases of deaths among children under 5 years of age. New or improved vaccines are needed to fight some vaccine-preventable diseases that are still a threat for the public health globally, as reported also in the Global Vaccine Action Plan (GVAP) endorsed by the World Health Assembly in 2012. Adjuvants are substances that enhance the effectiveness of vaccination, but despite their critical role for the development of novel vaccines, very few of them are approved for use in humans. Aluminum hydroxide (Alum) is the most common adjuvant used in vaccines administered in millions of doses around the world to prevent several dangerous diseases. The development of an improved version of Alum can help to design and produce new or better vaccines. Alum/toll-like receptor (TLR)7 is a novel Alum-based adjuvant, currently in phase I clinical development, formed by the attachment of a benzonaphthyridine compound, TLR7 agonist, to Alum. In preclinical studies, Alum/TLR7 showed a superior adjuvant capacity, compared to Alum, in several disease models, such as meningococcal meningitis, anthrax, staphylococcus infections. None of these studies reported the effect of Alum/TLR7 on the generation of the B cell memory compartment, despite this is a critical aspect to achieve a better immunization. In this study, we show, for the first time, that, compared to Alum, Alum/TLR7 enhances the expansion of the memory B cell compartment within the draining lymph node (LN) as result of intranodal sustained proliferation of antigen-engaged B cells and/or accumulation of memory B cells. In addition, we observed that Alum/TLR7 induces a recruitment of naïve antigen-specific B cells within the draining LN that may help to sustain the germinal center reaction. Our data further support Alum/TLR7 as a new promising adjuvant, which might contribute to meet the expectations of the GVAP for 2020 and beyond.
Collapse
Affiliation(s)
| | | | - Stefano Sammicheli
- Dynamics of Immune Responses, Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Matteo Iannacone
- Dynamics of Immune Responses, Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Ugo D'Oro
- Preclinical Research, GSK Vaccines, Siena, Italy
| | | |
Collapse
|
31
|
Liang F, Lindgren G, Sandgren KJ, Thompson EA, Francica JR, Seubert A, De Gregorio E, Barnett S, O'Hagan DT, Sullivan NJ, Koup RA, Seder RA, Loré K. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci Transl Med 2018; 9:9/393/eaal2094. [PMID: 28592561 DOI: 10.1126/scitranslmed.aal2094] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine-induced adaptive immunity are largely unknown. We introduce a model to delineate the steps of how adjuvant-driven innate immune activation leads to priming of vaccine responses using rhesus macaques. Fluorescently labeled HIV-1 envelope glycoprotein (Env) was administered together with the conventional aluminum salt (alum) adjuvant. This was compared to Env given with alum with preabsorbed Toll-like receptor 7 (TLR7) ligand (alum-TLR7) or the emulsion MF59 because they show superiority over alum for qualitatively and quantitatively improved vaccine responses. All adjuvants induced rapid and robust immune cell infiltration to the injection site in the muscle. This resulted in substantial uptake of Env by neutrophils, monocytes, and myeloid and plasmacytoid dendritic cells (DCs) and migration exclusively to the vaccine-draining lymph nodes (LNs). Although less proficient than monocytes and DCs, neutrophils were capable of presenting Env to memory CD4+ T cells. MF59 and alum-TLR7 showed more pronounced cell activation and overall higher numbers of Env+ cells compared to alum. This resulted in priming of higher numbers of Env-specific CD4+ T cells in the vaccine-draining LNs, which directly correlated with increased T follicular helper cell differentiation and germinal center formation. Thus, strong innate immune activation promoting efficient vaccine antigen delivery to infiltrating antigen-presenting cells in draining LNs is an important mechanism by which superior adjuvants enhance vaccine responses.
Collapse
Affiliation(s)
- Frank Liang
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Lindgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerrie J Sandgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Thompson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Tulli L, Cattaneo F, Vinot J, Baldari CT, D'Oro U. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells. Front Immunol 2018; 9:330. [PMID: 29545793 PMCID: PMC5837968 DOI: 10.3389/fimmu.2018.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR) domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF) family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs) in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1) protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their interaction with TNFR-associated factor 6 (TRAF6) and promotes the recruitment of both cIAP2 and IRF-1 by TRAF6. Collectively, our data demonstrate that TLR7/8 engagement leads to the formation of a complex that allows the interaction of cIAP2 and IRF-1 resulting in IRF-1 K63-linked ubiquitination, and that active SFKs are required for this process.
Collapse
|
33
|
The Preparation and Physicochemical Characterization of Aluminum Hydroxide/TLR7a, a Novel Vaccine Adjuvant Comprising a Small Molecule Adsorbed to Aluminum Hydroxide. J Pharm Sci 2018; 107:1577-1585. [PMID: 29421216 DOI: 10.1016/j.xphs.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Adjuvants are necessary to enable vaccine development against a significant number of challenging pathogens for which effective vaccines are not available. We engineered a novel small-molecule immune potentiator, a benzonaphthyridine agonist targeting toll-like receptor 7 (TLR7), as a vaccine adjuvant. TLR7 agonist (TLR7a) was engineered to be adsorbed onto aluminum hydroxide (AlOH), and the resulting AlOH/TLR7a was evaluated as a vaccine adjuvant. AlOH/TLR7a exploits the flexibility of AlOH formulations, has an application in many vaccine candidates, and induced good efficacy and safety profiles against all tested antigens (bacterial- and viral-derived protein antigens, toxoids, glycoconjugates, and so forth) in many animal models, including nonhuman primates. In this article, we describe the outcome of the physicochemical characterization of AlOH/TLR7a. Reverse-phase ultra performance liquid chromatography, confocal microscopy, flow cytometry, zeta potential, and phosphophilicity assays were used as tools to demonstrate the association of TLR7a to AlOH and to characterize this novel formulation. Raman spectroscopy, nuclear magnetic resonance, and mass spectroscopy were also used to investigate the interaction between TLR7a and AlOH (data not shown). This pivotal work paved the way for AlOH/TLR7a to progress into the clinic for evaluation as an adjuvant platform for vaccines against challenging preventable diseases.
Collapse
|
34
|
Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Adv 2017; 1:2329-2342. [PMID: 29296883 DOI: 10.1182/bloodadvances.2017011411] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.
Collapse
|
35
|
Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D'Oro U, O'Hagan DT, Pizza M, Seubert A, Mills KHG. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine 2017; 35:5256-5263. [PMID: 28823618 DOI: 10.1016/j.vaccine.2017.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022]
Abstract
A resurgence of whooping cough (pertussis) has been observed in recent years in a number of developed countries, despite widespread vaccine coverage. Although the exact reasons of the recurrence of pertussis are not clear, there are a number of potential causes, like antigenic variation in the circulating strains of Bordetella pertussis, changes in surveillance and diagnostic tools, and potential differences in protection afforded by current acellular pertussis (aP) vaccines compared to more reactogenic whole cell (wP) vaccines, which they replaced. Studies in animal models have shown that induction of cellular as well as humoral immune responses are key to conferring effective and long lasting protection against B. pertussis. wP vaccines induce robust Th1/Th17 responses, which are associated with good protection against lung infection. In contrast, aP vaccines induce mixed Th2/Th17 responses. One research option is to modify current aP vaccines with the intention of inducing protective T cell responses, without compromising on their low reactogenicity profile. Here we found that formulation of an aP vaccine with a novel adjuvant based on a Toll-like receptor 7 agonist (TLR7a) adsorbed to aluminum hydroxide (alum) enhanced B. pertussis-specific Th1 and Th17 responses and serum IgG2a/b antibodies, which had greater functional capacity than those induced by aP formulated with alum alone. Furthermore, addition of a TLR7a enhanced the protective efficacy of the aP vaccine against B. pertussis aerosol challenge; protection was comparable to that of a wP vaccine. These findings suggest that alum-TLR7a is a promising adjuvant for clinical development of next generation pertussis vaccines.
Collapse
Affiliation(s)
- Alicja Misiak
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | - Aideen C Allen
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | - Ugo D'Oro
- GSK Vaccines, Via Fiorentina 1, Siena 53100, Italy
| | | | | | - Anja Seubert
- GSK Vaccines, Via Fiorentina 1, Siena 53100, Italy.
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
36
|
Abstract
Adjuvants have been deliberately added to vaccines since the 1920's when alum was discovered to boost antibody responses, leading to better protection. The first adjuvants were discovered by accident and were used in the safer but less immunogenic subunit vaccines, supposedly by providing an antigen depot to extend antigen presentation. Since that time, much has been discovered about how these adjuvants impact cells at the tissue site to activate innate immune responses, mobilize dendritic cells and drive adaptive immunity. New approaches to vaccine construction for infectious diseases that have so far not been well addressed by conventional vaccines often attempt to induce antibodies, polyfunctional CD4+ T cells and CD8+ CTLs. The discovery of pattern recognition receptors and ligands that drive desired T cell responses has led to development of novel adjuvant strategies using immunomodulatory agents to direct appropriate immune responses.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Philippa Marrack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, 1400, Jackson St., Denver, CO 80206, USA
| |
Collapse
|
37
|
O'Hagan DT, Friedland LR, Hanon E, Didierlaurent AM. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol 2017; 47:93-102. [PMID: 28755542 DOI: 10.1016/j.coi.2017.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
In the last two decades, several vaccines formulated with a new generation of adjuvants have been licensed or approved to target diseases such as influenza, hepatitis B, cervical cancer, and malaria. These new generation adjuvants appear to work by delivering a localized activation signal to the innate immune system, which in turn promotes antigen-specific adaptive immunity. Advances in understanding of the innate immune system together with high-throughput discovery of synthetic immune potentiators are now expanding the portfolio of new generation adjuvants available for evaluation. Meanwhile, omics and systems biology are providing molecular benchmarks or signatures to assess vaccine safety and effectiveness. This accumulating knowledge and experience raises the prospect that the future selection of the right antigen/adjuvant combination can be more evidence based and can speed up the clinical development program for new adjuvanted vaccines.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, USA. derek.t.o'
| | | | - Emmanuel Hanon
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | | |
Collapse
|